##// END OF EJS Templates
MINI_LFR-WFP_MS-0.1.31.pdb :...
MINI_LFR-WFP_MS-0.1.31.pdb : -> add the input "run" to lpp_lfr_apbreg_ms_pointer

File last commit:

r451:af05753380a8 (MINI-LFR) WFP_MS-0-1-31 JC
r451:af05753380a8 (MINI-LFR) WFP_MS-0-1-31 JC
Show More
cic_lfr_control.vhd
281 lines | 10.0 KiB | text/x-vhdl | VhdlLexer
/ lib / lpp / dsp / cic / cic_lfr_control.vhd
------------------------------------------------------------------------------
-- This file is a part of the LPP VHDL IP LIBRARY
-- Copyright (C) 2009 - 2010, Laboratory of Plasmas Physic - CNRS
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 3 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-------------------------------------------------------------------------------
-- Author : Jean-christophe Pellion
-- Mail : jean-christophe.pellion@lpp.polytechnique.fr
-- jean-christophe.pellion@easii-ic.com
----------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY lpp;
USE lpp.cic_pkg.ALL;
USE lpp.data_type_pkg.ALL;
ENTITY cic_lfr_control IS
PORT (
clk : IN STD_LOGIC;
rstn : IN STD_LOGIC;
run : IN STD_LOGIC;
--
data_in_valid : IN STD_LOGIC;
data_out_16_valid : OUT STD_LOGIC;
data_out_256_valid : OUT STD_LOGIC;
-- dataflow
sel_sample : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
--
op_valid : OUT STD_LOGIC;
op_ADD_SUBn : OUT STD_LOGIC;
--
r_addr_init : OUT STD_LOGIC;
r_addr_base : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
r_addr_add1 : OUT STD_LOGIC;
--
w_en : OUT STD_LOGIC;
w_addr_init : OUT STD_LOGIC;
w_addr_base : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
w_addr_add1 : OUT STD_LOGIC
);
END cic_lfr_control;
ARCHITECTURE beh OF cic_lfr_control IS
TYPE STATE_CIC_LFR_TYPE IS (IDLE,
INT_0_d0, INT_1_d0, INT_2_d0,
INT_0_d1, INT_1_d1, INT_2_d1,
INT_0_d2, INT_1_d2, INT_2_d2,
WAIT_INT_to_COMB_16,
COMB_0_16_d0, COMB_1_16_d0, COMB_2_16_d0,
COMB_0_16_d1, COMB_1_16_d1, COMB_2_16_d1,
COMB_0_256_d0, COMB_1_256_d0, COMB_2_256_d0,
COMB_0_256_d1, COMB_1_256_d1, COMB_2_256_d1,
COMB_0_256_d2, COMB_1_256_d2, COMB_2_256_d2,
READ_INT_2_d0,
READ_INT_2_d1,
Wait_step,
INT_0, INT_1, INT_2
);
SIGNAL STATE_CIC_LFR : STATE_CIC_LFR_TYPE;
SIGNAL STATE_CIC_LFR_pre : STATE_CIC_LFR_TYPE;
SIGNAL nb_data_receipt : INTEGER;
SIGNAL current_channel : INTEGER;
TYPE ARRAY_OF_ADDR IS ARRAY (5 DOWNTO 0) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL base_addr_INT : ARRAY_OF_ADDR;
CONSTANT base_addr_delta : INTEGER := 40;
CONSTANT SEL_OUT : INTEGER := 6;
signal nb_cycle_wait : integer;
BEGIN
all_channel: FOR I IN 5 DOWNTO 0 GENERATE
all_bit: FOR J IN 7 DOWNTO 0 GENERATE
base_addr_INT(I)(J) <= '1' WHEN (base_addr_delta * I/(2**J)) MOD 2 = 1 ELSE '0';
END GENERATE all_bit;
END GENERATE all_channel;
PROCESS (clk, rstn)
BEGIN -- PROCESS
IF rstn = '0' THEN -- asynchronous reset (active low)
STATE_CIC_LFR <= IDLE;
--
data_out_16_valid <= '0';
data_out_256_valid <= '0';
--
sel_sample <= (OTHERS => '0');
--
op_valid <= '0';
op_ADD_SUBn <= '0';
--
r_addr_init <= '0';
r_addr_base <= (OTHERS => '0');
r_addr_add1 <= '0';
--
w_en <= '1';
w_addr_init <= '0';
w_addr_base <= (OTHERS => '0');
w_addr_add1 <= '0';
--
nb_data_receipt <= 0;
ELSIF clk'event AND clk = '1' THEN -- rising clock edge
data_out_16_valid <= '0';
data_out_256_valid <= '0';
op_valid <= '0';
op_ADD_SUBn <= '0';
r_addr_init <= '0';
r_addr_base <= (OTHERS => '0');
r_addr_add1 <= '0';
w_en <= '1';
w_addr_init <= '0';
