@@ -0,0 +1,94 | |||||
|
1 | import traceback | |||
|
2 | from SciQLopBindings import PyDataProvider, Product, VectorTimeSerie, ScalarTimeSerie, DataSeriesType | |||
|
3 | import numpy as np | |||
|
4 | import math | |||
|
5 | from spwc.cache import _cache | |||
|
6 | from spwc.common.datetime_range import DateTimeRange | |||
|
7 | from functools import partial | |||
|
8 | from datetime import datetime, timedelta, timezone | |||
|
9 | from spwc.common.variable import SpwcVariable | |||
|
10 | ||||
|
11 | ||||
|
12 | def make_scalar(x): | |||
|
13 | y = np.cos(x/10.) | |||
|
14 | return SpwcVariable(time=x, data=y) | |||
|
15 | ||||
|
16 | def make_vector(x): | |||
|
17 | v=np.ones((len(x),3)) | |||
|
18 | for i in range(3): | |||
|
19 | v.transpose()[:][i] = np.cos(x/10. + float(i)) + (100. * np.cos(x/10000. + float(i))) | |||
|
20 | return SpwcVariable(time=x, data=v) | |||
|
21 | ||||
|
22 | ||||
|
23 | def make_multicomponent(x): | |||
|
24 | v=np.ones((len(x),4)) | |||
|
25 | for i in range(4): | |||
|
26 | v.transpose()[:][i] = float(i+1) * np.cos(x/10. + float(i)) | |||
|
27 | return SpwcVariable(time=x, data=v) | |||
|
28 | ||||
|
29 | def make_spectrogram(x): | |||
|
30 | v=np.ones((len(x),32)) | |||
|
31 | for i in range(32): | |||
|
32 | v.transpose()[:][i] = 100.*(2.+ float(i+1) * np.cos(x/1024. + float(i))) | |||
|
33 | return SpwcVariable(time=x, data=v) | |||
|
34 | ||||
|
35 | ||||
|
36 | def _get_data(p_type, start, stop): | |||
|
37 | if type(start) is datetime: | |||
|
38 | start = start.timestamp() | |||
|
39 | stop = stop.timestamp() | |||
|
40 | x = np.arange(math.ceil(start), math.floor(stop))*1. | |||
|
41 | if p_type == 'scalar': | |||
|
42 | return make_scalar(x) | |||
|
43 | if p_type == 'vector': | |||
|
44 | return make_vector(x) | |||
|
45 | if p_type == 'multicomponent': | |||
|
46 | return make_multicomponent(x) | |||
|
47 | if p_type == 'spectrogram': | |||
|
48 | return make_spectrogram(np.arange(math.ceil(start), math.floor(stop),15.)) | |||
|
49 | return None | |||
|
50 | ||||
|
51 | class MyProvider(PyDataProvider): | |||
|
52 | def __init__(self): | |||
|
53 | super(MyProvider,self).__init__() | |||
|
54 | self.register_products([Product("/tests/without_cache/scalar",[],{"type":"scalar"}), | |||
|
55 | Product("/tests/without_cache/vector",[],{"type":"vector"}), | |||
|
56 | Product("/tests/without_cache/multicomponent",[],{"type":"multicomponent",'size':'4'}), | |||
|
57 | Product("/tests/without_cache/spectrogram",[],{"type":"spectrogram",'size':'32'}), | |||
|
58 | Product("/tests/with_cache/scalar",[],{"type":"scalar", "cache":"true"}), | |||
|
59 | Product("/tests/with_cache/vector",[],{"type":"vector", "cache":"true"}), | |||
|
60 | Product("/tests/with_cache/multicomponent",[],{"type":"multicomponent",'size':'4', "cache":"true"}) | |||
|
61 | ]) | |||
|
62 | ||||
|
63 | def get_data(self,metadata,start,stop): | |||
