##// END OF EJS Templates
Simu MINI-LFR testbench WIP
Simu MINI-LFR testbench WIP

File last commit:

r684:f4b71d81044a Simu-Mini-LFR
r684:f4b71d81044a Simu-Mini-LFR
Show More
MINI_LFR_top.vhd
638 lines | 21.6 KiB | text/x-vhdl | VhdlLexer
------------------------------------------------------------------------------
-- This file is a part of the LPP VHDL IP LIBRARY
-- Copyright (C) 2009 - 2010, Laboratory of Plasmas Physic - CNRS
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 3 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-------------------------------------------------------------------------------
-- Author : Jean-christophe Pellion
-- Mail : jean-christophe.pellion@lpp.polytechnique.fr
-------------------------------------------------------------------------------
LIBRARY IEEE;
USE IEEE.numeric_std.ALL;
USE IEEE.std_logic_1164.ALL;
LIBRARY grlib;
USE grlib.amba.ALL;
USE grlib.stdlib.ALL;
LIBRARY techmap;
USE techmap.gencomp.ALL;
LIBRARY gaisler;
USE gaisler.memctrl.ALL;
USE gaisler.leon3.ALL;
USE gaisler.uart.ALL;
USE gaisler.misc.ALL;
USE gaisler.spacewire.ALL;
LIBRARY esa;
USE esa.memoryctrl.ALL;
LIBRARY lpp;
USE lpp.lpp_memory.ALL;
USE lpp.lpp_ad_conv.ALL;
USE lpp.lpp_lfr_pkg.ALL;
USE lpp.lpp_top_lfr_pkg.ALL;
USE lpp.iir_filter.ALL;
USE lpp.general_purpose.ALL;
USE lpp.lpp_lfr_management.ALL;
USE lpp.lpp_leon3_soc_pkg.ALL;
ENTITY MINI_LFR_top IS
PORT (
clk100MHz : IN STD_LOGIC;
clk49_152MHz : IN STD_LOGIC;
reset : IN STD_LOGIC;
--BPs
BP0 : IN STD_LOGIC;
BP1 : IN STD_LOGIC;
--LEDs
LED0 : OUT STD_LOGIC;
LED1 : OUT STD_LOGIC;
LED2 : OUT STD_LOGIC;
--UARTs
TXD1 : IN STD_LOGIC;
RXD1 : OUT STD_LOGIC;
nCTS1 : OUT STD_LOGIC;
nRTS1 : IN STD_LOGIC;
TXD2 : IN STD_LOGIC;
RXD2 : OUT STD_LOGIC;
nCTS2 : OUT STD_LOGIC;
nDTR2 : IN STD_LOGIC;
nRTS2 : IN STD_LOGIC;
nDCD2 : OUT STD_LOGIC;
--EXT CONNECTOR
IO0 : INOUT STD_LOGIC;
IO1 : INOUT STD_LOGIC;
IO2 : INOUT STD_LOGIC;
IO3 : INOUT STD_LOGIC;
IO4 : INOUT STD_LOGIC;
IO5 : INOUT STD_LOGIC;
IO6 : INOUT STD_LOGIC;
IO7 : INOUT STD_LOGIC;
IO8 : INOUT STD_LOGIC;
IO9 : INOUT STD_LOGIC;
IO10 : INOUT STD_LOGIC;
IO11 : INOUT STD_LOGIC;
--SPACE WIRE
SPW_EN : OUT STD_LOGIC; -- 0 => off
SPW_NOM_DIN : IN STD_LOGIC; -- NOMINAL LINK
SPW_NOM_SIN : IN STD_LOGIC;
SPW_NOM_DOUT : OUT STD_LOGIC;
SPW_NOM_SOUT : OUT STD_LOGIC;
SPW_RED_DIN : IN STD_LOGIC; -- REDUNDANT LINK
SPW_RED_SIN : IN STD_LOGIC;
SPW_RED_DOUT : OUT STD_LOGIC;
SPW_RED_SOUT : OUT STD_LOGIC;
-- MINI LFR ADC INPUTS
ADC_nCS : OUT STD_LOGIC;
ADC_CLK : OUT STD_LOGIC;
ADC_SDO : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
-- SRAM
SRAM_nWE : OUT STD_LOGIC;
SRAM_CE : OUT STD_LOGIC;
SRAM_nOE : OUT STD_LOGIC;
SRAM_nBE : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
SRAM_A : OUT STD_LOGIC_VECTOR(19 DOWNTO 0);
SRAM_DQ : INOUT STD_LOGIC_VECTOR(31 DOWNTO 0)
);
END MINI_LFR_top;
ARCHITECTURE beh OF MINI_LFR_top IS
--==========================================================================
