##// END OF EJS Templates
sequence_cnt field set for BP and ASM packets
paul -
r133:0209817182bd VHDLib206
parent child
Show More
@@ -1,268 +1,268
1 #############################################################################
1 #############################################################################
2 # Makefile for building: bin/fsw
2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Tue May 13 15:18:10 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Thu May 15 08:30:40 2014
4 # Project: fsw-qt.pro
4 # Project: fsw-qt.pro
5 # Template: app
5 # Template: app
6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 #############################################################################
7 #############################################################################
8
8
9 ####### Compiler, tools and options
9 ####### Compiler, tools and options
10
10
11 CC = sparc-rtems-gcc
11 CC = sparc-rtems-gcc
12 CXX = sparc-rtems-g++
12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=7 -DPRINT_MESSAGES_ON_CONSOLE -DPRINT_TASK_STATISTICS
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=7 -DPRINT_MESSAGES_ON_CONSOLE -DPRINT_TASK_STATISTICS
14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/basic_parameters
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/basic_parameters
17 LINK = sparc-rtems-g++
17 LINK = sparc-rtems-g++
18 LFLAGS =
18 LFLAGS =
19 LIBS = $(SUBLIBS)
19 LIBS = $(SUBLIBS)
20 AR = sparc-rtems-ar rcs
20 AR = sparc-rtems-ar rcs
21 RANLIB =
21 RANLIB =
22 QMAKE = /usr/bin/qmake-qt4
22 QMAKE = /usr/bin/qmake-qt4
23 TAR = tar -cf
23 TAR = tar -cf
24 COMPRESS = gzip -9f
24 COMPRESS = gzip -9f
25 COPY = cp -f
25 COPY = cp -f
26 SED = sed
26 SED = sed
27 COPY_FILE = $(COPY)
27 COPY_FILE = $(COPY)
28 COPY_DIR = $(COPY) -r
28 COPY_DIR = $(COPY) -r
29 STRIP = sparc-rtems-strip
29 STRIP = sparc-rtems-strip
30 INSTALL_FILE = install -m 644 -p
30 INSTALL_FILE = install -m 644 -p
31 INSTALL_DIR = $(COPY_DIR)
31 INSTALL_DIR = $(COPY_DIR)
32 INSTALL_PROGRAM = install -m 755 -p
32 INSTALL_PROGRAM = install -m 755 -p
33 DEL_FILE = rm -f
33 DEL_FILE = rm -f
34 SYMLINK = ln -f -s
34 SYMLINK = ln -f -s
35 DEL_DIR = rmdir
35 DEL_DIR = rmdir
36 MOVE = mv -f
36 MOVE = mv -f
37 CHK_DIR_EXISTS= test -d
37 CHK_DIR_EXISTS= test -d
38 MKDIR = mkdir -p
38 MKDIR = mkdir -p
39
39
40 ####### Output directory
40 ####### Output directory
41
41
42 OBJECTS_DIR = obj/
42 OBJECTS_DIR = obj/
43
43
44 ####### Files
44 ####### Files
45
45
46 SOURCES = ../src/wf_handler.c \
46 SOURCES = ../src/wf_handler.c \
47 ../src/tc_handler.c \
47 ../src/tc_handler.c \
48 ../src/fsw_misc.c \
48 ../src/fsw_misc.c \
49 ../src/fsw_init.c \
49 ../src/fsw_init.c \
50 ../src/fsw_globals.c \
50 ../src/fsw_globals.c \
51 ../src/fsw_spacewire.c \
51 ../src/fsw_spacewire.c \
52 ../src/tc_load_dump_parameters.c \
52 ../src/tc_load_dump_parameters.c \
53 ../src/tm_lfr_tc_exe.c \
53 ../src/tm_lfr_tc_exe.c \
54 ../src/tc_acceptance.c \
54 ../src/tc_acceptance.c \
55 ../src/basic_parameters/basic_parameters.c \
55 ../src/basic_parameters/basic_parameters.c \
56 ../src/processing/fsw_processing.c \
56 ../src/processing/fsw_processing.c \
57 ../src/processing/avf0_prc0.c \
57 ../src/processing/avf0_prc0.c \
58 ../src/processing/avf1_prc1.c \
58 ../src/processing/avf1_prc1.c \
59 ../src/processing/avf2_prc2.c
59 ../src/processing/avf2_prc2.c
60 OBJECTS = obj/wf_handler.o \
60 OBJECTS = obj/wf_handler.o \
61 obj/tc_handler.o \
61 obj/tc_handler.o \
62 obj/fsw_misc.o \
62 obj/fsw_misc.o \
63 obj/fsw_init.o \
63 obj/fsw_init.o \
64 obj/fsw_globals.o \
64 obj/fsw_globals.o \
65 obj/fsw_spacewire.o \
65 obj/fsw_spacewire.o \
66 obj/tc_load_dump_parameters.o \
66 obj/tc_load_dump_parameters.o \
67 obj/tm_lfr_tc_exe.o \
67 obj/tm_lfr_tc_exe.o \
68 obj/tc_acceptance.o \
68 obj/tc_acceptance.o \
69 obj/basic_parameters.o \
69 obj/basic_parameters.o \
70 obj/fsw_processing.o \
70 obj/fsw_processing.o \
71 obj/avf0_prc0.o \
71 obj/avf0_prc0.o \
72 obj/avf1_prc1.o \
72 obj/avf1_prc1.o \
73 obj/avf2_prc2.o
73 obj/avf2_prc2.o
74 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
74 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
75 /usr/lib64/qt4/mkspecs/common/linux.conf \
75 /usr/lib64/qt4/mkspecs/common/linux.conf \
76 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
76 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
77 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
77 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
78 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
78 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
79 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
79 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
80 /usr/lib64/qt4/mkspecs/qconfig.pri \
80 /usr/lib64/qt4/mkspecs/qconfig.pri \
81 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
81 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
82 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
82 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
83 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
83 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
84 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
84 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
85 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
85 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
86 sparc.pri \
86 sparc.pri \
87 /usr/lib64/qt4/mkspecs/features/release.prf \
87 /usr/lib64/qt4/mkspecs/features/release.prf \
88 /usr/lib64/qt4/mkspecs/features/default_post.prf \
88 /usr/lib64/qt4/mkspecs/features/default_post.prf \
89 /usr/lib64/qt4/mkspecs/features/shared.prf \
89 /usr/lib64/qt4/mkspecs/features/shared.prf \
90 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
90 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
91 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
91 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
92 /usr/lib64/qt4/mkspecs/features/resources.prf \
92 /usr/lib64/qt4/mkspecs/features/resources.prf \
93 /usr/lib64/qt4/mkspecs/features/uic.prf \
93 /usr/lib64/qt4/mkspecs/features/uic.prf \
94 /usr/lib64/qt4/mkspecs/features/yacc.prf \
94 /usr/lib64/qt4/mkspecs/features/yacc.prf \
95 /usr/lib64/qt4/mkspecs/features/lex.prf \
95 /usr/lib64/qt4/mkspecs/features/lex.prf \
96 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
96 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
97 fsw-qt.pro
97 fsw-qt.pro
98 QMAKE_TARGET = fsw
98 QMAKE_TARGET = fsw
99 DESTDIR = bin/
99 DESTDIR = bin/
100 TARGET = bin/fsw
100 TARGET = bin/fsw
101
101
102 first: all
102 first: all
103 ####### Implicit rules
103 ####### Implicit rules
104
104
105 .SUFFIXES: .o .c .cpp .cc .cxx .C
105 .SUFFIXES: .o .c .cpp .cc .cxx .C
106
106
107 .cpp.o:
107 .cpp.o:
108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
109
109
110 .cc.o:
110 .cc.o:
111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
112
112
113 .cxx.o:
113 .cxx.o:
114 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
114 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
115
115
116 .C.o:
116 .C.o:
117 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
117 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
118
118
119 .c.o:
119 .c.o:
120 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
120 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
121
121
122 ####### Build rules
122 ####### Build rules
123
123
124 all: Makefile $(TARGET)
124 all: Makefile $(TARGET)
125
125
126 $(TARGET): $(OBJECTS)
126 $(TARGET): $(OBJECTS)
127 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
127 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
128 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
128 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
129
129
130 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
130 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
131 /usr/lib64/qt4/mkspecs/common/linux.conf \
131 /usr/lib64/qt4/mkspecs/common/linux.conf \
132 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
132 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
133 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
133 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
134 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
134 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
135 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
135 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
136 /usr/lib64/qt4/mkspecs/qconfig.pri \
136 /usr/lib64/qt4/mkspecs/qconfig.pri \
137 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
137 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
138 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
138 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
139 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
139 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
140 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
140 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
141 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
141 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
142 sparc.pri \
142 sparc.pri \
143 /usr/lib64/qt4/mkspecs/features/release.prf \
143 /usr/lib64/qt4/mkspecs/features/release.prf \
144 /usr/lib64/qt4/mkspecs/features/default_post.prf \
144 /usr/lib64/qt4/mkspecs/features/default_post.prf \
145 /usr/lib64/qt4/mkspecs/features/shared.prf \
145 /usr/lib64/qt4/mkspecs/features/shared.prf \
146 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
146 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
147 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
147 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
148 /usr/lib64/qt4/mkspecs/features/resources.prf \
148 /usr/lib64/qt4/mkspecs/features/resources.prf \
149 /usr/lib64/qt4/mkspecs/features/uic.prf \
149 /usr/lib64/qt4/mkspecs/features/uic.prf \
150 /usr/lib64/qt4/mkspecs/features/yacc.prf \
150 /usr/lib64/qt4/mkspecs/features/yacc.prf \
151 /usr/lib64/qt4/mkspecs/features/lex.prf \
151 /usr/lib64/qt4/mkspecs/features/lex.prf \
152 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
152 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
153 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
153 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
154 /usr/lib64/qt4/mkspecs/common/unix.conf:
154 /usr/lib64/qt4/mkspecs/common/unix.conf:
155 /usr/lib64/qt4/mkspecs/common/linux.conf:
155 /usr/lib64/qt4/mkspecs/common/linux.conf:
156 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
156 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
157 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
157 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
158 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
158 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
159 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
159 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
160 /usr/lib64/qt4/mkspecs/qconfig.pri:
160 /usr/lib64/qt4/mkspecs/qconfig.pri:
161 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
161 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
162 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
162 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
163 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
163 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
164 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
164 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
165 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
165 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
166 sparc.pri:
166 sparc.pri:
167 /usr/lib64/qt4/mkspecs/features/release.prf:
167 /usr/lib64/qt4/mkspecs/features/release.prf:
168 /usr/lib64/qt4/mkspecs/features/default_post.prf:
168 /usr/lib64/qt4/mkspecs/features/default_post.prf:
169 /usr/lib64/qt4/mkspecs/features/shared.prf:
169 /usr/lib64/qt4/mkspecs/features/shared.prf:
170 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
170 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
171 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
171 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
172 /usr/lib64/qt4/mkspecs/features/resources.prf:
172 /usr/lib64/qt4/mkspecs/features/resources.prf:
173 /usr/lib64/qt4/mkspecs/features/uic.prf:
173 /usr/lib64/qt4/mkspecs/features/uic.prf:
174 /usr/lib64/qt4/mkspecs/features/yacc.prf:
174 /usr/lib64/qt4/mkspecs/features/yacc.prf:
175 /usr/lib64/qt4/mkspecs/features/lex.prf:
175 /usr/lib64/qt4/mkspecs/features/lex.prf:
176 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
176 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
177 qmake: FORCE
177 qmake: FORCE
178 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
178 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
179
179
180 dist:
180 dist:
181 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
181 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
182 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
182 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
183
183
184
184
185 clean:compiler_clean
185 clean:compiler_clean
186 -$(DEL_FILE) $(OBJECTS)
186 -$(DEL_FILE) $(OBJECTS)
187 -$(DEL_FILE) *~ core *.core
187 -$(DEL_FILE) *~ core *.core
188
188
189
189
190 ####### Sub-libraries
190 ####### Sub-libraries
191
191
192 distclean: clean
192 distclean: clean
193 -$(DEL_FILE) $(TARGET)
193 -$(DEL_FILE) $(TARGET)
194 -$(DEL_FILE) Makefile
194 -$(DEL_FILE) Makefile
195
195
196
196
197 grmon:
197 grmon:
198 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
198 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
199
199
200 check: first
200 check: first
201
201
202 compiler_rcc_make_all:
202 compiler_rcc_make_all:
203 compiler_rcc_clean:
203 compiler_rcc_clean:
204 compiler_uic_make_all:
204 compiler_uic_make_all:
205 compiler_uic_clean:
205 compiler_uic_clean:
206 compiler_image_collection_make_all: qmake_image_collection.cpp
206 compiler_image_collection_make_all: qmake_image_collection.cpp
207 compiler_image_collection_clean:
207 compiler_image_collection_clean:
208 -$(DEL_FILE) qmake_image_collection.cpp
208 -$(DEL_FILE) qmake_image_collection.cpp
209 compiler_yacc_decl_make_all:
209 compiler_yacc_decl_make_all:
210 compiler_yacc_decl_clean:
210 compiler_yacc_decl_clean:
211 compiler_yacc_impl_make_all:
211 compiler_yacc_impl_make_all:
212 compiler_yacc_impl_clean:
212 compiler_yacc_impl_clean:
213 compiler_lex_make_all:
213 compiler_lex_make_all:
214 compiler_lex_clean:
214 compiler_lex_clean:
215 compiler_clean:
215 compiler_clean:
216
216
217 ####### Compile
217 ####### Compile
218
218
219 obj/wf_handler.o: ../src/wf_handler.c
219 obj/wf_handler.o: ../src/wf_handler.c
220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
221
221
222 obj/tc_handler.o: ../src/tc_handler.c
222 obj/tc_handler.o: ../src/tc_handler.c
223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
224
224
225 obj/fsw_misc.o: ../src/fsw_misc.c
225 obj/fsw_misc.o: ../src/fsw_misc.c
226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
227
227
228 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
228 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
230
230
231 obj/fsw_globals.o: ../src/fsw_globals.c
231 obj/fsw_globals.o: ../src/fsw_globals.c
232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
233
233
234 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
234 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
236
236
237 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
237 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
239
239
240 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
240 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
242
242
243 obj/tc_acceptance.o: ../src/tc_acceptance.c
243 obj/tc_acceptance.o: ../src/tc_acceptance.c
244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
245
245
246 obj/basic_parameters.o: ../src/basic_parameters/basic_parameters.c ../src/basic_parameters/basic_parameters.h
246 obj/basic_parameters.o: ../src/basic_parameters/basic_parameters.c ../src/basic_parameters/basic_parameters.h
247 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/basic_parameters/basic_parameters.c
247 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/basic_parameters/basic_parameters.c
248
248
249 obj/fsw_processing.o: ../src/processing/fsw_processing.c
249 obj/fsw_processing.o: ../src/processing/fsw_processing.c
250 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
250 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
251
251
252 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
252 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
253 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
253 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
254
254
255 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
255 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
256 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
256 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
257
257
258 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
258 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
259 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
259 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
260
260
261 ####### Install
261 ####### Install
262
262
263 install: FORCE
263 install: FORCE
264
264
265 uninstall: FORCE
265 uninstall: FORCE
266
266
267 FORCE:
267 FORCE:
268
268
@@ -1,201 +1,201
1 <?xml version="1.0" encoding="UTF-8"?>
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE QtCreatorProject>
2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-05-13T15:58:32. -->
3 <!-- Written by QtCreator 3.0.1, 2014-05-15T06:56:44. -->
4 <qtcreator>
4 <qtcreator>
5 <data>
5 <data>
6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 <value type="int">0</value>
7 <value type="int">0</value>
8 </data>
8 </data>
9 <data>
9 <data>
10 <variable>ProjectExplorer.Project.EditorSettings</variable>
10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 <valuemap type="QVariantMap">
11 <valuemap type="QVariantMap">
12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 <value type="QString" key="language">Cpp</value>
16 <value type="QString" key="language">Cpp</value>
17 <valuemap type="QVariantMap" key="value">
17 <valuemap type="QVariantMap" key="value">
18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 </valuemap>
19 </valuemap>
20 </valuemap>
20 </valuemap>
21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 <value type="QString" key="language">QmlJS</value>
22 <value type="QString" key="language">QmlJS</value>
23 <valuemap type="QVariantMap" key="value">
23 <valuemap type="QVariantMap" key="value">
24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 </valuemap>
25 </valuemap>
26 </valuemap>
26 </valuemap>
27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 <value type="int" key="EditorConfiguration.TabSize">8</value>
38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 </valuemap>
45 </valuemap>
46 </data>
46 </data>
47 <data>
47 <data>
48 <variable>ProjectExplorer.Project.PluginSettings</variable>
48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 <valuemap type="QVariantMap"/>
49 <valuemap type="QVariantMap"/>
50 </data>
50 </data>
51 <data>
51 <data>
52 <variable>ProjectExplorer.Project.Target.0</variable>
52 <variable>ProjectExplorer.Project.Target.0</variable>
53 <valuemap type="QVariantMap">
53 <valuemap type="QVariantMap">
54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 </valuemap>
72 </valuemap>
73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 <value type="QString">-w</value>
79 <value type="QString">-w</value>
80 <value type="QString">-r</value>
80 <value type="QString">-r</value>
81 </valuelist>
81 </valuelist>
82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 </valuemap>
85 </valuemap>
86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 </valuemap>
90 </valuemap>
91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 <value type="QString">-w</value>
98 <value type="QString">-w</value>
99 <value type="QString">-r</value>
99 <value type="QString">-r</value>
100 </valuelist>
100 </valuelist>
101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 </valuemap>
104 </valuemap>
105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 </valuemap>
109 </valuemap>
110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 </valuemap>
118 </valuemap>
119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 </valuemap>
126 </valuemap>
127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 </valuemap>
131 </valuemap>
132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 <value type="int">0</value>
153 <value type="int">0</value>
154 <value type="int">1</value>
154 <value type="int">1</value>
155 <value type="int">2</value>
155 <value type="int">2</value>
156 <value type="int">3</value>
156 <value type="int">3</value>
157 <value type="int">4</value>
157 <value type="int">4</value>
158 <value type="int">5</value>
158 <value type="int">5</value>
159 <value type="int">6</value>
159 <value type="int">6</value>
160 <value type="int">7</value>
160 <value type="int">7</value>
161 <value type="int">8</value>
161 <value type="int">8</value>
162 <value type="int">9</value>
162 <value type="int">9</value>
163 <value type="int">10</value>
163 <value type="int">10</value>
164 <value type="int">11</value>
164 <value type="int">11</value>
165 <value type="int">12</value>
165 <value type="int">12</value>
166 <value type="int">13</value>
166 <value type="int">13</value>
167 <value type="int">14</value>
167 <value type="int">14</value>
168 </valuelist>
168 </valuelist>
169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
180 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 </valuemap>
185 </valuemap>
186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 </valuemap>
187 </valuemap>
188 </data>
188 </data>
189 <data>
189 <data>
190 <variable>ProjectExplorer.Project.TargetCount</variable>
190 <variable>ProjectExplorer.Project.TargetCount</variable>
191 <value type="int">1</value>
191 <value type="int">1</value>
192 </data>
192 </data>
193 <data>
193 <data>
194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
195 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
195 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
196 </data>
196 </data>
197 <data>
197 <data>
198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
199 <value type="int">15</value>
199 <value type="int">15</value>
200 </data>
200 </data>
201 </qtcreator>
201 </qtcreator>
@@ -1,251 +1,250
1 #ifndef FSW_PARAMS_H_INCLUDED
1 #ifndef FSW_PARAMS_H_INCLUDED
2 #define FSW_PARAMS_H_INCLUDED
2 #define FSW_PARAMS_H_INCLUDED
3
3
4 #include "grlib_regs.h"
4 #include "grlib_regs.h"
5 #include "fsw_params_processing.h"
5 #include "fsw_params_processing.h"
6 #include "fsw_params_nb_bytes.h"
6 #include "fsw_params_nb_bytes.h"
7 #include "tm_byte_positions.h"
7 #include "tm_byte_positions.h"
8 #include "ccsds_types.h"
8 #include "ccsds_types.h"
9
9
10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 #define UART_DEVICE_NAME "/dev/console"
11 #define UART_DEVICE_NAME "/dev/console"
12
12
13 typedef struct ring_node
13 typedef struct ring_node
14 {
14 {
15 struct ring_node *previous;
15 struct ring_node *previous;
16 int buffer_address;
16 int buffer_address;
17 struct ring_node *next;
17 struct ring_node *next;
18 unsigned int status;
18 unsigned int status;
19 } ring_node;
19 } ring_node;
20
20
21 //************************
21 //************************
22 // flight software version
22 // flight software version
23 // this parameters is handled by the Qt project options
23 // this parameters is handled by the Qt project options
24
24
25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
25 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
26 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
27 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
28 #define TIME_OFFSET 2
28 #define TIME_OFFSET 2
29 #define TIME_OFFSET_IN_BYTES 8
29 #define TIME_OFFSET_IN_BYTES 8
30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
30 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
31 #define NB_BYTES_SWF_BLK (2 * 6)
31 #define NB_BYTES_SWF_BLK (2 * 6)
32 #define NB_WORDS_SWF_BLK 3
32 #define NB_WORDS_SWF_BLK 3
33 #define NB_BYTES_CWF3_LIGHT_BLK 6
33 #define NB_BYTES_CWF3_LIGHT_BLK 6
34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
34 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
35 #define NB_RING_NODES_F0 3 // AT LEAST 3
35 #define NB_RING_NODES_F0 3 // AT LEAST 3
36 #define NB_RING_NODES_F1 5 // AT LEAST 3
36 #define NB_RING_NODES_F1 5 // AT LEAST 3
37 #define NB_RING_NODES_F2 5 // AT LEAST 3
37 #define NB_RING_NODES_F2 5 // AT LEAST 3
38 #define NB_RING_NODES_F3 3 // AT LEAST 3
38 #define NB_RING_NODES_F3 3 // AT LEAST 3
39
39
40 //**********
40 //**********
41 // LFR MODES
41 // LFR MODES
42 #define LFR_MODE_STANDBY 0
42 #define LFR_MODE_STANDBY 0
43 #define LFR_MODE_NORMAL 1
43 #define LFR_MODE_NORMAL 1
44 #define LFR_MODE_BURST 2
44 #define LFR_MODE_BURST 2
45 #define LFR_MODE_SBM1 3
45 #define LFR_MODE_SBM1 3
46 #define LFR_MODE_SBM2 4
46 #define LFR_MODE_SBM2 4
47
47
48 #define TDS_MODE_LFM 5
48 #define TDS_MODE_LFM 5
49 #define TDS_MODE_STANDBY 0
49 #define TDS_MODE_STANDBY 0
50 #define TDS_MODE_NORMAL 1
50 #define TDS_MODE_NORMAL 1
51 #define TDS_MODE_BURST 2
51 #define TDS_MODE_BURST 2
52 #define TDS_MODE_SBM1 3
52 #define TDS_MODE_SBM1 3
53 #define TDS_MODE_SBM2 4
53 #define TDS_MODE_SBM2 4
54
54
55 #define THR_MODE_STANDBY 0
55 #define THR_MODE_STANDBY 0
56 #define THR_MODE_NORMAL 1
56 #define THR_MODE_NORMAL 1
57 #define THR_MODE_BURST 2
57 #define THR_MODE_BURST 2
58
58
59 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
59 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
60 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
60 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
61 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
61 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
62 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
62 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
63 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
63 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
64 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
64 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
65 #define RTEMS_EVENT_NORM_BP1_F0 RTEMS_EVENT_6
65 #define RTEMS_EVENT_NORM_BP1_F0 RTEMS_EVENT_6
66 #define RTEMS_EVENT_NORM_BP2_F0 RTEMS_EVENT_7
66 #define RTEMS_EVENT_NORM_BP2_F0 RTEMS_EVENT_7
67 #define RTEMS_EVENT_NORM_ASM_F0 RTEMS_EVENT_8 // ASM only in NORM mode
67 #define RTEMS_EVENT_NORM_ASM_F0 RTEMS_EVENT_8 // ASM only in NORM mode
68 #define RTEMS_EVENT_NORM_BP1_F1 RTEMS_EVENT_9
68 #define RTEMS_EVENT_NORM_BP1_F1 RTEMS_EVENT_9
69 #define RTEMS_EVENT_NORM_BP2_F1 RTEMS_EVENT_10
69 #define RTEMS_EVENT_NORM_BP2_F1 RTEMS_EVENT_10
70 #define RTEMS_EVENT_NORM_ASM_F1 RTEMS_EVENT_11 // ASM only in NORM mode
70 #define RTEMS_EVENT_NORM_ASM_F1 RTEMS_EVENT_11 // ASM only in NORM mode
71 #define RTEMS_EVENT_NORM_BP1_F2 RTEMS_EVENT_12
71 #define RTEMS_EVENT_NORM_BP1_F2 RTEMS_EVENT_12
72 #define RTEMS_EVENT_NORM_BP2_F2 RTEMS_EVENT_13
72 #define RTEMS_EVENT_NORM_BP2_F2 RTEMS_EVENT_13
73 #define RTEMS_EVENT_NORM_ASM_F2 RTEMS_EVENT_14 // ASM only in NORM mode
73 #define RTEMS_EVENT_NORM_ASM_F2 RTEMS_EVENT_14 // ASM only in NORM mode
74 #define RTEMS_EVENT_BURST_SBM_BP1_F0 RTEMS_EVENT_15
74 #define RTEMS_EVENT_BURST_SBM_BP1_F0 RTEMS_EVENT_15
75 #define RTEMS_EVENT_BURST_SBM_BP2_F0 RTEMS_EVENT_16
75 #define RTEMS_EVENT_BURST_SBM_BP2_F0 RTEMS_EVENT_16
76 #define RTEMS_EVENT_BURST_SBM_BP1_F1 RTEMS_EVENT_17
76 #define RTEMS_EVENT_BURST_SBM_BP1_F1 RTEMS_EVENT_17
77 #define RTEMS_EVENT_BURST_SBM_BP2_F1 RTEMS_EVENT_18
77 #define RTEMS_EVENT_BURST_SBM_BP2_F1 RTEMS_EVENT_18
78
78
79 //****************************
79 //****************************
80 // LFR DEFAULT MODE PARAMETERS
80 // LFR DEFAULT MODE PARAMETERS
81 // COMMON
81 // COMMON
82 #define DEFAULT_SY_LFR_COMMON0 0x00
82 #define DEFAULT_SY_LFR_COMMON0 0x00
83 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
83 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
84 // NORM
84 // NORM
85 #define SY_LFR_N_SWF_L 2048 // nb sample
85 #define SY_LFR_N_SWF_L 2048 // nb sample
86 #define SY_LFR_N_SWF_P 300 // sec
86 #define SY_LFR_N_SWF_P 300 // sec
87 #define SY_LFR_N_ASM_P 3600 // sec
87 #define SY_LFR_N_ASM_P 3600 // sec
88 #define SY_LFR_N_BP_P0 4 // sec
88 #define SY_LFR_N_BP_P0 4 // sec
89 #define SY_LFR_N_BP_P1 20 // sec
89 #define SY_LFR_N_BP_P1 20 // sec
90 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
90 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
91 #define MIN_DELTA_SNAPSHOT 16 // sec
91 #define MIN_DELTA_SNAPSHOT 16 // sec
92 // BURST
92 // BURST
93 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
93 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
94 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
94 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
95 // SBM1
95 // SBM1
96 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
96 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
97 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
97 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
98 // SBM2
98 // SBM2
99 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
99 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
100 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
100 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
101 // ADDITIONAL PARAMETERS
101 // ADDITIONAL PARAMETERS
102 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
102 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
103 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
103 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
104 // STATUS WORD
104 // STATUS WORD
105 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
105 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
106 #define DEFAULT_STATUS_WORD_BYTE1 0x00
106 #define DEFAULT_STATUS_WORD_BYTE1 0x00
107 //
107 //
108 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
108 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
109 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
109 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
110 //****************************
110 //****************************
111
111
112 //*****************************
112 //*****************************
113 // APB REGISTERS BASE ADDRESSES
113 // APB REGISTERS BASE ADDRESSES
114 #define REGS_ADDR_APBUART 0x80000100
114 #define REGS_ADDR_APBUART 0x80000100
115 #define REGS_ADDR_GPTIMER 0x80000300
115 #define REGS_ADDR_GPTIMER 0x80000300
116 #define REGS_ADDR_GRSPW 0x80000500
116 #define REGS_ADDR_GRSPW 0x80000500
117 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
117 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
118 #define REGS_ADDR_GRGPIO 0x80000b00
118 #define REGS_ADDR_GRGPIO 0x80000b00
119
119
120 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
120 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
121 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f40
121 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f40
122
122
123 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
123 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
124 #define APBUART_CTRL_REG_MASK_TE 0x00000002
124 #define APBUART_CTRL_REG_MASK_TE 0x00000002
125 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
125 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
126
126
127 //**********
127 //**********
128 // IRQ LINES
128 // IRQ LINES
129 #define IRQ_SM_SIMULATOR 9
129 #define IRQ_SM_SIMULATOR 9
130 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
130 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
131 #define IRQ_WAVEFORM_PICKER 14
131 #define IRQ_WAVEFORM_PICKER 14
132 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
132 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
133 #define IRQ_SPECTRAL_MATRIX 6
133 #define IRQ_SPECTRAL_MATRIX 6
134 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
134 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
135
135
136 //*****
136 //*****
137 // TIME
137 // TIME
138 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
138 #define CLKDIV_SM_SIMULATOR (10416 - 1) // 10 ms => nominal is 1/96 = 0.010416667, 10417 - 1 = 10416
139 #define TIMER_SM_SIMULATOR 1
139 #define TIMER_SM_SIMULATOR 1
140 #define HK_PERIOD 100 // 100 * 10ms => 1s
140 #define HK_PERIOD 100 // 100 * 10ms => 1s
141 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
141 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
142 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
142 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
143
143
144 //**********
144 //**********
145 // LPP CODES
145 // LPP CODES
146 #define LFR_SUCCESSFUL 0
146 #define LFR_SUCCESSFUL 0
147 #define LFR_DEFAULT 1
147 #define LFR_DEFAULT 1
148 #define LFR_EXE_ERROR 2
148 #define LFR_EXE_ERROR 2
149
149
150 //******
150 //******
151 // RTEMS
151 // RTEMS
152 #define TASKID_RECV 1
152 #define TASKID_RECV 1
153 #define TASKID_ACTN 2
153 #define TASKID_ACTN 2
154 #define TASKID_SPIQ 3
154 #define TASKID_SPIQ 3
155 #define TASKID_STAT 4
155 #define TASKID_STAT 4
156 #define TASKID_AVF0 5
156 #define TASKID_AVF0 5
157 #define TASKID_SWBD 6
157 #define TASKID_SWBD 6
158 #define TASKID_WFRM 7
158 #define TASKID_WFRM 7
159 #define TASKID_DUMB 8
159 #define TASKID_DUMB 8
160 #define TASKID_HOUS 9
160 #define TASKID_HOUS 9
161 #define TASKID_PRC0 10
161 #define TASKID_PRC0 10
162 #define TASKID_CWF3 11
162 #define TASKID_CWF3 11
163 #define TASKID_CWF2 12
163 #define TASKID_CWF2 12
164 #define TASKID_CWF1 13
164 #define TASKID_CWF1 13
165 #define TASKID_SEND 14
165 #define TASKID_SEND 14
166 #define TASKID_WTDG 15
166 #define TASKID_WTDG 15
167 #define TASKID_AVF1 16
167 #define TASKID_AVF1 16
168 #define TASKID_PRC1 17
168 #define TASKID_PRC1 17
169 #define TASKID_AVF2 18
169 #define TASKID_AVF2 18
170 #define TASKID_PRC2 19
170 #define TASKID_PRC2 19
171
171
172 #define TASK_PRIORITY_SPIQ 5
172 #define TASK_PRIORITY_SPIQ 5
173 #define TASK_PRIORITY_WTDG 20
173 #define TASK_PRIORITY_WTDG 20
174 #define TASK_PRIORITY_HOUS 30
174 #define TASK_PRIORITY_HOUS 30
175 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
175 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
176 #define TASK_PRIORITY_CWF2 35 //
176 #define TASK_PRIORITY_CWF2 35 //
177 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
177 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
178 #define TASK_PRIORITY_WFRM 40
178 #define TASK_PRIORITY_WFRM 40
179 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
179 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
180 #define TASK_PRIORITY_SEND 45
180 #define TASK_PRIORITY_SEND 45
181 #define TASK_PRIORITY_RECV 50
181 #define TASK_PRIORITY_RECV 50
182 #define TASK_PRIORITY_ACTN 50
182 #define TASK_PRIORITY_ACTN 50
183 #define TASK_PRIORITY_AVF0 60
183 #define TASK_PRIORITY_AVF0 60
184 #define TASK_PRIORITY_AVF1 70
184 #define TASK_PRIORITY_AVF1 70
185 #define TASK_PRIORITY_PRC0 100
185 #define TASK_PRIORITY_PRC0 100
186 #define TASK_PRIORITY_PRC1 100
186 #define TASK_PRIORITY_PRC1 100
187 #define TASK_PRIORITY_AVF2 110