|
64 | ts_type = DataSeriesType.SCALAR | |||
|
65 | default_ctor_args = 1 | |||
|
66 | use_cache = False | |||
|
67 | p_type = 'scalar' | |||
|
68 | try: | |||
|
69 | for key,value in metadata.items(): | |||
|
70 | if key == 'type': | |||
|
71 | p_type = value | |||
|
72 | if value == 'vector': | |||
|
73 | ts_type = DataSeriesType.VECTOR | |||
|
74 | elif value == 'multicomponent': | |||
|
75 | ts_type = DataSeriesType.MULTICOMPONENT | |||
|
76 | elif value == 'spectrogram': | |||
|
77 | ts_type = DataSeriesType.SPECTROGRAM | |||
|
78 | if key == 'cache' and value == 'true': | |||
|
79 | use_cache = True | |||
|
80 | if use_cache: | |||
|
81 | cache_product = f"tests/{p_type}" | |||
|
82 | var = _cache.get_data(cache_product, DateTimeRange(datetime.fromtimestamp(start, tz=timezone.utc), datetime.fromtimestamp(stop, tz=timezone.utc)), partial(_get_data, p_type), fragment_hours=24) | |||
|
83 | else: | |||
|
84 | print("No Cache") | |||
|
85 | var = _get_data(p_type, start, stop) | |||
|
86 | return ((var.time,var.data), ts_type) | |||
|
87 | except Exception as e: | |||
|
88 | print(traceback.format_exc()) | |||
|
89 | print("Error in test.py ",str(e)) | |||
|
90 | return ((np.array(), np.array()), ts_type) | |||
|
91 | ||||
|
92 | ||||
|
93 | t=MyProvider() | |||
|
94 |
@@ -10,6 +10,7 set(BINDINGS_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}") | |||||
10 |
|
10 | |||
11 | configure_file("${BINDINGS_SRC_DIR}/bindings.xml" "${BINDINGS_BUILD_DIR}/bindings.xml" COPYONLY) |
|
11 | configure_file("${BINDINGS_SRC_DIR}/bindings.xml" "${BINDINGS_BUILD_DIR}/bindings.xml" COPYONLY) | |
12 | configure_file("${BINDINGS_SRC_DIR}/main.py" "${BINDINGS_BUILD_DIR}/main.py" COPYONLY) |
|
12 | configure_file("${BINDINGS_SRC_DIR}/main.py" "${BINDINGS_BUILD_DIR}/main.py" COPYONLY) | |
|
13 | configure_file("${BINDINGS_SRC_DIR}/TestPlugin.py" "${BINDINGS_BUILD_DIR}/plugins/TestPlugin.py" COPYONLY) | |||
13 |
|
14 | |||
14 | execute_process(COMMAND "${PYTHON_EXECUTABLE}" "${BINDINGS_SRC_DIR}/src_list.py" cmake "${BINDINGS_BUILD_DIR}" OUTPUT_VARIABLE BINDINGS_SOURCE) |
|
15 | execute_process(COMMAND "${PYTHON_EXECUTABLE}" "${BINDINGS_SRC_DIR}/src_list.py" cmake "${BINDINGS_BUILD_DIR}" OUTPUT_VARIABLE BINDINGS_SOURCE) | |
15 |
|
16 |
@@ -1,5 +1,6 | |||||
1 | #pragma once |
|
1 | #pragma once | |
2 | #include <Data/DataProviderParameters.h> |
|
2 | #include <Data/DataProviderParameters.h> | |
|
3 | #include <Data/DataSeriesType.h> | |||
3 | #include <Data/IDataProvider.h> |
|
4 | #include <Data/IDataProvider.h> | |
4 | #include <DataSource/DataSourceController.h> |
|
5 | #include <DataSource/DataSourceController.h> | |
5 | #include <DataSource/DataSourceItem.h> |
|
6 | #include <DataSource/DataSourceItem.h> | |
@@ -20,7 +21,7 struct Product | |||||
20 | : path { path }, components { components }, metadata { metadata } |
|