-- USE_IAP_MEMCTRL allow to use the srctrle-0ws on MINILFR board
-- when enabled, chip enable polarity should be reversed and bank size also
-- MINILFR -> 1 bank of 4MBytes -> SRBANKSZ=9
-- LFR EQM & FM -> 2 banks of 2MBytes -> SRBANKSZ=8
--==========================================================================
CONSTANT USE_IAP_MEMCTRL : integer := 1;
--==========================================================================
SIGNAL clk_50_s : STD_LOGIC := '0';
SIGNAL clk_25 : STD_LOGIC := '0';
SIGNAL clk_24 : STD_LOGIC := '0';
-----------------------------------------------------------------------------
SIGNAL coarse_time : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL fine_time : STD_LOGIC_VECTOR(15 DOWNTO 0);
--
SIGNAL errorn : STD_LOGIC;
--
SIGNAL I00_s : STD_LOGIC;
-- CONSTANTS
CONSTANT CFG_PADTECH : INTEGER := inferred;
--
CONSTANT NB_APB_SLAVE : INTEGER := 11; -- 3 = grspw + waveform picker + time manager, 11 allows pindex = f
CONSTANT NB_AHB_SLAVE : INTEGER := 1;
CONSTANT NB_AHB_MASTER : INTEGER := 2; -- 2 = grspw + waveform picker
SIGNAL apbi_ext : apb_slv_in_type;
SIGNAL apbo_ext : soc_apb_slv_out_vector(NB_APB_SLAVE-1+5 DOWNTO 5); -- := (OTHERS => apb_none);
SIGNAL ahbi_s_ext : ahb_slv_in_type;
SIGNAL ahbo_s_ext : soc_ahb_slv_out_vector(NB_AHB_SLAVE-1+3 DOWNTO 3); -- := (OTHERS => ahbs_none);
SIGNAL ahbi_m_ext : AHB_Mst_In_Type;
SIGNAL ahbo_m_ext : soc_ahb_mst_out_vector(NB_AHB_MASTER-1+1 DOWNTO 1); -- := (OTHERS => ahbm_none);
-- Spacewire signals
SIGNAL dtmp : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL stmp : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL spw_rxclk : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL spw_rxtxclk : STD_ULOGIC;
SIGNAL spw_rxclkn : STD_ULOGIC;
SIGNAL spw_clk : STD_LOGIC;
SIGNAL swni : grspw_in_type;
SIGNAL swno : grspw_out_type;
--GPIO
SIGNAL gpioi : gpio_in_type;
SIGNAL gpioo : gpio_out_type;
-- AD Converter ADS7886
SIGNAL sample : Samples14v(7 DOWNTO 0);
SIGNAL sample_s : Samples(7 DOWNTO 0);
SIGNAL sample_val : STD_LOGIC;
SIGNAL ADC_nCS_sig : STD_LOGIC;
SIGNAL ADC_CLK_sig : STD_LOGIC;
SIGNAL ADC_SDO_sig : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL bias_fail_sw_sig : STD_LOGIC;
SIGNAL observation_reg : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL observation_vector_0 : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL observation_vector_1 : STD_LOGIC_VECTOR(11 DOWNTO 0);
-----------------------------------------------------------------------------
SIGNAL LFR_soft_rstn : STD_LOGIC;
SIGNAL LFR_rstn : STD_LOGIC;
SIGNAL rstn_25 : STD_LOGIC;
SIGNAL rstn_25_d1 : STD_LOGIC;
SIGNAL rstn_25_d2 : STD_LOGIC;
SIGNAL rstn_25_d3 : STD_LOGIC;
SIGNAL rstn_24 : STD_LOGIC;
SIGNAL rstn_24_d1 : STD_LOGIC;
SIGNAL rstn_24_d2 : STD_LOGIC;
SIGNAL rstn_24_d3 : STD_LOGIC;
SIGNAL rstn_50 : STD_LOGIC;
SIGNAL rstn_50_d1 : STD_LOGIC;