187 #define TASK_PRIORITY_AVF2 110
188 #define TASK_PRIORITY_PRC2 110
188 #define TASK_PRIORITY_PRC2 110
189 #define TASK_PRIORITY_STAT 200
189 #define TASK_PRIORITY_STAT 200
190 #define TASK_PRIORITY_DUMB 200
190 #define TASK_PRIORITY_DUMB 200
191
191
192 #define MSG_QUEUE_COUNT_RECV 10
192 #define MSG_QUEUE_COUNT_RECV 10
193 #define MSG_QUEUE_COUNT_SEND 50
193 #define MSG_QUEUE_COUNT_SEND 50
194 #define MSG_QUEUE_COUNT_PRC0 10
194 #define MSG_QUEUE_COUNT_PRC0 10
195 #define MSG_QUEUE_COUNT_PRC1 10
195 #define MSG_QUEUE_COUNT_PRC1 10
196 #define MSG_QUEUE_COUNT_PRC2 5
196 #define MSG_QUEUE_COUNT_PRC2 5
197 #define MSG_QUEUE_SIZE_SEND 810 // 806 + 4 => TM_LFR_SCIENCE_BURST_BP2_F1
197 #define MSG_QUEUE_SIZE_SEND 810 // 806 + 4 => TM_LFR_SCIENCE_BURST_BP2_F1
198 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
198 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
199 #define MSG_QUEUE_SIZE_PRC0 20 // two pointers and one rtems_event + 2 integers
199 #define MSG_QUEUE_SIZE_PRC0 20 // two pointers and one rtems_event + 2 integers
200 #define MSG_QUEUE_SIZE_PRC1 20 // two pointers and one rtems_event + 2 integers
200 #define MSG_QUEUE_SIZE_PRC1 20 // two pointers and one rtems_event + 2 integers
201 #define MSG_QUEUE_SIZE_PRC2 20 // two pointers and one rtems_event + 2 integers
201 #define MSG_QUEUE_SIZE_PRC2 20 // two pointers and one rtems_event + 2 integers
202
202
203 #define QUEUE_RECV 0
203 #define QUEUE_RECV 0
204 #define QUEUE_SEND 1
204 #define QUEUE_SEND 1
205 #define QUEUE_PRC0 2
205 #define QUEUE_PRC0 2
206 #define QUEUE_PRC1 3
206 #define QUEUE_PRC1 3
207 #define QUEUE_PRC2 4
207 #define QUEUE_PRC2 4
208
208
209 //*******
209 //*******
210 // MACROS
210 // MACROS
211 #ifdef PRINT_MESSAGES_ON_CONSOLE
211 #ifdef PRINT_MESSAGES_ON_CONSOLE
212 #define PRINTF(x) printf(x);
212 #define PRINTF(x) printf(x);
213 #define PRINTF1(x,y) printf(x,y);
213 #define PRINTF1(x,y) printf(x,y);
214 #define PRINTF2(x,y,z) printf(x,y,z);
214 #define PRINTF2(x,y,z) printf(x,y,z);
215 #else
215 #else
216 #define PRINTF(x) ;
216 #define PRINTF(x) ;
217 #define PRINTF1(x,y) ;
217 #define PRINTF1(x,y) ;
218 #define PRINTF2(x,y,z) ;
218 #define PRINTF2(x,y,z) ;
219 #endif
219 #endif
220
220
221 #ifdef BOOT_MESSAGES
221 #ifdef BOOT_MESSAGES
222 #define BOOT_PRINTF(x) printf(x);
222 #define BOOT_PRINTF(x) printf(x);
223 #define BOOT_PRINTF1(x,y) printf(x,y);
223 #define BOOT_PRINTF1(x,y) printf(x,y);
224 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
224 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
225 #else
225 #else
226 #define BOOT_PRINTF(x) ;
226 #define BOOT_PRINTF(x) ;
227 #define BOOT_PRINTF1(x,y) ;
227 #define BOOT_PRINTF1(x,y) ;
228 #define BOOT_PRINTF2(x,y,z) ;
228 #define BOOT_PRINTF2(x,y,z) ;
229 #endif
229 #endif
230
230
231 #ifdef DEBUG_MESSAGES
231 #ifdef DEBUG_MESSAGES
232 #define DEBUG_PRINTF(x) printf(x);
232 #define DEBUG_PRINTF(x) printf(x);
233 #define DEBUG_PRINTF1(x,y) printf(x,y);
233 #define DEBUG_PRINTF1(x,y) printf(x,y);
234 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
234 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
235 #else
235 #else
236 #define DEBUG_PRINTF(x) ;
236 #define DEBUG_PRINTF(x) ;
237 #define DEBUG_PRINTF1(x,y) ;
237 #define DEBUG_PRINTF1(x,y) ;
238 #define DEBUG_PRINTF2(x,y,z) ;
238 #define DEBUG_PRINTF2(x,y,z) ;
239 #endif
239 #endif
240
240
241 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
241 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
242
242
243 struct param_local_str{
243 struct param_local_str{
244 unsigned int local_sbm1_nb_cwf_sent;
244 unsigned int local_sbm1_nb_cwf_sent;
245 unsigned int local_sbm1_nb_cwf_max;
245 unsigned int local_sbm1_nb_cwf_max;
246 unsigned int local_sbm2_nb_cwf_sent;
246 unsigned int local_sbm2_nb_cwf_sent;
247 unsigned int local_sbm2_nb_cwf_max;
247 unsigned int local_sbm2_nb_cwf_max;
248 unsigned int local_nb_interrupt_f0_MAX;
249 };
248 };
250
249
251 #endif // FSW_PARAMS_H_INCLUDED
250 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,34 +1,37
1 #ifndef TM_BYTE_POSITIONS_H
1 #ifndef TM_BYTE_POSITIONS_H
2 #define TM_BYTE_POSITIONS_H
2 #define TM_BYTE_POSITIONS_H
3
3
4 // SEQUENCE_CNT
5 #define PACKET_POS_SEQUENCE_CNT 6 // 4 + 2
6
4 // TC_LFR_LOAD_COMMON_PAR
7 // TC_LFR_LOAD_COMMON_PAR
5
8
6 // TC_LFR_LOAD_NORMAL_PAR
9 // TC_LFR_LOAD_NORMAL_PAR
7 #define DATAFIELD_POS_SY_LFR_N_SWF_L 0
10 #define DATAFIELD_POS_SY_LFR_N_SWF_L 0
8 #define DATAFIELD_POS_SY_LFR_N_SWF_P 2
11 #define DATAFIELD_POS_SY_LFR_N_SWF_P 2
9 #define DATAFIELD_POS_SY_LFR_N_ASM_P 4
12 #define DATAFIELD_POS_SY_LFR_N_ASM_P 4
10 #define DATAFIELD_POS_SY_LFR_N_BP_P0 6
13 #define DATAFIELD_POS_SY_LFR_N_BP_P0 6
11 #define DATAFIELD_POS_SY_LFR_N_BP_P1 7
14 #define DATAFIELD_POS_SY_LFR_N_BP_P1 7
12 #define DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 8
15 #define DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 8
13
16
14 // TC_LFR_LOAD_BURST_PAR
17 // TC_LFR_LOAD_BURST_PAR
15 #define DATAFIELD_POS_SY_LFR_B_BP_P0 0
18 #define DATAFIELD_POS_SY_LFR_B_BP_P0 0
16 #define DATAFIELD_POS_SY_LFR_B_BP_P1 1
19 #define DATAFIELD_POS_SY_LFR_B_BP_P1 1
17
20
18 // TC_LFR_LOAD_SBM1_PAR
21 // TC_LFR_LOAD_SBM1_PAR
19 #define DATAFIELD_POS_SY_LFR_S1_BP_P0 0
22 #define DATAFIELD_POS_SY_LFR_S1_BP_P0 0
20 #define DATAFIELD_POS_SY_LFR_S1_BP_P1 1
23 #define DATAFIELD_POS_SY_LFR_S1_BP_P1 1
21
24
22 // TC_LFR_LOAD_SBM2_PAR
25 // TC_LFR_LOAD_SBM2_PAR
23 #define DATAFIELD_POS_SY_LFR_S2_BP_P0 0
26 #define DATAFIELD_POS_SY_LFR_S2_BP_P0 0
24 #define DATAFIELD_POS_SY_LFR_S2_BP_P1 1
27 #define DATAFIELD_POS_SY_LFR_S2_BP_P1 1
25
28
26 // TC_LFR_UPDATE_INFO
29 // TC_LFR_UPDATE_INFO
27 #define BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 34
30 #define BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 34
28 #define BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 35
31 #define BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 35
29
32
30 // TC_LFR_ENTER_MODE
33 // TC_LFR_ENTER_MODE
31 #define BYTE_POS_CP_MODE_LFR_SET 11
34 #define BYTE_POS_CP_MODE_LFR_SET 11
32 #define BYTE_POS_CP_LFR_ENTER_MODE_TIME 12
35 #define BYTE_POS_CP_LFR_ENTER_MODE_TIME 12
33
36
34 #endif // TM_BYTE_POSITIONS_H
37 #endif // TM_BYTE_POSITIONS_H
@@ -1,70 +1,70
1 #ifndef FSW_PARAMS_PROCESSING_H
1 #ifndef FSW_PARAMS_PROCESSING_H
2 #define FSW_PARAMS_PROCESSING_H
2 #define FSW_PARAMS_PROCESSING_H
3
3
4 #define NB_BINS_PER_SM 128
4 #define NB_BINS_PER_SM 128
5 #define NB_VALUES_PER_SM 25
5 #define NB_VALUES_PER_SM 25
6 #define TOTAL_SIZE_SM 3200 // 25 * 128
6 #define TOTAL_SIZE_SM 3200 // 25 * 128 = 0xC80
7 #define TOTAL_SIZE_NORM_BP1_F0 99 // 11 * 9 = 99
7 #define TOTAL_SIZE_NORM_BP1_F0 99 // 11 * 9 = 99
8 #define TOTAL_SIZE_NORM_BP1_F1 117 // 13 * 9 = 117
8 #define TOTAL_SIZE_NORM_BP1_F1 117 // 13 * 9 = 117
9 #define TOTAL_SIZE_NORM_BP1_F2 108 // 12 * 9 = 108
9 #define TOTAL_SIZE_NORM_BP1_F2 108 // 12 * 9 = 108
10 #define TOTAL_SIZE_SBM1_BP1_F0 198 // 22 * 9 = 198
10 #define TOTAL_SIZE_SBM1_BP1_F0 198 // 22 * 9 = 198
11 //
11 //
12 #define NB_RING_NODES_SM_F0 12 // AT LEAST 3
12 #define NB_RING_NODES_SM_F0 12 // AT LEAST 3
13 #define NB_RING_NODES_ASM_BURST_SBM_F0 10 // AT LEAST 3
13 #define NB_RING_NODES_ASM_BURST_SBM_F0 10 // AT LEAST 3
14 #define NB_RING_NODES_ASM_NORM_F0 10 // AT LEAST 3
14 #define NB_RING_NODES_ASM_NORM_F0 10 // AT LEAST 3
15 #define NB_RING_NODES_SM_F1 3 // AT LEAST 3
15 #define NB_RING_NODES_SM_F1 3 // AT LEAST 3
16 #define NB_RING_NODES_ASM_BURST_SBM_F1 5 // AT LEAST 3
16 #define NB_RING_NODES_ASM_BURST_SBM_F1 5 // AT LEAST 3
17 #define NB_RING_NODES_ASM_NORM_F1 5 // AT LEAST 3
17 #define NB_RING_NODES_ASM_NORM_F1 5 // AT LEAST 3
18 #define NB_RING_NODES_SM_F2 3 // AT LEAST 3
18 #define NB_RING_NODES_SM_F2 3 // AT LEAST 3
19 #define NB_RING_NODES_ASM_BURST_SBM_F2 3 // AT LEAST 3
19 #define NB_RING_NODES_ASM_BURST_SBM_F2 3 // AT LEAST 3
20 #define NB_RING_NODES_ASM_NORM_F2 3 // AT LEAST 3
20 #define NB_RING_NODES_ASM_NORM_F2 3 // AT LEAST 3
21 //
21 //
22 #define NB_BINS_PER_ASM_F0 88
22 #define NB_BINS_PER_ASM_F0 88
23 #define NB_BINS_PER_PKT_ASM_F0 44
23 #define NB_BINS_PER_PKT_ASM_F0 44
24 #define TOTAL_SIZE_ASM_F0_IN_BYTES 4400 // 25 * 88 * 2
24 #define TOTAL_SIZE_ASM_F0_IN_BYTES 4400 // 25 * 88 * 2
25 #define ASM_F0_INDICE_START 17 // 88 bins
25 #define ASM_F0_INDICE_START 17 // 88 bins
26 #define ASM_F0_INDICE_STOP 104 // 2 packets of 44 bins
26 #define ASM_F0_INDICE_STOP 104 // 2 packets of 44 bins
27 //
27 //
28 #define NB_BINS_PER_ASM_F1 104
28 #define NB_BINS_PER_ASM_F1 104
29 #define NB_BINS_PER_PKT_ASM_F1 52
29 #define NB_BINS_PER_PKT_ASM_F1 52
30 #define TOTAL_SIZE_ASM_F1_IN_BYTES 5200 // 25 * 104 * 2
30 #define TOTAL_SIZE_ASM_F1_IN_BYTES 5200 // 25 * 104 * 2
31 #define ASM_F1_INDICE_START 6 // 104 bins
31 #define ASM_F1_INDICE_START 6 // 104 bins
32 #define ASM_F1_INDICE_STOP 109 // 2 packets of 52 bins
32 #define ASM_F1_INDICE_STOP 109 // 2 packets of 52 bins
33 //
33 //
34 #define NB_BINS_PER_ASM_F2 96
34 #define NB_BINS_PER_ASM_F2 96
35 #define NB_BINS_PER_PKT_ASM_F2 48
35 #define NB_BINS_PER_PKT_ASM_F2 48
36 #define TOTAL_SIZE_ASM_F2_IN_BYTES 4800 // 25 * 96 * 2
36 #define TOTAL_SIZE_ASM_F2_IN_BYTES 4800 // 25 * 96 * 2
37 #define ASM_F2_INDICE_START 7 // 96 bins
37 #define ASM_F2_INDICE_START 7 // 96 bins
38 #define ASM_F2_INDICE_STOP 102 // 2 packets of 48 bins
38 #define ASM_F2_INDICE_STOP 102 // 2 packets of 48 bins
39 //
39 //
40 #define NB_BINS_COMPRESSED_SM_F0 11
40 #define NB_BINS_COMPRESSED_SM_F0 11
41 #define NB_BINS_COMPRESSED_SM_F1 13
41 #define NB_BINS_COMPRESSED_SM_F1 13
42 #define NB_BINS_COMPRESSED_SM_F2 12
42 #define NB_BINS_COMPRESSED_SM_F2 12
43 #define NB_BINS_COMPRESSED_SM_SBM_F0 22
43 #define NB_BINS_COMPRESSED_SM_SBM_F0 22
44 #define NB_BINS_COMPRESSED_SM_SBM_F1 26
44 #define NB_BINS_COMPRESSED_SM_SBM_F1 26
45 #define NB_BINS_COMPRESSED_SM_SBM_F2 24
45 #define NB_BINS_COMPRESSED_SM_SBM_F2 24
46 //
46 //
47 #define NB_BYTES_PER_BP1 9
47 #define NB_BYTES_PER_BP1 9
48 //
48 //
49 #define NB_BINS_TO_AVERAGE_ASM_F0 8
49 #define NB_BINS_TO_AVERAGE_ASM_F0 8
50 #define NB_BINS_TO_AVERAGE_ASM_F1 8
50 #define NB_BINS_TO_AVERAGE_ASM_F1 8
51 #define NB_BINS_TO_AVERAGE_ASM_F2 8
51 #define NB_BINS_TO_AVERAGE_ASM_F2 8
52 #define NB_BINS_TO_AVERAGE_ASM_SBM_F0 4
52 #define NB_BINS_TO_AVERAGE_ASM_SBM_F0 4
53 #define NB_BINS_TO_AVERAGE_ASM_SBM_F1 4
53 #define NB_BINS_TO_AVERAGE_ASM_SBM_F1 4
54 #define NB_BINS_TO_AVERAGE_ASM_SBM_F2 4
54 #define NB_BINS_TO_AVERAGE_ASM_SBM_F2 4
55 //
55 //
56 #define TOTAL_SIZE_COMPRESSED_ASM_NORM_F0 275 // 11 * 25 WORDS
56 #define TOTAL_SIZE_COMPRESSED_ASM_NORM_F0 275 // 11 * 25 WORDS
57 #define TOTAL_SIZE_COMPRESSED_ASM_NORM_F1 325 // 13 * 25 WORDS
57 #define TOTAL_SIZE_COMPRESSED_ASM_NORM_F1 325 // 13 * 25 WORDS
58 #define TOTAL_SIZE_COMPRESSED_ASM_NORM_F2 300 // 12 * 25 WORDS
58 #define TOTAL_SIZE_COMPRESSED_ASM_NORM_F2 300 // 12 * 25 WORDS
59 #define TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 550 // 22 * 25 WORDS
59 #define TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 550 // 22 * 25 WORDS
60 #define TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 650 // 26 * 25 WORDS
60 #define TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 650 // 26 * 25 WORDS
61 #define TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 600 // 24 * 25 WORDS
61 #define TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 600 // 24 * 25 WORDS
62 #define TOTAL_SIZE_BP1_NORM_F0 99 // 9 * 11 UNSIGNED CHAR
62 #define TOTAL_SIZE_BP1_NORM_F0 99 // 9 * 11 UNSIGNED CHAR
63 #define TOTAL_SIZE_BP1_SBM_F0 198 // 9 * 22 UNSIGNED CHAR
63 #define TOTAL_SIZE_BP1_SBM_F0 198 // 9 * 22 UNSIGNED CHAR
64 // GENERAL
64 // GENERAL
65 #define NB_SM_BEFORE_AVF0 8 // must be 8 due to the SM_average() function
65 #define NB_SM_BEFORE_AVF0 8 // must be 8 due to the SM_average() function
66 #define NB_SM_BEFORE_AVF1 8 // must be 8 due to the SM_average() function
66 #define NB_SM_BEFORE_AVF1 8 // must be 8 due to the SM_average() function
67 #define NB_SM_BEFORE_AVF2 1 // must be 1 due to the SM_average_f2() function
67 #define NB_SM_BEFORE_AVF2 1 // must be 1 due to the SM_average_f2() function
68
68
69 #endif // FSW_PARAMS_PROCESSING_H
69 #endif // FSW_PARAMS_PROCESSING_H
70
70
@@ -1,238 +1,238
1 #ifndef FSW_PROCESSING_H_INCLUDED
1 #ifndef FSW_PROCESSING_H_INCLUDED
2 #define FSW_PROCESSING_H_INCLUDED
2 #define FSW_PROCESSING_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <grspw.h>
5 #include <grspw.h>
6 #include <math.h>
6 #include <math.h>
7 #include <stdlib.h> // abs() is in the stdlib
7 #include <stdlib.h> // abs() is in the stdlib
8 #include <stdio.h> // printf()
8 #include <stdio.h> // printf()
9 #include <math.h>
9 #include <math.h>
10
10
11 #include "fsw_params.h"
11 #include "fsw_params.h"
12 #include "fsw_spacewire.h"
12 #include "fsw_spacewire.h"
13
13
14 typedef struct ring_node_sm
14 typedef struct ring_node_sm
15 {
15 {
16 struct ring_node_sm *previous;
16 struct ring_node_sm *previous;
17 struct ring_node_sm *next;
17 struct ring_node_sm *next;
18 int buffer_address;
18 int buffer_address;
19 unsigned int status;
19 unsigned int status;
20 unsigned int coarseTime;
20 unsigned int coarseTime;
21 unsigned int fineTime;
21 unsigned int fineTime;
22 } ring_node_sm;
22 } ring_node_sm;
23
23
24 typedef struct ring_node_asm
24 typedef struct ring_node_asm
25 {
25 {
26 struct ring_node_asm *next;
26 struct ring_node_asm *next;
27 float matrix[ TOTAL_SIZE_SM ];
27 float matrix[ TOTAL_SIZE_SM ];
28 unsigned int status;
28 unsigned int status;
29 } ring_node_asm;
29 } ring_node_asm;
30
30
31 typedef struct bp_packet
31 typedef struct
32 {
32 {
33 Header_TM_LFR_SCIENCE_BP_t header;
33 Header_TM_LFR_SCIENCE_BP_t header;
34 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
34 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
35 } bp_packet;
35 } bp_packet;
36
36
37 typedef struct bp_packet_with_spare
37 typedef struct
38 {
38 {
39 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
39 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
40 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
40 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
41 } bp_packet_with_spare;
41 } bp_packet_with_spare;
42
42
43 typedef struct asm_msg
43 typedef struct
44 {
44 {
45 ring_node_asm *norm;
45 ring_node_asm *norm;
46 ring_node_asm *burst_sbm;
46 ring_node_asm *burst_sbm;
47 rtems_event_set event;
47 rtems_event_set event;
48 unsigned int coarseTime;
48 unsigned int coarseTime;
49 unsigned int fineTime;
49 unsigned int fineTime;
50 } asm_msg;
50 } asm_msg;
51
51
52 extern volatile int sm_f0[ ];
52 extern volatile int sm_f0[ ];
53 extern volatile int sm_f1[ ];
53 extern volatile int sm_f1[ ];
54 extern volatile int sm_f2[ ];
54 extern volatile int sm_f2[ ];
55
55
56 // parameters
56 // parameters
57 extern struct param_local_str param_local;
57 extern struct param_local_str param_local;
58
58
59 // registers
59 // registers
60 extern time_management_regs_t *time_management_regs;
60 extern time_management_regs_t *time_management_regs;
61 extern spectral_matrix_regs_t *spectral_matrix_regs;
61 extern spectral_matrix_regs_t *spectral_matrix_regs;
62
62
63 extern rtems_name misc_name[5];
63 extern rtems_name misc_name[5];
64 extern rtems_id Task_id[20]; /* array of task ids */
64 extern rtems_id Task_id[20]; /* array of task ids */
65
65
66 // ISR
66 // ISR
67 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
67 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
68 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
68 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
69
69
70 //******************
70 //******************
71 // Spectral Matrices
71 // Spectral Matrices
72 void reset_nb_sm( void );
72 void reset_nb_sm( void );
73 // SM
73 // SM
74 void SM_init_rings( void );
74 void SM_init_rings( void );
75 void SM_reset_current_ring_nodes( void );
75 void SM_reset_current_ring_nodes( void );
76 // ASM
76 // ASM
77 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
77 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
78 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
78 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
79 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
79 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
80 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
80 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
81
81
82 //*****************
82 //*****************
83 // Basic Parameters
83 // Basic Parameters
84
84
85 void BP_reset_current_ring_nodes( void );
85 void BP_reset_current_ring_nodes( void );
86 void BP_init_header(Header_TM_LFR_SCIENCE_BP_t *header,
86 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
87 unsigned int apid, unsigned char sid,
87 unsigned int apid, unsigned char sid,
88 unsigned int packetLength , unsigned char blkNr);
88 unsigned int packetLength , unsigned char blkNr);
89 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
89 void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
90 unsigned int apid, unsigned char sid,
90 unsigned int apid, unsigned char sid,
91 unsigned int packetLength, unsigned char blkNr );
91 unsigned int packetLength, unsigned char blkNr );
92 void BP_send(char *data,
92 void BP_send( char *data,
93 rtems_id queue_id ,
93 rtems_id queue_id ,
94 unsigned int nbBytesToSend );
94 unsigned int nbBytesToSend , unsigned int sid );
95
95
96 //******************
96 //******************
97 // general functions
97 // general functions
98 void reset_spectral_matrix_regs( void );
98 void reset_spectral_matrix_regs( void );
99 void set_time(unsigned char *time, unsigned char *timeInBuffer );
99 void set_time(unsigned char *time, unsigned char *timeInBuffer );
100
100
101 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
101 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
102 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
102 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
103
103
104 //***************************************
104 //***************************************
105 // DEFINITIONS OF STATIC INLINE FUNCTIONS
105 // DEFINITIONS OF STATIC INLINE FUNCTIONS
106 static inline void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
106 static inline void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
107 ring_node_sm *ring_node_tab[],
107 ring_node_sm *ring_node_tab[],
108 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 );
108 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 );
109 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
109 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
110 float divider );
110 float divider );
111 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
111 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
112 float divider,
112 float divider,
113 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
113 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
114 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
114 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
115
115
116 void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
116 void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
117 ring_node_sm *ring_node_tab[],
117 ring_node_sm *ring_node_tab[],
118 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
118 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
119 {
119 {
120 float sum;
120 float sum;
121 unsigned int i;
121 unsigned int i;
122
122
123 for(i=0; i<TOTAL_SIZE_SM; i++)
123 for(i=0; i<TOTAL_SIZE_SM; i++)
124 {
124 {
125 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
125 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
126 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
126 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
127 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
127 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
128 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
128 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
129 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
129 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
130 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
130 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
131 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
131 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
132 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
132 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
133
133
134 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
134 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
135 {
135 {
136 averaged_spec_mat_f0[ i ] = sum;
136 averaged_spec_mat_f0[ i ] = sum;
137 averaged_spec_mat_f1[ i ] = sum;
137 averaged_spec_mat_f1[ i ] = sum;
138 }
138 }
139 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
139 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
140 {
140 {
141 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
141 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
142 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
142 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
143 }
143 }
144 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
144 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
145 {
145 {
146 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
146 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
147 averaged_spec_mat_f1[ i ] = sum;
147 averaged_spec_mat_f1[ i ] = sum;
148 }
148 }
149 else
149 else
150 {
150 {
151 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
151 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
152 }
152 }
153 }
153 }
154 }
154 }
155
155
156 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
156 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
157 {
157 {
158 int frequencyBin;
158 int frequencyBin;
159 int asmComponent;
159 int asmComponent;
160 unsigned int offsetAveragedSpecMatReorganized;
160 unsigned int offsetAveragedSpecMatReorganized;
161 unsigned int offsetAveragedSpecMat;
161 unsigned int offsetAveragedSpecMat;
162
162
163 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
163 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
164 {
164 {
165 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
165 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
166 {
166 {
167 offsetAveragedSpecMatReorganized =
167 offsetAveragedSpecMatReorganized =
168 frequencyBin * NB_VALUES_PER_SM
168 frequencyBin * NB_VALUES_PER_SM
169 + asmComponent;
169 + asmComponent;
170 offsetAveragedSpecMat =
170 offsetAveragedSpecMat =
171 asmComponent * NB_BINS_PER_SM
171 asmComponent * NB_BINS_PER_SM
172 + frequencyBin;
172 + frequencyBin;
173 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
173 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
174 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
174 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
175 }
175 }
176 }
176 }
177 }
177 }
178
178
179 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
179 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
180 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
180 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
181 {
181 {
182 int frequencyBin;
182 int frequencyBin;
183 int asmComponent;
183 int asmComponent;
184 int offsetASM;
184 int offsetASM;
185 int offsetCompressed;
185 int offsetCompressed;
186 int k;
186 int k;
187
187
188 // build data
188 // build data
189 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
189 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
190 {
190 {
191 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
191 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
192 {
192 {
193 offsetCompressed = // NO TIME OFFSET
193 offsetCompressed = // NO TIME OFFSET
194 frequencyBin * NB_VALUES_PER_SM
194 frequencyBin * NB_VALUES_PER_SM
195 + asmComponent;
195 + asmComponent;
196 offsetASM = // NO TIME OFFSET
196 offsetASM = // NO TIME OFFSET
197 asmComponent * NB_BINS_PER_SM
197 asmComponent * NB_BINS_PER_SM
198 + ASMIndexStart
198 + ASMIndexStart
199 + frequencyBin * nbBinsToAverage;
199 + frequencyBin * nbBinsToAverage;
200 compressed_spec_mat[ offsetCompressed ] = 0;
200 compressed_spec_mat[ offsetCompressed ] = 0;
201 for ( k = 0; k < nbBinsToAverage; k++ )
201 for ( k = 0; k < nbBinsToAverage; k++ )
202 {
202 {
203 compressed_spec_mat[offsetCompressed ] =
203 compressed_spec_mat[offsetCompressed ] =
204 ( compressed_spec_mat[ offsetCompressed ]
204 ( compressed_spec_mat[ offsetCompressed ]
205 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
205 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
206 }
206 }
207 }
207 }
208 }
208 }
209 }
209 }
210
210
211 void ASM_convert( volatile float *input_matrix, char *output_matrix)
211 void ASM_convert( volatile float *input_matrix, char *output_matrix)
212 {
212 {
213 unsigned int frequencyBin;
213 unsigned int frequencyBin;
214 unsigned int asmComponent;
214 unsigned int asmComponent;
215 char * pt_char_input;
215 char * pt_char_input;
216 char * pt_char_output;
216 char * pt_char_output;
217 unsigned int offsetInput;
217 unsigned int offsetInput;
218 unsigned int offsetOutput;
218 unsigned int offsetOutput;
219
219
220 pt_char_input = (char*) &input_matrix;
220 pt_char_input = (char*) &input_matrix;
221 pt_char_output = (char*) &output_matrix;
221 pt_char_output = (char*) &output_matrix;
222
222
223 // convert all other data
223 // convert all other data
224 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
224 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
225 {
225 {
226 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
226 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
227 {
227 {
228 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
228 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
229 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
229 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
230 pt_char_input = (char*) &input_matrix [ offsetInput ];
230 pt_char_input = (char*) &input_matrix [ offsetInput ];
231 pt_char_output = (char*) &output_matrix[ offsetOutput ];
231 pt_char_output = (char*) &output_matrix[ offsetOutput ];
232 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
232 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
233 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
233 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
234 }
234 }
235 }
235 }
236 }
236 }
237
237
238 #endif // FSW_PROCESSING_H_INCLUDED
238 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,94 +1,92
1 #ifndef WF_HANDLER_H_INCLUDED
1 #ifndef WF_HANDLER_H_INCLUDED
2 #define WF_HANDLER_H_INCLUDED
2 #define WF_HANDLER_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <grspw.h>
5 #include <grspw.h>
6 #include <stdio.h>
6 #include <stdio.h>
7 #include <math.h>
7 #include <math.h>
8
8
9 #include "fsw_params.h"
9 #include "fsw_params.h"
10 #include "fsw_spacewire.h"
10 #include "fsw_spacewire.h"
11 #include "fsw_misc.h"
11 #include "fsw_misc.h"
12 #include "fsw_params_wf_handler.h"
12 #include "fsw_params_wf_handler.h"
13
13
14 #define pi 3.1415
14 #define pi 3.1415
15
15
16 extern int fdSPW;
16 extern int fdSPW;
17
17
18 //*****************
18 //*****************
19 // waveform buffers
19 // waveform buffers
20 extern volatile int wf_snap_f0[ ];
20 extern volatile int wf_snap_f0[ ];
21 extern volatile int wf_snap_f1[ ];
21 extern volatile int wf_snap_f1[ ];
22 extern volatile int wf_snap_f2[ ];
22 extern volatile int wf_snap_f2[ ];
23 extern volatile int wf_cont_f3[ ];
23 extern volatile int wf_cont_f3[ ];
24 extern char wf_cont_f3_light[ ];
24 extern char wf_cont_f3_light[ ];
25
25
26 extern waveform_picker_regs_new_t *waveform_picker_regs;
26 extern waveform_picker_regs_new_t *waveform_picker_regs;
27 extern time_management_regs_t *time_management_regs;
27 extern time_management_regs_t *time_management_regs;
28 extern Packet_TM_LFR_HK_t housekeeping_packet;
28 extern Packet_TM_LFR_HK_t housekeeping_packet;
29 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
29 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
30 extern struct param_local_str param_local;
30 extern struct param_local_str param_local;
31
31
32 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
32 extern unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
33 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
33 extern unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
34
34
35 extern rtems_id Task_id[20]; /* array of task ids */
35 extern rtems_id Task_id[20]; /* array of task ids */
36
36
37 extern unsigned char lfrCurrentMode;
37 extern unsigned char lfrCurrentMode;
38
38
39 //**********
39 //**********
40 // RTEMS_ISR
40 // RTEMS_ISR
41 void reset_extractSWF( void );
41 void reset_extractSWF( void );
42 rtems_isr waveforms_isr( rtems_vector_number vector );
42 rtems_isr waveforms_isr( rtems_vector_number vector );
43
43
44 //***********
44 //***********
45 // RTEMS_TASK
45 // RTEMS_TASK
46 rtems_task wfrm_task( rtems_task_argument argument );
46 rtems_task wfrm_task( rtems_task_argument argument );
47 rtems_task cwf3_task( rtems_task_argument argument );
47 rtems_task cwf3_task( rtems_task_argument argument );
48 rtems_task cwf2_task( rtems_task_argument argument );
48 rtems_task cwf2_task( rtems_task_argument argument );
49 rtems_task cwf1_task( rtems_task_argument argument );
49 rtems_task cwf1_task( rtems_task_argument argument );
50 rtems_task swbd_task( rtems_task_argument argument );
50 rtems_task swbd_task( rtems_task_argument argument );
51
51
52 //******************
52 //******************
53 // general functions
53 // general functions
54 void init_waveform_rings( void );
54 void init_waveform_rings( void );
55 void init_waveform_ring( ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] );
55 void init_waveform_ring( ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] );
56 void reset_current_ring_nodes( void );
56 void reset_current_ring_nodes( void );
57 //
57 //
58 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
58 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
59 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
59 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
60 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
60 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
61 //
61 //
62 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
62 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
63 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
63 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
64 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
64 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
65 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
65 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
66 //
66 //
67 void compute_acquisition_time(unsigned int coarseTime, unsigned int fineTime,
67 void compute_acquisition_time(unsigned int coarseTime, unsigned int fineTime,
68 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char *acquisitionTime );
68 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char *acquisitionTime );
69 void build_snapshot_from_ring(ring_node *ring_node_to_send , unsigned char frequencyChannel );
69 void build_snapshot_from_ring(ring_node *ring_node_to_send , unsigned char frequencyChannel );
70 void build_acquisition_time( unsigned long long int * acquisitionTimeAslong, ring_node *current_ring_node );
70 void build_acquisition_time( unsigned long long int * acquisitionTimeAslong, ring_node *current_ring_node );
71 //
71 //
72 rtems_id get_pkts_queue_id( void );
72 rtems_id get_pkts_queue_id( void );
73
73
74 //**************
74 //**************
75 // wfp registers
75 // wfp registers
76 // RESET
76 // RESET
77 void reset_wfp_burst_enable( void );
77 void reset_wfp_burst_enable( void );
78 void reset_wfp_status(void);
78 void reset_wfp_status(void);
79 void reset_waveform_picker_regs( void );
79 void reset_waveform_picker_regs( void );
80 // SET
80 // SET
81 void set_wfp_data_shaping(void);
81 void set_wfp_data_shaping(void);
82 void set_wfp_burst_enable_register( unsigned char mode );
82 void set_wfp_burst_enable_register( unsigned char mode );
83 void set_wfp_delta_snapshot( void );
83 void set_wfp_delta_snapshot( void );
84 void set_wfp_delta_f0_f0_2( void );
84 void set_wfp_delta_f0_f0_2( void );
85 void set_wfp_delta_f1( void );
85 void set_wfp_delta_f1( void );
86 void set_wfp_delta_f2( void );
86 void set_wfp_delta_f2( void );
87
87
88 //*****************
88 //*****************
89 // local parameters
89 // local parameters
90 void set_local_nb_interrupt_f0_MAX( void );
91
92 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
90 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid );
93
91
94 #endif // WF_HANDLER_H_INCLUDED
92 #endif // WF_HANDLER_H_INCLUDED
@@ -1,767 +1,766
1 /** This is the RTEMS initialization module.
1 /** This is the RTEMS initialization module.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * This module contains two very different information:
6 * This module contains two very different information:
7 * - specific instructions to configure the compilation of the RTEMS executive
7 * - specific instructions to configure the compilation of the RTEMS executive
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 *
9 *
10 */
10 */
11
11
12 //*************************
12 //*************************
13 // GPL reminder to be added
13 // GPL reminder to be added
14 //*************************
14 //*************************
15
15
16 #include <rtems.h>
16 #include <rtems.h>
17
17
18 /* configuration information */
18 /* configuration information */
19
19
20 #define CONFIGURE_INIT
20 #define CONFIGURE_INIT
21
21
22 #include <bsp.h> /* for device driver prototypes */
22 #include <bsp.h> /* for device driver prototypes */
23
23
24 /* configuration information */
24 /* configuration information */
25
25
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28
28
29 #define CONFIGURE_MAXIMUM_TASKS 20
29 #define CONFIGURE_MAXIMUM_TASKS 20
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 #define CONFIGURE_MAXIMUM_DRIVERS 16
35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 #define CONFIGURE_MAXIMUM_PERIODS 5
36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
39 #ifdef PRINT_STACK_REPORT
39 #ifdef PRINT_STACK_REPORT
40 #define CONFIGURE_STACK_CHECKER_ENABLED
40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 #endif
41 #endif
42
42
43 #include <rtems/confdefs.h>
43 #include <rtems/confdefs.h>
44
44
45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 #ifdef RTEMS_DRVMGR_STARTUP
46 #ifdef RTEMS_DRVMGR_STARTUP
47 #ifdef LEON3
47 #ifdef LEON3
48 /* Add Timer and UART Driver */
48 /* Add Timer and UART Driver */
49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 #endif
51 #endif
52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 #endif
54 #endif
55 #endif
55 #endif
56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 #include <drvmgr/drvmgr_confdefs.h>
57 #include <drvmgr/drvmgr_confdefs.h>
58 #endif
58 #endif
59
59
60 #include "fsw_init.h"
60 #include "fsw_init.h"
61 #include "fsw_config.c"
61 #include "fsw_config.c"
62
62
63 rtems_task Init( rtems_task_argument ignored )
63 rtems_task Init( rtems_task_argument ignored )
64 {
64 {
65 /** This is the RTEMS INIT taks, it the first task launched by the system.