21 | : path { path }, components { components }, metadata { metadata } | |
21 | { |
|
22 | { | |
22 | } |
|
23 | } | |
23 |
|
|
24 | ~Product() = default; | |
24 | }; |
|
25 | }; | |
25 |
|
26 | |||
26 | class PyDataProvider : public IDataProvider |
|
27 | class PyDataProvider : public IDataProvider | |
@@ -34,8 +35,7 public: | |||||
34 |
|
35 | |||
35 | virtual ~PyDataProvider() {} |
|
36 | virtual ~PyDataProvider() {} | |
36 |
|
37 | |||
37 | virtual QPair<NpArray, NpArray> getData( |
|
38 | virtual QPair<QPair<NpArray,NpArray>,DataSeriesType> get_data(const QMap<QString,QString>& key, double start_time, double stop_time) | |
38 | const std::string& key, double start_time, double stop_time) |
|
|||
39 | { |
|
39 | { | |
40 | (void)key, (void)start_time, (void)stop_time; |
|
40 | (void)key, (void)start_time, (void)stop_time; | |
41 | return {}; |
|
41 | return {}; | |
@@ -45,10 +45,54 public: | |||||
45 | { |
|
45 | { | |
46 | if (parameters.m_Data.contains("name")) |
|
46 | if (parameters.m_Data.contains("name")) | |
47 | { |
|
47 | { | |
48 | auto data = getData(parameters.m_Data["name"].toString().toStdString(), |
|
48 | QMap<QString,QString> metadata; | |
|
49 | std::for_each(parameters.m_Data.constKeyValueBegin(), parameters.m_Data.constKeyValueEnd(), [&metadata](const auto& item) { | |||
|
50 | metadata[item.first] = item.second.toString(); | |||
|
51 | }); | |||
|
52 | auto [data, type] = get_data(metadata, | |||
49 | parameters.m_Range.m_TStart, parameters.m_Range.m_TEnd); |
|
53 | parameters.m_Range.m_TStart, parameters.m_Range.m_TEnd); | |
50 | // TODO add shape/type switch |
|
54 | // TODO add shape/type switch | |
51 | return new ScalarTimeSerie { data.first.to_std_vect(), data.second.to_std_vect() }; |
|
55 | //if (builder) | |
|
56 | { | |||
|
57 | auto& [t,y]=data; | |||
|
58 | switch (type) | |||
|
59 | { | |||
|
60 | case DataSeriesType::SCALAR: | |||
|
61 | return new ScalarTimeSerie { std::move(t.data), | |||
|
62 | std::move(y.data) }; | |||
|
63 | break; | |||
|
64 | case DataSeriesType::VECTOR: | |||
|
65 | return new VectorTimeSerie { std::move(t.data), | |||
|
66 | y.to_std_vect_vect() }; | |||
|
67 | break; | |||
|
68 | case DataSeriesType::MULTICOMPONENT: | |||
|
69 | { | |||
|
70 | auto y_size = y.flat_size(); | |||
|
71 | auto t_size = t.flat_size(); | |||
|
72 | ||||
|
73 | if(t_size && (y_size%t_size)==0) | |||
|
74 | { | |||
|
75 | return new MultiComponentTimeSerie { std::move(t.data), | |||
|
76 | std::move(y.data),{t_size, y_size/t_size} }; | |||
|
77 | } | |||
|
78 | break; | |||
|
79 | } | |||
|
80 | case DataSeriesType::SPECTROGRAM: | |||
|
81 | { | |||
|
82 | auto y_size = y.flat_size(); | |||
|
83 | auto t_size = t.flat_size(); | |||
|
84 | ||||
|
85 | if(t_size && (y_size%t_size)==0) | |||
|
86 | { | |||
|
87 | return new SpectrogramTimeSerie { std::move(t.data), | |||
|
88 | std::move(y.data),{t_size, y_size/t_size} }; | |||