SIGNAL rstn_50_d2 : STD_LOGIC;
SIGNAL rstn_50_d3 : STD_LOGIC;
SIGNAL lfr_debug_vector : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL lfr_debug_vector_ms : STD_LOGIC_VECTOR(11 DOWNTO 0);
--
SIGNAL SRAM_CE_s : STD_LOGIC_VECTOR(1 DOWNTO 0);
--
SIGNAL sample_hk : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL HK_SEL : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL nSRAM_READY : STD_LOGIC;
BEGIN -- beh
-----------------------------------------------------------------------------
PROCESS (clk100MHz, reset)
BEGIN -- PROCESS
IF clk100MHz'EVENT AND clk100MHz = '1' THEN -- rising clock edge
clk_50_s <= NOT clk_50_s;
END IF;
END PROCESS;
-----------------------------------------------------------------------------
PROCESS (clk_50_s, reset)
BEGIN -- PROCESS
IF reset = '0' THEN -- asynchronous reset (active low)
clk_25 <= '0';
rstn_25 <= '0';
rstn_25_d1 <= '0';
rstn_25_d2 <= '0';
rstn_25_d3 <= '0';
ELSIF clk_50_s'EVENT AND clk_50_s = '1' THEN -- rising clock edge
clk_25 <= NOT clk_25;
rstn_25_d1 <= '1';
rstn_25_d2 <= rstn_25_d1;
rstn_25_d3 <= rstn_25_d2;
rstn_25 <= rstn_25_d3;
END IF;
END PROCESS;
PROCESS (clk49_152MHz, reset)
BEGIN -- PROCESS
IF reset = '0' THEN -- asynchronous reset (active low)
clk_24 <= '0';
rstn_24_d1 <= '0';
rstn_24_d2 <= '0';
rstn_24_d3 <= '0';
rstn_24 <= '0';
ELSIF clk49_152MHz'EVENT AND clk49_152MHz = '1' THEN -- rising clock edge
clk_24 <= NOT clk_24;
rstn_24_d1 <= '1';
rstn_24_d2 <= rstn_24_d1;
rstn_24_d3 <= rstn_24_d2;
rstn_24 <= rstn_24_d3;
END IF;
END PROCESS;
-----------------------------------------------------------------------------
PROCESS (clk_25, rstn_25)
BEGIN -- PROCESS
IF rstn_25 = '0' THEN -- asynchronous reset (active low)
LED0 <= '0';
LED1 <= '0';
LED2 <= '0';
ELSIF clk_25'EVENT AND clk_25 = '1' THEN -- rising clock edge
LED0 <= '0';
LED1 <= '1';
LED2 <= BP0 OR BP1 OR nDTR2 OR nRTS2 OR nRTS1;
END IF;
END PROCESS;
PROCESS (clk49_152MHz, rstn_24)
BEGIN -- PROCESS
IF rstn_24 = '0' THEN -- asynchronous reset (active low)
I00_s <= '0';
ELSIF clk49_152MHz'EVENT AND clk49_152MHz = '1' THEN -- rising clock edge
I00_s <= NOT I00_s;
END IF;
END PROCESS;
--UARTs
nCTS1 <= '1';
nCTS2 <= '1';
nDCD2 <= '1';
-- No AHB UART
-- RXD1 <= TXD1;
--
leon3_soc_1 : leon3_soc
GENERIC MAP (
fabtech => apa3e,
memtech => apa3e,
padtech => inferred,
clktech => inferred,
disas => 0,
dbguart => 0,
pclow => 2,
clk_freq => 25000,
IS_RADHARD => 0,
NB_CPU => 1,
ENABLE_FPU => 1,
FPU_NETLIST => 0,
ENABLE_DSU => 1,
ENABLE_AHB_UART => 1,
ENABLE_APB_UART => 1,
ENABLE_IRQMP => 1,
ENABLE_GPT => 1,
NB_AHB_MASTER => NB_AHB_MASTER,
NB_AHB_SLAVE => NB_AHB_SLAVE,
NB_APB_SLAVE => NB_APB_SLAVE,
ADDRESS_SIZE => 20,
USES_IAP_MEMCTRLR => USE_IAP_MEMCTRL,
BYPASS_EDAC_MEMCTRLR => '0',
SRBANKSZ => 9,
SLOW_TIMING_EMULATION => 0)
PORT MAP (
clk => clk_25,
reset => rstn_25,
errorn => errorn,
ahbrxd => TXD1, -- '1'
ahbtxd => RXD1, --OPEN
urxd1 => TXD2,
utxd1 => RXD2,
