##// END OF EJS Templates
Bug 914 Masque erroné en cas de bande polluée partiellement ......
paul -
r344:547f7fbdb0d0 R3++ draft
parent child
Show More
@@ -1,120 +1,120
1 1 #ifndef TC_LOAD_DUMP_PARAMETERS_H
2 2 #define TC_LOAD_DUMP_PARAMETERS_H
3 3
4 4 #include <rtems.h>
5 5 #include <stdio.h>
6 6
7 7 #include "fsw_params.h"
8 8 #include "wf_handler.h"
9 9 #include "tm_lfr_tc_exe.h"
10 10 #include "fsw_misc.h"
11 11 #include "basic_parameters_params.h"
12 12 #include "avf0_prc0.h"
13 13
14 14 #define FLOAT_EQUAL_ZERO 0.001
15 15 #define NB_BINS_TO_REMOVE 3
16 16 #define FI_INTERVAL_COEFF 0.285
17 17 #define BIN_MIN 0
18 18 #define BIN_MAX 127
19 19 #define DELTAF_F0 96.
20 20 #define DELTAF_F1 16.
21 21 #define DELTAF_F2 1.
22 22 #define DELTAF_DIV 2.
23 23
24 24 #define BIT_RW1_F1 0x80
25 25 #define BIT_RW1_F2 0x40
26 26 #define BIT_RW2_F1 0x20
27 27 #define BIT_RW2_F2 0x10
28 28 #define BIT_RW3_F1 0x08
29 29 #define BIT_RW3_F2 0x04
30 30 #define BIT_RW4_F1 0x02
31 31 #define BIT_RW4_F2 0x01
32 32
33 33 #define WHEEL_1 1
34 34 #define WHEEL_2 2
35 35 #define WHEEL_3 3
36 36 #define WHEEL_4 4
37 37 #define FREQ_1 1
38 38 #define FREQ_2 2
39 39 #define FREQ_3 3
40 40 #define FREQ_4 4
41 41 #define FLAG_OFFSET_WHEELS_1_3 8
42 42 #define FLAG_OFFSET_WHEELS_2_4 4
43 43
44 44 #define FLAG_NAN 0 // Not A NUMBER
45 45 #define FLAG_IAN 1 // Is A Number
46 46
47 47 #define SBM_KCOEFF_PER_NORM_KCOEFF 2
48 48
49 49 extern unsigned short sequenceCounterParameterDump;
50 50 extern unsigned short sequenceCounters_TM_DUMP[];
51 51 extern float k_coeff_intercalib_f0_norm[ ];
52 52 extern float k_coeff_intercalib_f0_sbm[ ];
53 53 extern float k_coeff_intercalib_f1_norm[ ];
54 54 extern float k_coeff_intercalib_f1_sbm[ ];
55 55 extern float k_coeff_intercalib_f2[ ];
56 56 extern fbins_masks_t fbins_masks;
57 57
58 58 int action_load_common_par( ccsdsTelecommandPacket_t *TC );
59 59 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
60 60 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
61 61 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
62 62 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time);
63 63 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
64 64 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
65 65 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
66 66 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time);
67 67 int action_dump_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
68 68
69 69 // NORMAL
70 70 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
71 71 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC );
72 72 int set_sy_lfr_n_swf_p( ccsdsTelecommandPacket_t *TC );
73 73 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC );
74 74 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC );
75 75 int set_sy_lfr_n_bp_p1( ccsdsTelecommandPacket_t *TC );
76 76 int set_sy_lfr_n_cwf_long_f3( ccsdsTelecommandPacket_t *TC );
77 77
78 78 // BURST
79 79 int set_sy_lfr_b_bp_p0( ccsdsTelecommandPacket_t *TC );
80 80 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC );
81 81
82 82 // SBM1
83 83 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC );
84 84 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC );
85 85
86 86 // SBM2
87 87 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC );
88 88 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC );
89 89
90 90 // TC_LFR_UPDATE_INFO
91 91 unsigned int check_update_info_hk_lfr_mode( unsigned char mode );
92 92 unsigned int check_update_info_hk_tds_mode( unsigned char mode );
93 93 unsigned int check_update_info_hk_thr_mode( unsigned char mode );
94 94 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value );
95 95 void set_hk_lfr_sc_rw_f_flags( void );
96 96 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC );
97 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff );
97 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float sy_lfr_rw_k );
98 98 void build_sy_lfr_rw_mask( unsigned int channel );
99 99 void build_sy_lfr_rw_masks();
100 100 void merge_fbins_masks( void );
101 101
102 102 // FBINS_MASK
103 103 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC );
104 104
105 105 // TC_LFR_LOAD_PARS_FILTER_PAR
106 106 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id );
107 107
108 108 // KCOEFFICIENTS
109 109 int set_sy_lfr_kcoeff(ccsdsTelecommandPacket_t *TC , rtems_id queue_id);
110 110 void copyFloatByChar( unsigned char *destination, unsigned char *source );
111 111 void copyInt32ByChar( unsigned char *destination, unsigned char *source );
112 112 void copyInt16ByChar( unsigned char *destination, unsigned char *source );
113 113 void floatToChar( float value, unsigned char* ptr);
114 114
115 115 void init_parameter_dump( void );
116 116 void init_kcoefficients_dump( void );
117 117 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr );
118 118 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id );
119 119
120 120 #endif // TC_LOAD_DUMP_PARAMETERS_H
@@ -1,1795 +1,1816
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 19 ring_node kcoefficient_node_1 = {0};
20 20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327 unsigned char k;
328 328
329 329 flag = LFR_DEFAULT;
330 330 k = INIT_CHAR;
331 331
332 332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
333 333
334 334 if (flag == LFR_SUCCESSFUL)
335 335 {
336 336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
345 345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
346 346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
349 349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
350 350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
351 351
352 352 //****************************
353 353 // store PAS filter parameters
354 354 // sy_lfr_pas_filter_enabled
355 355 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
356 356 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
357 357 // sy_lfr_pas_filter_modulus
358 358 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
359 359 // sy_lfr_pas_filter_tbad
360 360 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
361 361 parameter_dump_packet.sy_lfr_pas_filter_tbad );
362 362 // sy_lfr_pas_filter_offset
363 363 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
364 364 // sy_lfr_pas_filter_shift
365 365 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
366 366 parameter_dump_packet.sy_lfr_pas_filter_shift );
367 367
368 368 //****************************************************
369 369 // store the parameter sy_lfr_sc_rw_delta_f as a float
370 370 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
371 371 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
372 372
373 373 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
374 374 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
375 375 {
376 376 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
377 377 }
378 378
379 379 //***********************************************
380 380 // store the parameter sy_lfr_rw.._k.. as a float
381 381 // rw1_k
382 382 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
383 383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
384 384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
385 385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
386 386 // rw2_k
387 387 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
388 388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
389 389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
390 390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
391 391 // rw3_k
392 392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
393 393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
394 394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
395 395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
396 396 // rw4_k
397 397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
398 398 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
399 399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
400 400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
401 401
402 402 }
403 403
404 404 return flag;
405 405 }
406 406
407 407 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
408 408 {
409 409 /** This function updates the LFR registers with the incoming sbm2 parameters.