w_addr_base <= (OTHERS => '0');
w_addr_add1 <= '0';
IF run = '0' THEN
STATE_CIC_LFR <= IDLE;
--
data_out_16_valid <= '0';
data_out_256_valid <= '0';
--
sel_sample <= (OTHERS => '0');
--
op_valid <= '0';
op_ADD_SUBn <= '0';
--
r_addr_init <= '0';
r_addr_base <= (OTHERS => '0');
r_addr_add1 <= '0';
--
w_en <= '1';
w_addr_init <= '0';
w_addr_base <= (OTHERS => '0');
w_addr_add1 <= '0';
--
nb_data_receipt <= 0;
current_channel <= 0;
ELSE
CASE STATE_CIC_LFR IS
WHEN IDLE =>
data_out_16_valid <= '0';
data_out_256_valid <= '0';
--
sel_sample <= (OTHERS => '0');
--
op_valid <= '0';
op_ADD_SUBn <= '0';
--
r_addr_init <= '0';
r_addr_base <= (OTHERS => '0');
r_addr_add1 <= '0';
--
w_en <= '1';
w_addr_init <= '0';
w_addr_base <= (OTHERS => '0');
w_addr_add1 <= '0';
--
IF data_in_valid = '1' THEN
nb_data_receipt <= nb_data_receipt+1;
current_channel <= 0;
STATE_CIC_LFR <= INT_0_d0;
END IF;
WHEN WAIT_step => ---------------------------------------------------
IF nb_cycle_wait > 0 THEN
nb_cycle_wait <= nb_cycle_wait -1;
ELSE
STATE_CIC_LFR <= STATE_CIC_LFR_pre;
END IF;
WHEN INT_0 => -------------------------------------------------------
sel_sample <= STD_LOGIC_VECTOR(to_unsigned(current_channel, 3));
r_addr_init <= '1';
r_addr_base <= base_addr_INT(current_channel);
nb_cycle_wait <= 1;
op_ADD_SUBn <= '1';
op_valid <= '1';
STATE_CIC_LFR <= WAIT_step;
STATE_CIC_LFR_pre <= INT_1;
WHEN INT_1 =>
sel_sample <= STD_LOGIC_VECTOR(to_unsigned(SEL_OUT, 3));
r_addr_add1 <= '1';
nb_cycle_wait <= 3;
op_ADD_SUBn <= '1';
op_valid <= '1';
STATE_CIC_LFR <= INT_2;
WHEN INT_2 =>
sel_sample <= STD_LOGIC_VECTOR(to_unsigned(SEL_OUT, 3));
r_addr_add1 <= '1';
nb_cycle_wait <= 3;
op_ADD_SUBn <= '1';
op_valid <= '1';
IF nb_data_receipt = 256 THEN
STATE_CIC_LFR <= COMB_0_256_d0;
ELSIF (nb_data_receipt mod 16) = 0 THEN
STATE_CIC_LFR <= WAIT_INT_to_COMB_16;
ELSE
IF current_channel = 5 THEN
STATE_CIC_LFR <= IDLE;
ELSE
current_channel <= current_channel +1;
STATE_CIC_LFR <= INT_0;
END IF;
END IF;
-------------------------------------------------------------------
WHEN WAIT_INT_to_COMB_16 =>
STATE_CIC_LFR <= COMB_0_16_d0;
WHEN COMB_0_16_d0 => STATE_CIC_LFR <= COMB_0_16_d1;
WHEN COMB_0_16_d1 => STATE_CIC_LFR <= COMB_1_16_d0;
WHEN COMB_1_16_d0 => STATE_CIC_LFR <= COMB_1_16_d1;
WHEN COMB_1_16_d1 => STATE_CIC_LFR <= COMB_2_16_d0;
WHEN COMB_2_16_d0 => STATE_CIC_LFR <= COMB_2_16_d1;
WHEN COMB_2_16_d1 =>
IF current_channel = 5 THEN
STATE_CIC_LFR <= IDLE;
IF nb_data_receipt = 256 THEN
nb_data_receipt <= 0;
END IF;
ELSE
current_channel <= current_channel +1;
STATE_CIC_LFR <= INT_0_d0;
END IF;
-------------------------------------------------------------------
WHEN COMB_0_256_d0 => STATE_CIC_LFR <= COMB_0_256_d1;
WHEN COMB_0_256_d1 => STATE_CIC_LFR <= COMB_0_256_d2;
WHEN COMB_0_256_d2 => STATE_CIC_LFR <= COMB_1_256_d0;
WHEN COMB_1_256_d0 => STATE_CIC_LFR <= COMB_1_256_d1;
WHEN COMB_1_256_d1 => STATE_CIC_LFR <= COMB_1_256_d2;
WHEN COMB_1_256_d2 => STATE_CIC_LFR <= COMB_2_256_d0;
WHEN COMB_2_256_d0 => STATE_CIC_LFR <= COMB_2_256_d1;
WHEN COMB_2_256_d1 => STATE_CIC_LFR <= COMB_2_256_d2;
WHEN COMB_2_256_d2 => STATE_CIC_LFR <= READ_INT_2_d0;
-------------------------------------------------------------------
WHEN READ_INT_2_d0 => STATE_CIC_LFR <= READ_INT_2_d1;
WHEN READ_INT_2_d1 => STATE_CIC_LFR <= COMB_0_16_d0;
WHEN OTHERS => NULL;
END CASE;
END IF;
END IF;
END PROCESS;
END beh;