address => SRAM_A,
data => SRAM_DQ,
nSRAM_BE0 => SRAM_nBE(0),
nSRAM_BE1 => SRAM_nBE(1),
nSRAM_BE2 => SRAM_nBE(2),
nSRAM_BE3 => SRAM_nBE(3),
nSRAM_WE => SRAM_nWE,
nSRAM_CE => SRAM_CE_s,
nSRAM_OE => SRAM_nOE,
nSRAM_READY => nSRAM_READY,
SRAM_MBE => OPEN,
apbi_ext => apbi_ext,
apbo_ext => apbo_ext,
ahbi_s_ext => ahbi_s_ext,
ahbo_s_ext => ahbo_s_ext,
ahbi_m_ext => ahbi_m_ext,
ahbo_m_ext => ahbo_m_ext);
PROCESS (clk_25, rstn_25)
BEGIN -- PROCESS
IF rstn_25 = '0' THEN -- asynchronous reset (active low)
nSRAM_READY <= '1';
ELSIF clk_25'event AND clk_25 = '1' THEN -- rising clock edge
nSRAM_READY <= '1';
IF IO0 = '1' THEN
nSRAM_READY <= '0';
END IF;
END IF;
END PROCESS;
IAP:if USE_IAP_MEMCTRL = 1 GENERATE
SRAM_CE <= not SRAM_CE_s(0);
END GENERATE;
NOIAP:if USE_IAP_MEMCTRL = 0 GENERATE
SRAM_CE <= SRAM_CE_s(0);
END GENERATE;
-------------------------------------------------------------------------------
-- APB_LFR_MANAGEMENT ---------------------------------------------------------
-------------------------------------------------------------------------------
apb_lfr_management_1 : apb_lfr_management
GENERIC MAP (
tech => apa3e,
pindex => 6,
paddr => 6,
pmask => 16#fff#,
NB_SECOND_DESYNC => 60) -- 60 secondes of desynchronization before CoarseTime's MSB is Set
PORT MAP (
clk25MHz => clk_25,
resetn_25MHz => rstn_25,
grspw_tick => swno.tickout,
apbi => apbi_ext,
apbo => apbo_ext(6),
HK_sample => sample_hk,
HK_val => sample_val,
HK_sel => HK_SEL,
DAC_SDO => OPEN,
DAC_SCK => OPEN,
DAC_SYNC => OPEN,
DAC_CAL_EN => OPEN,
coarse_time => coarse_time,
fine_time => fine_time,
LFR_soft_rstn => LFR_soft_rstn
);
-----------------------------------------------------------------------
--- SpaceWire --------------------------------------------------------
-----------------------------------------------------------------------
SPW_EN <= '1';
spw_clk <= clk_50_s;
spw_rxtxclk <= spw_clk;
spw_rxclkn <= NOT spw_rxtxclk;
-- PADS for SPW1
spw1_rxd_pad : inpad GENERIC MAP (tech => inferred)
PORT MAP (SPW_NOM_DIN, dtmp(0));
spw1_rxs_pad : inpad GENERIC MAP (tech => inferred)
PORT MAP (SPW_NOM_SIN, stmp(0));
spw1_txd_pad : outpad GENERIC MAP (tech => inferred)
PORT MAP (SPW_NOM_DOUT, swno.d(0));
spw1_txs_pad : outpad GENERIC MAP (tech => inferred)
PORT MAP (SPW_NOM_SOUT, swno.s(0));
-- PADS FOR SPW2
spw2_rxd_pad : inpad GENERIC MAP (tech => inferred) -- bad naming of the MINI-LFR /!\
PORT MAP (SPW_RED_SIN, dtmp(1));
spw2_rxs_pad : inpad GENERIC MAP (tech => inferred) -- bad naming of the MINI-LFR /!\
PORT MAP (SPW_RED_DIN, stmp(1));
spw2_txd_pad : outpad GENERIC MAP (tech => inferred)
PORT MAP (SPW_RED_DOUT, swno.d(1));
spw2_txs_pad : outpad GENERIC MAP (tech => inferred)
PORT MAP (SPW_RED_SOUT, swno.s(1));
-- GRSPW PHY
spw_inputloop : FOR j IN 0 TO 1 GENERATE
spw_phy0 : grspw_phy
GENERIC MAP(
tech => apa3e,
rxclkbuftype => 1,
scantest => 0)
PORT MAP(
rxrst => swno.rxrst,
di => dtmp(j),