65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 *
66 *
67 * @param unused is the starting argument of the RTEMS task
67 * @param unused is the starting argument of the RTEMS task
68 *
68 *
69 * The INIT task create and run all other RTEMS tasks.
69 * The INIT task create and run all other RTEMS tasks.
70 *
70 *
71 */
71 */
72
72
73 reset_local_time();
73 reset_local_time();
74
74
75 rtems_status_code status;
75 rtems_status_code status;
76 rtems_status_code status_spw;
76 rtems_status_code status_spw;
77 rtems_isr_entry old_isr_handler;
77 rtems_isr_entry old_isr_handler;
78
78
79 // UART settings
79 // UART settings
80 send_console_outputs_on_apbuart_port();
80 send_console_outputs_on_apbuart_port();
81 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
81 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
82 enable_apbuart_transmitter();
82 enable_apbuart_transmitter();
83 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
83 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
84
84
85 PRINTF("\n\n\n\n\n")
85 PRINTF("\n\n\n\n\n")
86 PRINTF("*************************\n")
86 PRINTF("*************************\n")
87 PRINTF("** LFR Flight Software **\n")
87 PRINTF("** LFR Flight Software **\n")
88 PRINTF1("** %d.", SW_VERSION_N1)
88 PRINTF1("** %d.", SW_VERSION_N1)
89 PRINTF1("%d." , SW_VERSION_N2)
89 PRINTF1("%d." , SW_VERSION_N2)
90 PRINTF1("%d." , SW_VERSION_N3)
90 PRINTF1("%d." , SW_VERSION_N3)
91 PRINTF1("%d **\n", SW_VERSION_N4)
91 PRINTF1("%d **\n", SW_VERSION_N4)
92 PRINTF("*************************\n")
92 PRINTF("*************************\n")
93 PRINTF("\n\n")
93 PRINTF("\n\n")
94
94
95 init_parameter_dump();
95 init_parameter_dump();
96 init_local_mode_parameters();
96 init_local_mode_parameters();
97 init_housekeeping_parameters();
97 init_housekeeping_parameters();
98
98
99 init_waveform_rings(); // initialize the waveform rings
99 init_waveform_rings(); // initialize the waveform rings
100 SM_init_rings(); // initialize spectral matrices rings
100 SM_init_rings(); // initialize spectral matrices rings
101
101
102 reset_wfp_burst_enable();
102 reset_wfp_burst_enable();
103 reset_wfp_status();
103 reset_wfp_status();
104 set_wfp_data_shaping();
104 set_wfp_data_shaping();
105
105
106 updateLFRCurrentMode();
106 updateLFRCurrentMode();
107
107
108 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
108 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
109
109
110 create_names(); // create all names
110 create_names(); // create all names
111
111
112 status = create_message_queues(); // create message queues
112 status = create_message_queues(); // create message queues
113 if (status != RTEMS_SUCCESSFUL)
113 if (status != RTEMS_SUCCESSFUL)
114 {
114 {
115 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
115 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
116 }
116 }
117
117
118 status = create_all_tasks(); // create all tasks
118 status = create_all_tasks(); // create all tasks
119 if (status != RTEMS_SUCCESSFUL)
119 if (status != RTEMS_SUCCESSFUL)
120 {
120 {
121 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
121 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
122 }
122 }
123
123
124 // **************************
124 // **************************
125 // <SPACEWIRE INITIALIZATION>
125 // <SPACEWIRE INITIALIZATION>
126 grspw_timecode_callback = &timecode_irq_handler;
126 grspw_timecode_callback = &timecode_irq_handler;
127
127
128 status_spw = spacewire_open_link(); // (1) open the link
128 status_spw = spacewire_open_link(); // (1) open the link
129 if ( status_spw != RTEMS_SUCCESSFUL )
129 if ( status_spw != RTEMS_SUCCESSFUL )
130 {
130 {
131 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
131 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
132 }
132 }
133
133
134 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
134 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
135 {
135 {
136 status_spw = spacewire_configure_link( fdSPW );
136 status_spw = spacewire_configure_link( fdSPW );
137 if ( status_spw != RTEMS_SUCCESSFUL )
137 if ( status_spw != RTEMS_SUCCESSFUL )
138 {
138 {
139 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
139 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
140 }
140 }
141 }
141 }
142
142
143 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
143 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
144 {
144 {
145 status_spw = spacewire_start_link( fdSPW );
145 status_spw = spacewire_start_link( fdSPW );
146 if ( status_spw != RTEMS_SUCCESSFUL )
146 if ( status_spw != RTEMS_SUCCESSFUL )
147 {
147 {
148 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
148 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
149 }
149 }
150 }
150 }
151 // </SPACEWIRE INITIALIZATION>
151 // </SPACEWIRE INITIALIZATION>
152 // ***************************
152 // ***************************
153
153
154 status = start_all_tasks(); // start all tasks
154 status = start_all_tasks(); // start all tasks
155 if (status != RTEMS_SUCCESSFUL)
155 if (status != RTEMS_SUCCESSFUL)
156 {
156 {
157 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
157 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
158 }
158 }
159
159
160 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
160 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
161 status = start_recv_send_tasks();
161 status = start_recv_send_tasks();
162 if ( status != RTEMS_SUCCESSFUL )
162 if ( status != RTEMS_SUCCESSFUL )
163 {
163 {
164 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
164 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
165 }
165 }
166
166
167 // suspend science tasks, they will be restarted later depending on the mode
167 // suspend science tasks, they will be restarted later depending on the mode
168 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
168 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
169 if (status != RTEMS_SUCCESSFUL)
169 if (status != RTEMS_SUCCESSFUL)
170 {
170 {
171 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
171 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
172 }
172 }
173
173
174 //******************************
174 //******************************
175 // <SPECTRAL MATRICES SIMULATOR>
175 // <SPECTRAL MATRICES SIMULATOR>
176 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
176 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
177 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
177 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
178 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
178 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
179 // </SPECTRAL MATRICES SIMULATOR>
179 // </SPECTRAL MATRICES SIMULATOR>
180 //*******************************
180 //*******************************
181
181
182 // configure IRQ handling for the waveform picker unit
182 // configure IRQ handling for the waveform picker unit
183 status = rtems_interrupt_catch( waveforms_isr,
183 status = rtems_interrupt_catch( waveforms_isr,
184 IRQ_SPARC_WAVEFORM_PICKER,
184 IRQ_SPARC_WAVEFORM_PICKER,
185 &old_isr_handler) ;
185 &old_isr_handler) ;
186 // configure IRQ handling for the spectral matrices unit
186 // configure IRQ handling for the spectral matrices unit
187 status = rtems_interrupt_catch( spectral_matrices_isr,
187 status = rtems_interrupt_catch( spectral_matrices_isr,
188 IRQ_SPARC_SPECTRAL_MATRIX,
188 IRQ_SPARC_SPECTRAL_MATRIX,
189 &old_isr_handler) ;
189 &old_isr_handler) ;
190
190
191 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
191 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
192 if ( status_spw != RTEMS_SUCCESSFUL )
192 if ( status_spw != RTEMS_SUCCESSFUL )
193 {
193 {
194 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
194 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
195 if ( status != RTEMS_SUCCESSFUL ) {
195 if ( status != RTEMS_SUCCESSFUL ) {
196 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
196 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
197 }
197 }
198 }
198 }
199
199
200 BOOT_PRINTF("delete INIT\n")
200 BOOT_PRINTF("delete INIT\n")
201
201
202 send_dumb_hk();
202 send_dumb_hk();
203
203
204 status = rtems_task_delete(RTEMS_SELF);
204 status = rtems_task_delete(RTEMS_SELF);
205
205
206 }
206 }
207
207
208 void init_local_mode_parameters( void )
208 void init_local_mode_parameters( void )
209 {
209 {
210 /** This function initialize the param_local global variable with default values.
210 /** This function initialize the param_local global variable with default values.
211 *
211 *
212 */
212 */
213
213
214 unsigned int i;
214 unsigned int i;
215
215
216 // LOCAL PARAMETERS
216 // LOCAL PARAMETERS
217 set_local_nb_interrupt_f0_MAX();
218
217
219 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
218 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
220 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
219 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
221 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
220 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
222
221
223 // init sequence counters
222 // init sequence counters
224
223
225 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
224 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
226 {
225 {
227 sequenceCounters_TC_EXE[i] = 0x00;
226 sequenceCounters_TC_EXE[i] = 0x00;
228 }
227 }
229 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
228 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
230 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
229 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
231 }
230 }
232
231
233 void reset_local_time( void )
232 void reset_local_time( void )
234 {
233 {
235 time_management_regs->ctrl = 0x02; // software reset, coarse time = 0x80000000
234 time_management_regs->ctrl = 0x02; // software reset, coarse time = 0x80000000
236 }
235 }
237
236
238 void create_names( void ) // create all names for tasks and queues
237 void create_names( void ) // create all names for tasks and queues
239 {
238 {
240 /** This function creates all RTEMS names used in the software for tasks and queues.
239 /** This function creates all RTEMS names used in the software for tasks and queues.
241 *
240 *
242 * @return RTEMS directive status codes:
241 * @return RTEMS directive status codes:
243 * - RTEMS_SUCCESSFUL - successful completion
242 * - RTEMS_SUCCESSFUL - successful completion
244 *
243 *
245 */
244 */
246
245
247 // task names
246 // task names
248 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
247 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
249 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
248 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
250 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
249 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
251 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
250 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
252 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
251 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
253 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
252 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
254 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
253 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
255 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
254 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
256 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
255 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
257 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
256 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
258 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
257 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
259 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
258 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
260 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
259 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
261 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
260 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
262 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
261 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
263 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
262 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
264 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
263 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
265 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
264 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
266 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
265 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
267
266
268 // rate monotonic period names
267 // rate monotonic period names
269 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
268 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
270
269
271 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
270 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
272 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
271 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
273 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
272 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
274 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
273 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
275 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
274 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
276 }
275 }
277
276
278 int create_all_tasks( void ) // create all tasks which run in the software
277 int create_all_tasks( void ) // create all tasks which run in the software
279 {
278 {
280 /** This function creates all RTEMS tasks used in the software.
279 /** This function creates all RTEMS tasks used in the software.
281 *
280 *
282 * @return RTEMS directive status codes:
281 * @return RTEMS directive status codes:
283 * - RTEMS_SUCCESSFUL - task created successfully
282 * - RTEMS_SUCCESSFUL - task created successfully
284 * - RTEMS_INVALID_ADDRESS - id is NULL
283 * - RTEMS_INVALID_ADDRESS - id is NULL
285 * - RTEMS_INVALID_NAME - invalid task name
284 * - RTEMS_INVALID_NAME - invalid task name
286 * - RTEMS_INVALID_PRIORITY - invalid task priority
285 * - RTEMS_INVALID_PRIORITY - invalid task priority
287 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
286 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
288 * - RTEMS_TOO_MANY - too many tasks created
287 * - RTEMS_TOO_MANY - too many tasks created
289 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
288 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
290 * - RTEMS_TOO_MANY - too many global objects
289 * - RTEMS_TOO_MANY - too many global objects
291 *
290 *
292 */
291 */
293
292
294 rtems_status_code status;
293 rtems_status_code status;
295
294
296 //**********
295 //**********
297 // SPACEWIRE
296 // SPACEWIRE
298 // RECV
297 // RECV
299 status = rtems_task_create(
298 status = rtems_task_create(
300 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
299 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
301 RTEMS_DEFAULT_MODES,
300 RTEMS_DEFAULT_MODES,
302 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
301 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
303 );
302 );
304 if (status == RTEMS_SUCCESSFUL) // SEND
303 if (status == RTEMS_SUCCESSFUL) // SEND
305 {
304 {
306 status = rtems_task_create(
305 status = rtems_task_create(
307 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
306 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
308 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
307 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
309 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
308 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
310 );
309 );
311 }
310 }
312 if (status == RTEMS_SUCCESSFUL) // WTDG
311 if (status == RTEMS_SUCCESSFUL) // WTDG
313 {
312 {
314 status = rtems_task_create(
313 status = rtems_task_create(
315 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
314 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
316 RTEMS_DEFAULT_MODES,
315 RTEMS_DEFAULT_MODES,
317 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
316 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
318 );
317 );
319 }
318 }
320 if (status == RTEMS_SUCCESSFUL) // ACTN
319 if (status == RTEMS_SUCCESSFUL) // ACTN
321 {
320 {
322 status = rtems_task_create(
321 status = rtems_task_create(
323 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
322 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
324 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
323 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
325 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
324 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
326 );
325 );
327 }
326 }
328 if (status == RTEMS_SUCCESSFUL) // SPIQ
327 if (status == RTEMS_SUCCESSFUL) // SPIQ
329 {
328 {
330 status = rtems_task_create(
329 status = rtems_task_create(
331 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
330 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
332 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
331 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
333 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
332 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
334 );
333 );
335 }
334 }
336
335
337 //******************
336 //******************
338 // SPECTRAL MATRICES
337 // SPECTRAL MATRICES
339 if (status == RTEMS_SUCCESSFUL) // AVF0
338 if (status == RTEMS_SUCCESSFUL) // AVF0
340 {
339 {
341 status = rtems_task_create(
340 status = rtems_task_create(
342 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
341 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
343 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
342 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
344 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
343 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
345 );
344 );
346 }
345 }
347 if (status == RTEMS_SUCCESSFUL) // PRC0
346 if (status == RTEMS_SUCCESSFUL) // PRC0
348 {
347 {
349 status = rtems_task_create(
348 status = rtems_task_create(
350 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
349 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
351 RTEMS_DEFAULT_MODES,
350 RTEMS_DEFAULT_MODES,
352 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
351 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
353 );
352 );
354 }
353 }
355 if (status == RTEMS_SUCCESSFUL) // AVF1
354 if (status == RTEMS_SUCCESSFUL) // AVF1
356 {
355 {
357 status = rtems_task_create(
356 status = rtems_task_create(
358 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
357 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
359 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
358 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
360 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
359 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
361 );
360 );
362 }
361 }
363 if (status == RTEMS_SUCCESSFUL) // PRC1
362 if (status == RTEMS_SUCCESSFUL) // PRC1
364 {
363 {
365 status = rtems_task_create(
364 status = rtems_task_create(
366 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
365 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
367 RTEMS_DEFAULT_MODES,
366 RTEMS_DEFAULT_MODES,
368 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
367 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
369 );
368 );
370 }
369 }
371 if (status == RTEMS_SUCCESSFUL) // AVF2
370 if (status == RTEMS_SUCCESSFUL) // AVF2
372 {
371 {
373 status = rtems_task_create(
372 status = rtems_task_create(
374 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
373 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
375 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
374 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
376 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
375 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
377 );
376 );
378 }
377 }
379 if (status == RTEMS_SUCCESSFUL) // PRC2
378 if (status == RTEMS_SUCCESSFUL) // PRC2
380 {
379 {
381 status = rtems_task_create(
380 status = rtems_task_create(
382 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
381 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
383 RTEMS_DEFAULT_MODES,
382 RTEMS_DEFAULT_MODES,
384 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
383 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
385 );
384 );
386 }
385 }
387
386
388 //****************
387 //****************
389 // WAVEFORM PICKER
388 // WAVEFORM PICKER
390 if (status == RTEMS_SUCCESSFUL) // WFRM
389 if (status == RTEMS_SUCCESSFUL) // WFRM
391 {
390 {
392 status = rtems_task_create(
391 status = rtems_task_create(
393 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
392 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
394 RTEMS_DEFAULT_MODES,
393 RTEMS_DEFAULT_MODES,
395 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
394 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
396 );
395 );
397 }
396 }
398 if (status == RTEMS_SUCCESSFUL) // CWF3
397 if (status == RTEMS_SUCCESSFUL) // CWF3
399 {
398 {
400 status = rtems_task_create(
399 status = rtems_task_create(
401 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
400 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
402 RTEMS_DEFAULT_MODES,
401 RTEMS_DEFAULT_MODES,
403 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
402 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
404 );
403 );
405 }
404 }
406 if (status == RTEMS_SUCCESSFUL) // CWF2
405 if (status == RTEMS_SUCCESSFUL) // CWF2
407 {
406 {
408 status = rtems_task_create(
407 status = rtems_task_create(
409 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
408 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
410 RTEMS_DEFAULT_MODES,
409 RTEMS_DEFAULT_MODES,
411 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
410 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
412 );
411 );
413 }
412 }
414 if (status == RTEMS_SUCCESSFUL) // CWF1
413 if (status == RTEMS_SUCCESSFUL) // CWF1
415 {
414 {
416 status = rtems_task_create(
415 status = rtems_task_create(
417 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
416 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
418 RTEMS_DEFAULT_MODES,
417 RTEMS_DEFAULT_MODES,
419 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
418 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
420 );
419 );
421 }
420 }
422 if (status == RTEMS_SUCCESSFUL) // SWBD
421 if (status == RTEMS_SUCCESSFUL) // SWBD
423 {
422 {
424 status = rtems_task_create(
423 status = rtems_task_create(
425 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
424 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
426 RTEMS_DEFAULT_MODES,
425 RTEMS_DEFAULT_MODES,
427 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
426 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
428 );
427 );
429 }
428 }
430
429
431 //*****
430 //*****
432 // MISC
431 // MISC
433 if (status == RTEMS_SUCCESSFUL) // STAT
432 if (status == RTEMS_SUCCESSFUL) // STAT
434 {
433 {
435 status = rtems_task_create(
434 status = rtems_task_create(
436 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
435 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
437 RTEMS_DEFAULT_MODES,
436 RTEMS_DEFAULT_MODES,
438 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
437 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
439 );
438 );
440 }
439 }
441 if (status == RTEMS_SUCCESSFUL) // DUMB
440 if (status == RTEMS_SUCCESSFUL) // DUMB
442 {
441 {
443 status = rtems_task_create(
442 status = rtems_task_create(
444 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
443 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
445 RTEMS_DEFAULT_MODES,
444 RTEMS_DEFAULT_MODES,
446 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
445 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
447 );
446 );
448 }
447 }
449 if (status == RTEMS_SUCCESSFUL) // HOUS
448 if (status == RTEMS_SUCCESSFUL) // HOUS
450 {
449 {
451 status = rtems_task_create(
450 status = rtems_task_create(
452 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
451 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
453 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
452 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
454 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
453 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
455 );
454 );
456 }
455 }
457
456
458 return status;
457 return status;
459 }
458 }
460
459
461 int start_recv_send_tasks( void )
460 int start_recv_send_tasks( void )
462 {
461 {
463 rtems_status_code status;
462 rtems_status_code status;
464
463
465 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
464 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
466 if (status!=RTEMS_SUCCESSFUL) {
465 if (status!=RTEMS_SUCCESSFUL) {
467 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
466 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
468 }
467 }
469
468
470 if (status == RTEMS_SUCCESSFUL) // SEND
469 if (status == RTEMS_SUCCESSFUL) // SEND
471 {
470 {
472 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
471 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
473 if (status!=RTEMS_SUCCESSFUL) {
472 if (status!=RTEMS_SUCCESSFUL) {
474 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
473 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
475 }
474 }
476 }
475 }
477
476
478 return status;
477 return status;
479 }
478 }
480
479
481 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
480 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
482 {
481 {
483 /** This function starts all RTEMS tasks used in the software.
482 /** This function starts all RTEMS tasks used in the software.
484 *
483 *
485 * @return RTEMS directive status codes:
484 * @return RTEMS directive status codes:
486 * - RTEMS_SUCCESSFUL - ask started successfully
485 * - RTEMS_SUCCESSFUL - ask started successfully
487 * - RTEMS_INVALID_ADDRESS - invalid task entry point
486 * - RTEMS_INVALID_ADDRESS - invalid task entry point
488 * - RTEMS_INVALID_ID - invalid task id
487 * - RTEMS_INVALID_ID - invalid task id
489 * - RTEMS_INCORRECT_STATE - task not in the dormant state
488 * - RTEMS_INCORRECT_STATE - task not in the dormant state
490 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
489 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
491 *
490 *
492 */
491 */
493 // starts all the tasks fot eh flight software
492 // starts all the tasks fot eh flight software
494
493
495 rtems_status_code status;
494 rtems_status_code status;
496
495
497 //**********
496 //**********
498 // SPACEWIRE
497 // SPACEWIRE
499 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
498 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
500 if (status!=RTEMS_SUCCESSFUL) {
499 if (status!=RTEMS_SUCCESSFUL) {
501 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
500 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
502 }
501 }
503
502
504 if (status == RTEMS_SUCCESSFUL) // WTDG
503 if (status == RTEMS_SUCCESSFUL) // WTDG
505 {
504 {
506 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
505 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
507 if (status!=RTEMS_SUCCESSFUL) {
506 if (status!=RTEMS_SUCCESSFUL) {
508 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
507 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
509 }
508 }
510 }
509 }
511
510
512 if (status == RTEMS_SUCCESSFUL) // ACTN
511 if (status == RTEMS_SUCCESSFUL) // ACTN
513 {
512 {
514 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
513 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
515 if (status!=RTEMS_SUCCESSFUL) {
514 if (status!=RTEMS_SUCCESSFUL) {
516 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
515 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
517 }
516 }
518 }
517 }
519
518
520 //******************
519 //******************
521 // SPECTRAL MATRICES
520 // SPECTRAL MATRICES
522 if (status == RTEMS_SUCCESSFUL) // AVF0
521 if (status == RTEMS_SUCCESSFUL) // AVF0
523 {
522 {
524 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
523 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
525 if (status!=RTEMS_SUCCESSFUL) {
524 if (status!=RTEMS_SUCCESSFUL) {
526 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
525 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
527 }
526 }
528 }
527 }
529 if (status == RTEMS_SUCCESSFUL) // PRC0
528 if (status == RTEMS_SUCCESSFUL) // PRC0
530 {
529 {
531 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
530 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
532 if (status!=RTEMS_SUCCESSFUL) {
531 if (status!=RTEMS_SUCCESSFUL) {
533 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
532 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
534 }
533 }
535 }
534 }
536 if (status == RTEMS_SUCCESSFUL) // AVF1
535 if (status == RTEMS_SUCCESSFUL) // AVF1
537 {
536 {
538 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
537 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
539 if (status!=RTEMS_SUCCESSFUL) {
538 if (status!=RTEMS_SUCCESSFUL) {
540 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
539 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
541 }
540 }
542 }
541 }
543 if (status == RTEMS_SUCCESSFUL) // PRC1
542 if (status == RTEMS_SUCCESSFUL) // PRC1
544 {
543 {
545 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
544 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
546 if (status!=RTEMS_SUCCESSFUL) {
545 if (status!=RTEMS_SUCCESSFUL) {
547 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
546 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
548 }
547 }
549 }
548 }
550 if (status == RTEMS_SUCCESSFUL) // AVF2
549 if (status == RTEMS_SUCCESSFUL) // AVF2
551 {
550 {
552 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
551 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
553 if (status!=RTEMS_SUCCESSFUL) {
552 if (status!=RTEMS_SUCCESSFUL) {
554 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
553 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
555 }
554 }
556 }
555 }
557 if (status == RTEMS_SUCCESSFUL) // PRC2
556 if (status == RTEMS_SUCCESSFUL) // PRC2
558 {
557 {
559 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
558 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
560 if (status!=RTEMS_SUCCESSFUL) {
559 if (status!=RTEMS_SUCCESSFUL) {
561 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
560 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
562 }
561 }
563 }
562 }
564
563
565 //****************
564 //****************
566 // WAVEFORM PICKER
565 // WAVEFORM PICKER
567 if (status == RTEMS_SUCCESSFUL) // WFRM
566 if (status == RTEMS_SUCCESSFUL) // WFRM
568 {
567 {
569 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
568 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
570 if (status!=RTEMS_SUCCESSFUL) {
569 if (status!=RTEMS_SUCCESSFUL) {
571 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
570 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
572 }
571 }
573 }
572 }
574 if (status == RTEMS_SUCCESSFUL) // CWF3
573 if (status == RTEMS_SUCCESSFUL) // CWF3
575 {
574 {
576 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
575 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
577 if (status!=RTEMS_SUCCESSFUL) {
576 if (status!=RTEMS_SUCCESSFUL) {
578 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
577 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
579 }
578 }
580 }
579 }
581 if (status == RTEMS_SUCCESSFUL) // CWF2
580 if (status == RTEMS_SUCCESSFUL) // CWF2
582 {
581 {
583 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
582 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
584 if (status!=RTEMS_SUCCESSFUL) {
583 if (status!=RTEMS_SUCCESSFUL) {
585 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
584 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
586 }
585 }
587 }
586 }
588 if (status == RTEMS_SUCCESSFUL) // CWF1
587 if (status == RTEMS_SUCCESSFUL) // CWF1
589 {
588 {
590 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
589 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
591 if (status!=RTEMS_SUCCESSFUL) {
590 if (status!=RTEMS_SUCCESSFUL) {
592 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
591 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
593 }
592 }
594 }
593 }
595 if (status == RTEMS_SUCCESSFUL) // SWBD
594 if (status == RTEMS_SUCCESSFUL) // SWBD
596 {
595 {
597 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
596 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
598 if (status!=RTEMS_SUCCESSFUL) {
597 if (status!=RTEMS_SUCCESSFUL) {
599 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
598 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
600 }
599 }
601 }
600 }
602
601
603 //*****
602 //*****
604 // MISC
603 // MISC
605 if (status == RTEMS_SUCCESSFUL) // HOUS
604 if (status == RTEMS_SUCCESSFUL) // HOUS
606 {
605 {
607 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
606 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
608 if (status!=RTEMS_SUCCESSFUL) {
607 if (status!=RTEMS_SUCCESSFUL) {
609 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
608 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
610 }
609 }
611 }
610 }
612 if (status == RTEMS_SUCCESSFUL) // DUMB
611 if (status == RTEMS_SUCCESSFUL) // DUMB
613 {
612 {
614 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
613 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
615 if (status!=RTEMS_SUCCESSFUL) {
614 if (status!=RTEMS_SUCCESSFUL) {
616 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
615 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
617 }
616 }
618 }
617 }
619 if (status == RTEMS_SUCCESSFUL) // STAT
618 if (status == RTEMS_SUCCESSFUL) // STAT
620 {
619 {
621 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
620 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
622 if (status!=RTEMS_SUCCESSFUL) {
621 if (status!=RTEMS_SUCCESSFUL) {
623 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
622 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
624 }
623 }
625 }
624 }
626
625
627 return status;
626 return status;
628 }
627 }
629
628
630 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
629 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
631 {
630 {
632 rtems_status_code status_recv;
631 rtems_status_code status_recv;
633 rtems_status_code status_send;
632 rtems_status_code status_send;
634 rtems_status_code status_q_p0;
633 rtems_status_code status_q_p0;
635 rtems_status_code status_q_p1;
634 rtems_status_code status_q_p1;
636 rtems_status_code status_q_p2;
635 rtems_status_code status_q_p2;
637 rtems_status_code ret;
636 rtems_status_code ret;
638 rtems_id queue_id;
637 rtems_id queue_id;
639
638
640 //****************************************
639 //****************************************
641 // create the queue for handling valid TCs
640 // create the queue for handling valid TCs
642 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
641 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
643 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
642 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
644 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
643 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
645 if ( status_recv != RTEMS_SUCCESSFUL ) {
644 if ( status_recv != RTEMS_SUCCESSFUL ) {
646 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
645 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
647 }
646 }
648
647
649 //************************************************
648 //************************************************
650 // create the queue for handling TM packet sending
649 // create the queue for handling TM packet sending
651 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
650 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
652 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
651 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
653 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
652 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
654 if ( status_send != RTEMS_SUCCESSFUL ) {
653 if ( status_send != RTEMS_SUCCESSFUL ) {
655 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
654 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
656 }
655 }
657
656
658 //*****************************************************************************
657 //*****************************************************************************
659 // create the queue for handling averaged spectral matrices for processing @ f0
658 // create the queue for handling averaged spectral matrices for processing @ f0
660 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
659 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
661 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
660 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
662 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
661 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
663 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
662 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
664 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
663 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
665 }
664 }
666
665
667 //*****************************************************************************
666 //*****************************************************************************
668 // create the queue for handling averaged spectral matrices for processing @ f1
667 // create the queue for handling averaged spectral matrices for processing @ f1
669 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
668 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
670 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
669 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
671 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
670 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
672 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
671 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
673 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
672 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
674 }
673 }
675
674
676 //*****************************************************************************
675 //*****************************************************************************
677 // create the queue for handling averaged spectral matrices for processing @ f2
676 // create the queue for handling averaged spectral matrices for processing @ f2
678 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
677 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
679 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
678 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
680 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
679 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
681 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
680 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
682 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
681 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
683 }
682 }
684
683
685 if ( status_recv != RTEMS_SUCCESSFUL )
684 if ( status_recv != RTEMS_SUCCESSFUL )
686 {
685 {
687 ret = status_recv;
686 ret = status_recv;
688 }
687 }
689 else if( status_send != RTEMS_SUCCESSFUL )
688 else if( status_send != RTEMS_SUCCESSFUL )
690 {
689 {
691 ret = status_send;
690 ret = status_send;
692 }
691 }
693 else if( status_q_p0 != RTEMS_SUCCESSFUL )
692 else if( status_q_p0 != RTEMS_SUCCESSFUL )
694 {
693 {
695 ret = status_q_p0;
694 ret = status_q_p0;
696 }
695 }
697 else if( status_q_p1 != RTEMS_SUCCESSFUL )
696 else if( status_q_p1 != RTEMS_SUCCESSFUL )
698 {
697 {
699 ret = status_q_p1;
698 ret = status_q_p1;
700 }
699 }
701 else
700 else
702 {
701 {
703 ret = status_q_p2;
702 ret = status_q_p2;
704 }
703 }
705
704
706 return ret;
705 return ret;
707 }
706 }
708
707
709 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
708 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
710 {
709 {
711 rtems_status_code status;
710 rtems_status_code status;
712 rtems_name queue_name;
711 rtems_name queue_name;
713
712
714 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
713 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
715
714
716 status = rtems_message_queue_ident( queue_name, 0, queue_id );
715 status = rtems_message_queue_ident( queue_name, 0, queue_id );
717
716
718 return status;
717 return status;
719 }
718 }
720
719
721 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
720 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
722 {
721 {
723 rtems_status_code status;
722 rtems_status_code status;
724 rtems_name queue_name;
723 rtems_name queue_name;
725
724
726 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
725 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
727
726
728 status = rtems_message_queue_ident( queue_name, 0, queue_id );
727 status = rtems_message_queue_ident( queue_name, 0, queue_id );
729
728
730 return status;
729 return status;
731 }
730 }
732
731
733 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
732 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
734 {
733 {
735 rtems_status_code status;
734 rtems_status_code status;
736 rtems_name queue_name;
735 rtems_name queue_name;
737
736
738 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
737 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
739
738
740 status = rtems_message_queue_ident( queue_name, 0, queue_id );
739 status = rtems_message_queue_ident( queue_name, 0, queue_id );
741
740
742 return status;
741 return status;
743 }
742 }
744
743
745 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
744 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
746 {
745 {
747 rtems_status_code status;
746 rtems_status_code status;
748 rtems_name queue_name;
747 rtems_name queue_name;
749
748
750 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
749 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
751
750
752 status = rtems_message_queue_ident( queue_name, 0, queue_id );
751 status = rtems_message_queue_ident( queue_name, 0, queue_id );
753
752
754 return status;
753 return status;
755 }
754 }
756
755
757 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
756 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
758 {
757 {
759 rtems_status_code status;
758 rtems_status_code status;
760 rtems_name queue_name;
759 rtems_name queue_name;
761
760
762 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
761 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
763
762
764 status = rtems_message_queue_ident( queue_name, 0, queue_id );
763 status = rtems_message_queue_ident( queue_name, 0, queue_id );
765
764
766 return status;
765 return status;
767 }
766 }
@@ -1,503 +1,501
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 {
12 {
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 *
14 *
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 * @param interrupt_level is the interrupt level that the timer drives.
18 * @param interrupt_level is the interrupt level that the timer drives.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 *
20 *
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 *
22 *
23 */
23 */
24
24
25 rtems_status_code status;
25 rtems_status_code status;
26 rtems_isr_entry old_isr_handler;
26 rtems_isr_entry old_isr_handler;
27
27
28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29
29
30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 if (status!=RTEMS_SUCCESSFUL)
31 if (status!=RTEMS_SUCCESSFUL)
32 {
32 {
33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 }
34 }
35
35
36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 }
37 }
38
38
39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 {
40 {
41 /** This function starts a GPTIMER timer.
41 /** This function starts a GPTIMER timer.
42 *
42 *
43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 *
45 *
46 */
46 */
47
47
48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 }
53 }
54
54
55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 {
56 {
57 /** This function stops a GPTIMER timer.
57 /** This function stops a GPTIMER timer.
58 *
58 *
59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 *
61 *
62 */
62 */
63
63
64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 }
67 }
68
68
69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 {
70 {
71 /** This function sets the clock divider of a GPTIMER timer.
71 /** This function sets the clock divider of a GPTIMER timer.
72 *
72 *
73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 *
76 *
77 */
77 */
78
78
79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 }
80 }
81
81
82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 {
83 {
84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85
85
86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87
87
88 return 0;
88 return 0;
89 }
89 }
90
90
91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 {
92 {
93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94
94
95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96
96
97 return 0;
97 return 0;
98 }
98 }
99
99
100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 {
101 {
102 /** This function sets the scaler reload register of the apbuart module
102 /** This function sets the scaler reload register of the apbuart module
103 *
103 *
104 * @param regs is the address of the apbuart registers in memory
104 * @param regs is the address of the apbuart registers in memory
105 * @param value is the value that will be stored in the scaler register
105 * @param value is the value that will be stored in the scaler register
106 *
106 *
107 * The value shall be set by the software to get data on the serial interface.
107 * The value shall be set by the software to get data on the serial interface.