|
89 | } | |||
|
90 | break; | |||
|
91 | } | |||
|
92 | default: | |||
|
93 | break; | |||
|
94 | } | |||
|
95 | } | |||
52 | } |
|
96 | } | |
53 | return nullptr; |
|
97 | return nullptr; | |
54 | } |
|
98 | } | |
@@ -65,25 +109,3 public: | |||||
65 | }); |
|
109 | }); | |
66 | } |
|
110 | } | |
67 | }; |
|
111 | }; | |
68 |
|
||||
69 |
|
||||
70 | struct Providers |
|
|||
71 | { |
|
|||
72 | Providers() = default; |
|
|||
73 | virtual ~Providers() = default; |
|
|||
74 | inline void register_provider(PyDataProvider* provider) |
|
|||
75 | { |
|
|||
76 | auto& dataSourceController = sqpApp->dataSourceController(); |
|
|||
77 | dataSourceController.setDataProvider( |
|
|||
78 | provider->id(), std::unique_ptr<IDataProvider>(provider)); |
|
|||
79 | } |
|
|||
80 | }; |
|
|||
81 |
|
||||
82 |
|
||||
83 | inline ScalarTimeSerie test_PyDataProvider(PyDataProvider& prov) |
|
|||
84 | { |
|
|||
85 | auto v = prov.getData("", 0., 0.); |
|
|||
86 | ScalarTimeSerie s; |
|
|||
87 | s.set_data(v.first.to_std_vect(), v.second.to_std_vect()); |
|
|||
88 | return s; |
|
|||
89 | } |
|
@@ -6,6 +6,8 | |||||
6 | #include "numpy_wrappers.h" |
|
6 | #include "numpy_wrappers.h" | |
7 | #include <Data/IDataProvider.h> |
|
7 | #include <Data/IDataProvider.h> | |
8 | #include <Data/ScalarTimeSerie.h> |
|
8 | #include <Data/ScalarTimeSerie.h> | |
|
9 | #include <Data/VectorTimeSerie.h> | |||
|
10 | #include <Data/DataSeriesType.h> | |||
9 | #include <SqpApplication.h> |
|
11 | #include <SqpApplication.h> | |
10 |
|
12 | |||
11 |
|
13 |
@@ -5,6 +5,7 | |||||
5 | <load-typesystem name="typesystem_widgets.xml" generate="no" /> |
|
5 | <load-typesystem name="typesystem_widgets.xml" generate="no" /> | |
6 | <primitive-type name="std::string"/> |
|
6 | <primitive-type name="std::string"/> | |
7 | <primitive-type name="std::size_t"/> |
|
7 | <primitive-type name="std::size_t"/> | |
|
8 | <enum-type name="DataSeriesType"/> | |||
8 | <container-type name="std::vector" type="vector"> |
|
9 | <container-type name="std::vector" type="vector"> | |
9 | <include file-name="vector" location="global"/> |
|
10 | <include file-name="vector" location="global"/> | |
10 | <conversion-rule> |
|
11 | <conversion-rule> | |
@@ -31,19 +32,26 | |||||
31 | </target-to-native> |
|
32 | </target-to-native> | |
32 | </conversion-rule> |
|
33 | </conversion-rule> | |
33 | </container-type> |
|
34 | </container-type> | |
34 | <object-type name="PyDataProvider" /> |
|
35 | <primitive-type name="NpArray" target-lang-api-name="PyObject"> | |
|
36 | <include file-name="numpy_wrappers.h" location="local"/> | |||
|
37 | <conversion-rule> | |||
|
38 | <native-to-target> | |||
|
39 | auto result = %in.py_object(); | |||
|
40 | return result; | |||
|
41 | </native-to-target> | |||
|
42 | <target-to-native> | |||
|
43 | <add-conversion type="PyObject" check="NpArray::isNpArray(%in)"> | |||
|
44 | %out = %OUTTYPE(%in); | |||