410 410 *
411 411 * @param TC points to the TeleCommand packet that is being processed
412 412 * @param queue_id is the id of the queue which handles TM related to this execution step
413 413 *
414 414 */
415 415
416 416 unsigned int address;
417 417 rtems_status_code status;
418 418 unsigned int freq;
419 419 unsigned int bin;
420 420 unsigned int coeff;
421 421 unsigned char *kCoeffPtr;
422 422 unsigned char *kCoeffDumpPtr;
423 423
424 424 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
425 425 // F0 => 11 bins
426 426 // F1 => 13 bins
427 427 // F2 => 12 bins
428 428 // 36 bins to dump in two packets (30 bins max per packet)
429 429
430 430 //*********
431 431 // PACKET 1
432 432 // 11 F0 bins, 13 F1 bins and 6 F2 bins
433 433 kcoefficients_dump_1.destinationID = TC->sourceID;
434 434 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
435 435 for( freq = 0;
436 436 freq < NB_BINS_COMPRESSED_SM_F0;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
440 440 bin = freq;
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
442 442 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 for( freq = NB_BINS_COMPRESSED_SM_F0;
452 452 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
453 453 freq++ )
454 454 {
455 455 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
456 456 bin = freq - NB_BINS_COMPRESSED_SM_F0;
457 457 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
458 458 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
459 459 {
460 460 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
461 461 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
462 462 ]; // 2 for the kcoeff_frequency
463 463 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
464 464 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
465 465 }
466 466 }
467 467 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
468 468 freq < KCOEFF_BLK_NR_PKT1 ;
469 469 freq++ )
470 470 {
471 471 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
472 472 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
473 473 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
474 474 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
475 475 {
476 476 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
477 477 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
478 478 ]; // 2 for the kcoeff_frequency
479 479 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
480 480 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
481 481 }
482 482 }
483 483 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
484 484 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
485 485 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
486 486 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
487 487 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
489 489 // SEND DATA
490 490 kcoefficient_node_1.status = 1;
491 491 address = (unsigned int) &kcoefficient_node_1;
492 492 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
493 493 if (status != RTEMS_SUCCESSFUL) {
494 494 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
495 495 }
496 496
497 497 //********
498 498 // PACKET 2
499 499 // 6 F2 bins
500 500 kcoefficients_dump_2.destinationID = TC->sourceID;
501 501 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
502 502 for( freq = 0;
503 503 freq < KCOEFF_BLK_NR_PKT2;
504 504 freq++ )
505 505 {
506 506 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
507 507 bin = freq + KCOEFF_BLK_NR_PKT2;
508 508 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
509 509 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
510 510 {
511 511 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
512 512 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
513 513 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
514 514 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
515 515 }
516 516 }
517 517 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
518 518 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
519 519 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
520 520 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
521 521 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
522 522 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
523 523 // SEND DATA
524 524 kcoefficient_node_2.status = 1;
525 525 address = (unsigned int) &kcoefficient_node_2;
526 526 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
527 527 if (status != RTEMS_SUCCESSFUL) {
528 528 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
529 529 }
530 530
531 531 return status;
532 532 }
533 533
534 534 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
535 535 {
536 536 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
537 537 *
538 538 * @param queue_id is the id of the queue which handles TM related to this execution step.