108 *
108 *
109 */
109 */
110
110
111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112
112
113 apbuart_regs->scaler = value;
113 apbuart_regs->scaler = value;
114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 }
115 }
116
116
117 //************
117 //************
118 // RTEMS TASKS
118 // RTEMS TASKS
119
119
120 rtems_task stat_task(rtems_task_argument argument)
120 rtems_task stat_task(rtems_task_argument argument)
121 {
121 {
122 int i;
122 int i;
123 int j;
123 int j;
124 i = 0;
124 i = 0;
125 j = 0;
125 j = 0;
126 BOOT_PRINTF("in STAT *** \n")
126 BOOT_PRINTF("in STAT *** \n")
127 while(1){
127 while(1){
128 rtems_task_wake_after(1000);
128 rtems_task_wake_after(1000);
129 PRINTF1("%d\n", j)
129 PRINTF1("%d\n", j)
130 if (i == CPU_USAGE_REPORT_PERIOD) {
130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 // #ifdef PRINT_TASK_STATISTICS
131 // #ifdef PRINT_TASK_STATISTICS
132 // rtems_cpu_usage_report();
132 // rtems_cpu_usage_report();
133 // rtems_cpu_usage_reset();
133 // rtems_cpu_usage_reset();
134 // #endif
134 // #endif
135 i = 0;
135 i = 0;
136 }
136 }
137 else i++;
137 else i++;
138 j++;
138 j++;
139 }
139 }
140 }
140 }
141
141
142 rtems_task hous_task(rtems_task_argument argument)
142 rtems_task hous_task(rtems_task_argument argument)
143 {
143 {
144 rtems_status_code status;
144 rtems_status_code status;
145 rtems_id queue_id;
145 rtems_id queue_id;
146 rtems_rate_monotonic_period_status period_status;
146 rtems_rate_monotonic_period_status period_status;
147
147
148 status = get_message_queue_id_send( &queue_id );
148 status = get_message_queue_id_send( &queue_id );
149 if (status != RTEMS_SUCCESSFUL)
149 if (status != RTEMS_SUCCESSFUL)
150 {
150 {
151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 }
152 }
153
153
154 BOOT_PRINTF("in HOUS ***\n")
154 BOOT_PRINTF("in HOUS ***\n")
155
155
156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 if( status != RTEMS_SUCCESSFUL ) {
158 if( status != RTEMS_SUCCESSFUL ) {
159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
160 }
160 }
161 }
161 }
162
162
163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
165 housekeeping_packet.reserved = DEFAULT_RESERVED;
165 housekeeping_packet.reserved = DEFAULT_RESERVED;
166 housekeeping_packet.userApplication = CCSDS_USER_APP;
166 housekeeping_packet.userApplication = CCSDS_USER_APP;
167 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
167 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
168 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
168 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
174 housekeeping_packet.serviceType = TM_TYPE_HK;
174 housekeeping_packet.serviceType = TM_TYPE_HK;
175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
177 housekeeping_packet.sid = SID_HK;
177 housekeeping_packet.sid = SID_HK;
178
178
179 status = rtems_rate_monotonic_cancel(HK_id);
179 status = rtems_rate_monotonic_cancel(HK_id);
180 if( status != RTEMS_SUCCESSFUL ) {
180 if( status != RTEMS_SUCCESSFUL ) {
181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
182 }
182 }
183 else {
183 else {
184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
185 }
185 }
186
186
187 // startup phase
187 // startup phase
188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 {
192 {
193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 {
194 {
195 break; // break if LFR is synchronized
195 break; // break if LFR is synchronized
196 }
196 }
197 else
197 else
198 {
198 {
199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 // sched_yield();
200 // sched_yield();
201 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
201 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
202 }
202 }
203 }
203 }
204 status = rtems_rate_monotonic_cancel(HK_id);
204 status = rtems_rate_monotonic_cancel(HK_id);
205 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
205 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
206
206
207 while(1){ // launch the rate monotonic task
207 while(1){ // launch the rate monotonic task
208 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
208 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
209 if ( status != RTEMS_SUCCESSFUL ) {
209 if ( status != RTEMS_SUCCESSFUL ) {
210 PRINTF1( "in HOUS *** ERR period: %d\n", status);
210 PRINTF1( "in HOUS *** ERR period: %d\n", status);
211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
212 }
212 }
213 else {
213 else {
214 increment_seq_counter( housekeeping_packet.packetSequenceControl );
214 increment_seq_counter( housekeeping_packet.packetSequenceControl );
215 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
215 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
216 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
216 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
217 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
217 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
218 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
218 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
219 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
219 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
220 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
220 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
221
221
222 spacewire_update_statistics();
222 spacewire_update_statistics();
223
223
224 get_v_e1_e2_f3(
224 get_v_e1_e2_f3(
225 housekeeping_packet.hk_lfr_sc_v_f3, housekeeping_packet.hk_lfr_sc_e1_f3, housekeeping_packet.hk_lfr_sc_e2_f3 );
225 housekeeping_packet.hk_lfr_sc_v_f3, housekeeping_packet.hk_lfr_sc_e1_f3, housekeeping_packet.hk_lfr_sc_e2_f3 );
226
226
227 // SEND PACKET
227 // SEND PACKET
228 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
228 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
229 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
229 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
230 if (status != RTEMS_SUCCESSFUL) {
230 if (status != RTEMS_SUCCESSFUL) {
231 PRINTF1("in HOUS *** ERR send: %d\n", status)
231 PRINTF1("in HOUS *** ERR send: %d\n", status)
232 }
232 }
233 }
233 }
234 }
234 }
235
235
236 PRINTF("in HOUS *** deleting task\n")
236 PRINTF("in HOUS *** deleting task\n")
237
237
238 status = rtems_task_delete( RTEMS_SELF ); // should not return
238 status = rtems_task_delete( RTEMS_SELF ); // should not return
239 printf( "rtems_task_delete returned with status of %d.\n", status );
239 printf( "rtems_task_delete returned with status of %d.\n", status );
240 return;
240 return;
241 }
241 }
242
242
243 rtems_task dumb_task( rtems_task_argument unused )
243 rtems_task dumb_task( rtems_task_argument unused )
244 {
244 {
245 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
245 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
246 *
246 *
247 * @param unused is the starting argument of the RTEMS task
247 * @param unused is the starting argument of the RTEMS task
248 *
248 *
249 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
249 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
250 *
250 *
251 */
251 */
252
252
253 unsigned int i;
253 unsigned int i;
254 unsigned int intEventOut;
254 unsigned int intEventOut;
255 unsigned int coarse_time = 0;
255 unsigned int coarse_time = 0;
256 unsigned int fine_time = 0;
256 unsigned int fine_time = 0;
257 rtems_event_set event_out;
257 rtems_event_set event_out;
258
258
259 char *DumbMessages[10] = {"in DUMB *** default", // RTEMS_EVENT_0
259 char *DumbMessages[10] = {"in DUMB *** default", // RTEMS_EVENT_0
260 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
260 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
261 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
261 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
262 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
262 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
263 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
263 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
264 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
264 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
265 "ERR HK", // RTEMS_EVENT_6
265 "ERR HK", // RTEMS_EVENT_6
266 "ready for dump", // RTEMS_EVENT_7
266 "ready for dump", // RTEMS_EVENT_7
267 "in DUMB *** spectral_matrices_isr", // RTEMS_EVENT_8
267 "in DUMB *** spectral_matrices_isr", // RTEMS_EVENT_8
268 "tick" // RTEMS_EVENT_9
268 "tick" // RTEMS_EVENT_9
269 };
269 };
270
270
271 BOOT_PRINTF("in DUMB *** \n")
271 BOOT_PRINTF("in DUMB *** \n")
272
272
273 while(1){
273 while(1){
274 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
274 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
275 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
275 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
276 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
276 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
277 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
277 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
278 intEventOut = (unsigned int) event_out;
278 intEventOut = (unsigned int) event_out;
279 for ( i=0; i<32; i++)
279 for ( i=0; i<32; i++)
280 {
280 {
281 if ( ((intEventOut >> i) & 0x0001) != 0)
281 if ( ((intEventOut >> i) & 0x0001) != 0)
282 {
282 {
283 coarse_time = time_management_regs->coarse_time;
283 coarse_time = time_management_regs->coarse_time;
284 fine_time = time_management_regs->fine_time;
284 fine_time = time_management_regs->fine_time;
285 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
285 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
286 }
286 }
287 }
287 }
288 }
288 }
289 }
289 }
290
290
291 //*****************************
291 //*****************************
292 // init housekeeping parameters
292 // init housekeeping parameters
293
293
294 void init_housekeeping_parameters( void )
294 void init_housekeeping_parameters( void )
295 {
295 {
296 /** This function initialize the housekeeping_packet global variable with default values.
296 /** This function initialize the housekeeping_packet global variable with default values.
297 *
297 *
298 */
298 */
299
299
300 unsigned int i = 0;
300 unsigned int i = 0;
301 unsigned char *parameters;
301 unsigned char *parameters;
302
302
303 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
303 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
304 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
304 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
305 {
305 {
306 parameters[i] = 0x00;
306 parameters[i] = 0x00;
307 }
307 }
308 // init status word
308 // init status word
309 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
309 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
310 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
310 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
311 // init software version
311 // init software version
312 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
312 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
313 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
313 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
314 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
314 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
315 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
315 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
316 // init fpga version
316 // init fpga version
317 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
317 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
318 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
318 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
319 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
319 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
320 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
320 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
321 }
321 }
322
322
323 void increment_seq_counter( unsigned char *packet_sequence_control)
323 void increment_seq_counter( unsigned char *packet_sequence_control)
324 {
324 {
325 /** This function increment the sequence counter psased in argument.
325 /** This function increment the sequence counter psased in argument.
326 *
326 *
327 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
327 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
328 *
328 *
329 */
329 */
330
330
331 unsigned short sequence_cnt;
331 unsigned short sequence_cnt;
332 unsigned short segmentation_grouping_flag;
332 unsigned short segmentation_grouping_flag;
333 unsigned short new_packet_sequence_control;
333 unsigned short new_packet_sequence_control;
334
334
335 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
335 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
336 sequence_cnt = (unsigned short) (
336 sequence_cnt = (unsigned short) (
337 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
337 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
338 + packet_sequence_control[1]
338 + packet_sequence_control[1]
339 );
339 );
340
340
341 if ( sequence_cnt < SEQ_CNT_MAX)
341 if ( sequence_cnt < SEQ_CNT_MAX)
342 {
342 {
343 sequence_cnt = sequence_cnt + 1;
343 sequence_cnt = sequence_cnt + 1;
344 }
344 }
345 else
345 else
346 {
346 {
347 sequence_cnt = 0;
347 sequence_cnt = 0;
348 }
348 }
349
349
350 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
350 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
351
351
352 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
352 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
353 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
353 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
354 }
354 }
355
355
356 void getTime( unsigned char *time)
356 void getTime( unsigned char *time)
357 {
357 {
358 /** This function write the current local time in the time buffer passed in argument.
358 /** This function write the current local time in the time buffer passed in argument.
359 *
359 *
360 */
360 */
361
361
362 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
362 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
363 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
363 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
364 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
364 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
365 time[3] = (unsigned char) (time_management_regs->coarse_time);
365 time[3] = (unsigned char) (time_management_regs->coarse_time);
366 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
366 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
367 time[5] = (unsigned char) (time_management_regs->fine_time);
367 time[5] = (unsigned char) (time_management_regs->fine_time);
368 }
368 }
369
369
370 unsigned long long int getTimeAsUnsignedLongLongInt( )
370 unsigned long long int getTimeAsUnsignedLongLongInt( )
371 {
371 {
372 /** This function write the current local time in the time buffer passed in argument.
372 /** This function write the current local time in the time buffer passed in argument.
373 *
373 *
374 */
374 */
375 unsigned long long int time;
375 unsigned long long int time;
376
376
377 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
377 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
378 + time_management_regs->fine_time;
378 + time_management_regs->fine_time;
379
379
380 return time;
380 return time;
381 }
381 }
382
382
383 void send_dumb_hk( void )
383 void send_dumb_hk( void )
384 {
384 {
385 Packet_TM_LFR_HK_t dummy_hk_packet;
385 Packet_TM_LFR_HK_t dummy_hk_packet;
386 unsigned char *parameters;
386 unsigned char *parameters;
387 unsigned int i;
387 unsigned int i;
388 rtems_id queue_id;
388 rtems_id queue_id;
389
389
390 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
390 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
391 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
391 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
392 dummy_hk_packet.reserved = DEFAULT_RESERVED;
392 dummy_hk_packet.reserved = DEFAULT_RESERVED;
393 dummy_hk_packet.userApplication = CCSDS_USER_APP;
393 dummy_hk_packet.userApplication = CCSDS_USER_APP;
394 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
394 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
395 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
395 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
396 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
396 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
397 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
397 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
398 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
398 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
399 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
399 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
400 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
400 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
401 dummy_hk_packet.serviceType = TM_TYPE_HK;
401 dummy_hk_packet.serviceType = TM_TYPE_HK;
402 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
402 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
403 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
403 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
404 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
404 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
405 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
405 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
406 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
406 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
407 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
407 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
408 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
408 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
409 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
409 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
410 dummy_hk_packet.sid = SID_HK;
410 dummy_hk_packet.sid = SID_HK;
411
411
412 // init status word
412 // init status word
413 dummy_hk_packet.lfr_status_word[0] = 0xff;
413 dummy_hk_packet.lfr_status_word[0] = 0xff;
414 dummy_hk_packet.lfr_status_word[1] = 0xff;
414 dummy_hk_packet.lfr_status_word[1] = 0xff;
415 // init software version
415 // init software version
416 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
416 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
417 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
417 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
418 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
418 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
419 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
419 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
420 // init fpga version
420 // init fpga version
421 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
421 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
422 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
422 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
423 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
423 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
424 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
424 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
425
425
426 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
426 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
427
427
428 for (i=0; i<100; i++)
428 for (i=0; i<100; i++)
429 {
429 {
430 parameters[i] = 0xff;
430 parameters[i] = 0xff;
431 }
431 }
432
432
433 get_message_queue_id_send( &queue_id );
433 get_message_queue_id_send( &queue_id );
434
434
435 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
435 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
436 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
436 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
437 }
437 }
438
438
439 void get_v_e1_e2_f3( unsigned char *v, unsigned char *e1, unsigned char *e2 )
439 void get_v_e1_e2_f3( unsigned char *v, unsigned char *e1, unsigned char *e2 )
440 {
440 {
441 unsigned int coarseTime;
441 unsigned int coarseTime;
442 unsigned int acquisitionTime;
442 unsigned int acquisitionTime;
443 unsigned int deltaT = 0;
443 unsigned int deltaT = 0;
444 unsigned char *bufferPtr;
444 unsigned char *bufferPtr;
445
445
446 unsigned int offset_in_samples;
446 unsigned int offset_in_samples;
447 unsigned int offset_in_bytes;
447 unsigned int offset_in_bytes;
448 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
448 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
449
449
450 if (lfrCurrentMode == LFR_MODE_STANDBY)
450 if (lfrCurrentMode == LFR_MODE_STANDBY)
451 {
451 {
452 v[0] = 0x00;
452 v[0] = 0x00;
453 v[1] = 0x00;
453 v[1] = 0x00;
454 e1[0] = 0x00;
454 e1[0] = 0x00;
455 e1[1] = 0x00;
455 e1[1] = 0x00;
456 e2[0] = 0x00;
456 e2[0] = 0x00;
457 e2[1] = 0x00;
457 e2[1] = 0x00;
458 }
458 }
459 else
459 else
460 {
460 {
461 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
461 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
462 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
462 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
463 acquisitionTime = (unsigned int) ( ( bufferPtr[2] & 0x7f ) << 24 )
463 acquisitionTime = (unsigned int) ( ( bufferPtr[2] & 0x7f ) << 24 )
464 + (unsigned int) ( bufferPtr[3] << 16 )
464 + (unsigned int) ( bufferPtr[3] << 16 )
465 + (unsigned int) ( bufferPtr[0] << 8 )
465 + (unsigned int) ( bufferPtr[0] << 8 )
466 + (unsigned int) ( bufferPtr[1] );
466 + (unsigned int) ( bufferPtr[1] );
467 if ( coarseTime > acquisitionTime )
467 if ( coarseTime > acquisitionTime )
468 {
468 {
469 deltaT = coarseTime - acquisitionTime;
469 deltaT = coarseTime - acquisitionTime;
470 offset_in_samples = (deltaT-1) * f3 ;
470 offset_in_samples = (deltaT-1) * f3 ;
471 }
471 }
472 else if( coarseTime == acquisitionTime )
472 else if( coarseTime == acquisitionTime )
473 {
473 {
474 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
474 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
475 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
475 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
476 }
476 }
477 else
477 else
478 {
478 {
479 offset_in_samples = 0;
479 offset_in_samples = 0;
480 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
480 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
481 }
481 }
482
482
483 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
483 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
484 {
484 {
485 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
485 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
486 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
486 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
487 }
487 }
488 PRINTF1("f3 data @ %x *** ", waveform_picker_regs->addr_data_f3 )
489 PRINTF2("deltaT = %d, offset_in_samples = %d\n", deltaT, offset_in_samples )
490 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
488 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
491 v[0] = bufferPtr[ offset_in_bytes + 0];
489 v[0] = bufferPtr[ offset_in_bytes + 0];
492 v[1] = bufferPtr[ offset_in_bytes + 1];
490 v[1] = bufferPtr[ offset_in_bytes + 1];
493 e1[0] = bufferPtr[ offset_in_bytes + 2];
491 e1[0] = bufferPtr[ offset_in_bytes + 2];
494 e1[1] = bufferPtr[ offset_in_bytes + 3];
492 e1[1] = bufferPtr[ offset_in_bytes + 3];
495 e2[0] = bufferPtr[ offset_in_bytes + 4];
493 e2[0] = bufferPtr[ offset_in_bytes + 4];
496 e2[1] = bufferPtr[ offset_in_bytes + 5];
494 e2[1] = bufferPtr[ offset_in_bytes + 5];
497 }
495 }
498 }
496 }
499
497
500
498
501
499
502
500
503
501
@@ -1,366 +1,370
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf0_prc0.h"
10 #include "avf0_prc0.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
14
14
15 //***
15 //***
16 // F0
16 // F0
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0[ NB_RING_NODES_ASM_BURST_SBM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0[ NB_RING_NODES_ASM_BURST_SBM_F0 ];
19
19
20 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
20 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
21 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
21 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
22 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
22 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
23 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
23 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
24 //unsigned char bp1_norm_f0 [ TOTAL_SIZE_BP1_NORM_F0 ];
24 //unsigned char bp1_norm_f0 [ TOTAL_SIZE_BP1_NORM_F0 ];
25 //unsigned char bp1_sbm_f0 [ TOTAL_SIZE_BP1_SBM_F0 ];
25 //unsigned char bp1_sbm_f0 [ TOTAL_SIZE_BP1_SBM_F0 ];
26
26
27 //************
27 //************
28 // RTEMS TASKS
28 // RTEMS TASKS
29
29
30 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
30 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
31 {
31 {
32 int i;
32 int i;
33
33
34 rtems_event_set event_out;
34 rtems_event_set event_out;
35 rtems_status_code status;
35 rtems_status_code status;
36 rtems_id queue_id_prc0;
36 rtems_id queue_id_prc0;
37 asm_msg msgForMATR;
37 asm_msg msgForMATR;
38 ring_node_sm *ring_node_tab[8];
38 ring_node_sm *ring_node_tab[8];
39 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
39 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
40 ring_node_asm *current_ring_node_asm_norm_f0;
40 ring_node_asm *current_ring_node_asm_norm_f0;
41
41
42 unsigned int nb_norm_bp1;
42 unsigned int nb_norm_bp1;
43 unsigned int nb_norm_bp2;
43 unsigned int nb_norm_bp2;
44 unsigned int nb_norm_asm;
44 unsigned int nb_norm_asm;
45 unsigned int nb_sbm_bp1;
45 unsigned int nb_sbm_bp1;
46 unsigned int nb_sbm_bp2;
46 unsigned int nb_sbm_bp2;
47
47
48 nb_norm_bp1 = 0;
48 nb_norm_bp1 = 0;
49 nb_norm_bp2 = 0;
49 nb_norm_bp2 = 0;
50 nb_norm_asm = 0;
50 nb_norm_asm = 0;
51 nb_sbm_bp1 = 0;
51 nb_sbm_bp1 = 0;
52 nb_sbm_bp2 = 0;
52 nb_sbm_bp2 = 0;
53
53
54 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
54 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
55 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
55 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
56 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
56 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
57 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
57 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
58 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
58 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
59
59
60 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
60 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
61
61
62 status = get_message_queue_id_prc0( &queue_id_prc0 );
62 status = get_message_queue_id_prc0( &queue_id_prc0 );
63 if (status != RTEMS_SUCCESSFUL)
63 if (status != RTEMS_SUCCESSFUL)
64 {
64 {
65 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
65 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
66 }
66 }
67
67
68 while(1){
68 while(1){
69 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
69 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
70 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
70 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
71 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
71 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
72 {
72 {
73 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
73 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
74 ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
74 ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
75 }
75 }
76
76
77 // compute the average and store it in the averaged_sm_f1 buffer
77 // compute the average and store it in the averaged_sm_f1 buffer
78 SM_average( current_ring_node_asm_norm_f0->matrix,
78 SM_average( current_ring_node_asm_norm_f0->matrix,
79 current_ring_node_asm_burst_sbm_f0->matrix,
79 current_ring_node_asm_burst_sbm_f0->matrix,
80 ring_node_tab,
80 ring_node_tab,
81 nb_norm_bp1, nb_sbm_bp1 );
81 nb_norm_bp1, nb_sbm_bp1 );
82
82
83 // update nb_average
83 // update nb_average
84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
87 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
87 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
88 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
88 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
89
89
90 //****************************************
90 //****************************************
91 // initialize the mesage for the MATR task
91 // initialize the mesage for the MATR task
92 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
92 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
93 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
93 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
94 msgForMATR.norm = current_ring_node_asm_norm_f0;
94 msgForMATR.norm = current_ring_node_asm_norm_f0;
95 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
95 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
96 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
96 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
97 msgForMATR.coarseTime = time_management_regs->coarse_time;
97 msgForMATR.coarseTime = time_management_regs->coarse_time;
98 msgForMATR.fineTime = time_management_regs->fine_time;
98 msgForMATR.fineTime = time_management_regs->fine_time;
99
99
100 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
100 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
101 {
101 {
102 nb_sbm_bp1 = 0;
102 nb_sbm_bp1 = 0;
103 // set another ring for the ASM storage
103 // set another ring for the ASM storage
104 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
104 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
105 if ( (lfrCurrentMode == LFR_MODE_BURST)
105 if ( (lfrCurrentMode == LFR_MODE_BURST)
106 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
106 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
107 {
107 {
108 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F0;
108 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F0;
109 }
109 }
110 }
110 }
111
111
112 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
112 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
113 {
113 {
114 nb_sbm_bp2 = 0;
114 nb_sbm_bp2 = 0;
115 if ( (lfrCurrentMode == LFR_MODE_BURST)
115 if ( (lfrCurrentMode == LFR_MODE_BURST)
116 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
116 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
117 {
117 {
118 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F0;
118 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F0;
119 }
119 }
120 }
120 }
121
121
122 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
122 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
123 {
123 {
124 nb_norm_bp1 = 0;
124 nb_norm_bp1 = 0;
125 // set another ring for the ASM storage
125 // set another ring for the ASM storage
126 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
126 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
127 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
127 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
128 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
128 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
129 {
129 {
130 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
130 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
131 }
131 }
132 }
132 }
133
133
134 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
134 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
135 {
135 {
136 nb_norm_bp2 = 0;
136 nb_norm_bp2 = 0;
137 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
137 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
138 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
138 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
139 {
139 {
140 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
140 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
141 }
141 }
142 }
142 }
143
143
144 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
144 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
145 {
145 {
146 nb_norm_asm = 0;
146 nb_norm_asm = 0;
147 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
147 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
148 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
148 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
149 {
149 {
150 // PRINTF1("%lld\n", localTime)
150 // PRINTF1("%lld\n", localTime)
151 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
151 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
152 }
152 }
153 }
153 }
154
154
155 //*************************
155 //*************************
156 // send the message to MATR
156 // send the message to MATR
157 if (msgForMATR.event != 0x00)
157 if (msgForMATR.event != 0x00)
158 {
158 {
159 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
159 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
160 }
160 }
161
161
162 if (status != RTEMS_SUCCESSFUL) {
162 if (status != RTEMS_SUCCESSFUL) {
163 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
163 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
164 }
164 }
165 }
165 }
166 }
166 }
167
167
168 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
168 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
169 {
169 {
170 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
170 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
171 size_t size; // size of the incoming TC packet
171 size_t size; // size of the incoming TC packet
172 asm_msg *incomingMsg;
172 asm_msg *incomingMsg;
173 //
173 //
174 spw_ioctl_pkt_send spw_ioctl_send_ASM;
174 spw_ioctl_pkt_send spw_ioctl_send_ASM;
175 rtems_status_code status;
175 rtems_status_code status;
176 rtems_id queue_id;
176 rtems_id queue_id;
177 rtems_id queue_id_q_p0;
177 rtems_id queue_id_q_p0;
178 Header_TM_LFR_SCIENCE_ASM_t headerASM;
178 Header_TM_LFR_SCIENCE_ASM_t headerASM;
179 bp_packet_with_spare packet_norm_bp1_f0;
179 bp_packet_with_spare packet_norm_bp1_f0;
180 bp_packet packet_norm_bp2_f0;
180 bp_packet packet_norm_bp2_f0;
181 bp_packet packet_sbm_bp1_f0;
181 bp_packet packet_sbm_bp1_f0;
182 bp_packet packet_sbm_bp2_f0;
182 bp_packet packet_sbm_bp2_f0;
183
183
184 unsigned long long int localTime;
184 unsigned long long int localTime;
185
185
186 ASM_init_header( &headerASM );
186 ASM_init_header( &headerASM );
187
187
188 //*************
188 //*************
189 // NORM headers
189 // NORM headers
190 BP_init_header_with_spare( &packet_norm_bp1_f0.header,
190 BP_init_header_with_spare( &packet_norm_bp1_f0.header,
191 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
191 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
192 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
192 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
193 BP_init_header( &packet_norm_bp2_f0.header,
193 BP_init_header( &packet_norm_bp2_f0.header,
194 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
194 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
195 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
195 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
196
196
197 //****************************
197 //****************************
198 // BURST SBM1 and SBM2 headers
198 // BURST SBM1 and SBM2 headers
199 if ( lfrRequestedMode == LFR_MODE_BURST )
199 if ( lfrRequestedMode == LFR_MODE_BURST )
200 {
200 {
201 BP_init_header( &packet_sbm_bp1_f0.header,
201 BP_init_header( &packet_sbm_bp1_f0.header,
202 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
202 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
203 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
203 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
204 BP_init_header( &packet_sbm_bp2_f0.header,
204 BP_init_header( &packet_sbm_bp2_f0.header,
205 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
205 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
206 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
206 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
207 }
207 }
208 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
208 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
209 {
209 {
210 BP_init_header( &packet_sbm_bp1_f0.header,
210 BP_init_header( &packet_sbm_bp1_f0.header,
211 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
211 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
212 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
212 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
213 BP_init_header( &packet_sbm_bp2_f0.header,
213 BP_init_header( &packet_sbm_bp2_f0.header,
214 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
214 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
215 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
215 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
216 }
216 }
217 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
217 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
218 {
218 {
219 BP_init_header( &packet_sbm_bp1_f0.header,
219 BP_init_header( &packet_sbm_bp1_f0.header,
220 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
220 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
222 BP_init_header( &packet_sbm_bp2_f0.header,
222 BP_init_header( &packet_sbm_bp2_f0.header,
223 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
223 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
225 }
225 }
226 else
226 else
227 {
227 {
228 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
228 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
229 }
229 }
230
230
231 status = get_message_queue_id_send( &queue_id );
231 status = get_message_queue_id_send( &queue_id );
232 if (status != RTEMS_SUCCESSFUL)
232 if (status != RTEMS_SUCCESSFUL)
233 {
233 {
234 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
234 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
235 }
235 }
236 status = get_message_queue_id_prc0( &queue_id_q_p0);
236 status = get_message_queue_id_prc0( &queue_id_q_p0);
237 if (status != RTEMS_SUCCESSFUL)
237 if (status != RTEMS_SUCCESSFUL)
238 {
238 {
239 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
239 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
240 }
240 }
241
241
242 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
242 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
243
243
244 while(1){
244 while(1){
245 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
245 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
246 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
246 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
247
247
248 incomingMsg = (asm_msg*) incomingData;
248 incomingMsg = (asm_msg*) incomingData;
249
249
250 localTime = getTimeAsUnsignedLongLongInt( );
250 localTime = getTimeAsUnsignedLongLongInt( );
251 //****************
251 //****************
252 //****************
252 //****************
253 // BURST SBM1 SBM2
253 // BURST SBM1 SBM2
254 //****************
254 //****************
255 //****************
255 //****************
256 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F0 )
256 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F0 )
257 {
257 {
258 // 1) compress the matrix for Basic Parameters calculation
258 // 1) compress the matrix for Basic Parameters calculation
259 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f0,
259 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f0,
260 nb_sm_before_f0.burst_sbm_bp1,
260 nb_sm_before_f0.burst_sbm_bp1,
261 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
261 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
262 ASM_F0_INDICE_START);
262 ASM_F0_INDICE_START);
263 // 2) compute the BP1 set
263 // 2) compute the BP1 set
264 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, bp1_sbm_f0 );
264 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, bp1_sbm_f0 );
265 // 3) send the BP1 set
265 // 3) send the BP1 set
266 set_time( packet_sbm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
266 set_time( packet_sbm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
267 set_time( packet_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
267 set_time( packet_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
268 BP_send( (char *) &packet_sbm_bp1_f0.header, queue_id,
268 BP_send( (char *) &packet_sbm_bp1_f0, queue_id,
269 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA);
269 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
270 SID_SBM1_BP1_F0);
270 // 4) compute the BP2 set if needed
271 // 4) compute the BP2 set if needed
271 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F0 )
272 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F0 )
272 {
273 {
273 // 1) compute the BP2 set
274 // 1) compute the BP2 set
274
275
275 // 2) send the BP2 set
276 // 2) send the BP2 set
276 set_time( packet_sbm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
277 set_time( packet_sbm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
277 set_time( packet_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
278 set_time( packet_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
278 BP_send( (char *) &packet_sbm_bp2_f0.header, queue_id,
279 BP_send( (char *) &packet_sbm_bp2_f0, queue_id,
279 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA);
280 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
281 SID_SBM1_BP2_F0);
280 }
282 }
281 }
283 }
282
284
283 //*****
285 //*****
284 //*****
286 //*****
285 // NORM
287 // NORM
286 //*****
288 //*****
287 //*****
289 //*****
288 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
290 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
289 {
291 {
290 // 1) compress the matrix for Basic Parameters calculation
292 // 1) compress the matrix for Basic Parameters calculation
291 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f0,
293 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f0,
292 nb_sm_before_f0.norm_bp1,
294 nb_sm_before_f0.norm_bp1,
293 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
295 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
294 ASM_F0_INDICE_START );
296 ASM_F0_INDICE_START );
295 // 2) compute the BP1 set
297 // 2) compute the BP1 set
296 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, bp1_norm_f0 );
298 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, bp1_norm_f0 );
297 // 3) send the BP1 set
299 // 3) send the BP1 set
298 set_time( packet_norm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
300 set_time( packet_norm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
299 set_time( packet_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
301 set_time( packet_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
300 BP_send( (char *) &packet_norm_bp1_f0.header, queue_id,
302 BP_send( (char *) &packet_norm_bp1_f0, queue_id,
301 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA);
303 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
304 SID_NORM_BP1_F0 );
302 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
305 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
303 {
306 {
304 // 1) compute the BP2 set using the same ASM as the one used for BP1
307 // 1) compute the BP2 set using the same ASM as the one used for BP1
305
308
306 // 2) send the BP2 set
309 // 2) send the BP2 set
307 set_time( packet_norm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
310 set_time( packet_norm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
308 set_time( packet_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
311 set_time( packet_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
309 BP_send( (char *) &packet_norm_bp2_f0.header, queue_id,
312 BP_send( (char *) &packet_norm_bp2_f0, queue_id,
310 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA);
313 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
314 SID_NORM_BP2_F0);
311 }
315 }
312 }
316 }
313
317
314 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
318 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
315 {
319 {
316 // 1) reorganize the ASM and divide
320 // 1) reorganize the ASM and divide
317 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
321 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
318 asm_f0_reorganized,
322 asm_f0_reorganized,
319 nb_sm_before_f0.norm_bp1 );
323 nb_sm_before_f0.norm_bp1 );
320 // 2) convert the float array in a char array
324 // 2) convert the float array in a char array
321 ASM_convert( asm_f0_reorganized, asm_f0_char);
325 ASM_convert( asm_f0_reorganized, asm_f0_char);
322 // 3) send the spectral matrix packets
326 // 3) send the spectral matrix packets
323 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
327 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
324 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
328 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
325 ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
329 ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
326 }
330 }
327
331
328 }
332 }
329 }
333 }
330
334
331 //**********
335 //**********
332 // FUNCTIONS
336 // FUNCTIONS
333
337
334 void reset_nb_sm_f0( unsigned char lfrMode )
338 void reset_nb_sm_f0( unsigned char lfrMode )
335 {
339 {
336 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
340 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
337 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