|
45 | </add-conversion> | |||
|
46 | </target-to-native> | |||
|
47 | </conversion-rule> | |||
|
48 | </primitive-type> | |||
|
49 | <object-type name="PyDataProvider"/> | |||
35 | <object-type name="Product" /> |
|
50 | <object-type name="Product" /> | |
36 | <object-type name="MainWindow" /> |
|
51 | <object-type name="MainWindow" /> | |
37 | <object-type name="SqpApplication"> |
|
52 | <object-type name="SqpApplication"> | |
38 | <modify-function signature="SqpApplication(int&,char**)" access="private"/> |
|
53 | <modify-function signature="SqpApplication(int&,char**)" access="private"/> | |
39 | </object-type> |
|
54 | </object-type> | |
40 | <object-type name="Providers"> |
|
|||
41 | <modify-function signature="register_provider(PyDataProvider*)"> |
|
|||
42 | <modify-argument index="1"> |
|
|||
43 | <define-ownership owner="c++" /> |
|
|||
44 | </modify-argument> |
|
|||
45 | </modify-function> |
|
|||
46 | </object-type> |
|
|||
47 | <function signature="SqpApplication_ctor()" return-type="SqpApplication*"/> |
|
55 | <function signature="SqpApplication_ctor()" return-type="SqpApplication*"/> | |
48 | <add-function signature="SqpApplication_ctor(PySequence)" return-type="SqpApplication*"> |
|
56 | <add-function signature="SqpApplication_ctor(PySequence)" return-type="SqpApplication*"> | |
49 | <inject-code class="target"> |
|
57 | <inject-code class="target"> | |
@@ -55,27 +63,29 | |||||
55 | </inject-code> |
|
63 | </inject-code> | |
56 | </add-function> |
|
64 | </add-function> | |
57 | <function signature="init_resources()"/> |
|
65 | <function signature="init_resources()"/> | |
58 | <primitive-type name="NpArray" target-lang-api-name="PyObject"> |
|
|||
59 | <include file-name="numpy_wrappers.h" location="local"/> |
|
|||
60 | <conversion-rule> |
|
|||
61 | <native-to-target> |
|
|||
62 | auto result = %in.py_object(); |
|
|||
63 | return result; |
|
|||
64 | </native-to-target> |
|
|||
65 | <target-to-native> |
|
|||
66 | <add-conversion type="PyObject" check="NpArray::isNpArray(%in)"> |
|
|||
67 | %out = %OUTTYPE(%in); |
|
|||
68 | </add-conversion> |
|
|||
69 | </target-to-native> |
|
|||
70 | </conversion-rule> |
|
|||
71 | </primitive-type> |
|
|||
72 | <function signature="load_plugins(const SqpApplication&)"/> |
|
66 | <function signature="load_plugins(const SqpApplication&)"/> | |
73 | <object-type name="ScalarTimeSerie"> |
|
67 | <object-type name="ScalarTimeSerie"> | |
74 | <add-function signature="ScalarTimeSerie(NpArray&,NpArray&)" return-type="ScalarTimeSerie"> |
|
68 | <add-function signature="ScalarTimeSerie(NpArray&,NpArray&)" return-type="ScalarTimeSerie"> | |
75 | <inject-code class="target"> |
|
69 | <inject-code class="target"> | |
76 | %BEGIN_ALLOW_THREADS |
|
70 | %BEGIN_ALLOW_THREADS | |
77 | %0 = new ScalarTimeSerieWrapper(); |
|
71 | %0 = new ScalarTimeSerieWrapper(); | |
78 |
%0.set_data( |