539 539 *
540 540 * @return RTEMS directive status codes:
541 541 * - RTEMS_SUCCESSFUL - message sent successfully
542 542 * - RTEMS_INVALID_ID - invalid queue id
543 543 * - RTEMS_INVALID_SIZE - invalid message size
544 544 * - RTEMS_INVALID_ADDRESS - buffer is NULL
545 545 * - RTEMS_UNSATISFIED - out of message buffers
546 546 * - RTEMS_TOO_MANY - queue s limit has been reached
547 547 *
548 548 */
549 549
550 550 int status;
551 551
552 552 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
553 553 parameter_dump_packet.destinationID = TC->sourceID;
554 554
555 555 // UPDATE TIME
556 556 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
557 557 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
558 558 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
559 559 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
560 560 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
561 561 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
562 562 // SEND DATA
563 563 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
564 564 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
565 565 if (status != RTEMS_SUCCESSFUL) {
566 566 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
567 567 }
568 568
569 569 return status;
570 570 }
571 571
572 572 //***********************
573 573 // NORMAL MODE PARAMETERS
574 574
575 575 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
576 576 {
577 577 unsigned char msb;
578 578 unsigned char lsb;
579 579 int flag;
580 580 float aux;
581 581 rtems_status_code status;
582 582
583 583 unsigned int sy_lfr_n_swf_l;
584 584 unsigned int sy_lfr_n_swf_p;
585 585 unsigned int sy_lfr_n_asm_p;
586 586 unsigned char sy_lfr_n_bp_p0;
587 587 unsigned char sy_lfr_n_bp_p1;
588 588 unsigned char sy_lfr_n_cwf_long_f3;
589 589
590 590 flag = LFR_SUCCESSFUL;
591 591
592 592 //***************
593 593 // get parameters
594 594 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
595 595 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
596 596 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
597 597
598 598 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
599 599 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
600 600 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
601 601
602 602 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
603 603 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
604 604 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
605 605
606 606 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
607 607
608 608 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
609 609
610 610 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
611 611
612 612 //******************
613 613 // check consistency
614 614 // sy_lfr_n_swf_l
615 615 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
616 616 {
617 617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
618 618 flag = WRONG_APP_DATA;
619 619 }
620 620 // sy_lfr_n_swf_p
621 621 if (flag == LFR_SUCCESSFUL)
622 622 {
623 623 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
624 624 {
625 625 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
626 626 flag = WRONG_APP_DATA;
627 627 }
628 628 }
629 629 // sy_lfr_n_bp_p0
630 630 if (flag == LFR_SUCCESSFUL)
631 631 {
632 632 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
633 633 {
634 634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
635 635 flag = WRONG_APP_DATA;
636 636 }
637 637 }
638 638 // sy_lfr_n_asm_p
639 639 if (flag == LFR_SUCCESSFUL)
640 640 {
641 641 if (sy_lfr_n_asm_p == 0)
642 642 {
643 643 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
644 644 flag = WRONG_APP_DATA;
645 645 }
646 646 }
647 647 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
648 648 if (flag == LFR_SUCCESSFUL)
649 649 {
650 650 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
651 651 if (aux > FLOAT_EQUAL_ZERO)
652 652 {
653 653 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
654 654 flag = WRONG_APP_DATA;
655 655 }
656 656 }
657 657 // sy_lfr_n_bp_p1
658 658 if (flag == LFR_SUCCESSFUL)
659 659 {
660 660 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
661 661 {
662 662 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
663 663 flag = WRONG_APP_DATA;
664 664 }
665 665 }
666 666 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
667 667 if (flag == LFR_SUCCESSFUL)
668 668 {
669 669 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
670 670 if (aux > FLOAT_EQUAL_ZERO)
671 671 {
672 672 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
673 673 flag = LFR_DEFAULT;
674 674 }
675 675 }
676 676 // sy_lfr_n_cwf_long_f3
677 677
678 678 return flag;
679 679 }
680 680
681 681 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
682 682 {
683 683 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
684 684 *
685 685 * @param TC points to the TeleCommand packet that is being processed
686 686 * @param queue_id is the id of the queue which handles TM related to this execution step
687 687 *
688 688 */
689 689
690 690 int result;
691 691
692 692 result = LFR_SUCCESSFUL;
693 693
694 694 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
695 695 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
696 696
697 697 return result;
698 698 }
699 699
700 700 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
701 701 {
702 702 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
703 703 *
704 704 * @param TC points to the TeleCommand packet that is being processed
705 705 * @param queue_id is the id of the queue which handles TM related to this execution step
706 706 *
707 707 */
708 708
709 709 int result;
710 710
711 711 result = LFR_SUCCESSFUL;
712 712
713 713 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
714 714 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
715 715
716 716 return result;
717 717 }
718 718
719 719 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
720 720 {
721 721 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
722 722 *
723 723 * @param TC points to the TeleCommand packet that is being processed
724 724 * @param queue_id is the id of the queue which handles TM related to this execution step
725 725 *
726 726 */
727 727
728 728 int result;
729 729
730 730 result = LFR_SUCCESSFUL;
731 731
732 732 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
733 733 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
734 734
735 735 return result;
736 736 }
737 737
738 738 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
739 739 {
740 740 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
741 741 *
742 742 * @param TC points to the TeleCommand packet that is being processed
743 743 * @param queue_id is the id of the queue which handles TM related to this execution step
744 744 *
745 745 */
746 746
747 747 int status;
748 748
749 749 status = LFR_SUCCESSFUL;
750 750
751 751 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
752 752
753 753 return status;
754 754 }
755 755
756 756 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
757 757 {
758 758 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
759 759 *