341 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
338 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
342 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
339 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24;
343 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24;
340 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
344 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
341 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
345 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
342 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
346 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
343 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
347 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
344 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
348 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
345
349
346 if (lfrMode == LFR_MODE_SBM1)
350 if (lfrMode == LFR_MODE_SBM1)
347 {
351 {
348 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
352 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
349 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
353 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
350 }
354 }
351 else if (lfrMode == LFR_MODE_SBM2)
355 else if (lfrMode == LFR_MODE_SBM2)
352 {
356 {
353 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
357 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
354 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
358 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
355 }
359 }
356 else if (lfrMode == LFR_MODE_BURST)
360 else if (lfrMode == LFR_MODE_BURST)
357 {
361 {
358 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
362 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
359 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
363 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
360 }
364 }
361 else
365 else
362 {
366 {
363 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
367 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
364 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
368 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
365 }
369 }
366 }
370 }
@@ -1,345 +1,349
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf1_prc1.h"
10 #include "avf1_prc1.h"
11
11
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
13
13
14 //***
14 //***
15 // F1
15 // F1
16 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
16 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
17 ring_node_asm asm_ring_burst_sbm_f1[ NB_RING_NODES_ASM_BURST_SBM_F1 ];
17 ring_node_asm asm_ring_burst_sbm_f1[ NB_RING_NODES_ASM_BURST_SBM_F1 ];
18
18
19 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
19 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
20 char asm_f1_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
20 char asm_f1_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
21 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
21 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
22 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
22 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
23
23
24 //************
24 //************
25 // RTEMS TASKS
25 // RTEMS TASKS
26
26
27 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
27 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
28 {
28 {
29 int i;
29 int i;
30
30
31 rtems_event_set event_out;
31 rtems_event_set event_out;
32 rtems_status_code status;
32 rtems_status_code status;
33 rtems_id queue_id_prc1;
33 rtems_id queue_id_prc1;
34 asm_msg msgForMATR;
34 asm_msg msgForMATR;
35 ring_node_sm *ring_node_tab[8];
35 ring_node_sm *ring_node_tab[8];
36 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
36 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
37 ring_node_asm *current_ring_node_asm_norm_f1;
37 ring_node_asm *current_ring_node_asm_norm_f1;
38
38
39 unsigned int nb_norm_bp1;
39 unsigned int nb_norm_bp1;
40 unsigned int nb_norm_bp2;
40 unsigned int nb_norm_bp2;
41 unsigned int nb_norm_asm;
41 unsigned int nb_norm_asm;
42 unsigned int nb_sbm_bp1;
42 unsigned int nb_sbm_bp1;
43 unsigned int nb_sbm_bp2;
43 unsigned int nb_sbm_bp2;
44
44
45 nb_norm_bp1 = 0;
45 nb_norm_bp1 = 0;
46 nb_norm_bp2 = 0;
46 nb_norm_bp2 = 0;
47 nb_norm_asm = 0;
47 nb_norm_asm = 0;
48 nb_sbm_bp1 = 0;
48 nb_sbm_bp1 = 0;
49 nb_sbm_bp2 = 0;
49 nb_sbm_bp2 = 0;
50
50
51 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
51 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
52 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
52 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
53 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
53 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
54 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
54 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
55 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
55 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
56
56
57 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
57 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
58
58
59 status = get_message_queue_id_prc1( &queue_id_prc1 );
59 status = get_message_queue_id_prc1( &queue_id_prc1 );
60 if (status != RTEMS_SUCCESSFUL)
60 if (status != RTEMS_SUCCESSFUL)
61 {
61 {
62 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
62 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
63 }
63 }
64
64
65 while(1){
65 while(1){
66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
67 ring_node_tab[NB_SM_BEFORE_AVF1-1] = ring_node_for_averaging_sm_f1;
67 ring_node_tab[NB_SM_BEFORE_AVF1-1] = ring_node_for_averaging_sm_f1;
68 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
68 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
69 {
69 {
70 ring_node_for_averaging_sm_f1 = ring_node_for_averaging_sm_f1->previous;
70 ring_node_for_averaging_sm_f1 = ring_node_for_averaging_sm_f1->previous;
71 ring_node_tab[NB_SM_BEFORE_AVF1-i] = ring_node_for_averaging_sm_f1;
71 ring_node_tab[NB_SM_BEFORE_AVF1-i] = ring_node_for_averaging_sm_f1;
72 }
72 }
73
73
74 // compute the average and store it in the averaged_sm_f1 buffer
74 // compute the average and store it in the averaged_sm_f1 buffer
75 SM_average( current_ring_node_asm_norm_f1->matrix,
75 SM_average( current_ring_node_asm_norm_f1->matrix,
76 current_ring_node_asm_burst_sbm_f1->matrix,
76 current_ring_node_asm_burst_sbm_f1->matrix,
77 ring_node_tab,
77 ring_node_tab,
78 nb_norm_bp1, nb_sbm_bp1 );
78 nb_norm_bp1, nb_sbm_bp1 );
79
79
80 // update nb_average
80 // update nb_average
81 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
81 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
82 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
82 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
83 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
83 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
84 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
84 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
85 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
85 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
86
86
87 //****************************************
87 //****************************************
88 // initialize the mesage for the MATR task
88 // initialize the mesage for the MATR task
89 msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
89 msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
90 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
90 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
91 msgForMATR.norm = current_ring_node_asm_norm_f1;
91 msgForMATR.norm = current_ring_node_asm_norm_f1;
92 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
92 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
93 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
93 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
94 msgForMATR.coarseTime = time_management_regs->coarse_time;
94 msgForMATR.coarseTime = time_management_regs->coarse_time;
95 msgForMATR.fineTime = time_management_regs->fine_time;
95 msgForMATR.fineTime = time_management_regs->fine_time;
96
96
97 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
97 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
98 {
98 {
99 nb_sbm_bp1 = 0;
99 nb_sbm_bp1 = 0;
100 // set another ring for the ASM storage
100 // set another ring for the ASM storage
101 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
101 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
102 if ( (lfrCurrentMode == LFR_MODE_BURST) || (lfrCurrentMode == LFR_MODE_SBM2) )
102 if ( (lfrCurrentMode == LFR_MODE_BURST) || (lfrCurrentMode == LFR_MODE_SBM2) )
103 {
103 {
104 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F1;
104 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F1;
105 }
105 }
106 }
106 }
107
107
108 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
108 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
109 {
109 {
110 nb_sbm_bp2 = 0;
110 nb_sbm_bp2 = 0;
111 if ( (lfrCurrentMode == LFR_MODE_BURST) || (lfrCurrentMode == LFR_MODE_SBM2) )
111 if ( (lfrCurrentMode == LFR_MODE_BURST) || (lfrCurrentMode == LFR_MODE_SBM2) )
112 {
112 {
113 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F1;
113 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F1;
114 }
114 }
115 }
115 }
116
116
117 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
117 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
118 {
118 {
119 nb_norm_bp1 = 0;
119 nb_norm_bp1 = 0;
120 // set another ring for the ASM storage
120 // set another ring for the ASM storage
121 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
121 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
122 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
122 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
123 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
123 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
124 {
124 {
125 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
125 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
126 }
126 }
127 }
127 }
128
128
129 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
129 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
130 {
130 {
131 nb_norm_bp2 = 0;
131 nb_norm_bp2 = 0;
132 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
132 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
133 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
133 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
134 {
134 {
135 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
135 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
136 }
136 }
137 }
137 }
138
138
139 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
139 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
140 {
140 {
141 nb_norm_asm = 0;
141 nb_norm_asm = 0;
142 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
142 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
143 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
143 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
144 {
144 {
145 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
145 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
146 }
146 }
147 }
147 }
148
148
149 //*************************
149 //*************************
150 // send the message to MATR
150 // send the message to MATR
151 if (msgForMATR.event != 0x00)
151 if (msgForMATR.event != 0x00)
152 {
152 {
153 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
153 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
154 }
154 }
155
155
156 if (status != RTEMS_SUCCESSFUL) {
156 if (status != RTEMS_SUCCESSFUL) {
157 printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
157 printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
158 }
158 }
159 }
159 }
160 }
160 }
161
161
162 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
162 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
163 {
163 {
164 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
164 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
165 size_t size; // size of the incoming TC packet
165 size_t size; // size of the incoming TC packet
166 asm_msg *incomingMsg;
166 asm_msg *incomingMsg;
167 //
167 //
168 spw_ioctl_pkt_send spw_ioctl_send_ASM;
168 spw_ioctl_pkt_send spw_ioctl_send_ASM;
169 rtems_status_code status;
169 rtems_status_code status;
170 rtems_id queue_id_send;
170 rtems_id queue_id_send;
171 rtems_id queue_id_q_p1;
171 rtems_id queue_id_q_p1;
172 Header_TM_LFR_SCIENCE_ASM_t headerASM;
172 Header_TM_LFR_SCIENCE_ASM_t headerASM;
173 bp_packet_with_spare packet_norm_bp1;
173 bp_packet_with_spare packet_norm_bp1;
174 bp_packet packet_norm_bp2;
174 bp_packet packet_norm_bp2;
175 bp_packet packet_sbm_bp1;
175 bp_packet packet_sbm_bp1;
176 bp_packet packet_sbm_bp2;
176 bp_packet packet_sbm_bp2;
177
177
178 unsigned long long int localTime;
178 unsigned long long int localTime;
179
179
180 ASM_init_header( &headerASM );
180 ASM_init_header( &headerASM );
181
181
182 //*************
182 //*************
183 // NORM headers
183 // NORM headers
184 BP_init_header_with_spare( &packet_norm_bp1.header,
184 BP_init_header_with_spare( &packet_norm_bp1.header,
185 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
185 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
186 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
186 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
187 BP_init_header( &packet_norm_bp2.header,
187 BP_init_header( &packet_norm_bp2.header,
188 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
188 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
189 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
189 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
190
190
191 //***********************
191 //***********************
192 // BURST and SBM2 headers
192 // BURST and SBM2 headers
193 if ( lfrRequestedMode == LFR_MODE_BURST )
193 if ( lfrRequestedMode == LFR_MODE_BURST )
194 {
194 {
195 BP_init_header( &packet_sbm_bp1.header,
195 BP_init_header( &packet_sbm_bp1.header,
196 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
196 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
197 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F1);
197 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F1);
198 BP_init_header( &packet_sbm_bp2.header,
198 BP_init_header( &packet_sbm_bp2.header,
199 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
199 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
200 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F1);
200 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F1);
201 }
201 }
202 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
202 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
203 {
203 {
204 BP_init_header( &packet_sbm_bp1.header,
204 BP_init_header( &packet_sbm_bp1.header,
205 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
205 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
206 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
206 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
207 BP_init_header( &packet_sbm_bp2.header,
207 BP_init_header( &packet_sbm_bp2.header,
208 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
208 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
209 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
209 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
210 }
210 }
211 else
211 else
212 {
212 {
213 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
213 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
214 }
214 }
215
215
216 status = get_message_queue_id_send( &queue_id_send );
216 status = get_message_queue_id_send( &queue_id_send );
217 if (status != RTEMS_SUCCESSFUL)
217 if (status != RTEMS_SUCCESSFUL)
218 {
218 {
219 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
219 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
220 }
220 }
221 status = get_message_queue_id_prc1( &queue_id_q_p1);
221 status = get_message_queue_id_prc1( &queue_id_q_p1);
222 if (status != RTEMS_SUCCESSFUL)
222 if (status != RTEMS_SUCCESSFUL)
223 {
223 {
224 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
224 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
225 }
225 }
226
226
227 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
227 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
228
228
229 while(1){
229 while(1){
230 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
230 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
231 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
231 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
232
232
233 incomingMsg = (asm_msg*) incomingData;
233 incomingMsg = (asm_msg*) incomingData;
234
234
235 localTime = getTimeAsUnsignedLongLongInt( );
235 localTime = getTimeAsUnsignedLongLongInt( );
236 //***********
236 //***********
237 //***********
237 //***********
238 // BURST SBM2
238 // BURST SBM2
239 //***********
239 //***********
240 //***********
240 //***********
241 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F1 )
241 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F1 )
242 {
242 {
243 // 1) compress the matrix for Basic Parameters calculation
243 // 1) compress the matrix for Basic Parameters calculation
244 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f1,
244 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f1,
245 nb_sm_before_f1.burst_sbm_bp1,
245 nb_sm_before_f1.burst_sbm_bp1,
246 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
246 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
247 ASM_F1_INDICE_START);
247 ASM_F1_INDICE_START);
248 // 2) compute the BP1 set
248 // 2) compute the BP1 set
249
249
250 // 3) send the BP1 set
250 // 3) send the BP1 set
251 set_time( packet_sbm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
251 set_time( packet_sbm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
252 set_time( packet_sbm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
252 set_time( packet_sbm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
253 BP_send( (char *) &packet_sbm_bp1.header, queue_id_send,
253 BP_send( (char *) &packet_sbm_bp1, queue_id_send,
254 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA);
254 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
255 SID_SBM2_BP1_F1 );
255 // 4) compute the BP2 set if needed
256 // 4) compute the BP2 set if needed
256 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F1 )
257 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F1 )
257 {
258 {
258 // 1) compute the BP2 set
259 // 1) compute the BP2 set
259
260
260 // 2) send the BP2 set
261 // 2) send the BP2 set
261 set_time( packet_sbm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
262 set_time( packet_sbm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
262 set_time( packet_sbm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
263 set_time( packet_sbm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
263 BP_send( (char *) &packet_sbm_bp2.header, queue_id_send,
264 BP_send( (char *) &packet_sbm_bp2, queue_id_send,
264 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA);
265 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
266 SID_SBM2_BP2_F1 );
265 }
267 }
266 }
268 }
267
269
268 //*****
270 //*****
269 //*****
271 //*****
270 // NORM
272 // NORM
271 //*****
273 //*****
272 //*****
274 //*****
273 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
275 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
274 {
276 {
275 // 1) compress the matrix for Basic Parameters calculation
277 // 1) compress the matrix for Basic Parameters calculation
276 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f1,
278 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f1,
277 nb_sm_before_f1.norm_bp1,
279 nb_sm_before_f1.norm_bp1,
278 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
280 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
279 ASM_F0_INDICE_START );
281 ASM_F0_INDICE_START );
280 // 2) compute the BP1 set
282 // 2) compute the BP1 set
281
283
282 // 3) send the BP1 set
284 // 3) send the BP1 set
283 set_time( packet_norm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
285 set_time( packet_norm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
284 set_time( packet_norm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
286 set_time( packet_norm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
285 BP_send( (char *) &packet_norm_bp1.header, queue_id_send,
287 BP_send( (char *) &packet_norm_bp1, queue_id_send,
286 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA);
288 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
289 SID_NORM_BP1_F1 );
287 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
290 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
288 {
291 {
289 // 1) compute the BP2 set
292 // 1) compute the BP2 set
290
293
291 // 2) send the BP2 set
294 // 2) send the BP2 set
292 set_time( packet_norm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
295 set_time( packet_norm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
293 set_time( packet_norm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
296 set_time( packet_norm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
294 BP_send( (char *) &packet_norm_bp2.header, queue_id_send,
297 BP_send( (char *) &packet_norm_bp2, queue_id_send,
295 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA);
298 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
299 SID_NORM_BP2_F1 );
296 }
300 }
297 }
301 }
298
302
299 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
303 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
300 {
304 {
301 // 1) reorganize the ASM and divide
305 // 1) reorganize the ASM and divide
302 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
306 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
303 asm_f1_reorganized,
307 asm_f1_reorganized,
304 nb_sm_before_f1.norm_bp1 );
308 nb_sm_before_f1.norm_bp1 );
305 // 2) convert the float array in a char array
309 // 2) convert the float array in a char array
306 ASM_convert( asm_f1_reorganized, asm_f1_char);
310 ASM_convert( asm_f1_reorganized, asm_f1_char);
307 // 3) send the spectral matrix packets
311 // 3) send the spectral matrix packets
308 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
312 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
309 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
313 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
310 ASM_send( &headerASM, asm_f1_char, SID_NORM_ASM_F1, &spw_ioctl_send_ASM, queue_id_send);
314 ASM_send( &headerASM, asm_f1_char, SID_NORM_ASM_F1, &spw_ioctl_send_ASM, queue_id_send);
311 }
315 }
312
316
313 }
317 }
314 }
318 }
315
319
316 //**********
320 //**********
317 // FUNCTIONS
321 // FUNCTIONS
318
322
319 void reset_nb_sm_f1( unsigned char lfrMode )
323 void reset_nb_sm_f1( unsigned char lfrMode )
320 {
324 {
321 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
325 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
322 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
326 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
323 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
327 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
324 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
328 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
325 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
329 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
326 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
330 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
327 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
331 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
328
332
329 if (lfrMode == LFR_MODE_SBM2)
333 if (lfrMode == LFR_MODE_SBM2)
330 {
334 {
331 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
335 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
332 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
336 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
333 }
337 }
334 else if (lfrMode == LFR_MODE_BURST)
338 else if (lfrMode == LFR_MODE_BURST)
335 {
339 {
336 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
340 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
337 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
341 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
338 }
342 }
339 else
343 else
340 {
344 {
341 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
345 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
342 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
346 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
343 }
347 }
344 }
348 }
345
349
@@ -1,251 +1,253
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf2_prc2.h"
10 #include "avf2_prc2.h"
11
11
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13
13
14 //***
14 //***
15 // F2
15 // F2
16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
17 ring_node_asm asm_ring_burst_sbm_f2[ NB_RING_NODES_ASM_BURST_SBM_F2 ];
17 ring_node_asm asm_ring_burst_sbm_f2[ NB_RING_NODES_ASM_BURST_SBM_F2 ];
18
18
19 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
19 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
20 char asm_f2_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
20 char asm_f2_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
21 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
21 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
22 float compressed_sm_sbm_f2 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 ];
22 float compressed_sm_sbm_f2 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 ];
23
23
24 //************
24 //************
25 // RTEMS TASKS
25 // RTEMS TASKS
26
26
27 //***
27 //***
28 // F2
28 // F2
29 rtems_task avf2_task( rtems_task_argument argument )
29 rtems_task avf2_task( rtems_task_argument argument )
30 {
30 {
31 rtems_event_set event_out;
31 rtems_event_set event_out;
32 rtems_status_code status;
32 rtems_status_code status;
33 rtems_id queue_id_prc2;
33 rtems_id queue_id_prc2;
34 asm_msg msgForMATR;
34 asm_msg msgForMATR;
35 ring_node_asm *current_ring_node_asm_norm_f2;
35 ring_node_asm *current_ring_node_asm_norm_f2;
36
36
37 unsigned int nb_norm_bp1;
37 unsigned int nb_norm_bp1;
38 unsigned int nb_norm_bp2;
38 unsigned int nb_norm_bp2;
39 unsigned int nb_norm_asm;
39 unsigned int nb_norm_asm;
40
40
41 nb_norm_bp1 = 0;
41 nb_norm_bp1 = 0;
42 nb_norm_bp2 = 0;
42 nb_norm_bp2 = 0;
43 nb_norm_asm = 0;
43 nb_norm_asm = 0;
44
44
45 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
45 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
46 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
46 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
47 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
47 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
48
48
49 BOOT_PRINTF("in AVF2 ***\n")
49 BOOT_PRINTF("in AVF2 ***\n")
50
50
51 status = get_message_queue_id_prc2( &queue_id_prc2 );
51 status = get_message_queue_id_prc2( &queue_id_prc2 );
52 if (status != RTEMS_SUCCESSFUL)
52 if (status != RTEMS_SUCCESSFUL)
53 {
53 {
54 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
54 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
55 }
55 }
56
56
57 while(1){
57 while(1){
58 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
58 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
59
59
60 // compute the average and store it in the averaged_sm_f2 buffer
60 // compute the average and store it in the averaged_sm_f2 buffer
61 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
61 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
62 ring_node_for_averaging_sm_f2,
62 ring_node_for_averaging_sm_f2,
63 nb_norm_bp1 );
63 nb_norm_bp1 );
64
64
65 // update nb_average
65 // update nb_average
66 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
66 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
67 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
67 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
68 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
68 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
69
69
70 //****************************************
70 //****************************************
71 // initialize the mesage for the MATR task
71 // initialize the mesage for the MATR task
72 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
72 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
73 msgForMATR.burst_sbm = NULL;
73 msgForMATR.burst_sbm = NULL;
74 msgForMATR.norm = current_ring_node_asm_norm_f2;
74 msgForMATR.norm = current_ring_node_asm_norm_f2;
75 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
75 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
76 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
76 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
77 msgForMATR.coarseTime = time_management_regs->coarse_time;
77 msgForMATR.coarseTime = time_management_regs->coarse_time;
78 msgForMATR.fineTime = time_management_regs->fine_time;
78 msgForMATR.fineTime = time_management_regs->fine_time;
79
79
80 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
80 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
81 {
81 {
82 nb_norm_bp1 = 0;
82 nb_norm_bp1 = 0;
83 // set another ring for the ASM storage
83 // set another ring for the ASM storage
84 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
84 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
85 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
85 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
86 || (lfrCurrentMode == LFR_MODE_SBM2) )
86 || (lfrCurrentMode == LFR_MODE_SBM2) )
87 {
87 {
88 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F2;
88 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F2;
89 }
89 }
90 }
90 }
91
91
92 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
92 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
93 {
93 {
94 nb_norm_bp2 = 0;
94 nb_norm_bp2 = 0;
95 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
95 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
96 || (lfrCurrentMode == LFR_MODE_SBM2) )
96 || (lfrCurrentMode == LFR_MODE_SBM2) )
97 {
97 {
98 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
98 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
99 }
99 }
100 }
100 }
101
101
102 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
102 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
103 {
103 {
104 nb_norm_asm = 0;
104 nb_norm_asm = 0;
105 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
105 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
106 || (lfrCurrentMode == LFR_MODE_SBM2) )
106 || (lfrCurrentMode == LFR_MODE_SBM2) )
107 {
107 {
108 // PRINTF1("%lld\n", localTime)
108 // PRINTF1("%lld\n", localTime)
109 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
109 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
110 }
110 }
111 }
111 }
112
112
113 //*************************
113 //*************************
114 // send the message to MATR
114 // send the message to MATR
115 if (msgForMATR.event != 0x00)
115 if (msgForMATR.event != 0x00)
116 {
116 {
117 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
117 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
118 }
118 }
119
119
120 if (status != RTEMS_SUCCESSFUL) {
120 if (status != RTEMS_SUCCESSFUL) {
121 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
121 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
122 }
122 }
123 }
123 }
124 }
124 }
125
125
126 rtems_task prc2_task( rtems_task_argument argument )
126 rtems_task prc2_task( rtems_task_argument argument )
127 {
127 {
128 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
128 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
129 size_t size; // size of the incoming TC packet
129 size_t size; // size of the incoming TC packet
130 asm_msg *incomingMsg;
130 asm_msg *incomingMsg;
131 //
131 //
132 spw_ioctl_pkt_send spw_ioctl_send_ASM;
132 spw_ioctl_pkt_send spw_ioctl_send_ASM;
133 rtems_status_code status;
133 rtems_status_code status;
134 rtems_id queue_id;
134 rtems_id queue_id;
135 rtems_id queue_id_q_p2;
135 rtems_id queue_id_q_p2;
136 Header_TM_LFR_SCIENCE_ASM_t headerASM;
136 Header_TM_LFR_SCIENCE_ASM_t headerASM;
137 bp_packet packet_norm_bp1_f2;
137 bp_packet packet_norm_bp1_f2;
138 bp_packet packet_norm_bp2_f2;
138 bp_packet packet_norm_bp2_f2;
139
139
140 unsigned long long int localTime;
140 unsigned long long int localTime;
141
141
142 ASM_init_header( &headerASM );
142 ASM_init_header( &headerASM );
143
143
144 //*************
144 //*************
145 // NORM headers
145 // NORM headers
146 BP_init_header( &packet_norm_bp1_f2.header,
146 BP_init_header( &packet_norm_bp1_f2.header,
147 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
147 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
148 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
148 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
149 BP_init_header( &packet_norm_bp2_f2.header,
149 BP_init_header( &packet_norm_bp2_f2.header,
150 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
150 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
151 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
151 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
152
152
153 status = get_message_queue_id_send( &queue_id );
153 status = get_message_queue_id_send( &queue_id );
154 if (status != RTEMS_SUCCESSFUL)
154 if (status != RTEMS_SUCCESSFUL)
155 {
155 {
156 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
156 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
157 }
157 }
158 status = get_message_queue_id_prc2( &queue_id_q_p2);
158 status = get_message_queue_id_prc2( &queue_id_q_p2);
159 if (status != RTEMS_SUCCESSFUL)
159 if (status != RTEMS_SUCCESSFUL)
160 {
160 {
161 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
161 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
162 }
162 }
163
163
164 BOOT_PRINTF("in PRC2 ***\n")
164 BOOT_PRINTF("in PRC2 ***\n")
165
165
166 while(1){
166 while(1){
167 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
167 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
168 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
168 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
169
169
170 incomingMsg = (asm_msg*) incomingData;
170 incomingMsg = (asm_msg*) incomingData;
171
171
172 localTime = getTimeAsUnsignedLongLongInt( );
172 localTime = getTimeAsUnsignedLongLongInt( );
173
173
174 //*****
174 //*****
175 //*****
175 //*****
176 // NORM
176 // NORM
177 //*****
177 //*****
178 //*****
178 //*****
179 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
179 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
180 {
180 {
181 // 1) compress the matrix for Basic Parameters calculation
181 // 1) compress the matrix for Basic Parameters calculation
182 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f2,
182 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f2,
183 nb_sm_before_f2.norm_bp1,
183 nb_sm_before_f2.norm_bp1,
184 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
184 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
185 ASM_F2_INDICE_START );
185 ASM_F2_INDICE_START );
186 // 2) compute the BP1 set
186 // 2) compute the BP1 set
187
187
188 // 3) send the BP1 set
188 // 3) send the BP1 set
189 set_time( packet_norm_bp1_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
189 set_time( packet_norm_bp1_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
190 set_time( packet_norm_bp1_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
190 set_time( packet_norm_bp1_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
191 BP_send( (char *) &packet_norm_bp1_f2.header, queue_id,
191 BP_send( (char *) &packet_norm_bp1_f2, queue_id,
192 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA);
192 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
193 SID_NORM_BP1_F2 );
193 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
194 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
194 {
195 {
195 // 1) compute the BP2 set using the same ASM as the one used for BP1
196 // 1) compute the BP2 set using the same ASM as the one used for BP1
196
197
197 // 2) send the BP2 set
198 // 2) send the BP2 set
198 set_time( packet_norm_bp2_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
199 set_time( packet_norm_bp2_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
199 set_time( packet_norm_bp2_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
200 set_time( packet_norm_bp2_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->fineTime );
200 BP_send( (char *) &packet_norm_bp2_f2.header, queue_id,
201 BP_send( (char *) &packet_norm_bp2_f2, queue_id,
201 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA);
202 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
203 SID_NORM_BP2_F2 );
202 }
204 }
203 }
205 }
204
206
205 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
207 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
206 {
208 {
207 // 1) reorganize the ASM and divide
209 // 1) reorganize the ASM and divide
208 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
210 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
209 asm_f2_reorganized,
211 asm_f2_reorganized,
210 nb_sm_before_f2.norm_bp1 );
212 nb_sm_before_f2.norm_bp1 );
211 // 2) convert the float array in a char array
213 // 2) convert the float array in a char array
212 ASM_convert( asm_f2_reorganized, asm_f2_char);
214 ASM_convert( asm_f2_reorganized, asm_f2_char);
213 // 3) send the spectral matrix packets
215 // 3) send the spectral matrix packets
214 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
216 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
215 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
217 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
216 ASM_send( &headerASM, asm_f2_char, SID_NORM_ASM_F2, &spw_ioctl_send_ASM, queue_id);
218 ASM_send( &headerASM, asm_f2_char, SID_NORM_ASM_F2, &spw_ioctl_send_ASM, queue_id);
217 }
219 }
218
220
219 }
221 }
220 }
222 }
221
223
222 //**********
224 //**********
223 // FUNCTIONS
225 // FUNCTIONS
224
226
225 void reset_nb_sm_f2( void )
227 void reset_nb_sm_f2( void )
226 {
228 {
227 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
229 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
228 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
230 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
229 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
231 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
230 }
232 }
231
233
232 void SM_average_f2( float *averaged_spec_mat_f2,
234 void SM_average_f2( float *averaged_spec_mat_f2,
233 ring_node_sm *ring_node,
235 ring_node_sm *ring_node,
234 unsigned int nbAverageNormF2 )
236 unsigned int nbAverageNormF2 )
235 {
237 {
236 float sum;
238 float sum;
237 unsigned int i;
239 unsigned int i;
238
240
239 for(i=0; i<TOTAL_SIZE_SM; i++)
241 for(i=0; i<TOTAL_SIZE_SM; i++)
240 {
242 {
241 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
243 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
242 if ( (nbAverageNormF2 == 0) )
244 if ( (nbAverageNormF2 == 0) )
243 {
245 {
244 averaged_spec_mat_f2[ i ] = sum;
246 averaged_spec_mat_f2[ i ] = sum;
245 }
247 }
246 else
248 else
247 {
249 {
248 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
250 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
249 }
251 }
250 }
252 }
251 }
253 }
@@ -1,455 +1,458
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "fsw_processing.h"
10 #include "fsw_processing.h"
11 #include "fsw_processing_globals.c"
11 #include "fsw_processing_globals.c"
12
12
13 unsigned int nb_sm_f0;
13 unsigned int nb_sm_f0;
14 unsigned int nb_sm_f0_aux_f1;
14 unsigned int nb_sm_f0_aux_f1;
15 unsigned int nb_sm_f1;
15 unsigned int nb_sm_f1;
16 unsigned int nb_sm_f0_aux_f2;
16 unsigned int nb_sm_f0_aux_f2;
17
17
18 //************************
18 //************************
19 // spectral matrices rings
19 // spectral matrices rings
20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 ring_node_sm *current_ring_node_sm_f0;
23 ring_node_sm *current_ring_node_sm_f0;
24 ring_node_sm *current_ring_node_sm_f1;
24 ring_node_sm *current_ring_node_sm_f1;
25 ring_node_sm *current_ring_node_sm_f2;
25 ring_node_sm *current_ring_node_sm_f2;
26 ring_node_sm *ring_node_for_averaging_sm_f0;
26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 ring_node_sm *ring_node_for_averaging_sm_f1;
27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 ring_node_sm *ring_node_for_averaging_sm_f2;
28 ring_node_sm *ring_node_for_averaging_sm_f2;
29
29
30 //***********************************************************
30 //***********************************************************
31 // Interrupt Service Routine for spectral matrices processing
31 // Interrupt Service Routine for spectral matrices processing
32
32
33 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
33 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
34 {
34 {
35 // ring_node_sm *previous_ring_node_sm_f0;
35 // ring_node_sm *previous_ring_node_sm_f0;
36
36
37 //// rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
37 //// rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
38
38
39 // previous_ring_node_sm_f0 = current_ring_node_sm_f0;
39 // previous_ring_node_sm_f0 = current_ring_node_sm_f0;
40
40
41 // if ( (spectral_matrix_regs->status & 0x2) == 0x02) // check ready matrix bit f0_1
41 // if ( (spectral_matrix_regs->status & 0x2) == 0x02) // check ready matrix bit f0_1
42 // {
42 // {
43 // current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
43 // current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
44 // spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
44 // spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
45 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
45 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
46 // nb_sm_f0 = nb_sm_f0 + 1;
46 // nb_sm_f0 = nb_sm_f0 + 1;
47 // }
47 // }
48
48
49 // //************************
49 // //************************
50 // // reset status error bits
50 // // reset status error bits
51 // if ( (spectral_matrix_regs->status & 0x30) != 0x00)
51 // if ( (spectral_matrix_regs->status & 0x30) != 0x00)
52 // {
52 // {
53 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
53 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
54 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
54 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
55 // }
55 // }
56
56
57 // //**************************************
57 // //**************************************
58 // // reset ready matrix bits for f0_0, f1 and f2
58 // // reset ready matrix bits for f0_0, f1 and f2
59 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff2; // 0010
59 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff2; // 0010
60
60
61 // if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
61 // if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
62 // {
62 // {
63 // ring_node_for_averaging_sm_f0 = previous_ring_node_sm_f0;
63 // ring_node_for_averaging_sm_f0 = previous_ring_node_sm_f0;
64 // if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
64 // if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
65 // {
65 // {
66 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
66 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
67 // }
67 // }
68 // nb_sm_f0 = 0;
68 // nb_sm_f0 = 0;
69 // }
69 // }
70
70
71 }
71 }
72
72
73 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
73 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
74 {
74 {
75 //***
75 //***
76 // F0
76 // F0
77 nb_sm_f0 = nb_sm_f0 + 1;
77 nb_sm_f0 = nb_sm_f0 + 1;
78 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
78 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
79 {
79 {
80 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
80 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
81 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
81 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
82 {
82 {
83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
84 }
84 }
85 nb_sm_f0 = 0;
85 nb_sm_f0 = 0;
86 }
86 }
87
87
88 //***
88 //***
89 // F1
89 // F1
90 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
90 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
91 if (nb_sm_f0_aux_f1 == 6)
91 if (nb_sm_f0_aux_f1 == 6)
92 {
92 {
93 nb_sm_f0_aux_f1 = 0;
93 nb_sm_f0_aux_f1 = 0;
94 nb_sm_f1 = nb_sm_f1 + 1;
94 nb_sm_f1 = nb_sm_f1 + 1;
95 }
95 }
96 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
96 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
97 {
97 {
98 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
98 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
99 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
99 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
100 {
100 {
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
102 }
102 }
103 nb_sm_f1 = 0;
103 nb_sm_f1 = 0;
104 }
104 }
105
105
106 //***
106 //***
107 // F2
107 // F2
108 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
108 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
109 if (nb_sm_f0_aux_f2 == 96)
109 if (nb_sm_f0_aux_f2 == 96)
110 {
110 {
111 nb_sm_f0_aux_f2 = 0;
111 nb_sm_f0_aux_f2 = 0;