|
72 | %0.set_data(std::move(%1.data),std::move(%2.data)); | |
|
73 | %END_ALLOW_THREADS | |||
|
74 | </inject-code> | |||
|
75 | </add-function> | |||
|
76 | <add-function signature="size()" return-type="int" access="public" static="no"> | |||
|
77 | <inject-code class="target"> | |||
|
78 | %RETURN_TYPE %0 = %CPPSELF.%FUNCTION_NAME(); | |||
|
79 | %PYARG_0 = %CONVERTTOPYTHON[%RETURN_TYPE](%0); | |||
|
80 | </inject-code> | |||
|
81 | </add-function> | |||
|
82 | </object-type> | |||
|
83 | <object-type name="VectorTimeSerie"> | |||
|
84 | <add-function signature="VectorTimeSerie(NpArray&,NpArray&)" return-type="VectorTimeSerie"> | |||
|
85 | <inject-code class="target"> | |||
|
86 | %BEGIN_ALLOW_THREADS | |||
|
87 | %0 = new VectorTimeSerieWrapper(); | |||
|
88 | %0.set_data(std::move(%1.data),%2.to_std_vect_vect()); | |||
79 | %END_ALLOW_THREADS |
|
89 | %END_ALLOW_THREADS | |
80 | </inject-code> |
|
90 | </inject-code> | |
81 | </add-function> |
|
91 | </add-function> | |
@@ -86,6 +96,8 | |||||
86 | </inject-code> |
|
96 | </inject-code> | |
87 | </add-function> |
|
97 | </add-function> | |
88 | </object-type> |
|
98 | </object-type> | |
89 | <function signature="test_PyDataProvider(PyDataProvider&)"/> |
|
|||
90 | <function signature="test_np_array(NpArray&)"/> |
|
99 | <function signature="test_np_array(NpArray&)"/> | |
91 | </typesystem> |
|
100 | </typesystem> | |
|
101 | ||||
|
102 | ||||
|
103 |
@@ -99,5 +99,8 if __name__ == "__main__": | |||||
99 | term = IPythonDockWidget(available_vars={"app":app, "main_window":main_window}, custom_banner="SciQLop IPython Console ") |
|
99 | term = IPythonDockWidget(available_vars={"app":app, "main_window":main_window}, custom_banner="SciQLop IPython Console ") | |
100 | main_window.addDockWidget(Qt.BottomDockWidgetArea, term) |
|
100 | main_window.addDockWidget(Qt.BottomDockWidgetArea, term) | |
101 | main_window.show() |
|
101 | main_window.show() | |
|
102 | for file in os.listdir('plugins'): | |||
|
103 | if os.path.isfile(f"plugins/{file}"): | |||
|
104 | exec(open(f"plugins/{file}").read()) | |||
102 | sys.exit(app.exec_()) |
|
105 | sys.exit(app.exec_()) | |
103 |
|
106 |
@@ -1,6 +1,7 | |||||
1 | #ifndef NUMPY_WRAPPERS_H |
|
1 | #ifndef NUMPY_WRAPPERS_H | |
2 | #define NUMPY_WRAPPERS_H |
|
2 | #define NUMPY_WRAPPERS_H | |
3 | #include <Data/ScalarTimeSerie.h> |
|
3 | #include <Data/ScalarTimeSerie.h> | |
|
4 | #include <Data/VectorTimeSerie.h> | |||
4 | #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION |
|
5 | #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION | |
5 | #if defined(slots) && (defined(__GNUC__) || defined(_MSC_VER) || defined(__clang__)) |
|
6 | #if defined(slots) && (defined(__GNUC__) || defined(_MSC_VER) || defined(__clang__)) | |
6 | #pragma push_macro("slots") |
|
7 | #pragma push_macro("slots") | |
@@ -42,10 +43,7 struct PyObjectWrapper | |||||
42 | { |
|