760 760 * @param TC points to the TeleCommand packet that is being processed
761 761 * @param queue_id is the id of the queue which handles TM related to this execution step
762 762 *
763 763 */
764 764
765 765 int status;
766 766
767 767 status = LFR_SUCCESSFUL;
768 768
769 769 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
770 770
771 771 return status;
772 772 }
773 773
774 774 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
775 775 {
776 776 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
777 777 *
778 778 * @param TC points to the TeleCommand packet that is being processed
779 779 * @param queue_id is the id of the queue which handles TM related to this execution step
780 780 *
781 781 */
782 782
783 783 int status;
784 784
785 785 status = LFR_SUCCESSFUL;
786 786
787 787 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
788 788
789 789 return status;
790 790 }
791 791
792 792 //**********************
793 793 // BURST MODE PARAMETERS
794 794 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
795 795 {
796 796 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
797 797 *
798 798 * @param TC points to the TeleCommand packet that is being processed
799 799 * @param queue_id is the id of the queue which handles TM related to this execution step
800 800 *
801 801 */
802 802
803 803 int status;
804 804
805 805 status = LFR_SUCCESSFUL;
806 806
807 807 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
808 808
809 809 return status;
810 810 }
811 811
812 812 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
813 813 {
814 814 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
815 815 *
816 816 * @param TC points to the TeleCommand packet that is being processed
817 817 * @param queue_id is the id of the queue which handles TM related to this execution step
818 818 *
819 819 */
820 820
821 821 int status;
822 822
823 823 status = LFR_SUCCESSFUL;
824 824
825 825 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
826 826
827 827 return status;
828 828 }
829 829
830 830 //*********************
831 831 // SBM1 MODE PARAMETERS
832 832 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
833 833 {
834 834 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
835 835 *
836 836 * @param TC points to the TeleCommand packet that is being processed
837 837 * @param queue_id is the id of the queue which handles TM related to this execution step
838 838 *
839 839 */
840 840
841 841 int status;
842 842
843 843 status = LFR_SUCCESSFUL;
844 844
845 845 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
846 846
847 847 return status;
848 848 }
849 849
850 850 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
851 851 {
852 852 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
853 853 *
854 854 * @param TC points to the TeleCommand packet that is being processed
855 855 * @param queue_id is the id of the queue which handles TM related to this execution step
856 856 *
857 857 */
858 858
859 859 int status;
860 860
861 861 status = LFR_SUCCESSFUL;
862 862
863 863 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
864 864
865 865 return status;
866 866 }
867 867
868 868 //*********************
869 869 // SBM2 MODE PARAMETERS
870 870 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
871 871 {
872 872 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
873 873 *
874 874 * @param TC points to the TeleCommand packet that is being processed
875 875 * @param queue_id is the id of the queue which handles TM related to this execution step
876 876 *
877 877 */
878 878
879 879 int status;
880 880
881 881 status = LFR_SUCCESSFUL;
882 882
883 883 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
884 884
885 885 return status;
886 886 }
887 887
888 888 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
889 889 {
890 890 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
891 891 *
892 892 * @param TC points to the TeleCommand packet that is being processed
893 893 * @param queue_id is the id of the queue which handles TM related to this execution step
894 894 *
895 895 */
896 896
897 897 int status;
898 898
899 899 status = LFR_SUCCESSFUL;
900 900
901 901 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
902 902
903 903 return status;
904 904 }
905 905
906 906 //*******************
907 907 // TC_LFR_UPDATE_INFO
908 908 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
909 909 {
910 910 unsigned int status;
911 911
912 912 status = LFR_DEFAULT;
913 913
914 914 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
915 915 || (mode == LFR_MODE_BURST)
916 916 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
917 917 {
918 918 status = LFR_SUCCESSFUL;
919 919 }
920 920 else
921 921 {
922 922 status = LFR_DEFAULT;
923 923 }
924 924
925 925 return status;
926 926 }
927 927
928 928 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
929 929 {
930 930 unsigned int status;
931 931
932 932 status = LFR_DEFAULT;
933 933
934 934 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
935 935 || (mode == TDS_MODE_BURST)
936 936 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
937 937 || (mode == TDS_MODE_LFM))
938 938 {
939 939 status = LFR_SUCCESSFUL;
940 940 }
941 941 else
942 942 {
943 943 status = LFR_DEFAULT;
944 944 }
945 945
946 946 return status;
947 947 }
948 948
949 949 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
950 950 {
951 951 unsigned int status;
952 952
953 953 status = LFR_DEFAULT;
954 954
955 955 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
956 956 || (mode == THR_MODE_BURST))
957 957 {
958 958 status = LFR_SUCCESSFUL;
959 959 }
960 960 else
961 961 {
962 962 status = LFR_DEFAULT;
963 963 }
964 964
965 965 return status;
966 966 }
967 967
968 968 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
969 969 {
970 970 unsigned char flag;
971 971 unsigned char flagPosInByte;
972 972 unsigned char newFlag;
973 973 unsigned char flagMask;
974 974
975 975 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
976 976 if (isnan(value))
977 977 {
978 978 flag = FLAG_NAN;
979 979 }
980 980 else
981 981 {
982 982 flag = FLAG_IAN;
983 983 }
984 984
985 985 switch(wheel)
986 986 {
987 987 case WHEEL_1:
988 988 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
989 989 flagMask = ~(1 << flagPosInByte);
990 990 newFlag = flag << flagPosInByte;
991 991 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
992 992 break;
993 993 case WHEEL_2:
994 994 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
995 995 flagMask = ~(1 << flagPosInByte);
996 996 newFlag = flag << flagPosInByte;
997 997 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
998 998 break;
999 999 case WHEEL_3:
1000 1000 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1001 1001 flagMask = ~(1 << flagPosInByte);
1002 1002 newFlag = flag << flagPosInByte;
1003 1003 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1004 1004 break;
1005 1005 case WHEEL_4:
1006 1006 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1007 1007 flagMask = ~(1 << flagPosInByte);
1008 1008 newFlag = flag << flagPosInByte;
1009 1009 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1010 1010 break;
1011 1011 default:
1012 1012 break;
1013 1013 }
1014 1014 }
1015 1015
1016 1016 void set_hk_lfr_sc_rw_f_flags( void )
1017 1017 {
1018 1018 // RW1
1019 1019 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1020 1020 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1021 1021 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1022 1022 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1023 1023
1024 1024 // RW2
1025 1025 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1026 1026 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1027 1027 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1028 1028 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1029 1029
1030 1030 // RW3
1031 1031 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1032 1032 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1033 1033 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1034 1034 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1035 1035
1036 1036 // RW4
1037 1037 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1038 1038 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1039 1039 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1040 1040 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1041 1041 }
1042 1042
1043 1043 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1044 1044 {
1045 1045 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1046 1046 *
1047 1047 * @param TC points to the TeleCommand packet that is being processed
1048 1048 *
1049 1049 */
1050 1050
1051 1051 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1052 1052
1053 1053 bytePosPtr = (unsigned char *) &TC->packetID;
1054 1054
1055 1055 // rw1_f
1056 1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1057 1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1058 1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1059 1059 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1060 1060
1061 1061 // rw2_f
1062 1062 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1063 1063 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1064 1064 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1065 1065 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1066 1066
1067 1067 // rw3_f
1068 1068 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1069 1069 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1070 1070 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1071 1071 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1072 1072
1073 1073 // rw4_f
1074 1074 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1075 1075 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1076 1076 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1077 1077 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1078 1078
1079 1079 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1080 1080
1081 1081 }
1082 1082
1083 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff )
1083 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float sy_lfr_rw_k )
1084 1084 {
1085 1085 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1086 1086 *
1087 1087 * @param fbins_mask
1088 1088 * @param rw_f is the reaction wheel frequency to filter
1089 1089 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1090 1090 * @param flag [true] filtering enabled [false] filtering disabled
1091 1091 *
1092 1092 * @return void
1093 1093 *
1094 1094 */
1095 1095
1096 1096 float f_RW_min;
1097 1097 float f_RW_MAX;
1098 1098 float fi_min;
1099 1099 float fi_MAX;
1100 1100 float fi;
1101 1101 float deltaBelow;
1102 1102 float deltaAbove;
1103 float freqToFilterOut;
1103 1104 int binBelow;
1104 1105 int binAbove;
1105 1106 int closestBin;
1106 1107 unsigned int whichByte;
1107 1108 int selectedByte;
1108 1109 int bin;
1109 1110 int binToRemove[NB_BINS_TO_REMOVE];
1110 int i;
1111 int k;
1112 bool filteringSet;
1111 1113
1112 1114 closestBin = 0;
1113 1115 whichByte = 0;
1114 1116 bin = 0;
1117 filteringSet = false;
1115 1118
1116 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1119 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1117 1120 {
1118 binToRemove[i] = -1;
1121 binToRemove[k] = -1;
1119 1122 }
1120 1123
1121 1124 if (!isnan(rw_f))
1122 1125 {
1123
1124 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1125 f_RW_min = rw_f - ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1126 f_RW_MAX = rw_f + ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1126 // compute the frequency range to filter [ rw_f - delta_f; rw_f + delta_f ]
1127 f_RW_min = rw_f - ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1128 f_RW_MAX = rw_f + ((filterPar.sy_lfr_sc_rw_delta_f) * sy_lfr_rw_k);
1127 1129
1128 // compute the index of the frequency bin immediately below rw_f
1129 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1130 deltaBelow = rw_f - binBelow * deltaFreq;
1130 freqToFilterOut = f_RW_min;
1131 while ( filteringSet == false )
1132 {
1133 // compute the index of the frequency bin immediately below rw_f
1134 binBelow = (int) ( floor( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1135 deltaBelow = freqToFilterOut - binBelow * deltaFreq;
1131 1136
1132 // compute the index of the frequency bin immediately above rw_f
1133 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1134 deltaAbove = binAbove * deltaFreq - rw_f;
1137 // compute the index of the frequency bin immediately above rw_f
1138 binAbove = (int) ( ceil( ((double) freqToFilterOut) / ((double) deltaFreq)) );
1139 deltaAbove = binAbove * deltaFreq - freqToFilterOut;
1135 1140
1136 // search the closest bin
1137 if (deltaAbove > deltaBelow)
1138 {
1139 closestBin = binBelow;
1140 }
1141 else
1142 {
1143 closestBin = binAbove;
1144 }
1141 // search the closest bin
1142 if (deltaAbove > deltaBelow)
1143 {
1144 closestBin = binBelow;
1145 }
1146 else
1147 {
1148 closestBin = binAbove;
1149 }
1145 1150
1146 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1147 fi = closestBin * deltaFreq;
1148 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1149 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1151 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1152 fi = closestBin * deltaFreq;
1153 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1154 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1155
1156 //**************************************************************************************
1157 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1158 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1159 //**************************************************************************************
1150 1160
1151 //**************************************************************************************
1152 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1153 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1154 //**************************************************************************************
1161 // 1. IF freqToFilterOut is included in [ fi_min; fi_MAX ]
1162 // => remove f_(i), f_(i-1) and f_(i+1)
1163 if ( ( freqToFilterOut > fi_min ) && ( freqToFilterOut < fi_MAX ) )
1164 {
1165 binToRemove[0] = (closestBin - 1) - 1;