si => stmp(j),
rxclko => spw_rxclk(j),
do => swni.d(j),
ndo => swni.nd(j*5+4 DOWNTO j*5),
dconnect => swni.dconnect(j*2+1 DOWNTO j*2));
END GENERATE spw_inputloop;
swni.rmapnodeaddr <= (OTHERS => '0');
-- SPW core
sw0 : grspwm GENERIC MAP(
tech => apa3e,
hindex => 1,
pindex => 5,
paddr => 5,
pirq => 11,
sysfreq => 25000, -- CPU_FREQ
rmap => 1,
rmapcrc => 1,
fifosize1 => 16,
fifosize2 => 16,
rxclkbuftype => 1,
rxunaligned => 0,
rmapbufs => 4,
ft => 0,
netlist => 0,
ports => 2,
--dmachan => CFG_SPW_DMACHAN, -- not used byt the spw core 1
memtech => apa3e,
destkey => 2,
spwcore => 1
--input_type => CFG_SPW_INPUT, -- not used byt the spw core 1
--output_type => CFG_SPW_OUTPUT, -- not used byt the spw core 1
--rxtx_sameclk => CFG_SPW_RTSAME -- not used byt the spw core 1
)
PORT MAP(rstn_25, clk_25, spw_rxclk(0),
spw_rxclk(1), spw_rxtxclk, spw_rxtxclk,
ahbi_m_ext, ahbo_m_ext(1), apbi_ext, apbo_ext(5),
swni, swno);
swni.tickin <= '0';
swni.rmapen <= '1';
swni.clkdiv10 <= "00000100"; -- 10 MHz / (4 + 1) = 10 MHz
swni.tickinraw <= '0';
swni.timein <= (OTHERS => '0');
swni.dcrstval <= (OTHERS => '0');
swni.timerrstval <= (OTHERS => '0');
-------------------------------------------------------------------------------
-- LFR ------------------------------------------------------------------------
-------------------------------------------------------------------------------
LFR_rstn <= LFR_soft_rstn AND rstn_25;
lpp_lfr_1 : lpp_lfr
GENERIC MAP (
Mem_use => use_RAM,
tech => apa3e,
nb_data_by_buffer_size => 32,
nb_snapshot_param_size => 32,
delta_vector_size => 32,
delta_vector_size_f0_2 => 7, -- log2(96)
pindex => 15,
paddr => 15,
pmask => 16#fff#,
pirq_ms => 6,
pirq_wfp => 14,
hindex => 2,
top_lfr_version => LPP_LFR_BOARD_MINI_LFR & X"015B",
DEBUG_FORCE_DATA_DMA => 0,
RTL_DESIGN_LIGHT => 0,
WINDOWS_HAANNING_PARAM_SIZE => 15,
DATA_SHAPING_SATURATION => 1) -- aa.bb.cc version
PORT MAP (
clk => clk_25,
rstn => LFR_rstn,
sample_B => sample_s(2 DOWNTO 0),
sample_E => sample_s(7 DOWNTO 3),
sample_val => sample_val,
apbi => apbi_ext,
apbo => apbo_ext(15),
ahbi => ahbi_m_ext,
ahbo => ahbo_m_ext(2),
coarse_time => coarse_time,
fine_time => fine_time,
data_shaping_BW => bias_fail_sw_sig,
debug_vector => lfr_debug_vector,
debug_vector_ms => lfr_debug_vector_ms
);
observation_reg(11 DOWNTO 0) <= lfr_debug_vector;
observation_reg(31 DOWNTO 12) <= (OTHERS => '0');
observation_vector_0(11 DOWNTO 0) <= lfr_debug_vector;
observation_vector_1(11 DOWNTO 0) <= lfr_debug_vector;
IO1 <= lfr_debug_vector_ms(0); -- LFR MS FFT data_valid
IO2 <= lfr_debug_vector_ms(0); -- LFR MS FFT ready
IO3 <= lfr_debug_vector(0); -- LFR APBREG error_buffer_full
IO4 <= lfr_debug_vector(1); -- LFR APBREG reg_sp.status_error_buffer_full
IO5 <= lfr_debug_vector(8); -- LFR APBREG ready_matrix_f2
IO6 <= lfr_debug_vector(9); -- LFR APBREG reg0_ready_matrix_f2
IO7 <= lfr_debug_vector(10); -- LFR APBREG reg0_ready_matrix_f2