112 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
112 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
113 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
113 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
114 {
114 {
115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
116 }
116 }
117 }
117 }
118 }
118 }
119
119
120 //******************
120 //******************
121 // Spectral Matrices
121 // Spectral Matrices
122
122
123 void reset_nb_sm( void )
123 void reset_nb_sm( void )
124 {
124 {
125 nb_sm_f0 = 0;
125 nb_sm_f0 = 0;
126 nb_sm_f0_aux_f1 = 0;
126 nb_sm_f0_aux_f1 = 0;
127 nb_sm_f0_aux_f2 = 0;
127 nb_sm_f0_aux_f2 = 0;
128
128
129 nb_sm_f1 = 0;
129 nb_sm_f1 = 0;
130 }
130 }
131
131
132 void SM_init_rings( void )
132 void SM_init_rings( void )
133 {
133 {
134 unsigned char i;
134 unsigned char i;
135
135
136 // F0 RING
136 // F0 RING
137 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
137 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
138 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
138 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
139 sm_ring_f0[0].buffer_address =
139 sm_ring_f0[0].buffer_address =
140 (int) &sm_f0[ 0 ];
140 (int) &sm_f0[ 0 ];
141
141
142 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
142 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
143 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
143 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
144 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
144 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
145 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
145 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
146
146
147 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
147 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
148 {
148 {
149 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
149 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
150 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
150 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
151 sm_ring_f0[i].buffer_address =
151 sm_ring_f0[i].buffer_address =
152 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
152 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
153 }
153 }
154
154
155 // F1 RING
155 // F1 RING
156 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
156 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
157 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
157 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
158 sm_ring_f1[0].buffer_address =
158 sm_ring_f1[0].buffer_address =
159 (int) &sm_f1[ 0 ];
159 (int) &sm_f1[ 0 ];
160
160
161 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
161 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
162 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
162 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
163 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
163 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
164 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
164 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
165
165
166 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
166 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
167 {
167 {
168 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
168 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
169 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
169 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
170 sm_ring_f1[i].buffer_address =
170 sm_ring_f1[i].buffer_address =
171 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
171 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
172 }
172 }
173
173
174 // F2 RING
174 // F2 RING
175 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
175 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
176 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
176 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
177 sm_ring_f2[0].buffer_address =
177 sm_ring_f2[0].buffer_address =
178 (int) &sm_f2[ 0 ];
178 (int) &sm_f2[ 0 ];
179
179
180 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
180 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
181 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
181 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
182 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
182 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
183 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
183 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
184
184
185 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
185 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
186 {
186 {
187 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
187 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
188 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
188 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
189 sm_ring_f2[i].buffer_address =
189 sm_ring_f2[i].buffer_address =
190 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
190 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
191 }
191 }
192
192
193 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
193 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
194 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
194 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
195 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
195 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
196
196
197 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
197 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
198 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
198 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
199 }
199 }
200
200
201 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
201 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
202 {
202 {
203 unsigned char i;
203 unsigned char i;
204
204
205 ring[ nbNodes - 1 ].next
205 ring[ nbNodes - 1 ].next
206 = (ring_node_asm*) &ring[ 0 ];
206 = (ring_node_asm*) &ring[ 0 ];
207
207
208 for(i=0; i<nbNodes-1; i++)
208 for(i=0; i<nbNodes-1; i++)
209 {
209 {
210 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
210 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
211 }
211 }
212 }
212 }
213
213
214 void SM_reset_current_ring_nodes( void )
214 void SM_reset_current_ring_nodes( void )
215 {
215 {
216 current_ring_node_sm_f0 = sm_ring_f0;
216 current_ring_node_sm_f0 = sm_ring_f0;
217 current_ring_node_sm_f1 = sm_ring_f1;
217 current_ring_node_sm_f1 = sm_ring_f1;
218 current_ring_node_sm_f2 = sm_ring_f2;
218 current_ring_node_sm_f2 = sm_ring_f2;
219
219
220 ring_node_for_averaging_sm_f0 = sm_ring_f0;
220 ring_node_for_averaging_sm_f0 = sm_ring_f0;
221 ring_node_for_averaging_sm_f1 = sm_ring_f1;
221 ring_node_for_averaging_sm_f1 = sm_ring_f1;
222 ring_node_for_averaging_sm_f2 = sm_ring_f2;
222 ring_node_for_averaging_sm_f2 = sm_ring_f2;
223 }
223 }
224
224
225 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
225 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
226 {
226 {
227 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
227 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
228 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
228 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
229 header->reserved = 0x00;
229 header->reserved = 0x00;
230 header->userApplication = CCSDS_USER_APP;
230 header->userApplication = CCSDS_USER_APP;
231 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
231 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
232 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
232 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
233 header->packetSequenceControl[0] = 0xc0;
233 header->packetSequenceControl[0] = 0xc0;
234 header->packetSequenceControl[1] = 0x00;
234 header->packetSequenceControl[1] = 0x00;
235 header->packetLength[0] = 0x00;
235 header->packetLength[0] = 0x00;
236 header->packetLength[1] = 0x00;
236 header->packetLength[1] = 0x00;
237 // DATA FIELD HEADER
237 // DATA FIELD HEADER
238 header->spare1_pusVersion_spare2 = 0x10;
238 header->spare1_pusVersion_spare2 = 0x10;
239 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
239 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
240 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
240 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
241 header->destinationID = TM_DESTINATION_ID_GROUND;
241 header->destinationID = TM_DESTINATION_ID_GROUND;
242 // AUXILIARY DATA HEADER
242 // AUXILIARY DATA HEADER
243 header->sid = 0x00;
243 header->sid = 0x00;
244 header->biaStatusInfo = 0x00;
244 header->biaStatusInfo = 0x00;
245 header->pa_lfr_pkt_cnt_asm = 0x00;
245 header->pa_lfr_pkt_cnt_asm = 0x00;
246 header->pa_lfr_pkt_nr_asm = 0x00;
246 header->pa_lfr_pkt_nr_asm = 0x00;
247 header->time[0] = 0x00;
247 header->time[0] = 0x00;
248 header->time[0] = 0x00;
248 header->time[0] = 0x00;
249 header->time[0] = 0x00;
249 header->time[0] = 0x00;
250 header->time[0] = 0x00;
250 header->time[0] = 0x00;
251 header->time[0] = 0x00;
251 header->time[0] = 0x00;
252 header->time[0] = 0x00;
252 header->time[0] = 0x00;
253 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
253 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
254 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
254 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
255 }
255 }
256
256
257 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
257 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
258 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
258 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
259 {
259 {
260 unsigned int i;
260 unsigned int i;
261 unsigned int length = 0;
261 unsigned int length = 0;
262 rtems_status_code status;
262 rtems_status_code status;
263
263
264 for (i=0; i<2; i++)
264 for (i=0; i<2; i++)
265 {
265 {
266 // (1) BUILD THE DATA
266 // (1) BUILD THE DATA
267 switch(sid)
267 switch(sid)
268 {
268 {
269 case SID_NORM_ASM_F0:
269 case SID_NORM_ASM_F0:
270 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
270 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
271 spw_ioctl_send->data = &spectral_matrix[
271 spw_ioctl_send->data = &spectral_matrix[
272 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
272 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
273 ];
273 ];
274 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
274 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
275 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
275 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
276 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
276 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
277 break;
277 break;
278 case SID_NORM_ASM_F1:
278 case SID_NORM_ASM_F1:
279 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
279 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
280 spw_ioctl_send->data = &spectral_matrix[
280 spw_ioctl_send->data = &spectral_matrix[
281 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
281 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
282 ];
282 ];
283 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
283 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
284 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
284 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
285 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
285 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
286 break;
286 break;
287 case SID_NORM_ASM_F2:
287 case SID_NORM_ASM_F2:
288 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
288 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
289 spw_ioctl_send->data = &spectral_matrix[
289 spw_ioctl_send->data = &spectral_matrix[
290 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
290 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
291 ];
291 ];
292 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
292 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
293 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
293 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
294 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
294 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
295 break;
295 break;
296 default:
296 default:
297 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
297 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
298 break;
298 break;
299 }
299 }
300 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
300 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
301 spw_ioctl_send->hdr = (char *) header;
301 spw_ioctl_send->hdr = (char *) header;
302 spw_ioctl_send->options = 0;
302 spw_ioctl_send->options = 0;
303
303
304 // (2) BUILD THE HEADER
304 // (2) BUILD THE HEADER
305 increment_seq_counter_source_id( header->packetSequenceControl, sid );
305 header->packetLength[0] = (unsigned char) (length>>8);
306 header->packetLength[0] = (unsigned char) (length>>8);
306 header->packetLength[1] = (unsigned char) (length);
307 header->packetLength[1] = (unsigned char) (length);
307 header->sid = (unsigned char) sid; // SID
308 header->sid = (unsigned char) sid; // SID
308 header->pa_lfr_pkt_cnt_asm = 2;
309 header->pa_lfr_pkt_cnt_asm = 2;
309 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
310 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
310
311
311 // (3) SET PACKET TIME
312 // (3) SET PACKET TIME
312 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
313 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
313 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
314 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
314 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
315 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
315 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
316 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
316 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
317 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
317 header->time[5] = (unsigned char) (time_management_regs->fine_time);
318 header->time[5] = (unsigned char) (time_management_regs->fine_time);
318 //
319 //
319 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
320 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
320 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
321 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
321 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
322 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
322 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
323 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
323 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
324 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
324 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
325 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
325
326
326 // (4) SEND PACKET
327 // (4) SEND PACKET
327 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
328 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
328 if (status != RTEMS_SUCCESSFUL) {
329 if (status != RTEMS_SUCCESSFUL) {
329 printf("in ASM_send *** ERR %d\n", (int) status);
330 printf("in ASM_send *** ERR %d\n", (int) status);
330 }
331 }
331 }
332 }
332 }
333 }
333
334
334 //*****************
335 //*****************
335 // Basic Parameters
336 // Basic Parameters
336
337
337 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
338 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
338 unsigned int apid, unsigned char sid,
339 unsigned int apid, unsigned char sid,
339 unsigned int packetLength, unsigned char blkNr )
340 unsigned int packetLength, unsigned char blkNr )
340 {
341 {
341 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
342 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
342 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
343 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
343 header->reserved = 0x00;
344 header->reserved = 0x00;
344 header->userApplication = CCSDS_USER_APP;
345 header->userApplication = CCSDS_USER_APP;
345 header->packetID[0] = (unsigned char) (apid >> 8);
346 header->packetID[0] = (unsigned char) (apid >> 8);
346 header->packetID[1] = (unsigned char) (apid);
347 header->packetID[1] = (unsigned char) (apid);
347 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
348 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
348 header->packetSequenceControl[1] = 0x00;
349 header->packetSequenceControl[1] = 0x00;
349 header->packetLength[0] = (unsigned char) (packetLength >> 8);
350 header->packetLength[0] = (unsigned char) (packetLength >> 8);
350 header->packetLength[1] = (unsigned char) (packetLength);
351 header->packetLength[1] = (unsigned char) (packetLength);
351 // DATA FIELD HEADER
352 // DATA FIELD HEADER
352 header->spare1_pusVersion_spare2 = 0x10;
353 header->spare1_pusVersion_spare2 = 0x10;
353 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
354 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
354 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
355 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
355 header->destinationID = TM_DESTINATION_ID_GROUND;
356 header->destinationID = TM_DESTINATION_ID_GROUND;
356 // AUXILIARY DATA HEADER
357 // AUXILIARY DATA HEADER
357 header->sid = sid;
358 header->sid = sid;
358 header->biaStatusInfo = 0x00;
359 header->biaStatusInfo = 0x00;
359 header->time[0] = 0x00;
360 header->time[0] = 0x00;
360 header->time[0] = 0x00;
361 header->time[0] = 0x00;
361 header->time[0] = 0x00;
362 header->time[0] = 0x00;
362 header->time[0] = 0x00;
363 header->time[0] = 0x00;
363 header->time[0] = 0x00;
364 header->time[0] = 0x00;
364 header->time[0] = 0x00;
365 header->time[0] = 0x00;
365 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
366 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
366 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
367 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
367 }
368 }
368
369
369 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
370 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
370 unsigned int apid, unsigned char sid,
371 unsigned int apid, unsigned char sid,
371 unsigned int packetLength , unsigned char blkNr)
372 unsigned int packetLength , unsigned char blkNr)
372 {
373 {
373 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
374 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
374 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
375 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
375 header->reserved = 0x00;
376 header->reserved = 0x00;
376 header->userApplication = CCSDS_USER_APP;
377 header->userApplication = CCSDS_USER_APP;
377 header->packetID[0] = (unsigned char) (apid >> 8);
378 header->packetID[0] = (unsigned char) (apid >> 8);
378 header->packetID[1] = (unsigned char) (apid);
379 header->packetID[1] = (unsigned char) (apid);
379 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
380 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
380 header->packetSequenceControl[1] = 0x00;
381 header->packetSequenceControl[1] = 0x00;
381 header->packetLength[0] = (unsigned char) (packetLength >> 8);
382 header->packetLength[0] = (unsigned char) (packetLength >> 8);
382 header->packetLength[1] = (unsigned char) (packetLength);
383 header->packetLength[1] = (unsigned char) (packetLength);
383 // DATA FIELD HEADER
384 // DATA FIELD HEADER
384 header->spare1_pusVersion_spare2 = 0x10;
385 header->spare1_pusVersion_spare2 = 0x10;
385 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
386 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
386 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
387 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
387 header->destinationID = TM_DESTINATION_ID_GROUND;
388 header->destinationID = TM_DESTINATION_ID_GROUND;
388 // AUXILIARY DATA HEADER
389 // AUXILIARY DATA HEADER
389 header->sid = sid;
390 header->sid = sid;
390 header->biaStatusInfo = 0x00;
391 header->biaStatusInfo = 0x00;
391 header->time[0] = 0x00;
392 header->time[0] = 0x00;
392 header->time[0] = 0x00;
393 header->time[0] = 0x00;
393 header->time[0] = 0x00;
394 header->time[0] = 0x00;
394 header->time[0] = 0x00;
395 header->time[0] = 0x00;
395 header->time[0] = 0x00;
396 header->time[0] = 0x00;
396 header->time[0] = 0x00;
397 header->time[0] = 0x00;
397 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
398 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
398 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
399 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
399 }
400 }
400
401
401 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend )
402 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
402 {
403 {
403 rtems_status_code status;
404 rtems_status_code status;
404
405
406 // SET THE SEQUENCE_CNT PARAMETER
407 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
405 // SEND PACKET
408 // SEND PACKET
406 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
409 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
407 if (status != RTEMS_SUCCESSFUL)
410 if (status != RTEMS_SUCCESSFUL)
408 {
411 {
409 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
412 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
410 }
413 }
411 }
414 }
412
415
413 //******************
416 //******************
414 // general functions
417 // general functions
415
418
416 void reset_spectral_matrix_regs( void )
419 void reset_spectral_matrix_regs( void )
417 {
420 {
418 /** This function resets the spectral matrices module registers.
421 /** This function resets the spectral matrices module registers.
419 *
422 *
420 * The registers affected by this function are located at the following offset addresses:
423 * The registers affected by this function are located at the following offset addresses:
421 *
424 *
422 * - 0x00 config
425 * - 0x00 config
423 * - 0x04 status
426 * - 0x04 status
424 * - 0x08 matrixF0_Address0
427 * - 0x08 matrixF0_Address0
425 * - 0x10 matrixFO_Address1
428 * - 0x10 matrixFO_Address1
426 * - 0x14 matrixF1_Address
429 * - 0x14 matrixF1_Address
427 * - 0x18 matrixF2_Address
430 * - 0x18 matrixF2_Address
428 *
431 *
429 */
432 */
430
433
431 spectral_matrix_regs->config = 0x00;
434 spectral_matrix_regs->config = 0x00;
432 spectral_matrix_regs->status = 0x00;
435 spectral_matrix_regs->status = 0x00;
433
436
434 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
437 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
435 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
438 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
436 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
439 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
437 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
440 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
438 }
441 }
439
442
440 void set_time( unsigned char *time, unsigned char * timeInBuffer )
443 void set_time( unsigned char *time, unsigned char * timeInBuffer )
441 {
444 {
442 // time[0] = timeInBuffer[2];
445 // time[0] = timeInBuffer[2];
443 // time[1] = timeInBuffer[3];
446 // time[1] = timeInBuffer[3];
444 // time[2] = timeInBuffer[0];
447 // time[2] = timeInBuffer[0];
445 // time[3] = timeInBuffer[1];
448 // time[3] = timeInBuffer[1];
446 // time[4] = timeInBuffer[6];
449 // time[4] = timeInBuffer[6];
447 // time[5] = timeInBuffer[7];
450 // time[5] = timeInBuffer[7];
448
451
449 time[0] = timeInBuffer[0];
452 time[0] = timeInBuffer[0];
450 time[1] = timeInBuffer[1];
453 time[1] = timeInBuffer[1];
451 time[2] = timeInBuffer[2];
454 time[2] = timeInBuffer[2];
452 time[3] = timeInBuffer[3];
455 time[3] = timeInBuffer[3];
453 time[4] = timeInBuffer[6];
456 time[4] = timeInBuffer[6];
454 time[5] = timeInBuffer[7];
457 time[5] = timeInBuffer[7];
455 }
458 }
@@ -1,950 +1,949
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14
14
15 //***********
15 //***********
16 // RTEMS TASK
16 // RTEMS TASK
17
17
18 rtems_task actn_task( rtems_task_argument unused )
18 rtems_task actn_task( rtems_task_argument unused )
19 {
19 {
20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 *
21 *
22 * @param unused is the starting argument of the RTEMS task
22 * @param unused is the starting argument of the RTEMS task
23 *
23 *
24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * on the incoming TeleCommand.
25 * on the incoming TeleCommand.
26 *
26 *
27 */
27 */
28
28
29 int result;
29 int result;
30 rtems_status_code status; // RTEMS status code
30 rtems_status_code status; // RTEMS status code
31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 size_t size; // size of the incoming TC packet
32 size_t size; // size of the incoming TC packet
33 unsigned char subtype; // subtype of the current TC packet
33 unsigned char subtype; // subtype of the current TC packet
34 unsigned char time[6];
34 unsigned char time[6];
35 rtems_id queue_rcv_id;
35 rtems_id queue_rcv_id;
36 rtems_id queue_snd_id;
36 rtems_id queue_snd_id;
37
37
38 status = get_message_queue_id_recv( &queue_rcv_id );
38 status = get_message_queue_id_recv( &queue_rcv_id );
39 if (status != RTEMS_SUCCESSFUL)
39 if (status != RTEMS_SUCCESSFUL)
40 {
40 {
41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 }
42 }
43
43
44 status = get_message_queue_id_send( &queue_snd_id );
44 status = get_message_queue_id_send( &queue_snd_id );
45 if (status != RTEMS_SUCCESSFUL)
45 if (status != RTEMS_SUCCESSFUL)
46 {
46 {
47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 }
48 }
49
49
50 result = LFR_SUCCESSFUL;
50 result = LFR_SUCCESSFUL;
51 subtype = 0; // subtype of the current TC packet
51 subtype = 0; // subtype of the current TC packet
52
52
53 BOOT_PRINTF("in ACTN *** \n")
53 BOOT_PRINTF("in ACTN *** \n")
54
54
55 while(1)
55 while(1)
56 {
56 {
57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 getTime( time ); // set time to the current time
59 getTime( time ); // set time to the current time
60 if (status!=RTEMS_SUCCESSFUL)
60 if (status!=RTEMS_SUCCESSFUL)
61 {
61 {
62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 }
63 }
64 else
64 else
65 {
65 {
66 subtype = TC.serviceSubType;
66 subtype = TC.serviceSubType;
67 switch(subtype)
67 switch(subtype)
68 {
68 {
69 case TC_SUBTYPE_RESET:
69 case TC_SUBTYPE_RESET:
70 result = action_reset( &TC, queue_snd_id, time );
70 result = action_reset( &TC, queue_snd_id, time );
71 close_action( &TC, result, queue_snd_id );
71 close_action( &TC, result, queue_snd_id );
72 break;
72 break;
73 //
73 //
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 //
78 //
79 case TC_SUBTYPE_LOAD_NORM:
79 case TC_SUBTYPE_LOAD_NORM:
80 result = action_load_normal_par( &TC, queue_snd_id, time );
80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 close_action( &TC, result, queue_snd_id );
81 close_action( &TC, result, queue_snd_id );
82 break;
82 break;
83 //
83 //
84 case TC_SUBTYPE_LOAD_BURST:
84 case TC_SUBTYPE_LOAD_BURST:
85 result = action_load_burst_par( &TC, queue_snd_id, time );
85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 close_action( &TC, result, queue_snd_id );
86 close_action( &TC, result, queue_snd_id );
87 break;
87 break;
88 //
88 //
89 case TC_SUBTYPE_LOAD_SBM1:
89 case TC_SUBTYPE_LOAD_SBM1:
90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 close_action( &TC, result, queue_snd_id );
91 close_action( &TC, result, queue_snd_id );
92 break;
92 break;
93 //
93 //
94 case TC_SUBTYPE_LOAD_SBM2:
94 case TC_SUBTYPE_LOAD_SBM2:
95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 //
98 //
99 case TC_SUBTYPE_DUMP:
99 case TC_SUBTYPE_DUMP:
100 result = action_dump_par( queue_snd_id );
100 result = action_dump_par( queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
102 break;
102 break;
103 //
103 //
104 case TC_SUBTYPE_ENTER:
104 case TC_SUBTYPE_ENTER:
105 result = action_enter_mode( &TC, queue_snd_id );
105 result = action_enter_mode( &TC, queue_snd_id );
106 close_action( &TC, result, queue_snd_id );
106 close_action( &TC, result, queue_snd_id );
107 break;
107 break;
108 //
108 //
109 case TC_SUBTYPE_UPDT_INFO:
109 case TC_SUBTYPE_UPDT_INFO:
110 result = action_update_info( &TC, queue_snd_id );
110 result = action_update_info( &TC, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
112 break;
112 break;
113 //
113 //
114 case TC_SUBTYPE_EN_CAL:
114 case TC_SUBTYPE_EN_CAL:
115 result = action_enable_calibration( &TC, queue_snd_id, time );
115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 //
118 //
119 case TC_SUBTYPE_DIS_CAL:
119 case TC_SUBTYPE_DIS_CAL:
120 result = action_disable_calibration( &TC, queue_snd_id, time );
120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
121 close_action( &TC, result, queue_snd_id );
122 break;
122 break;
123 //
123 //
124 case TC_SUBTYPE_UPDT_TIME:
124 case TC_SUBTYPE_UPDT_TIME:
125 result = action_update_time( &TC );
125 result = action_update_time( &TC );
126 close_action( &TC, result, queue_snd_id );
126 close_action( &TC, result, queue_snd_id );
127 break;
127 break;
128 //
128 //
129 default:
129 default:
130 break;
130 break;
131 }
131 }
132 }
132 }
133 }
133 }
134 }
134 }
135
135
136 //***********
136 //***********
137 // TC ACTIONS
137 // TC ACTIONS
138
138
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 {
140 {
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 *
142 *
143 * @param TC points to the TeleCommand packet that is being processed
143 * @param TC points to the TeleCommand packet that is being processed
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 *
145 *
146 */
146 */
147
147
148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 return LFR_DEFAULT;
149 return LFR_DEFAULT;
150 }
150 }
151
151
152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 {
153 {
154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 *
155 *
156 * @param TC points to the TeleCommand packet that is being processed
156 * @param TC points to the TeleCommand packet that is being processed
157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 *
158 *
159 */
159 */
160
160
161 rtems_status_code status;
161 rtems_status_code status;
162 unsigned char requestedMode;
162 unsigned char requestedMode;
163 unsigned int *transitionCoarseTime_ptr;
163 unsigned int *transitionCoarseTime_ptr;
164 unsigned int transitionCoarseTime;
164 unsigned int transitionCoarseTime;
165 unsigned char * bytePosPtr;
165 unsigned char * bytePosPtr;
166
166
167 bytePosPtr = (unsigned char *) &TC->packetID;
167 bytePosPtr = (unsigned char *) &TC->packetID;
168
168
169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172
172
173 status = check_mode_value( requestedMode );
173 status = check_mode_value( requestedMode );
174
174
175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 {
176 {
177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 }
178 }
179 else // the mode value is consistent, check the transition
179 else // the mode value is consistent, check the transition
180 {
180 {
181 status = check_mode_transition(requestedMode);
181 status = check_mode_transition(requestedMode);
182 if (status != LFR_SUCCESSFUL)
182 if (status != LFR_SUCCESSFUL)
183 {
183 {
184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 }
186 }
187 }
187 }
188
188
189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 {
190 {
191 status = check_transition_date( transitionCoarseTime );
191 status = check_transition_date( transitionCoarseTime );
192 if (status != LFR_SUCCESSFUL)
192 if (status != LFR_SUCCESSFUL)
193 {
193 {
194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 }
198 }
199 }
199 }
200
200
201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 {
202 {
203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 status = enter_mode( requestedMode, transitionCoarseTime );
204 status = enter_mode( requestedMode, transitionCoarseTime );
205 }
205 }
206
206
207 return status;
207 return status;
208 }
208 }
209
209
210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 {
211 {
212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 *
213 *
214 * @param TC points to the TeleCommand packet that is being processed
214 * @param TC points to the TeleCommand packet that is being processed
215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 *
216 *
217 * @return LFR directive status code:
217 * @return LFR directive status code:
218 * - LFR_DEFAULT
218 * - LFR_DEFAULT
219 * - LFR_SUCCESSFUL
219 * - LFR_SUCCESSFUL
220 *
220 *
221 */
221 */
222
222
223 unsigned int val;
223 unsigned int val;
224 int result;
224 int result;
225 unsigned int status;
225 unsigned int status;
226 unsigned char mode;
226 unsigned char mode;
227 unsigned char * bytePosPtr;
227 unsigned char * bytePosPtr;
228
228
229 bytePosPtr = (unsigned char *) &TC->packetID;
229 bytePosPtr = (unsigned char *) &TC->packetID;
230
230
231 // check LFR mode
231 // check LFR mode
232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 status = check_update_info_hk_lfr_mode( mode );
233 status = check_update_info_hk_lfr_mode( mode );
234 if (status == LFR_SUCCESSFUL) // check TDS mode
234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 {
235 {
236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 status = check_update_info_hk_tds_mode( mode );
237 status = check_update_info_hk_tds_mode( mode );
238 }
238 }
239 if (status == LFR_SUCCESSFUL) // check THR mode
239 if (status == LFR_SUCCESSFUL) // check THR mode
240 {
240 {
241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 status = check_update_info_hk_thr_mode( mode );
242 status = check_update_info_hk_thr_mode( mode );
243 }
243 }
244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 {
245 {
246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 val++;
248 val++;
249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 }
251 }
252
252
253 result = status;
253 result = status;
254
254
255 return result;
255 return result;
256 }
256 }
257
257
258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 {
259 {
260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 *
261 *
262 * @param TC points to the TeleCommand packet that is being processed
262 * @param TC points to the TeleCommand packet that is being processed
263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 *
264 *
265 */
265 */
266
266
267 int result;
267 int result;
268 unsigned char lfrMode;
268 unsigned char lfrMode;
269
269
270 result = LFR_DEFAULT;
270 result = LFR_DEFAULT;
271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272
272
273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 result = LFR_DEFAULT;
274 result = LFR_DEFAULT;
275
275
276 return result;
276 return result;
277 }
277 }
278
278
279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 {
280 {
281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 *
282 *
283 * @param TC points to the TeleCommand packet that is being processed
283 * @param TC points to the TeleCommand packet that is being processed
284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 *
285 *
286 */
286 */
287
287
288 int result;
288 int result;
289 unsigned char lfrMode;
289 unsigned char lfrMode;
290
290
291 result = LFR_DEFAULT;
291 result = LFR_DEFAULT;
292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293
293
294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 result = LFR_DEFAULT;
295 result = LFR_DEFAULT;
296
296
297 return result;
297 return result;
298 }
298 }
299
299
300 int action_update_time(ccsdsTelecommandPacket_t *TC)
300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 {
301 {
302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 *
303 *
304 * @param TC points to the TeleCommand packet that is being processed
304 * @param TC points to the TeleCommand packet that is being processed
305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 *
306 *
307 * @return LFR_SUCCESSFUL
307 * @return LFR_SUCCESSFUL
308 *
308 *
309 */
309 */
310
310
311 unsigned int val;
311 unsigned int val;
312
312
313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 + (TC->dataAndCRC[1] << 16)
314 + (TC->dataAndCRC[1] << 16)
315 + (TC->dataAndCRC[2] << 8)
315 + (TC->dataAndCRC[2] << 8)
316 + TC->dataAndCRC[3];
316 + TC->dataAndCRC[3];
317
317
318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319
319
320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 val++;
322 val++;
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326
326
327 return LFR_SUCCESSFUL;
327 return LFR_SUCCESSFUL;
328 }
328 }
329
329
330 //*******************
330 //*******************
331 // ENTERING THE MODES
331 // ENTERING THE MODES
332 int check_mode_value( unsigned char requestedMode )
332 int check_mode_value( unsigned char requestedMode )
333 {
333 {
334 int status;
334 int status;
335
335
336 if ( (requestedMode != LFR_MODE_STANDBY)
336 if ( (requestedMode != LFR_MODE_STANDBY)
337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 {
339 {
340 status = LFR_DEFAULT;
340 status = LFR_DEFAULT;
341 }
341 }
342 else
342 else
343 {
343 {
344 status = LFR_SUCCESSFUL;
344 status = LFR_SUCCESSFUL;
345 }
345 }
346
346
347 return status;
347 return status;
348 }
348 }
349
349
350 int check_mode_transition( unsigned char requestedMode )
350 int check_mode_transition( unsigned char requestedMode )
351 {
351 {
352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 *
353 *
354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 *
355 *
356 * @return LFR directive status codes:
356 * @return LFR directive status codes:
357 * - LFR_SUCCESSFUL - the transition is authorized
357 * - LFR_SUCCESSFUL - the transition is authorized
358 * - LFR_DEFAULT - the transition is not authorized
358 * - LFR_DEFAULT - the transition is not authorized
359 *
359 *
360 */
360 */
361
361
362 int status;
362 int status;
363
363
364 switch (requestedMode)
364 switch (requestedMode)
365 {
365 {
366 case LFR_MODE_STANDBY:
366 case LFR_MODE_STANDBY:
367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 status = LFR_DEFAULT;
368 status = LFR_DEFAULT;
369 }
369 }
370 else
370 else
371 {
371 {
372 status = LFR_SUCCESSFUL;
372 status = LFR_SUCCESSFUL;
373 }
373 }
374 break;
374 break;
375 case LFR_MODE_NORMAL:
375 case LFR_MODE_NORMAL:
376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 status = LFR_DEFAULT;
377 status = LFR_DEFAULT;
378 }
378 }
379 else {
379 else {
380 status = LFR_SUCCESSFUL;
380 status = LFR_SUCCESSFUL;
381 }
381 }
382 break;
382 break;
383 case LFR_MODE_BURST:
383 case LFR_MODE_BURST:
384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 status = LFR_DEFAULT;
385 status = LFR_DEFAULT;
386 }
386 }
387 else {
387 else {
388 status = LFR_SUCCESSFUL;
388 status = LFR_SUCCESSFUL;
389 }
389 }
390 break;
390 break;
391 case LFR_MODE_SBM1:
391 case LFR_MODE_SBM1:
392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 status = LFR_DEFAULT;
393 status = LFR_DEFAULT;
394 }
394 }
395 else {
395 else {
396 status = LFR_SUCCESSFUL;
396 status = LFR_SUCCESSFUL;
397 }
397 }
398 break;
398 break;
399 case LFR_MODE_SBM2:
399 case LFR_MODE_SBM2:
400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 status = LFR_DEFAULT;
401 status = LFR_DEFAULT;
402 }
402 }
403 else {
403 else {
404 status = LFR_SUCCESSFUL;
404 status = LFR_SUCCESSFUL;
405 }
405 }
406 break;
406 break;
407 default:
407 default:
408 status = LFR_DEFAULT;
408 status = LFR_DEFAULT;
409 break;
409 break;
410 }
410 }
411
411
412 return status;
412 return status;
413 }
413 }
414
414
415 int check_transition_date( unsigned int transitionCoarseTime )
415 int check_transition_date( unsigned int transitionCoarseTime )
416 {
416 {
417 int status;
417 int status;
418 unsigned int localCoarseTime;
418 unsigned int localCoarseTime;
419 unsigned int deltaCoarseTime;
419 unsigned int deltaCoarseTime;
420
420
421 status = LFR_SUCCESSFUL;
421 status = LFR_SUCCESSFUL;
422
422
423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 {
424 {
425 status = LFR_SUCCESSFUL;
425 status = LFR_SUCCESSFUL;
426 }
426 }
427 else
427 else
428 {
428 {
429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430
430
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 {
432 {
433 status = LFR_DEFAULT;
433 status = LFR_DEFAULT;
434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 }
435 }
436
436
437 if (status == LFR_SUCCESSFUL)
437 if (status == LFR_SUCCESSFUL)
438 {
438 {
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 {
441 {
442 status = LFR_DEFAULT;
442 status = LFR_DEFAULT;
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 return status;
448 return status;
449 }
449 }
450
450
451 int stop_current_mode( void )
451 int stop_current_mode( void )
452 {
452 {
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 *
454 *
455 * @return RTEMS directive status codes:
455 * @return RTEMS directive status codes:
456 * - RTEMS_SUCCESSFUL - task restarted successfully
456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 * - RTEMS_INVALID_ID - task id invalid
457 * - RTEMS_INVALID_ID - task id invalid
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 *
459 *
460 */
460 */
461
461
462 rtems_status_code status;
462 rtems_status_code status;
463
463
464 status = RTEMS_SUCCESSFUL;
464 status = RTEMS_SUCCESSFUL;
465
465
466 // (1) mask interruptions
466 // (1) mask interruptions
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469
469
470 // (2) clear interruptions
470 // (2) clear interruptions
471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473
473
474 // (3) reset waveform picker registers
474 // (3) reset waveform picker registers
475 reset_wfp_burst_enable(); // reset burst and enable bits
475 reset_wfp_burst_enable(); // reset burst and enable bits
476 reset_wfp_status(); // reset all the status bits
476 reset_wfp_status(); // reset all the status bits
477
477
478 // (4) reset spectral matrices registers
478 // (4) reset spectral matrices registers
479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 reset_extractSWF(); // reset the extractSWF flag to false
481 reset_extractSWF(); // reset the extractSWF flag to false
482
482
483 // <Spectral Matrices simulator>
483 // <Spectral Matrices simulator>
484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 // </Spectral Matrices simulator>
487 // </Spectral Matrices simulator>
488
488
489 // suspend several tasks
489 // suspend several tasks
490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 status = suspend_science_tasks();
491 status = suspend_science_tasks();
492 }
492 }
493
493
494 if (status != RTEMS_SUCCESSFUL)
494 if (status != RTEMS_SUCCESSFUL)
495 {
495 {
496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 }
497 }
498
498
499 return status;
499 return status;
500 }
500 }
501
501
502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 {
503 {
504 /** This function is launched after a mode transition validation.
504 /** This function is launched after a mode transition validation.
505 *
505 *
506 * @param mode is the mode in which LFR will be put.
506 * @param mode is the mode in which LFR will be put.
507 *
507 *
508 * @return RTEMS directive status codes:
508 * @return RTEMS directive status codes:
509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 *
511 *
512 */
512 */
513
513
514 rtems_status_code status;
514 rtems_status_code status;
515
515
516 //**********************
516 //**********************
517 // STOP THE CURRENT MODE
517 // STOP THE CURRENT MODE
518 status = stop_current_mode();
518 status = stop_current_mode();
519 if (status != RTEMS_SUCCESSFUL)
519 if (status != RTEMS_SUCCESSFUL)
520 {
520 {
521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 }
522 }
523
523
524 //*************************
524 //*************************
525 // ENTER THE REQUESTED MODE
525 // ENTER THE REQUESTED MODE
526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 {
528 {
529 #ifdef PRINT_TASK_STATISTICS
529 #ifdef PRINT_TASK_STATISTICS
530 rtems_cpu_usage_reset();
530 rtems_cpu_usage_reset();
531 maxCount = 0;
531 maxCount = 0;
532 #endif
532 #endif
533 status = restart_science_tasks( mode );
533 status = restart_science_tasks( mode );
534 launch_waveform_picker( mode, transitionCoarseTime );
534 launch_waveform_picker( mode, transitionCoarseTime );
535 // launch_spectral_matrix( );
535 // launch_spectral_matrix( );
536 launch_spectral_matrix_simu( );
536 launch_spectral_matrix_simu( );
537 }
537 }
538 else if ( mode == LFR_MODE_STANDBY )
538 else if ( mode == LFR_MODE_STANDBY )
539 {
539 {
540 #ifdef PRINT_TASK_STATISTICS
540 #ifdef PRINT_TASK_STATISTICS
541 rtems_cpu_usage_report();
541 rtems_cpu_usage_report();
542 #endif
542 #endif
543
543
544 #ifdef PRINT_STACK_REPORT
544 #ifdef PRINT_STACK_REPORT
545 PRINTF("stack report selected\n")
545 PRINTF("stack report selected\n")
546 rtems_stack_checker_report_usage();
546 rtems_stack_checker_report_usage();
547 #endif
547 #endif
548 PRINTF1("maxCount = %d\n", maxCount)
548 PRINTF1("maxCount = %d\n", maxCount)
549 }
549 }
550 else
550 else
551 {
551 {
552 status = RTEMS_UNSATISFIED;
552 status = RTEMS_UNSATISFIED;
553 }
553 }
554
554
555 if (status != RTEMS_SUCCESSFUL)
555 if (status != RTEMS_SUCCESSFUL)
556 {
556 {
557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
558 status = RTEMS_UNSATISFIED;
558 status = RTEMS_UNSATISFIED;
559 }
559 }
560
560
561 return status;
561 return status;
562 }
562 }
563
563
564 int restart_science_tasks(unsigned char lfrRequestedMode )
564 int restart_science_tasks(unsigned char lfrRequestedMode )
565 {
565 {
566 /** This function is used to restart all science tasks.