1166 binToRemove[1] = (closestBin) - 1;
1167 binToRemove[2] = (closestBin + 1) - 1;
1168 }
1169 // 2. ELSE
1170 // => remove the two f_(i) which are around f_RW
1171 else
1172 {
1173 binToRemove[0] = (binBelow) - 1;
1174 binToRemove[1] = (binAbove) - 1;
1175 binToRemove[2] = (-1);
1176 }
1155 1177
1156 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1157 // => remove f_(i), f_(i-1) and f_(i+1)
1158 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1159 {
1160 binToRemove[0] = (closestBin - 1) - 1;
1161 binToRemove[1] = (closestBin) - 1;
1162 binToRemove[2] = (closestBin + 1) - 1;
1163 }
1164 // 2. ELSE
1165 // => remove the two f_(i) which are around f_RW
1166 else
1167 {
1168 binToRemove[0] = (binBelow) - 1;
1169 binToRemove[1] = (binAbove) - 1;
1170 binToRemove[2] = (-1);
1171 }
1178 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1179 {
1180 bin = binToRemove[k];
1181 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1182 {
1183 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1184 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1185 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1186 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1187
1188 }
1189 }
1172 1190
1173 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1174 {
1175 bin = binToRemove[i];
1176 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1191 // update freqToFilterOut
1192 if ( freqToFilterOut == f_RW_MAX )
1193 {
1194 filteringSet = true; // end of the loop
1195 }
1196 else
1177 1197 {
1198 freqToFilterOut = freqToFilterOut + deltaFreq;
1199 }
1178 1200
1179 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1180 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1181 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1182 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1201 if ( freqToFilterOut > f_RW_MAX)
1202 {
1203 freqToFilterOut = f_RW_MAX;
1183 1204 }
1184 1205 }
1185 1206 }
1186 1207 }
1187 1208
1188 1209 void build_sy_lfr_rw_mask( unsigned int channel )
1189 1210 {
1190 1211 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1191 1212 unsigned char *maskPtr;
1192 1213 double deltaF;
1193 1214 unsigned k;
1194 1215
1195 1216 maskPtr = NULL;
1196 1217 deltaF = DELTAF_F2;
1197 1218
1198 1219 switch (channel)
1199 1220 {
1200 1221 case CHANNELF0:
1201 1222 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1202 1223 deltaF = DELTAF_F0;
1203 1224 break;
1204 1225 case CHANNELF1:
1205 1226 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1206 1227 deltaF = DELTAF_F1;
1207 1228 break;
1208 1229 case CHANNELF2:
1209 1230 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1210 1231 deltaF = DELTAF_F2;
1211 1232 break;
1212 1233 default:
1213 1234 break;
1214 1235 }
1215 1236
1216 1237 for (k = 0; k < BYTES_PER_MASK; k++)
1217 1238 {
1218 1239 local_rw_fbins_mask[k] = INT8_ALL_F;
1219 1240 }
1220 1241
1221 1242 // RW1
1222 1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1223 1244 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1224 1245 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1225 1246 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1226 1247
1227 1248 // RW2
1228 1249 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1229 1250 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1230 1251 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1231 1252 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1232 1253
1233 1254 // RW3
1234 1255 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1235 1256 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1236 1257 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1237 1258 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1238 1259
1239 1260 // RW4
1240 1261 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1241 1262 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1242 1263 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1243 1264 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1244 1265
1245 1266 // update the value of the fbins related to reaction wheels frequency filtering
1246 1267 if (maskPtr != NULL)
1247 1268 {
1248 1269 for (k = 0; k < BYTES_PER_MASK; k++)
1249 1270 {
1250 1271 maskPtr[k] = local_rw_fbins_mask[k];
1251 1272 }
1252 1273 }
1253 1274 }
1254 1275
1255 1276 void build_sy_lfr_rw_masks( void )
1256 1277 {
1257 1278 build_sy_lfr_rw_mask( CHANNELF0 );
1258 1279 build_sy_lfr_rw_mask( CHANNELF1 );
1259 1280 build_sy_lfr_rw_mask( CHANNELF2 );
1260 1281 }
1261 1282
1262 1283 void merge_fbins_masks( void )
1263 1284 {
1264 1285 unsigned char k;
1265 1286
1266 1287 unsigned char *fbins_f0;
1267 1288 unsigned char *fbins_f1;
1268 1289 unsigned char *fbins_f2;
1269 1290 unsigned char *rw_mask_f0;
1270 1291 unsigned char *rw_mask_f1;
1271 1292 unsigned char *rw_mask_f2;
1272 1293
1273 1294 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1274 1295 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1275 1296 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1276 1297 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1277 1298 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1278 1299 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1279 1300
1280 1301 for( k=0; k < BYTES_PER_MASK; k++ )
1281 1302 {
1282 1303 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1283 1304 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1284 1305 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1285 1306 }
1286 1307 }
1287 1308
1288 1309 //***********
1289 1310 // FBINS MASK
1290 1311
1291 1312 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1292 1313 {
1293 1314 int status;
1294 1315 unsigned int k;
1295 1316 unsigned char *fbins_mask_dump;
1296 1317 unsigned char *fbins_mask_TC;
1297 1318
1298 1319 status = LFR_SUCCESSFUL;
1299 1320
1300 1321 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1301 1322 fbins_mask_TC = TC->dataAndCRC;
1302 1323
1303 1324 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1304 1325 {
1305 1326 fbins_mask_dump[k] = fbins_mask_TC[k];
1306 1327 }
1307 1328
1308 1329 return status;
1309 1330 }
1310 1331
1311 1332 //***************************
1312 1333 // TC_LFR_LOAD_PAS_FILTER_PAR
1313 1334
1314 1335 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1315 1336 {
1316 1337 int flag;
1317 1338 rtems_status_code status;
1318 1339
1319 1340 unsigned char sy_lfr_pas_filter_enabled;
1320 1341 unsigned char sy_lfr_pas_filter_modulus;
1321 1342 float sy_lfr_pas_filter_tbad;
1322 1343 unsigned char sy_lfr_pas_filter_offset;
1323 1344 float sy_lfr_pas_filter_shift;
1324 1345 float sy_lfr_sc_rw_delta_f;
1325 1346 char *parPtr;
1326 1347
1327 1348 flag = LFR_SUCCESSFUL;
1328 1349 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1329 1350 sy_lfr_pas_filter_shift = INIT_FLOAT;
1330 1351 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1331 1352 parPtr = NULL;
1332 1353
1333 1354 //***************
1334 1355 // get parameters
1335 1356 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1336 1357 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1337 1358 copyFloatByChar(
1338 1359 (unsigned char*) &sy_lfr_pas_filter_tbad,