all_sample : FOR I IN 7 DOWNTO 0 GENERATE
sample_s(I) <= sample(I)(11 DOWNTO 0) & '0' & '0' & '0' & '0';
END GENERATE all_sample;
top_ad_conv_ADS7886_v2_1 : top_ad_conv_ADS7886_v2
GENERIC MAP(
ChannelCount => 8,
SampleNbBits => 14,
ncycle_cnv_high => 40, -- at least 32 cycles at 25 MHz, 32 * 49.152 / 25 /2 = 31.5
ncycle_cnv => 249) -- 49 152 000 / 98304 /2
PORT MAP (
-- CONV
cnv_clk => clk_24,
cnv_rstn => rstn_24,
cnv => ADC_nCS_sig,
-- DATA
clk => clk_25,
rstn => rstn_25,
sck => ADC_CLK_sig,
sdo => ADC_SDO_sig,
-- SAMPLE
sample => sample,
sample_val => sample_val);
ADC_nCS <= ADC_nCS_sig;
ADC_CLK <= ADC_CLK_sig;
ADC_SDO_sig <= ADC_SDO;
sample_hk <= "0001000100010001" WHEN HK_SEL = "00" ELSE
"0010001000100010" WHEN HK_SEL = "01" ELSE
"0100010001000100" WHEN HK_SEL = "10" ELSE
(OTHERS => '0');
----------------------------------------------------------------------
--- GPIO -----------------------------------------------------------
----------------------------------------------------------------------
grgpio0 : grgpio
GENERIC MAP(pindex => 11, paddr => 11, imask => 16#0000#, nbits => 8)
PORT MAP(rstn_25, clk_25, apbi_ext, apbo_ext(11), gpioi, gpioo);
gpioi.sig_en <= (OTHERS => '0');
gpioi.sig_in <= (OTHERS => '0');
gpioi.din <= (OTHERS => '0');
PROCESS (clk_25, rstn_25)
BEGIN -- PROCESS
IF rstn_25 = '0' THEN -- asynchronous reset (active low)
IO8 <= '0';
IO9 <= '0';
IO10 <= '0';
IO11 <= '0';
ELSIF clk_25'EVENT AND clk_25 = '1' THEN -- rising clock edge
CASE gpioo.dout(2 DOWNTO 0) IS
WHEN "011" =>
IO8 <= observation_reg(8);
IO9 <= observation_reg(9);
IO10 <= observation_reg(10);
IO11 <= observation_reg(11);
WHEN "001" =>
IO8 <= observation_reg(8 + 12);
IO9 <= observation_reg(9 + 12);
IO10 <= observation_reg(10 + 12);
IO11 <= observation_reg(11 + 12);
WHEN "010" =>
IO8 <= '0';
IO9 <= '0';
IO10 <= '0';
IO11 <= '0';
WHEN "000" =>
IO8 <= observation_vector_0(8);
IO9 <= observation_vector_0(9);
IO10 <= observation_vector_0(10);
IO11 <= observation_vector_0(11);
WHEN "100" =>
IO8 <= observation_vector_1(8);
IO9 <= observation_vector_1(9);
IO10 <= observation_vector_1(10);
IO11 <= observation_vector_1(11);
WHEN OTHERS => NULL;
END CASE;
END IF;
END PROCESS;
-----------------------------------------------------------------------------
--
-----------------------------------------------------------------------------
all_apbo_ext : FOR I IN NB_APB_SLAVE-1+5 DOWNTO 5 GENERATE
apbo_ext_not_used : IF I /= 5 AND I /= 6 AND I /= 11 AND I /= 15 GENERATE
apbo_ext(I) <= apb_none;
END GENERATE apbo_ext_not_used;
END GENERATE all_apbo_ext;
all_ahbo_ext : FOR I IN NB_AHB_SLAVE-1+3 DOWNTO 3 GENERATE
ahbo_s_ext(I) <= ahbs_none;
END GENERATE all_ahbo_ext;
all_ahbo_m_ext : FOR I IN NB_AHB_MASTER-1+1 DOWNTO 1 GENERATE
ahbo_m_ext_not_used : IF I /= 1 AND I /= 2 GENERATE
ahbo_m_ext(I) <= ahbm_none;
END GENERATE ahbo_m_ext_not_used;
END GENERATE all_ahbo_m_ext;
END beh;