566 /** This function is used to restart all science tasks.
567 *
567 *
568 * @return RTEMS directive status codes:
568 * @return RTEMS directive status codes:
569 * - RTEMS_SUCCESSFUL - task restarted successfully
569 * - RTEMS_SUCCESSFUL - task restarted successfully
570 * - RTEMS_INVALID_ID - task id invalid
570 * - RTEMS_INVALID_ID - task id invalid
571 * - RTEMS_INCORRECT_STATE - task never started
571 * - RTEMS_INCORRECT_STATE - task never started
572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
573 *
573 *
574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
575 *
575 *
576 */
576 */
577
577
578 rtems_status_code status[10];
578 rtems_status_code status[10];
579 rtems_status_code ret;
579 rtems_status_code ret;
580
580
581 ret = RTEMS_SUCCESSFUL;
581 ret = RTEMS_SUCCESSFUL;
582
582
583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
584 if (status[0] != RTEMS_SUCCESSFUL)
584 if (status[0] != RTEMS_SUCCESSFUL)
585 {
585 {
586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
587 }
587 }
588
588
589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
590 if (status[1] != RTEMS_SUCCESSFUL)
590 if (status[1] != RTEMS_SUCCESSFUL)
591 {
591 {
592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
593 }
593 }
594
594
595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
596 if (status[2] != RTEMS_SUCCESSFUL)
596 if (status[2] != RTEMS_SUCCESSFUL)
597 {
597 {
598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
599 }
599 }
600
600
601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
602 if (status[3] != RTEMS_SUCCESSFUL)
602 if (status[3] != RTEMS_SUCCESSFUL)
603 {
603 {
604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
605 }
605 }
606
606
607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
608 if (status[4] != RTEMS_SUCCESSFUL)
608 if (status[4] != RTEMS_SUCCESSFUL)
609 {
609 {
610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
611 }
611 }
612
612
613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
614 if (status[5] != RTEMS_SUCCESSFUL)
614 if (status[5] != RTEMS_SUCCESSFUL)
615 {
615 {
616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
617 }
617 }
618
618
619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
620 if (status[6] != RTEMS_SUCCESSFUL)
620 if (status[6] != RTEMS_SUCCESSFUL)
621 {
621 {
622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
623 }
623 }
624
624
625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
626 if (status[7] != RTEMS_SUCCESSFUL)
626 if (status[7] != RTEMS_SUCCESSFUL)
627 {
627 {
628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
629 }
629 }
630
630
631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 if (status[8] != RTEMS_SUCCESSFUL)
632 if (status[8] != RTEMS_SUCCESSFUL)
633 {
633 {
634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 }
635 }
636
636
637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 if (status[9] != RTEMS_SUCCESSFUL)
638 if (status[9] != RTEMS_SUCCESSFUL)
639 {
639 {
640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 }
641 }
642
642
643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
648 {
648 {
649 ret = RTEMS_UNSATISFIED;
649 ret = RTEMS_UNSATISFIED;
650 }
650 }
651
651
652 return ret;
652 return ret;
653 }
653 }
654
654
655 int suspend_science_tasks()
655 int suspend_science_tasks()
656 {
656 {
657 /** This function suspends the science tasks.
657 /** This function suspends the science tasks.
658 *
658 *
659 * @return RTEMS directive status codes:
659 * @return RTEMS directive status codes:
660 * - RTEMS_SUCCESSFUL - task restarted successfully
660 * - RTEMS_SUCCESSFUL - task restarted successfully
661 * - RTEMS_INVALID_ID - task id invalid
661 * - RTEMS_INVALID_ID - task id invalid
662 * - RTEMS_ALREADY_SUSPENDED - task already suspended
662 * - RTEMS_ALREADY_SUSPENDED - task already suspended
663 *
663 *
664 */
664 */
665
665
666 rtems_status_code status;
666 rtems_status_code status;
667
667
668 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
668 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
669 if (status != RTEMS_SUCCESSFUL)
669 if (status != RTEMS_SUCCESSFUL)
670 {
670 {
671 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
671 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
672 }
672 }
673 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
673 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
674 {
674 {
675 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
675 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
676 if (status != RTEMS_SUCCESSFUL)
676 if (status != RTEMS_SUCCESSFUL)
677 {
677 {
678 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
678 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
679 }
679 }
680 }
680 }
681 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
681 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
682 {
682 {
683 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
683 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
684 if (status != RTEMS_SUCCESSFUL)
684 if (status != RTEMS_SUCCESSFUL)
685 {
685 {
686 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
686 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
687 }
687 }
688 }
688 }
689 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
689 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
690 {
690 {
691 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
691 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
692 if (status != RTEMS_SUCCESSFUL)
692 if (status != RTEMS_SUCCESSFUL)
693 {
693 {
694 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
694 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
695 }
695 }
696 }
696 }
697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
698 {
698 {
699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
700 if (status != RTEMS_SUCCESSFUL)
700 if (status != RTEMS_SUCCESSFUL)
701 {
701 {
702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
703 }
703 }
704 }
704 }
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
706 {
706 {
707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
708 if (status != RTEMS_SUCCESSFUL)
708 if (status != RTEMS_SUCCESSFUL)
709 {
709 {
710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
711 }
711 }
712 }
712 }
713 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
713 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
714 {
714 {
715 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
715 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
716 if (status != RTEMS_SUCCESSFUL)
716 if (status != RTEMS_SUCCESSFUL)
717 {
717 {
718 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
718 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
719 }
719 }
720 }
720 }
721 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
721 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
722 {
722 {
723 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
723 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
724 if (status != RTEMS_SUCCESSFUL)
724 if (status != RTEMS_SUCCESSFUL)
725 {
725 {
726 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
726 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
727 }
727 }
728 }
728 }
729 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
729 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
730 {
730 {
731 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
731 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
732 if (status != RTEMS_SUCCESSFUL)
732 if (status != RTEMS_SUCCESSFUL)
733 {
733 {
734 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
734 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
735 }
735 }
736 }
736 }
737 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
737 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
738 {
738 {
739 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
739 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
740 if (status != RTEMS_SUCCESSFUL)
740 if (status != RTEMS_SUCCESSFUL)
741 {
741 {
742 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
742 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
743 }
743 }
744 }
744 }
745
745
746 return status;
746 return status;
747 }
747 }
748
748
749 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
749 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
750 {
750 {
751 reset_current_ring_nodes();
751 reset_current_ring_nodes();
752 reset_waveform_picker_regs();
752 reset_waveform_picker_regs();
753 set_wfp_burst_enable_register( mode );
753 set_wfp_burst_enable_register( mode );
754
754
755 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
755 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
756 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
756 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
757
757
758 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
758 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
759 if (transitionCoarseTime == 0)
759 if (transitionCoarseTime == 0)
760 {
760 {
761 waveform_picker_regs->start_date = time_management_regs->coarse_time;
761 waveform_picker_regs->start_date = time_management_regs->coarse_time;
762 }
762 }
763 else
763 else
764 {
764 {
765 waveform_picker_regs->start_date = transitionCoarseTime;
765 waveform_picker_regs->start_date = transitionCoarseTime;
766 }
766 }
767 }
767 }
768
768
769 void launch_spectral_matrix( void )
769 void launch_spectral_matrix( void )
770 {
770 {
771 SM_reset_current_ring_nodes();
771 SM_reset_current_ring_nodes();
772 reset_spectral_matrix_regs();
772 reset_spectral_matrix_regs();
773 reset_nb_sm();
773 reset_nb_sm();
774
774
775 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
775 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
776 grgpio_regs->io_port_direction_register =
776 grgpio_regs->io_port_direction_register =
777 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
777 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
778 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
778 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
779 set_irq_on_new_ready_matrix( 1 );
779 set_irq_on_new_ready_matrix( 1 );
780 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
780 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
781 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
781 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
782 set_run_matrix_spectral( 1 );
782 set_run_matrix_spectral( 1 );
783
783
784 }
784 }
785
785
786 void launch_spectral_matrix_simu( void )
786 void launch_spectral_matrix_simu( void )
787 {
787 {
788 SM_reset_current_ring_nodes();
788 SM_reset_current_ring_nodes();
789 reset_spectral_matrix_regs();
789 reset_spectral_matrix_regs();
790 reset_nb_sm();
790 reset_nb_sm();
791
791
792 // Spectral Matrices simulator
792 // Spectral Matrices simulator
793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
796 set_local_nb_interrupt_f0_MAX();
797 }
796 }
798
797
799 void set_irq_on_new_ready_matrix( unsigned char value )
798 void set_irq_on_new_ready_matrix( unsigned char value )
800 {
799 {
801 if (value == 1)
800 if (value == 1)
802 {
801 {
803 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
804 }
803 }
805 else
804 else
806 {
805 {
807 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
808 }
807 }
809 }
808 }
810
809
811 void set_run_matrix_spectral( unsigned char value )
810 void set_run_matrix_spectral( unsigned char value )
812 {
811 {
813 if (value == 1)
812 if (value == 1)
814 {
813 {
815 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
816 }
815 }
817 else
816 else
818 {
817 {
819 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
820 }
819 }
821 }
820 }
822
821
823 //****************
822 //****************
824 // CLOSING ACTIONS
823 // CLOSING ACTIONS
825 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
826 {
825 {
827 /** This function is used to update the HK packets statistics after a successful TC execution.
826 /** This function is used to update the HK packets statistics after a successful TC execution.
828 *
827 *
829 * @param TC points to the TC being processed
828 * @param TC points to the TC being processed
830 * @param time is the time used to date the TC execution
829 * @param time is the time used to date the TC execution
831 *
830 *
832 */
831 */
833
832
834 unsigned int val;
833 unsigned int val;
835
834
836 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
837 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
838 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
839 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
841 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
842 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
843 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
844 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
845 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
846 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
847 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
848
847
849 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
850 val++;
849 val++;
851 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
852 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
853 }
852 }
854
853
855 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
856 {
855 {
857 /** This function is used to update the HK packets statistics after a TC rejection.
856 /** This function is used to update the HK packets statistics after a TC rejection.
858 *
857 *
859 * @param TC points to the TC being processed
858 * @param TC points to the TC being processed
860 * @param time is the time used to date the TC rejection
859 * @param time is the time used to date the TC rejection
861 *
860 *
862 */
861 */
863
862
864 unsigned int val;
863 unsigned int val;
865
864
866 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
867 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
868 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
869 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
871 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
872 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
873 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
874 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
875 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
876 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
877 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
878
877
879 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
880 val++;
879 val++;
881 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
882 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
883 }
882 }
884
883
885 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
886 {
885 {
887 /** This function is the last step of the TC execution workflow.
886 /** This function is the last step of the TC execution workflow.
888 *
887 *
889 * @param TC points to the TC being processed
888 * @param TC points to the TC being processed
890 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
891 * @param queue_id is the id of the RTEMS message queue used to send TM packets
890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
892 * @param time is the time used to date the TC execution
891 * @param time is the time used to date the TC execution
893 *
892 *
894 */
893 */
895
894
896 unsigned char requestedMode;
895 unsigned char requestedMode;
897
896
898 if (result == LFR_SUCCESSFUL)
897 if (result == LFR_SUCCESSFUL)
899 {
898 {
900 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
901 &
900 &
902 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
903 )
902 )
904 {
903 {
905 send_tm_lfr_tc_exe_success( TC, queue_id );
904 send_tm_lfr_tc_exe_success( TC, queue_id );
906 }
905 }
907 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
908 {
907 {
909 //**********************************
908 //**********************************
910 // UPDATE THE LFRMODE LOCAL VARIABLE
909 // UPDATE THE LFRMODE LOCAL VARIABLE
911 requestedMode = TC->dataAndCRC[1];
910 requestedMode = TC->dataAndCRC[1];
912 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
913 updateLFRCurrentMode();
912 updateLFRCurrentMode();
914 }
913 }
915 }
914 }
916 else if (result == LFR_EXE_ERROR)
915 else if (result == LFR_EXE_ERROR)
917 {
916 {
918 send_tm_lfr_tc_exe_error( TC, queue_id );
917 send_tm_lfr_tc_exe_error( TC, queue_id );
919 }
918 }
920 }
919 }
921
920
922 //***************************
921 //***************************
923 // Interrupt Service Routines
922 // Interrupt Service Routines
924 rtems_isr commutation_isr1( rtems_vector_number vector )
923 rtems_isr commutation_isr1( rtems_vector_number vector )
925 {
924 {
926 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
927 printf("In commutation_isr1 *** Error sending event to DUMB\n");
926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
928 }
927 }
929 }
928 }
930
929
931 rtems_isr commutation_isr2( rtems_vector_number vector )
930 rtems_isr commutation_isr2( rtems_vector_number vector )
932 {
931 {
933 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
934 printf("In commutation_isr2 *** Error sending event to DUMB\n");
933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
935 }
934 }
936 }
935 }
937
936
938 //****************
937 //****************
939 // OTHER FUNCTIONS
938 // OTHER FUNCTIONS
940 void updateLFRCurrentMode()
939 void updateLFRCurrentMode()
941 {
940 {
942 /** This function updates the value of the global variable lfrCurrentMode.
941 /** This function updates the value of the global variable lfrCurrentMode.
943 *
942 *
944 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
945 *
944 *
946 */
945 */
947 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
948 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
949 }
948 }
950
949
@@ -1,1282 +1,1303
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //*****************
12 //*****************
13 // waveform headers
13 // waveform headers
14 // SWF
14 // SWF
15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 // CWF
18 // CWF
19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24
24
25 //**************
25 //**************
26 // waveform ring
26 // waveform ring
27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
31 ring_node *current_ring_node_f0;
31 ring_node *current_ring_node_f0;
32 ring_node *ring_node_to_send_swf_f0;
32 ring_node *ring_node_to_send_swf_f0;
33 ring_node *current_ring_node_f1;
33 ring_node *current_ring_node_f1;
34 ring_node *ring_node_to_send_swf_f1;
34 ring_node *ring_node_to_send_swf_f1;
35 ring_node *ring_node_to_send_cwf_f1;
35 ring_node *ring_node_to_send_cwf_f1;
36 ring_node *current_ring_node_f2;
36 ring_node *current_ring_node_f2;
37 ring_node *ring_node_to_send_swf_f2;
37 ring_node *ring_node_to_send_swf_f2;
38 ring_node *ring_node_to_send_cwf_f2;
38 ring_node *ring_node_to_send_cwf_f2;
39 ring_node *current_ring_node_f3;
39 ring_node *current_ring_node_f3;
40 ring_node *ring_node_to_send_cwf_f3;
40 ring_node *ring_node_to_send_cwf_f3;
41
41
42 bool extractSWF = false;
42 bool extractSWF = false;
43 bool swf_f0_ready = false;
43 bool swf_f0_ready = false;
44 bool swf_f1_ready = false;
44 bool swf_f1_ready = false;
45 bool swf_f2_ready = false;
45 bool swf_f2_ready = false;
46
46
47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
48
48
49 //*********************
49 //*********************
50 // Interrupt SubRoutine
50 // Interrupt SubRoutine
51
51
52 void reset_extractSWF( void )
52 void reset_extractSWF( void )
53 {
53 {
54 extractSWF = false;
54 extractSWF = false;
55 swf_f0_ready = false;
55 swf_f0_ready = false;
56 swf_f1_ready = false;
56 swf_f1_ready = false;
57 swf_f2_ready = false;
57 swf_f2_ready = false;
58 }
58 }
59
59
60 rtems_isr waveforms_isr( rtems_vector_number vector )
60 rtems_isr waveforms_isr( rtems_vector_number vector )
61 {
61 {
62 /** This is the interrupt sub routine called by the waveform picker core.
62 /** This is the interrupt sub routine called by the waveform picker core.
63 *
63 *
64 * This ISR launch different actions depending mainly on two pieces of information:
64 * This ISR launch different actions depending mainly on two pieces of information:
65 * 1. the values read in the registers of the waveform picker.
65 * 1. the values read in the registers of the waveform picker.
66 * 2. the current LFR mode.
66 * 2. the current LFR mode.
67 *
67 *
68 */
68 */
69
69
70 rtems_status_code status;
70 rtems_status_code status;
71
71
72 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
72 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
73 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
73 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
74 { // in modes other than STANDBY and BURST, send the CWF_F3 data
74 { // in modes other than STANDBY and BURST, send the CWF_F3 data
75 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
75 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
76 // (1) change the receiving buffer for the waveform picker
76 // (1) change the receiving buffer for the waveform picker
77 ring_node_to_send_cwf_f3 = current_ring_node_f3;
77 ring_node_to_send_cwf_f3 = current_ring_node_f3;
78 current_ring_node_f3 = current_ring_node_f3->next;
78 current_ring_node_f3 = current_ring_node_f3->next;
79 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
79 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
80 // (2) send an event for the waveforms transmission
80 // (2) send an event for the waveforms transmission
81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 }
83 }
84 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
84 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 }
86 }
87 }
87 }
88
88
89 switch(lfrCurrentMode)
89 switch(lfrCurrentMode)
90 {
90 {
91 //********
91 //********
92 // STANDBY
92 // STANDBY
93 case(LFR_MODE_STANDBY):
93 case(LFR_MODE_STANDBY):
94 break;
94 break;
95
95
96 //******
96 //******
97 // NORMAL
97 // NORMAL
98 case(LFR_MODE_NORMAL):
98 case(LFR_MODE_NORMAL):
99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 {
100 {
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 }
102 }
103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 {
104 {
105 // change F0 ring node
105 // change F0 ring node
106 ring_node_to_send_swf_f0 = current_ring_node_f0;
106 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 current_ring_node_f0 = current_ring_node_f0->next;
107 current_ring_node_f0 = current_ring_node_f0->next;
108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 // change F1 ring node
109 // change F1 ring node
110 ring_node_to_send_swf_f1 = current_ring_node_f1;
110 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 current_ring_node_f1 = current_ring_node_f1->next;
111 current_ring_node_f1 = current_ring_node_f1->next;
112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 // change F2 ring node
113 // change F2 ring node
114 ring_node_to_send_swf_f2 = current_ring_node_f2;
114 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 current_ring_node_f2 = current_ring_node_f2->next;
115 current_ring_node_f2 = current_ring_node_f2->next;
116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 //
117 //
118 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
118 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
119 {
119 {
120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
121 }
121 }
122 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
122 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
123 }
123 }
124 break;
124 break;
125
125
126 //******
126 //******
127 // BURST
127 // BURST
128 case(LFR_MODE_BURST):
128 case(LFR_MODE_BURST):
129 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
129 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
130 // (1) change the receiving buffer for the waveform picker
130 // (1) change the receiving buffer for the waveform picker
131 ring_node_to_send_cwf_f2 = current_ring_node_f2;
131 ring_node_to_send_cwf_f2 = current_ring_node_f2;
132 current_ring_node_f2 = current_ring_node_f2->next;
132 current_ring_node_f2 = current_ring_node_f2->next;
133 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
133 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
134 // (2) send an event for the waveforms transmission
134 // (2) send an event for the waveforms transmission
135 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
135 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 }
137 }
138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
139 }
139 }
140 break;
140 break;
141
141
142 //*****
142 //*****
143 // SBM1
143 // SBM1
144 case(LFR_MODE_SBM1):
144 case(LFR_MODE_SBM1):
145 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
145 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
146 // (1) change the receiving buffer for the waveform picker
146 // (1) change the receiving buffer for the waveform picker
147 ring_node_to_send_cwf_f1 = current_ring_node_f1;
147 ring_node_to_send_cwf_f1 = current_ring_node_f1;
148 current_ring_node_f1 = current_ring_node_f1->next;
148 current_ring_node_f1 = current_ring_node_f1->next;
149 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
149 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
150 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
150 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
151 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
151 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
152 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
152 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
153 }
153 }
154 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
154 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
155 swf_f0_ready = true;
155 swf_f0_ready = true;
156 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
156 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
157 }
157 }
158 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
158 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
159 swf_f2_ready = true;
159 swf_f2_ready = true;
160 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
160 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
161 }
161 }
162 break;
162 break;
163
163
164 //*****
164 //*****
165 // SBM2
165 // SBM2
166 case(LFR_MODE_SBM2):
166 case(LFR_MODE_SBM2):
167 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
167 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
168 // (1) change the receiving buffer for the waveform picker
168 // (1) change the receiving buffer for the waveform picker
169 ring_node_to_send_cwf_f2 = current_ring_node_f2;
169 ring_node_to_send_cwf_f2 = current_ring_node_f2;
170 current_ring_node_f2 = current_ring_node_f2->next;
170 current_ring_node_f2 = current_ring_node_f2->next;
171 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
171 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
172 // (2) send an event for the waveforms transmission
172 // (2) send an event for the waveforms transmission
173 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
173 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
174 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
174 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
175 }
175 }
176 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
176 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
177 swf_f0_ready = true;
177 swf_f0_ready = true;
178 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
178 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
179 }
179 }
180 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
180 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
181 swf_f1_ready = true;
181 swf_f1_ready = true;
182 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
182 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
183 }
183 }
184 break;
184 break;
185
185
186 //********
186 //********
187 // DEFAULT
187 // DEFAULT
188 default:
188 default:
189 break;
189 break;
190 }
190 }
191 }
191 }
192
192
193 //************
193 //************
194 // RTEMS TASKS
194 // RTEMS TASKS
195
195
196 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
196 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
197 {
197 {
198 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
198 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
199 *
199 *
200 * @param unused is the starting argument of the RTEMS task
200 * @param unused is the starting argument of the RTEMS task
201 *
201 *
202 * The following data packets are sent by this task:
202 * The following data packets are sent by this task:
203 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
203 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
204 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
204 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
205 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
205 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
206 *
206 *
207 */
207 */
208
208
209 rtems_event_set event_out;
209 rtems_event_set event_out;
210 rtems_id queue_id;
210 rtems_id queue_id;
211 rtems_status_code status;
211 rtems_status_code status;
212
212
213 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
213 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
214 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
214 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
215 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
215 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
216
216
217 status = get_message_queue_id_send( &queue_id );
217 status = get_message_queue_id_send( &queue_id );
218 if (status != RTEMS_SUCCESSFUL)
218 if (status != RTEMS_SUCCESSFUL)
219 {
219 {
220 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
220 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
221 }
221 }
222
222
223 BOOT_PRINTF("in WFRM ***\n")
223 BOOT_PRINTF("in WFRM ***\n")
224
224
225 while(1){
225 while(1){
226 // wait for an RTEMS_EVENT
226 // wait for an RTEMS_EVENT
227 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
227 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
228 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
228 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
229 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
229 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
230 if (event_out == RTEMS_EVENT_MODE_NORMAL)
230 if (event_out == RTEMS_EVENT_MODE_NORMAL)
231 {
231 {
232 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
232 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
233 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
233 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
236 }
236 }
237 if (event_out == RTEMS_EVENT_MODE_SBM1)
237 if (event_out == RTEMS_EVENT_MODE_SBM1)
238 {
238 {
239 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
239 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
240 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
240 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
241 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
241 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
242 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
242 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
243 }
243 }
244 if (event_out == RTEMS_EVENT_MODE_SBM2)
244 if (event_out == RTEMS_EVENT_MODE_SBM2)
245 {
245 {
246 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
246 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
249 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
249 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
250 }
250 }
251 }
251 }
252 }
252 }
253
253
254 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
254 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
255 {
255 {
256 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
256 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
257 *
257 *
258 * @param unused is the starting argument of the RTEMS task
258 * @param unused is the starting argument of the RTEMS task
259 *
259 *
260 * The following data packet is sent by this task:
260 * The following data packet is sent by this task:
261 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
261 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
262 *
262 *
263 */
263 */
264
264
265 rtems_event_set event_out;
265 rtems_event_set event_out;
266 rtems_id queue_id;
266 rtems_id queue_id;
267 rtems_status_code status;
267 rtems_status_code status;
268
268
269 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
269 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
270 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
270 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
271
271
272 status = get_message_queue_id_send( &queue_id );
272 status = get_message_queue_id_send( &queue_id );
273 if (status != RTEMS_SUCCESSFUL)
273 if (status != RTEMS_SUCCESSFUL)
274 {
274 {
275 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
275 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
276 }
276 }
277
277
278 BOOT_PRINTF("in CWF3 ***\n")
278 BOOT_PRINTF("in CWF3 ***\n")
279
279
280 while(1){
280 while(1){
281 // wait for an RTEMS_EVENT
281 // wait for an RTEMS_EVENT
282 rtems_event_receive( RTEMS_EVENT_0,
282 rtems_event_receive( RTEMS_EVENT_0,
283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
284 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
284 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
285 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
285 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
286 {
286 {
287 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
287 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
288 {
288 {
289 PRINTF("send CWF_LONG_F3\n")
289 PRINTF("send CWF_LONG_F3\n")
290 send_waveform_CWF(
290 send_waveform_CWF(
291 (volatile int*) current_ring_node_f3->buffer_address,
291 (volatile int*) current_ring_node_f3->buffer_address,
292 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
292 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
293 }
293 }
294 else
294 else
295 {
295 {
296 PRINTF("send CWF_F3 (light)\n")
296 PRINTF("send CWF_F3 (light)\n")
297 send_waveform_CWF3_light(
297 send_waveform_CWF3_light(
298 (volatile int*) current_ring_node_f3->buffer_address,
298 (volatile int*) current_ring_node_f3->buffer_address,
299 headerCWF_F3_light, queue_id );
299 headerCWF_F3_light, queue_id );
300 }
300 }
301
301
302 }
302 }
303 else
303 else
304 {
304 {
305 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
305 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
306 }
306 }
307 }
307 }
308 }
308 }
309
309
310 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
310 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
311 {
311 {
312 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
312 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
313 *
313 *
314 * @param unused is the starting argument of the RTEMS task
314 * @param unused is the starting argument of the RTEMS task
315 *
315 *
316 * The following data packet is sent by this function:
316 * The following data packet is sent by this function:
317 * - TM_LFR_SCIENCE_BURST_CWF_F2
317 * - TM_LFR_SCIENCE_BURST_CWF_F2
318 * - TM_LFR_SCIENCE_SBM2_CWF_F2
318 * - TM_LFR_SCIENCE_SBM2_CWF_F2
319 *
319 *
320 */
320 */
321
321
322 rtems_event_set event_out;
322 rtems_event_set event_out;
323 rtems_id queue_id;
323 rtems_id queue_id;
324 rtems_status_code status;
324 rtems_status_code status;
325
325
326 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
326 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
327 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
327 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
328
328
329 status = get_message_queue_id_send( &queue_id );
329 status = get_message_queue_id_send( &queue_id );
330 if (status != RTEMS_SUCCESSFUL)
330 if (status != RTEMS_SUCCESSFUL)
331 {
331 {
332 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
332 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
333 }
333 }
334
334
335 BOOT_PRINTF("in CWF2 ***\n")
335 BOOT_PRINTF("in CWF2 ***\n")
336
336
337 while(1){
337 while(1){
338 // wait for an RTEMS_EVENT
338 // wait for an RTEMS_EVENT
339 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
339 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
340 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
340 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 if (event_out == RTEMS_EVENT_MODE_BURST)
341 if (event_out == RTEMS_EVENT_MODE_BURST)
342 {
342 {
343 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
343 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
344 }
344 }
345 if (event_out == RTEMS_EVENT_MODE_SBM2)
345 if (event_out == RTEMS_EVENT_MODE_SBM2)
346 {
346 {
347 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
347 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
348 // launch snapshot extraction if needed
348 // launch snapshot extraction if needed
349 if (extractSWF == true)
349 if (extractSWF == true)
350 {
350 {
351 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
351 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
352 // extract the snapshot
352 // extract the snapshot
353 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
353 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
354 // send the snapshot when built
354 // send the snapshot when built
355 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
355 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
356 extractSWF = false;
356 extractSWF = false;
357 }
357 }
358 if (swf_f0_ready && swf_f1_ready)
358 if (swf_f0_ready && swf_f1_ready)
359 {
359 {
360 extractSWF = true;
360 extractSWF = true;
361 swf_f0_ready = false;
361 swf_f0_ready = false;
362 swf_f1_ready = false;
362 swf_f1_ready = false;
363 }
363 }
364 }
364 }
365 }
365 }
366 }
366 }
367
367
368 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
368 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
369 {
369 {
370 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
370 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
371 *
371 *
372 * @param unused is the starting argument of the RTEMS task
372 * @param unused is the starting argument of the RTEMS task
373 *
373 *
374 * The following data packet is sent by this function:
374 * The following data packet is sent by this function:
375 * - TM_LFR_SCIENCE_SBM1_CWF_F1
375 * - TM_LFR_SCIENCE_SBM1_CWF_F1
376 *
376 *
377 */
377 */
378
378
379 rtems_event_set event_out;
379 rtems_event_set event_out;
380 rtems_id queue_id;
380 rtems_id queue_id;
381 rtems_status_code status;
381 rtems_status_code status;
382
382
383 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
383 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
384
384
385 status = get_message_queue_id_send( &queue_id );
385 status = get_message_queue_id_send( &queue_id );
386 if (status != RTEMS_SUCCESSFUL)
386 if (status != RTEMS_SUCCESSFUL)
387 {
387 {
388 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
388 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
389 }
389 }
390
390
391 BOOT_PRINTF("in CWF1 ***\n")
391 BOOT_PRINTF("in CWF1 ***\n")
392
392
393 while(1){
393 while(1){
394 // wait for an RTEMS_EVENT
394 // wait for an RTEMS_EVENT
395 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
395 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
396 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
396 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
397 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
397 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
398 // launch snapshot extraction if needed
398 // launch snapshot extraction if needed
399 if (extractSWF == true)
399 if (extractSWF == true)
400 {
400 {
401 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
401 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
402 // launch the snapshot extraction
402 // launch the snapshot extraction
403 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
403 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
404 extractSWF = false;
404 extractSWF = false;
405 }
405 }
406 if (swf_f0_ready == true)
406 if (swf_f0_ready == true)
407 {
407 {
408 extractSWF = true;
408 extractSWF = true;
409 swf_f0_ready = false; // this step shall be executed only one time
409 swf_f0_ready = false; // this step shall be executed only one time
410 }
410 }
411 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
411 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
412 {
412 {
413 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
413 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
414 swf_f1_ready = false;
414 swf_f1_ready = false;
415 swf_f2_ready = false;
415 swf_f2_ready = false;
416 }
416 }
417 }
417 }
418 }
418 }
419
419
420 rtems_task swbd_task(rtems_task_argument argument)
420 rtems_task swbd_task(rtems_task_argument argument)
421 {
421 {
422 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
422 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
423 *
423 *
424 * @param unused is the starting argument of the RTEMS task
424 * @param unused is the starting argument of the RTEMS task
425 *
425 *
426 */
426 */
427
427
428 rtems_event_set event_out;
428 rtems_event_set event_out;
429
429
430 BOOT_PRINTF("in SWBD ***\n")
430 BOOT_PRINTF("in SWBD ***\n")
431
431
432 while(1){
432 while(1){
433 // wait for an RTEMS_EVENT
433 // wait for an RTEMS_EVENT
434 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
434 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
435 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
435 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
436 if (event_out == RTEMS_EVENT_MODE_SBM1)
436 if (event_out == RTEMS_EVENT_MODE_SBM1)
437 {
437 {
438 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
438 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
439 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
439 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
440 }
440 }
441 else
441 else
442 {
442 {
443 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
443 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 //******************
448 //******************
449 // general functions
449 // general functions
450
450
451 void init_waveform_rings( void )
451 void init_waveform_rings( void )
452 {
452 {
453 // F0 RING
453 // F0 RING
454 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
454 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
455 // F1 RING
455 // F1 RING
456 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
456 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
457 // F2 RING
457 // F2 RING
458 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
458 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
459 // F3 RING
459 // F3 RING
460 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
460 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
461
461
462 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
462 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
463 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
463 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
464 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
464 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
465 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
465 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
466 }
466 }
467
467
468 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
468 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
469 {
469 {
470 unsigned char i;
470 unsigned char i;
471
471
472 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
472 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
473 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
473 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
474 waveform_ring[0].buffer_address = (int) &wfrm[0];
474 waveform_ring[0].buffer_address = (int) &wfrm[0];
475
475
476 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
476 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
477 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
477 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
478 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
478 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
479
479
480 for(i=1; i<nbNodes-1; i++)
480 for(i=1; i<nbNodes-1; i++)
481 {
481 {
482 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
482 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
483 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
483 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
484 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
484 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
485 }
485 }
486 }
486 }
487
487
488 void reset_current_ring_nodes( void )
488 void reset_current_ring_nodes( void )
489 {
489 {
490 current_ring_node_f0 = waveform_ring_f0;
490 current_ring_node_f0 = waveform_ring_f0;
491 ring_node_to_send_swf_f0 = waveform_ring_f0;
491 ring_node_to_send_swf_f0 = waveform_ring_f0;
492
492
493 current_ring_node_f1 = waveform_ring_f1;
493 current_ring_node_f1 = waveform_ring_f1;
494 ring_node_to_send_cwf_f1 = waveform_ring_f1;
494 ring_node_to_send_cwf_f1 = waveform_ring_f1;
495 ring_node_to_send_swf_f1 = waveform_ring_f1;
495 ring_node_to_send_swf_f1 = waveform_ring_f1;
496
496
497 current_ring_node_f2 = waveform_ring_f2;
497 current_ring_node_f2 = waveform_ring_f2;
498 ring_node_to_send_cwf_f2 = waveform_ring_f2;
498 ring_node_to_send_cwf_f2 = waveform_ring_f2;
499 ring_node_to_send_swf_f2 = waveform_ring_f2;
499 ring_node_to_send_swf_f2 = waveform_ring_f2;
500
500
501 current_ring_node_f3 = waveform_ring_f3;
501 current_ring_node_f3 = waveform_ring_f3;
502 ring_node_to_send_cwf_f3 = waveform_ring_f3;
502 ring_node_to_send_cwf_f3 = waveform_ring_f3;
503 }
503 }
504
504
505 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
505 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
506 {
506 {
507 unsigned char i;
507 unsigned char i;
508
508
509 for (i=0; i<7; i++)
509 for (i=0; i<7; i++)
510 {
510 {
511 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
511 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
512 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
512 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
513 headerSWF[ i ].reserved = DEFAULT_RESERVED;
513 headerSWF[ i ].reserved = DEFAULT_RESERVED;
514 headerSWF[ i ].userApplication = CCSDS_USER_APP;
514 headerSWF[ i ].userApplication = CCSDS_USER_APP;
515 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
515 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
516 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
516 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
517 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
517 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
518 if (i == 6)
518 if (i == 6)
519 {
519 {
520 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
520 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
521 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
521 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
522 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
522 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
523 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
523 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
524 }
524 }
525 else
525 else
526 {
526 {
527 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
527 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
528 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
528 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
529 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
529 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
530 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
530 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
531 }
531 }
532 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
532 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
533 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
533 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
534 headerSWF[ i ].pktNr = i+1; // PKT_NR
534 headerSWF[ i ].pktNr = i+1; // PKT_NR
535 // DATA FIELD HEADER
535 // DATA FIELD HEADER
536 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
536 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
537 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
537 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
538 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
538 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
539 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
539 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
540 // AUXILIARY DATA HEADER
540 // AUXILIARY DATA HEADER
541 headerSWF[ i ].time[0] = 0x00;
541 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].time[0] = 0x00;
543 headerSWF[ i ].time[0] = 0x00;
543 headerSWF[ i ].time[0] = 0x00;
544 headerSWF[ i ].time[0] = 0x00;
544 headerSWF[ i ].time[0] = 0x00;
545 headerSWF[ i ].time[0] = 0x00;
545 headerSWF[ i ].time[0] = 0x00;
546 headerSWF[ i ].time[0] = 0x00;
546 headerSWF[ i ].time[0] = 0x00;
547 headerSWF[ i ].sid = sid;
547 headerSWF[ i ].sid = sid;
548 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
548 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
549 }
549 }
550 return LFR_SUCCESSFUL;
550 return LFR_SUCCESSFUL;
551 }
551 }
552
552
553 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
553 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
554 {
554 {
555 unsigned int i;
555 unsigned int i;
556
556
557 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
557 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
558 {
558 {
559 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
559 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
560 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
560 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
561 headerCWF[ i ].reserved = DEFAULT_RESERVED;
561 headerCWF[ i ].reserved = DEFAULT_RESERVED;
562 headerCWF[ i ].userApplication = CCSDS_USER_APP;
562 headerCWF[ i ].userApplication = CCSDS_USER_APP;
563 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
563 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
564 {
564 {
565 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
565 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
566 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
566 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
567 }
567 }
568 else
568 else
569 {
569 {
570 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
570 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
571 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
571 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
572 }
572 }
573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
578 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
578 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
579 // DATA FIELD HEADER
579 // DATA FIELD HEADER
580 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
580 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
581 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
581 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
582 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
582 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
583 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
583 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
584 // AUXILIARY DATA HEADER
584 // AUXILIARY DATA HEADER
585 headerCWF[ i ].sid = sid;
585 headerCWF[ i ].sid = sid;
586 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
586 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
587 headerCWF[ i ].time[0] = 0x00;
587 headerCWF[ i ].time[0] = 0x00;
588 headerCWF[ i ].time[0] = 0x00;
588 headerCWF[ i ].time[0] = 0x00;
589 headerCWF[ i ].time[0] = 0x00;
589 headerCWF[ i ].time[0] = 0x00;
590 headerCWF[ i ].time[0] = 0x00;
590 headerCWF[ i ].time[0] = 0x00;
591 headerCWF[ i ].time[0] = 0x00;
591 headerCWF[ i ].time[0] = 0x00;
592 headerCWF[ i ].time[0] = 0x00;
592 headerCWF[ i ].time[0] = 0x00;
593 }
593 }
594 return LFR_SUCCESSFUL;
594 return LFR_SUCCESSFUL;
595 }
595 }
596
596
597 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
597 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
598 {
598 {
599 unsigned int i;
599 unsigned int i;
600
600
601 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
601 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
602 {
602 {
603 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
603 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
604 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
604 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
605 headerCWF[ i ].reserved = DEFAULT_RESERVED;
605 headerCWF[ i ].reserved = DEFAULT_RESERVED;
606 headerCWF[ i ].userApplication = CCSDS_USER_APP;
606 headerCWF[ i ].userApplication = CCSDS_USER_APP;
607
607
608 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
608 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
609 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
609 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
610
610
611 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
611 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
612 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
612 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
613 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
613 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
614 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
614 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
615 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
615 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
616
616
617 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
617 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
618 // DATA FIELD HEADER
618 // DATA FIELD HEADER
619 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
619 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
620 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
620 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
621 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
621 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
622 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
622 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
623 // AUXILIARY DATA HEADER
623 // AUXILIARY DATA HEADER
624 headerCWF[ i ].sid = SID_NORM_CWF_F3;
624 headerCWF[ i ].sid = SID_NORM_CWF_F3;
625 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
625 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
626 headerCWF[ i ].time[0] = 0x00;
626 headerCWF[ i ].time[0] = 0x00;
627 headerCWF[ i ].time[0] = 0x00;
627 headerCWF[ i ].time[0] = 0x00;
628 headerCWF[ i ].time[0] = 0x00;
628 headerCWF[ i ].time[0] = 0x00;
629 headerCWF[ i ].time[0] = 0x00;
629 headerCWF[ i ].time[0] = 0x00;
630 headerCWF[ i ].time[0] = 0x00;
630 headerCWF[ i ].time[0] = 0x00;
631 headerCWF[ i ].time[0] = 0x00;
631 headerCWF[ i ].time[0] = 0x00;
632 }
632 }
633 return LFR_SUCCESSFUL;
633 return LFR_SUCCESSFUL;
634 }
634 }
635
635
636 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
636 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
637 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
637 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
638 {
638 {
639 /** This function sends SWF CCSDS packets (F2, F1 or F0).