43 | { | |
43 | private: |
|
44 | private: | |
44 | PyObject* _py_obj = nullptr; |
|
45 | PyObject* _py_obj = nullptr; | |
45 | void inc_refcount() |
|
46 | void inc_refcount() { Py_XINCREF(_py_obj); } | |
46 | { |
|
|||
47 | Py_XINCREF(_py_obj); |
|
|||
48 | } |
|
|||
49 | void dec_refcount() |
|
47 | void dec_refcount() | |
50 | { |
|
48 | { | |
51 | Py_XDECREF(_py_obj); |
|
49 | Py_XDECREF(_py_obj); | |
@@ -56,10 +54,7 public: | |||||
56 | PyObjectWrapper() : _py_obj { nullptr } {} |
|
54 | PyObjectWrapper() : _py_obj { nullptr } {} | |
57 | PyObjectWrapper(const PyObjectWrapper& other) : _py_obj { other._py_obj } { inc_refcount(); } |
|
55 | PyObjectWrapper(const PyObjectWrapper& other) : _py_obj { other._py_obj } { inc_refcount(); } | |
58 | PyObjectWrapper(PyObjectWrapper&& other) : _py_obj { other._py_obj } { inc_refcount(); } |
|
56 | PyObjectWrapper(PyObjectWrapper&& other) : _py_obj { other._py_obj } { inc_refcount(); } | |
59 | explicit PyObjectWrapper(PyObject* obj) : _py_obj { obj } |
|
57 | explicit PyObjectWrapper(PyObject* obj) : _py_obj { obj } { inc_refcount(); } | |
60 | { |
|
|||
61 | inc_refcount(); |
|
|||
62 | } |
|
|||
63 | ~PyObjectWrapper() { dec_refcount(); } |
|
58 | ~PyObjectWrapper() { dec_refcount(); } | |
64 | PyObjectWrapper& operator=(PyObjectWrapper&& other) |
|
59 | PyObjectWrapper& operator=(PyObjectWrapper&& other) | |
65 | { |
|
60 | { | |
@@ -81,13 +76,11 public: | |||||
81 | inline bool is_null() { return _py_obj == nullptr; } |
|
76 | inline bool is_null() { return _py_obj == nullptr; } | |
82 | }; |
|
77 | }; | |
83 |
|
78 | |||
84 | struct NpArray |
|
79 | struct NpArray_view | |
85 | { |
|
80 | { | |
86 | private: |
|
81 | private: | |
87 | PyObjectWrapper<PyArrayObject> _py_obj; |
|
82 | PyObjectWrapper<PyArrayObject> _py_obj; | |
88 | NpArray(NpArray& other) = delete; |
|
83 | NpArray_view(const NpArray_view&& other) = delete; | |
89 | NpArray(const NpArray& other) = delete; |
|
|||
90 | NpArray(const NpArray&& other) = delete; |
|
|||
91 |
|
84 | |||
92 | public: |
|
85 | public: | |
93 | static bool isNpArray(PyObject* obj) |
|
86 | static bool isNpArray(PyObject* obj) | |
@@ -96,21 +89,22 public: | |||||
96 | auto is_c_aray = obj && PyArray_Check(arr) && PyArray_ISCARRAY(arr); |
|
89 | auto is_c_aray = obj && PyArray_Check(arr) && PyArray_ISCARRAY(arr); | |
97 | return is_c_aray; |
|
90 | return is_c_aray; | |
98 | } |
|
91 | } | |
99 | NpArray() : _py_obj { nullptr } {} |
|
92 | NpArray_view() : _py_obj { nullptr } {} | |
100 |
NpArray(NpArray |
|
93 | NpArray_view(const NpArray_view& other) : _py_obj { other._py_obj } {} | |
101 | explicit NpArray(PyObject* obj) : _py_obj { obj } |
|
94 | NpArray_view(NpArray_view&& other) : _py_obj { other._py_obj } {} | |
|
95 | explicit NpArray_view(PyObject* obj) : _py_obj { obj } | |||
102 | { |
|
96 | { | |
103 | assert(isNpArray(obj)); |
|