1339 1360 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1340 1361 );
1341 1362 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1342 1363 copyFloatByChar(
1343 1364 (unsigned char*) &sy_lfr_pas_filter_shift,
1344 1365 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1345 1366 );
1346 1367 copyFloatByChar(
1347 1368 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1348 1369 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1349 1370 );
1350 1371
1351 1372 //******************
1352 1373 // CHECK CONSISTENCY
1353 1374
1354 1375 //**************************
1355 1376 // sy_lfr_pas_filter_enabled
1356 1377 // nothing to check, value is 0 or 1
1357 1378
1358 1379 //**************************
1359 1380 // sy_lfr_pas_filter_modulus
1360 1381 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1361 1382 {
1362 1383 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1363 1384 flag = WRONG_APP_DATA;
1364 1385 }
1365 1386
1366 1387 //***********************
1367 1388 // sy_lfr_pas_filter_tbad
1368 1389 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1369 1390 {
1370 1391 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1371 1392 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1372 1393 flag = WRONG_APP_DATA;
1373 1394 }
1374 1395
1375 1396 //*************************
1376 1397 // sy_lfr_pas_filter_offset
1377 1398 if (flag == LFR_SUCCESSFUL)
1378 1399 {
1379 1400 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1380 1401 {
1381 1402 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1382 1403 flag = WRONG_APP_DATA;
1383 1404 }
1384 1405 }
1385 1406
1386 1407 //************************
1387 1408 // sy_lfr_pas_filter_shift
1388 1409 if (flag == LFR_SUCCESSFUL)
1389 1410 {
1390 1411 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1391 1412 {
1392 1413 parPtr = (char*) &sy_lfr_pas_filter_shift;
1393 1414 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1394 1415 flag = WRONG_APP_DATA;
1395 1416 }
1396 1417 }
1397 1418
1398 1419 //*************************************
1399 1420 // check global coherency of the values
1400 1421 if (flag == LFR_SUCCESSFUL)
1401 1422 {
1402 1423 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1403 1424 {
1404 1425 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1405 1426 flag = WRONG_APP_DATA;
1406 1427 }
1407 1428 }
1408 1429
1409 1430 //*********************
1410 1431 // sy_lfr_sc_rw_delta_f
1411 1432 // nothing to check, no default value in the ICD
1412 1433
1413 1434 return flag;
1414 1435 }
1415 1436
1416 1437 //**************
1417 1438 // KCOEFFICIENTS
1418 1439 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1419 1440 {
1420 1441 unsigned int kcoeff;
1421 1442 unsigned short sy_lfr_kcoeff_frequency;
1422 1443 unsigned short bin;
1423 1444 float *kcoeffPtr_norm;
1424 1445 float *kcoeffPtr_sbm;
1425 1446 int status;
1426 1447 unsigned char *kcoeffLoadPtr;
1427 1448 unsigned char *kcoeffNormPtr;
1428 1449 unsigned char *kcoeffSbmPtr_a;
1429 1450 unsigned char *kcoeffSbmPtr_b;
1430 1451
1431 1452 sy_lfr_kcoeff_frequency = 0;
1432 1453 bin = 0;
1433 1454 kcoeffPtr_norm = NULL;
1434 1455 kcoeffPtr_sbm = NULL;
1435 1456 status = LFR_SUCCESSFUL;
1436 1457
1437 1458 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1438 1459 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1439 1460
1440 1461
1441 1462 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1442 1463 {
1443 1464 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1444 1465 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1445 1466 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1446 1467 status = LFR_DEFAULT;
1447 1468 }
1448 1469 else
1449 1470 {
1450 1471 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1451 1472 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1452 1473 {
1453 1474 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1454 1475 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1455 1476 bin = sy_lfr_kcoeff_frequency;
1456 1477 }
1457 1478 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1458 1479 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1459 1480 {
1460 1481 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1461 1482 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1462 1483 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1463 1484 }
1464 1485 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1465 1486 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1466 1487 {
1467 1488 kcoeffPtr_norm = k_coeff_intercalib_f2;
1468 1489 kcoeffPtr_sbm = NULL;
1469 1490 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1470 1491 }
1471 1492 }
1472 1493
1473 1494 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1474 1495 {
1475 1496 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1476 1497 {
1477 1498 // destination
1478 1499 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1479 1500 // source
1480 1501 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1481 1502 // copy source to destination
1482 1503 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1483 1504 }
1484 1505 }
1485 1506
1486 1507 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1487 1508 {
1488 1509 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1489 1510 {
1490 1511 // destination
1491 1512 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1492 1513 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1493 1514 // source
1494 1515 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1495 1516 // copy source to destination
1496 1517 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1497 1518 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1498 1519 }
1499 1520 }
1500 1521
1501 1522 // print_k_coeff();
1502 1523
1503 1524 return status;
1504 1525 }
1505 1526
1506 1527 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1507 1528 {
1508 1529 destination[BYTE_0] = source[BYTE_0];
1509 1530 destination[BYTE_1] = source[BYTE_1];
1510 1531 destination[BYTE_2] = source[BYTE_2];
1511 1532 destination[BYTE_3] = source[BYTE_3];
1512 1533 }
1513 1534
1514 1535 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1515 1536 {
1516 1537 destination[BYTE_0] = source[BYTE_0];
1517 1538 destination[BYTE_1] = source[BYTE_1];
1518 1539 destination[BYTE_2] = source[BYTE_2];
1519 1540 destination[BYTE_3] = source[BYTE_3];
1520 1541 }
1521 1542
1522 1543 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1523 1544 {
1524 1545 destination[BYTE_0] = source[BYTE_0];
1525 1546 destination[BYTE_1] = source[BYTE_1];
1526 1547 }
1527 1548
1528 1549 void floatToChar( float value, unsigned char* ptr)
1529 1550 {
1530 1551 unsigned char* valuePtr;
1531 1552
1532 1553 valuePtr = (unsigned char*) &value;
1533 1554
1534 1555 ptr[BYTE_0] = valuePtr[BYTE_0];
1535 1556 ptr[BYTE_1] = valuePtr[BYTE_1];
1536 1557 ptr[BYTE_2] = valuePtr[BYTE_2];
1537 1558 ptr[BYTE_3] = valuePtr[BYTE_3];
1538 1559 }
1539 1560
1540 1561 //**********
1541 1562 // init dump
1542 1563
1543 1564 void init_parameter_dump( void )
1544 1565 {
1545 1566 /** This function initialize the parameter_dump_packet global variable with default values.