639 /** This function sends SWF CCSDS packets (F2, F1 or F0).
640 *
640 *
641 * @param waveform points to the buffer containing the data that will be send.
641 * @param waveform points to the buffer containing the data that will be send.
642 * @param sid is the source identifier of the data that will be sent.
642 * @param sid is the source identifier of the data that will be sent.
643 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
643 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
644 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
644 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
645 * contain information to setup the transmission of the data packets.
645 * contain information to setup the transmission of the data packets.
646 *
646 *
647 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
647 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
648 *
648 *
649 */
649 */
650
650
651 unsigned int i;
651 unsigned int i;
652 int ret;
652 int ret;
653 unsigned int coarseTime;
653 unsigned int coarseTime;
654 unsigned int fineTime;
654 unsigned int fineTime;
655 rtems_status_code status;
655 rtems_status_code status;
656 spw_ioctl_pkt_send spw_ioctl_send_SWF;
656 spw_ioctl_pkt_send spw_ioctl_send_SWF;
657
657
658 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
658 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
659 spw_ioctl_send_SWF.options = 0;
659 spw_ioctl_send_SWF.options = 0;
660
660
661 ret = LFR_DEFAULT;
661 ret = LFR_DEFAULT;
662
662
663 coarseTime = waveform[0];
663 coarseTime = waveform[0];
664 fineTime = waveform[1];
664 fineTime = waveform[1];
665
665
666 for (i=0; i<7; i++) // send waveform
666 for (i=0; i<7; i++) // send waveform
667 {
667 {
668 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
668 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
669 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
669 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
670 // BUILD THE DATA
670 // BUILD THE DATA
671 if (i==6) {
671 if (i==6) {
672 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
672 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
673 }
673 }
674 else {
674 else {
675 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
675 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
676 }
676 }
677 // SET PACKET SEQUENCE COUNTER
677 // SET PACKET SEQUENCE COUNTER
678 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
678 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
679 // SET PACKET TIME
679 // SET PACKET TIME
680 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
680 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
681 //
681 //
682 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
682 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
683 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
683 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
684 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
684 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
685 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
685 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
686 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
686 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
687 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
687 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
688 // SEND PACKET
688 // SEND PACKET
689 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
689 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
690 if (status != RTEMS_SUCCESSFUL) {
690 if (status != RTEMS_SUCCESSFUL) {
691 printf("%d-%d, ERR %d\n", sid, i, (int) status);
691 printf("%d-%d, ERR %d\n", sid, i, (int) status);
692 ret = LFR_DEFAULT;
692 ret = LFR_DEFAULT;
693 }
693 }
694 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
694 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
695 }
695 }
696
696
697 return ret;
697 return ret;
698 }
698 }
699
699
700 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
700 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
701 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
701 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
702 {
702 {
703 /** This function sends CWF CCSDS packets (F2, F1 or F0).
703 /** This function sends CWF CCSDS packets (F2, F1 or F0).
704 *
704 *
705 * @param waveform points to the buffer containing the data that will be send.
705 * @param waveform points to the buffer containing the data that will be send.
706 * @param sid is the source identifier of the data that will be sent.
706 * @param sid is the source identifier of the data that will be sent.
707 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
707 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
708 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
708 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
709 * contain information to setup the transmission of the data packets.
709 * contain information to setup the transmission of the data packets.
710 *
710 *
711 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
711 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
712 *
712 *
713 */
713 */
714
714
715 unsigned int i;
715 unsigned int i;
716 int ret;
716 int ret;
717 unsigned int coarseTime;
717 unsigned int coarseTime;
718 unsigned int fineTime;
718 unsigned int fineTime;
719 rtems_status_code status;
719 rtems_status_code status;
720 spw_ioctl_pkt_send spw_ioctl_send_CWF;
720 spw_ioctl_pkt_send spw_ioctl_send_CWF;
721
721
722 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
722 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
723 spw_ioctl_send_CWF.options = 0;
723 spw_ioctl_send_CWF.options = 0;
724
724
725 ret = LFR_DEFAULT;
725 ret = LFR_DEFAULT;
726
726
727 coarseTime = waveform[0];
727 coarseTime = waveform[0];
728 fineTime = waveform[1];
728 fineTime = waveform[1];
729
729
730 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
730 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
731 {
731 {
732 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
732 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
733 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
733 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
734 // BUILD THE DATA
734 // BUILD THE DATA
735 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
735 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
736 // SET PACKET SEQUENCE COUNTER
736 // SET PACKET SEQUENCE COUNTER
737 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
737 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
738 // SET PACKET TIME
738 // SET PACKET TIME
739 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
739 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
740 //
740 //
741 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
741 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
742 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
742 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
743 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
743 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
744 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
744 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
745 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
745 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
746 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
746 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
747 // SEND PACKET
747 // SEND PACKET
748 if (sid == SID_NORM_CWF_LONG_F3)
748 if (sid == SID_NORM_CWF_LONG_F3)
749 {
749 {
750 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
750 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
751 if (status != RTEMS_SUCCESSFUL) {
751 if (status != RTEMS_SUCCESSFUL) {
752 printf("%d-%d, ERR %d\n", sid, i, (int) status);
752 printf("%d-%d, ERR %d\n", sid, i, (int) status);
753 ret = LFR_DEFAULT;
753 ret = LFR_DEFAULT;
754 }
754 }
755 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
755 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
756 }
756 }
757 else
757 else
758 {
758 {
759 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
759 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
760 if (status != RTEMS_SUCCESSFUL) {
760 if (status != RTEMS_SUCCESSFUL) {
761 printf("%d-%d, ERR %d\n", sid, i, (int) status);
761 printf("%d-%d, ERR %d\n", sid, i, (int) status);
762 ret = LFR_DEFAULT;
762 ret = LFR_DEFAULT;
763 }
763 }
764 }
764 }
765 }
765 }
766
766
767 return ret;
767 return ret;
768 }
768 }
769
769
770 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
770 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 {
771 {
772 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
772 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
773 *
773 *
774 * @param waveform points to the buffer containing the data that will be send.
774 * @param waveform points to the buffer containing the data that will be send.
775 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
775 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
776 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
776 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
777 * contain information to setup the transmission of the data packets.
777 * contain information to setup the transmission of the data packets.
778 *
778 *
779 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
779 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
780 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
780 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
781 *
781 *
782 */
782 */
783
783
784 unsigned int i;
784 unsigned int i;
785 int ret;
785 int ret;
786 unsigned int coarseTime;
786 unsigned int coarseTime;
787 unsigned int fineTime;
787 unsigned int fineTime;
788 rtems_status_code status;
788 rtems_status_code status;
789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 char *sample;
790 char *sample;
791
791
792 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
792 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
793 spw_ioctl_send_CWF.options = 0;
793 spw_ioctl_send_CWF.options = 0;
794
794
795 ret = LFR_DEFAULT;
795 ret = LFR_DEFAULT;
796
796
797 //**********************
797 //**********************
798 // BUILD CWF3_light DATA
798 // BUILD CWF3_light DATA
799 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
799 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
800 {
800 {
801 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
801 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
802 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
802 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
803 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
803 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
808 }
808 }
809
809
810 coarseTime = waveform[0];
810 coarseTime = waveform[0];
811 fineTime = waveform[1];
811 fineTime = waveform[1];
812
812
813 //*********************
813 //*********************
814 // SEND CWF3_light DATA
814 // SEND CWF3_light DATA
815 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
815 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
816 {
816 {
817 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
817 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
818 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
818 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
819 // BUILD THE DATA
819 // BUILD THE DATA
820 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
820 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
821 // SET PACKET SEQUENCE COUNTER
821 // SET PACKET SEQUENCE COUNTER
822 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
822 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
823 // SET PACKET TIME
823 // SET PACKET TIME
824 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
824 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
825 //
825 //
826 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
826 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
827 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
827 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
828 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
828 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
829 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
829 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
830 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
830 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
831 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
831 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
832 // SEND PACKET
832 // SEND PACKET
833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
834 if (status != RTEMS_SUCCESSFUL) {
834 if (status != RTEMS_SUCCESSFUL) {
835 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
835 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
836 ret = LFR_DEFAULT;
836 ret = LFR_DEFAULT;
837 }
837 }
838 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
838 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
839 }
839 }
840
840
841 return ret;
841 return ret;
842 }
842 }
843
843
844 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
844 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
846 {
846 {
847 unsigned long long int acquisitionTimeAsLong;
847 unsigned long long int acquisitionTimeAsLong;
848 unsigned char localAcquisitionTime[6];
848 unsigned char localAcquisitionTime[6];
849 double deltaT;
849 double deltaT;
850
850
851 deltaT = 0.;
851 deltaT = 0.;
852
852
853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
854 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
854 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
856 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
856 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
858 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
858 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
859
859
860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
862 + ( localAcquisitionTime[2] << 24 )
862 + ( localAcquisitionTime[2] << 24 )
863 + ( localAcquisitionTime[3] << 16 )
863 + ( localAcquisitionTime[3] << 16 )
864 + ( localAcquisitionTime[4] << 8 )
864 + ( localAcquisitionTime[4] << 8 )
865 + ( localAcquisitionTime[5] );
865 + ( localAcquisitionTime[5] );
866
866
867 switch( sid )
867 switch( sid )
868 {
868 {
869 case SID_NORM_SWF_F0:
869 case SID_NORM_SWF_F0:
870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
871 break;
871 break;
872
872
873 case SID_NORM_SWF_F1:
873 case SID_NORM_SWF_F1:
874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
875 break;
875 break;
876
876
877 case SID_NORM_SWF_F2:
877 case SID_NORM_SWF_F2:
878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
879 break;
879 break;
880
880
881 case SID_SBM1_CWF_F1:
881 case SID_SBM1_CWF_F1:
882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
883 break;
883 break;
884
884
885 case SID_SBM2_CWF_F2:
885 case SID_SBM2_CWF_F2:
886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
887 break;
887 break;
888
888
889 case SID_BURST_CWF_F2:
889 case SID_BURST_CWF_F2:
890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
891 break;
891 break;
892
892
893 case SID_NORM_CWF_F3:
893 case SID_NORM_CWF_F3:
894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
895 break;
895 break;
896
896
897 case SID_NORM_CWF_LONG_F3:
897 case SID_NORM_CWF_LONG_F3:
898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
899 break;
899 break;
900
900
901 default:
901 default:
902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
903 deltaT = 0.;
903 deltaT = 0.;
904 break;
904 break;
905 }
905 }
906
906
907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
908 //
908 //
909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
915
915
916 }
916 }
917
917
918 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
918 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
919 {
919 {
920 unsigned int i;
920 unsigned int i;
921 unsigned long long int centerTime_asLong;
921 unsigned long long int centerTime_asLong;
922 unsigned long long int acquisitionTimeF0_asLong;
922 unsigned long long int acquisitionTimeF0_asLong;
923 unsigned long long int acquisitionTime_asLong;
923 unsigned long long int acquisitionTime_asLong;
924 unsigned long long int bufferAcquisitionTime_asLong;
924 unsigned long long int bufferAcquisitionTime_asLong;
925 unsigned char *ptr1;
925 unsigned char *ptr1;
926 unsigned char *ptr2;
926 unsigned char *ptr2;
927 unsigned char nb_ring_nodes;
927 unsigned char nb_ring_nodes;
928 unsigned long long int frequency_asLong;
928 unsigned long long int frequency_asLong;
929 unsigned long long int nbTicksPerSample_asLong;
929 unsigned long long int nbTicksPerSample_asLong;
930 unsigned long long int nbSamplesPart1_asLong;
930 unsigned long long int nbSamplesPart1_asLong;
931 unsigned long long int sampleOffset_asLong;
931 unsigned long long int sampleOffset_asLong;
932
932
933 unsigned int deltaT_F0;
933 unsigned int deltaT_F0;
934 unsigned int deltaT_F1;
934 unsigned int deltaT_F1;
935 unsigned long long int deltaT_F2;
935 unsigned long long int deltaT_F2;
936
936
937 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
937 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
938 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
938 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
939 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
939 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
940 sampleOffset_asLong = 0x00;
940 sampleOffset_asLong = 0x00;
941
941
942 // (1) get the f0 acquisition time
942 // (1) get the f0 acquisition time
943 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
943 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
944
944
945 // (2) compute the central reference time
945 // (2) compute the central reference time
946 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
946 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
947
947
948 // (3) compute the acquisition time of the current snapshot
948 // (3) compute the acquisition time of the current snapshot
949 switch(frequencyChannel)
949 switch(frequencyChannel)
950 {
950 {
951 case 1: // 1 is for F1 = 4096 Hz
951 case 1: // 1 is for F1 = 4096 Hz
952 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
952 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
953 nb_ring_nodes = NB_RING_NODES_F1;
953 nb_ring_nodes = NB_RING_NODES_F1;
954 frequency_asLong = 4096;
954 frequency_asLong = 4096;
955 nbTicksPerSample_asLong = 16; // 65536 / 4096;
955 nbTicksPerSample_asLong = 16; // 65536 / 4096;
956 break;
956 break;
957 case 2: // 2 is for F2 = 256 Hz
957 case 2: // 2 is for F2 = 256 Hz
958 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
958 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
959 nb_ring_nodes = NB_RING_NODES_F2;
959 nb_ring_nodes = NB_RING_NODES_F2;
960 frequency_asLong = 256;
960 frequency_asLong = 256;
961 nbTicksPerSample_asLong = 256; // 65536 / 256;
961 nbTicksPerSample_asLong = 256; // 65536 / 256;
962 break;
962 break;
963 default:
963 default:
964 acquisitionTime_asLong = centerTime_asLong;
964 acquisitionTime_asLong = centerTime_asLong;
965 frequency_asLong = 256;
965 frequency_asLong = 256;
966 nbTicksPerSample_asLong = 256;
966 nbTicksPerSample_asLong = 256;
967 break;
967 break;
968 }
968 }
969
969
970 //****************************************************************************
970 //****************************************************************************
971 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
971 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
972 for (i=0; i<nb_ring_nodes; i++)
972 for (i=0; i<nb_ring_nodes; i++)
973 {
973 {
974 PRINTF1("%d ... ", i)
974 PRINTF1("%d ... ", i)
975 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
975 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
976 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
976 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
977 {
977 {
978 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
978 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
979 break;
979 break;
980 }
980 }
981 ring_node_to_send = ring_node_to_send->previous;
981 ring_node_to_send = ring_node_to_send->previous;
982 }
982 }
983
983
984 // (5) compute the number of samples to take in the current buffer
984 // (5) compute the number of samples to take in the current buffer
985 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
985 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
986 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
986 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
987 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
987 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
988
988
989 // (6) compute the final acquisition time
989 // (6) compute the final acquisition time
990 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
990 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
991 sampleOffset_asLong * nbTicksPerSample_asLong;
991 sampleOffset_asLong * nbTicksPerSample_asLong;
992
992
993 // (7) copy the acquisition time at the beginning of the extrated snapshot
993 // (7) copy the acquisition time at the beginning of the extrated snapshot
994 ptr1 = (unsigned char*) &acquisitionTime_asLong;
994 ptr1 = (unsigned char*) &acquisitionTime_asLong;
995 ptr2 = (unsigned char*) wf_snap_extracted;
995 ptr2 = (unsigned char*) wf_snap_extracted;
996 ptr2[0] = ptr1[ 2 + 2 ];
996 ptr2[0] = ptr1[ 2 + 2 ];
997 ptr2[1] = ptr1[ 3 + 2 ];
997 ptr2[1] = ptr1[ 3 + 2 ];
998 ptr2[2] = ptr1[ 0 + 2 ];
998 ptr2[2] = ptr1[ 0 + 2 ];
999 ptr2[3] = ptr1[ 1 + 2 ];
999 ptr2[3] = ptr1[ 1 + 2 ];
1000 ptr2[4] = ptr1[ 4 + 2 ];
1000 ptr2[4] = ptr1[ 4 + 2 ];
1001 ptr2[5] = ptr1[ 5 + 2 ];
1001 ptr2[5] = ptr1[ 5 + 2 ];
1002
1002
1003 // re set the synchronization bit
1003 // re set the synchronization bit
1004
1004
1005
1005
1006 // copy the part 1 of the snapshot in the extracted buffer
1006 // copy the part 1 of the snapshot in the extracted buffer
1007 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1007 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1008 {
1008 {
1009 wf_snap_extracted[i + TIME_OFFSET] =
1009 wf_snap_extracted[i + TIME_OFFSET] =
1010 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1010 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1011 }
1011 }
1012 // copy the part 2 of the snapshot in the extracted buffer
1012 // copy the part 2 of the snapshot in the extracted buffer
1013 ring_node_to_send = ring_node_to_send->next;
1013 ring_node_to_send = ring_node_to_send->next;
1014 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1014 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1015 {
1015 {
1016 wf_snap_extracted[i + TIME_OFFSET] =
1016 wf_snap_extracted[i + TIME_OFFSET] =
1017 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1017 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1018 }
1018 }
1019 }
1019 }
1020
1020
1021 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1021 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1022 {
1022 {
1023 unsigned char *acquisitionTimeCharPtr;
1023 unsigned char *acquisitionTimeCharPtr;
1024
1024
1025 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1025 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1026
1026
1027 *acquisitionTimeAslong = 0x00;
1027 *acquisitionTimeAslong = 0x00;
1028 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1028 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1029 + ( acquisitionTimeCharPtr[1] << 16 )
1029 + ( acquisitionTimeCharPtr[1] << 16 )
1030 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1030 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1031 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1031 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1032 + ( acquisitionTimeCharPtr[4] << 8 )
1032 + ( acquisitionTimeCharPtr[4] << 8 )
1033 + ( acquisitionTimeCharPtr[5] );
1033 + ( acquisitionTimeCharPtr[5] );
1034 }
1034 }
1035
1035
1036 //**************
1036 //**************
1037 // wfp registers
1037 // wfp registers
1038 void reset_wfp_burst_enable(void)
1038 void reset_wfp_burst_enable(void)
1039 {
1039 {
1040 /** This function resets the waveform picker burst_enable register.
1040 /** This function resets the waveform picker burst_enable register.
1041 *
1041 *
1042 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1042 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1043 *
1043 *
1044 */
1044 */
1045
1045
1046 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1046 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1047 }
1047 }
1048
1048
1049 void reset_wfp_status( void )
1049 void reset_wfp_status( void )
1050 {
1050 {
1051 /** This function resets the waveform picker status register.
1051 /** This function resets the waveform picker status register.
1052 *
1052 *
1053 * All status bits are set to 0 [new_err full_err full].
1053 * All status bits are set to 0 [new_err full_err full].
1054 *
1054 *
1055 */
1055 */
1056
1056
1057 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1057 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1058 }
1058 }
1059
1059
1060 void reset_waveform_picker_regs(void)
1060 void reset_waveform_picker_regs(void)
1061 {
1061 {
1062 /** This function resets the waveform picker module registers.
1062 /** This function resets the waveform picker module registers.
1063 *
1063 *
1064 * The registers affected by this function are located at the following offset addresses:
1064 * The registers affected by this function are located at the following offset addresses:
1065 * - 0x00 data_shaping
1065 * - 0x00 data_shaping
1066 * - 0x04 run_burst_enable
1066 * - 0x04 run_burst_enable
1067 * - 0x08 addr_data_f0
1067 * - 0x08 addr_data_f0
1068 * - 0x0C addr_data_f1
1068 * - 0x0C addr_data_f1
1069 * - 0x10 addr_data_f2
1069 * - 0x10 addr_data_f2
1070 * - 0x14 addr_data_f3
1070 * - 0x14 addr_data_f3
1071 * - 0x18 status
1071 * - 0x18 status
1072 * - 0x1C delta_snapshot
1072 * - 0x1C delta_snapshot
1073 * - 0x20 delta_f0
1073 * - 0x20 delta_f0
1074 * - 0x24 delta_f0_2
1074 * - 0x24 delta_f0_2
1075 * - 0x28 delta_f1
1075 * - 0x28 delta_f1
1076 * - 0x2c delta_f2
1076 * - 0x2c delta_f2
1077 * - 0x30 nb_data_by_buffer
1077 * - 0x30 nb_data_by_buffer
1078 * - 0x34 nb_snapshot_param
1078 * - 0x34 nb_snapshot_param
1079 * - 0x38 start_date
1079 * - 0x38 start_date
1080 * - 0x3c nb_word_in_buffer
1080 * - 0x3c nb_word_in_buffer
1081 *
1081 *
1082 */
1082 */
1083
1083
1084 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1084 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1085 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1085 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1086 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1086 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1087 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1087 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1088 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1088 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1089 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1089 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1090 reset_wfp_status(); // 0x18
1090 reset_wfp_status(); // 0x18
1091 //
1091 //
1092 set_wfp_delta_snapshot(); // 0x1c
1092 set_wfp_delta_snapshot(); // 0x1c
1093 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1093 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1094 set_wfp_delta_f1(); // 0x28
1094 set_wfp_delta_f1(); // 0x28
1095 set_wfp_delta_f2(); // 0x2c
1095 set_wfp_delta_f2(); // 0x2c
1096 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1096 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1097 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1097 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1098 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1098 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1099 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1099 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1100 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1100 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1101 // 2688 = 8 * 336
1101 // 2688 = 8 * 336
1102 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1102 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1103 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1103 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1104 waveform_picker_regs->start_date = 0x00; // 0x38
1104 waveform_picker_regs->start_date = 0x00; // 0x38
1105 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1105 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1106 }
1106 }
1107
1107
1108 void set_wfp_data_shaping( void )
1108 void set_wfp_data_shaping( void )
1109 {
1109 {
1110 /** This function sets the data_shaping register of the waveform picker module.
1110 /** This function sets the data_shaping register of the waveform picker module.
1111 *
1111 *
1112 * The value is read from one field of the parameter_dump_packet structure:\n
1112 * The value is read from one field of the parameter_dump_packet structure:\n
1113 * bw_sp0_sp1_r0_r1
1113 * bw_sp0_sp1_r0_r1
1114 *
1114 *
1115 */
1115 */
1116
1116
1117 unsigned char data_shaping;
1117 unsigned char data_shaping;
1118
1118
1119 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1119 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1120 // waveform picker : [R1 R0 SP1 SP0 BW]
1120 // waveform picker : [R1 R0 SP1 SP0 BW]
1121
1121
1122 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1122 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1123
1123
1124 waveform_picker_regs->data_shaping =
1124 waveform_picker_regs->data_shaping =
1125 ( (data_shaping & 0x10) >> 4 ) // BW
1125 ( (data_shaping & 0x10) >> 4 ) // BW
1126 + ( (data_shaping & 0x08) >> 2 ) // SP0
1126 + ( (data_shaping & 0x08) >> 2 ) // SP0
1127 + ( (data_shaping & 0x04) ) // SP1
1127 + ( (data_shaping & 0x04) ) // SP1
1128 + ( (data_shaping & 0x02) << 2 ) // R0
1128 + ( (data_shaping & 0x02) << 2 ) // R0
1129 + ( (data_shaping & 0x01) << 4 ); // R1
1129 + ( (data_shaping & 0x01) << 4 ); // R1
1130 }
1130 }
1131
1131
1132 void set_wfp_burst_enable_register( unsigned char mode )
1132 void set_wfp_burst_enable_register( unsigned char mode )
1133 {
1133 {
1134 /** This function sets the waveform picker burst_enable register depending on the mode.
1134 /** This function sets the waveform picker burst_enable register depending on the mode.
1135 *
1135 *
1136 * @param mode is the LFR mode to launch.
1136 * @param mode is the LFR mode to launch.
1137 *
1137 *
1138 * The burst bits shall be before the enable bits.
1138 * The burst bits shall be before the enable bits.
1139 *
1139 *
1140 */
1140 */
1141
1141
1142 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1142 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1143 // the burst bits shall be set first, before the enable bits
1143 // the burst bits shall be set first, before the enable bits
1144 switch(mode) {
1144 switch(mode) {
1145 case(LFR_MODE_NORMAL):
1145 case(LFR_MODE_NORMAL):
1146 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1146 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1147 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1147 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1148 break;
1148 break;
1149 case(LFR_MODE_BURST):
1149 case(LFR_MODE_BURST):
1150 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1150 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1151 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1151 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1152 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1152 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1153 break;
1153 break;
1154 case(LFR_MODE_SBM1):
1154 case(LFR_MODE_SBM1):
1155 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1155 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1156 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1156 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1157 break;
1157 break;
1158 case(LFR_MODE_SBM2):
1158 case(LFR_MODE_SBM2):
1159 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1159 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1160 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1160 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1161 break;
1161 break;
1162 default:
1162 default:
1163 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1163 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1164 break;
1164 break;
1165 }
1165 }
1166 }
1166 }
1167
1167
1168 void set_wfp_delta_snapshot( void )
1168 void set_wfp_delta_snapshot( void )
1169 {
1169 {
1170 /** This function sets the delta_snapshot register of the waveform picker module.
1170 /** This function sets the delta_snapshot register of the waveform picker module.
1171 *
1171 *
1172 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1172 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1173 * - sy_lfr_n_swf_p[0]
1173 * - sy_lfr_n_swf_p[0]
1174 * - sy_lfr_n_swf_p[1]
1174 * - sy_lfr_n_swf_p[1]
1175 *
1175 *
1176 */
1176 */
1177
1177
1178 unsigned int delta_snapshot;
1178 unsigned int delta_snapshot;
1179 unsigned int delta_snapshot_in_T2;
1179 unsigned int delta_snapshot_in_T2;
1180
1180
1181 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1181 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1182 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1182 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1183
1183
1184 delta_snapshot_in_T2 = delta_snapshot * 256;
1184 delta_snapshot_in_T2 = delta_snapshot * 256;
1185 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1185 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1186 }
1186 }
1187
1187
1188 void set_wfp_delta_f0_f0_2( void )
1188 void set_wfp_delta_f0_f0_2( void )
1189 {
1189 {
1190 unsigned int delta_snapshot;
1190 unsigned int delta_snapshot;
1191 unsigned int nb_samples_per_snapshot;
1191 unsigned int nb_samples_per_snapshot;
1192 float delta_f0_in_float;
1192 float delta_f0_in_float;
1193
1193
1194 delta_snapshot = waveform_picker_regs->delta_snapshot;
1194 delta_snapshot = waveform_picker_regs->delta_snapshot;
1195 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1195 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1196 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1196 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1197
1197
1198 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1198 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1199 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1199 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1200 }
1200 }
1201
1201
1202 void set_wfp_delta_f1( void )
1202 void set_wfp_delta_f1( void )
1203 {
1203 {
1204 unsigned int delta_snapshot;
1204 unsigned int delta_snapshot;
1205 unsigned int nb_samples_per_snapshot;
1205 unsigned int nb_samples_per_snapshot;
1206 float delta_f1_in_float;
1206 float delta_f1_in_float;
1207
1207
1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1209 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1209 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1210 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1210 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1211
1211
1212 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1212 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1213 }
1213 }
1214
1214
1215 void set_wfp_delta_f2()
1215 void set_wfp_delta_f2()
1216 {
1216 {
1217 unsigned int delta_snapshot;
1217 unsigned int delta_snapshot;
1218 unsigned int nb_samples_per_snapshot;
1218 unsigned int nb_samples_per_snapshot;
1219
1219
1220 delta_snapshot = waveform_picker_regs->delta_snapshot;
1220 delta_snapshot = waveform_picker_regs->delta_snapshot;
1221 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1221 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1222
1222
1223 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1223 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1224 }
1224 }
1225
1225
1226 //*****************
1226 //*****************
1227 // local parameters
1227 // local parameters
1228 void set_local_nb_interrupt_f0_MAX( void )
1228
1229 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1229 {
1230 {
1230 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1231 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1231 *
1232 *
1232 * This parameter is used for the SM validation only.\n
1233 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1233 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1234 * @param sid is the source identifier of the packet being updated.
1234 * module before launching a basic processing.
1235 *
1236 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1237 * The sequence counters shall wrap around from 2^14 to zero.
1238 * The sequence counter shall start at zero at startup.
1239 *
1240 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1241 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1235 *
1242 *
1236 */
1243 */
1237
1244
1238 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1239 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1240 }
1241
1242 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1243 {
1244 unsigned short *sequence_cnt;
1245 unsigned short *sequence_cnt;
1245 unsigned short segmentation_grouping_flag;
1246 unsigned short segmentation_grouping_flag;
1246 unsigned short new_packet_sequence_control;
1247 unsigned short new_packet_sequence_control;
1248 rtems_mode initial_mode_set;
1249 rtems_mode current_mode_set;
1250 rtems_status_code status;
1247
1251
1248 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1252 //******************************************
1249 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1253 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1254 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1255
1256 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1257 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1258 || (sid == SID_BURST_CWF_F2)
1259 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1260 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1261 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1262 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1263 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1250 {
1264 {
1251 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1265 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1252 }
1266 }
1253 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1267 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1268 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1269 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1270 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1254 {
1271 {
1255 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1272 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1256 }
1273 }
1257 else
1274 else
1258 {
1275 {
1259 sequence_cnt = (unsigned short *) NULL;
1276 sequence_cnt = (unsigned short *) NULL;
1260 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1277 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1261 }
1278 }
1262
1279
1263 if (sequence_cnt != NULL)
1280 if (sequence_cnt != NULL)
1264 {
1281 {
1265 // increment the sequence counter
1282 // increment the sequence counter
1266 if ( *sequence_cnt < SEQ_CNT_MAX)
1283 if ( *sequence_cnt < SEQ_CNT_MAX)
1267 {
1284 {
1268 *sequence_cnt = *sequence_cnt + 1;
1285 *sequence_cnt = *sequence_cnt + 1;
1269 }
1286 }
1270 else
1287 else
1271 {
1288 {
1272 *sequence_cnt = 0;
1289 *sequence_cnt = 0;
1273 }
1290 }
1274 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1291 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1275 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1292 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1276
1293
1277 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1294 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1278
1295
1279 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1296 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1280 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1297 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1281 }
1298 }
1299
1300 //***********************************
1301 // RESET THE MODE OF THE CALLING TASK
1302 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1282 }
1303 }
General Comments 0
You need to be logged in to leave comments. Login now