1546 1567 *
1547 1568 */
1548 1569
1549 1570 unsigned int k;
1550 1571
1551 1572 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1552 1573 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1553 1574 parameter_dump_packet.reserved = CCSDS_RESERVED;
1554 1575 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1555 1576 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1556 1577 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1557 1578 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1558 1579 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1559 1580 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1560 1581 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1561 1582 // DATA FIELD HEADER
1562 1583 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1563 1584 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1564 1585 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1565 1586 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1566 1587 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1567 1588 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1568 1589 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1569 1590 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1570 1591 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1571 1592 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1572 1593 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1573 1594
1574 1595 //******************
1575 1596 // COMMON PARAMETERS
1576 1597 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1577 1598 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1578 1599
1579 1600 //******************
1580 1601 // NORMAL PARAMETERS
1581 1602 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1582 1603 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1583 1604 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1584 1605 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1585 1606 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1586 1607 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1587 1608 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1588 1609 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1589 1610 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1590 1611
1591 1612 //*****************
1592 1613 // BURST PARAMETERS
1593 1614 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1594 1615 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1595 1616
1596 1617 //****************
1597 1618 // SBM1 PARAMETERS
1598 1619 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1599 1620 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1600 1621
1601 1622 //****************
1602 1623 // SBM2 PARAMETERS
1603 1624 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1604 1625 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1605 1626
1606 1627 //************
1607 1628 // FBINS MASKS
1608 1629 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1609 1630 {
1610 1631 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1611 1632 }
1612 1633
1613 1634 // PAS FILTER PARAMETERS
1614 1635 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1615 1636 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1616 1637 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1617 1638 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1618 1639 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1619 1640 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1620 1641 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1621 1642
1622 1643 // RW1_K
1623 1644 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1624 1645 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1625 1646 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1626 1647 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1627 1648 // RW2_K
1628 1649 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1629 1650 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1630 1651 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1631 1652 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1632 1653 // RW3_K
1633 1654 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1634 1655 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1635 1656 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1636 1657 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1637 1658 // RW4_K
1638 1659 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1639 1660 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1640 1661 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1641 1662 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1642 1663
1643 1664 // LFR_RW_MASK
1644 1665 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1645 1666 {
1646 1667 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1647 1668 }
1648 1669
1649 1670 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1650 1671 merge_fbins_masks();
1651 1672 }
1652 1673
1653 1674 void init_kcoefficients_dump( void )
1654 1675 {
1655 1676 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1656 1677 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1657 1678
1658 1679 kcoefficient_node_1.previous = NULL;
1659 1680 kcoefficient_node_1.next = NULL;
1660 1681 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1661 1682 kcoefficient_node_1.coarseTime = INIT_CHAR;
1662 1683 kcoefficient_node_1.fineTime = INIT_CHAR;
1663 1684 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1664 1685 kcoefficient_node_1.status = INIT_CHAR;
1665 1686
1666 1687 kcoefficient_node_2.previous = NULL;
1667 1688 kcoefficient_node_2.next = NULL;
1668 1689 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1669 1690 kcoefficient_node_2.coarseTime = INIT_CHAR;
1670 1691 kcoefficient_node_2.fineTime = INIT_CHAR;
1671 1692 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1672 1693 kcoefficient_node_2.status = INIT_CHAR;
1673 1694 }
1674 1695
1675 1696 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1676 1697 {
1677 1698 unsigned int k;
1678 1699 unsigned int packetLength;
1679 1700
1680 1701 packetLength =
1681 1702 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1682 1703
1683 1704 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1684 1705 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1685 1706 kcoefficients_dump->reserved = CCSDS_RESERVED;
1686 1707 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1687 1708 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1688 1709 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1689 1710 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1690 1711 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1691 1712 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1692 1713 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1693 1714 // DATA FIELD HEADER
1694 1715 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1695 1716 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1696 1717 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1697 1718 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1698 1719 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1699 1720 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1700 1721 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1701 1722 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1702 1723 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1703 1724 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1704 1725 kcoefficients_dump->sid = SID_K_DUMP;
1705 1726
1706 1727 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1707 1728 kcoefficients_dump->pkt_nr = PKTNR_1;
1708 1729 kcoefficients_dump->blk_nr = blk_nr;
1709 1730
1710 1731 //******************
1711 1732 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1712 1733 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1713 1734 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1714 1735 {
1715 1736 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1716 1737 }
1717 1738 }
1718 1739
1719 1740 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1720 1741 {
1721 1742 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1722 1743 *
1723 1744 * @param packet_sequence_control points to the packet sequence control which will be incremented
1724 1745 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1725 1746 *
1726 1747 * If the destination ID is not known, a dedicated counter is incremented.
1727 1748 *
1728 1749 */
1729 1750
1730 1751 unsigned short sequence_cnt;
1731 1752 unsigned short segmentation_grouping_flag;
1732 1753 unsigned short new_packet_sequence_control;
1733 1754 unsigned char i;
1734 1755
1735 1756 switch (destination_id)
1736 1757 {
1737 1758 case SID_TC_GROUND:
1738 1759 i = GROUND;
1739 1760 break;
1740 1761 case SID_TC_MISSION_TIMELINE:
1741 1762 i = MISSION_TIMELINE;
1742 1763 break;
1743 1764 case SID_TC_TC_SEQUENCES:
1744 1765 i = TC_SEQUENCES;
1745 1766 break;
1746 1767 case SID_TC_RECOVERY_ACTION_CMD:
1747 1768 i = RECOVERY_ACTION_CMD;
1748 1769 break;
1749 1770 case SID_TC_BACKUP_MISSION_TIMELINE:
1750 1771 i = BACKUP_MISSION_TIMELINE;
1751 1772 break;
1752 1773 case SID_TC_DIRECT_CMD:
1753 1774 i = DIRECT_CMD;
1754 1775 break;
1755 1776 case SID_TC_SPARE_GRD_SRC1:
1756 1777 i = SPARE_GRD_SRC1;
1757 1778 break;
1758 1779 case SID_TC_SPARE_GRD_SRC2:
1759 1780 i = SPARE_GRD_SRC2;
1760 1781 break;
1761 1782 case SID_TC_OBCP:
1762 1783 i = OBCP;
1763 1784 break;
1764 1785 case SID_TC_SYSTEM_CONTROL:
1765 1786 i = SYSTEM_CONTROL;
1766 1787 break;
1767 1788 case SID_TC_AOCS:
1768 1789 i = AOCS;
1769 1790 break;
1770 1791 case SID_TC_RPW_INTERNAL:
1771 1792 i = RPW_INTERNAL;
1772 1793 break;
1773 1794 default:
1774 1795 i = GROUND;
1775 1796 break;
1776 1797 }
1777 1798
1778 1799 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1779 1800 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1780 1801
1781 1802 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1782 1803
1783 1804 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1784 1805 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1785 1806
1786 1807 // increment the sequence counter
1787 1808 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1788 1809 {
1789 1810 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1790 1811 }
1791 1812 else
1792 1813 {
1793 1814 sequenceCounters_TM_DUMP[ i ] = 0;
1794 1815 }
1795 1816 }
General Comments 0
You need to be logged in to leave comments. Login now