97 | assert(isNpArray(obj)); | |
104 | assert(PyArray_ISFLOAT(_py_obj.get())); |
|
98 | assert(PyArray_ISFLOAT(_py_obj.get())); | |
105 | } |
|
99 | } | |
106 |
|
100 | |||
107 | NpArray& operator=(const NpArray& other) |
|
101 | NpArray_view& operator=(const NpArray_view& other) | |
108 | { |
|
102 | { | |
109 | this->_py_obj = other._py_obj; |
|
103 | this->_py_obj = other._py_obj; | |
110 | return *this; |
|
104 | return *this; | |
111 | } |
|
105 | } | |
112 |
|
106 | |||
113 | NpArray& operator=(NpArray&& other) |
|
107 | NpArray_view& operator=(NpArray_view&& other) | |
114 | { |
|
108 | { | |
115 | this->_py_obj = other._py_obj; |
|
109 | this->_py_obj = other._py_obj; | |
116 | return *this; |
|
110 | return *this; | |
@@ -133,10 +127,32 public: | |||||
133 | return shape; |
|
127 | return shape; | |
134 | } |
|
128 | } | |
135 |
|
129 | |||
|
130 | std::size_t ndim() | |||
|
131 | { | |||
|
132 | if (!_py_obj.is_null()) | |||
|
133 | { | |||
|
134 | return static_cast<std::size_t>(PyArray_NDIM(_py_obj.get())); | |||
|
135 | } | |||
|
136 | return 0; | |||
|
137 | } | |||
|
138 | ||||
|
139 | std::size_t size(std::size_t index = 0) | |||
|
140 | { | |||
|
141 | if (!_py_obj.is_null()) | |||
|
142 | { | |||
|
143 | if (index < static_cast<std::size_t>(PyArray_NDIM(_py_obj.get()))) | |||
|
144 | { | |||
|
145 | return PyArray_SHAPE(_py_obj.get())[index]; | |||
|
146 | } | |||
|
147 | } | |||
|
148 | return 0; | |||
|
149 | } | |||
|
150 | ||||
136 | std::size_t flat_size() |
|
151 | std::size_t flat_size() | |
137 | { |
|
152 | { | |
138 | auto s = this->shape(); |
|
153 | auto s = this->shape(); | |
139 |
return std::accumulate( |
|
154 | return std::accumulate( | |
|
155 | std::cbegin(s), std::cend(s), 1, [](const auto& a, const auto& b) { return a * b; }); | |||
140 | } |
|
156 | } | |
141 |
|
157 | |||
142 | double data(std::size_t pos) |
|
158 | double data(std::size_t pos) | |
@@ -150,6 +166,7 public: | |||||
150 |
|
166 | |||
151 | std::vector<double> to_std_vect() |
|
167 | std::vector<double> to_std_vect() | |
152 | { |
|
168 | { | |
|
169 | assert(!this->_py_obj.is_null()); | |||
153 | auto sz = flat_size(); |
|
170 | auto sz = flat_size(); | |
154 | std::vector<double> v(sz); |
|
171 | std::vector<double> v(sz); | |
155 | auto d_ptr = reinterpret_cast<double*>(PyArray_DATA(_py_obj.get())); |
|
172 | auto d_ptr = reinterpret_cast<double*>(PyArray_DATA(_py_obj.get())); | |
@@ -157,12 +174,77 public: | |||||
157 | return v; |
|
174 | return v; | |
158 | } |
|
175 | } | |
159 |
|
176 | |||
|
177 | std::vector<VectorTimeSerie::raw_value_type> to_std_vect_vect() | |||
|
178 | { | |||
|
179 | auto sz = size(0); | |||
|
180 | std::vector<VectorTimeSerie::raw_value_type> v(sz); | |||
|
181 | if (sz) | |||
|
182 | { | |||
|
183 | assert(ndim() == 2); | |||
|
184 | assert(size(1) == 3); | |||
|
185 | auto d_ptr | |||
|
186 | = reinterpret_cast<VectorTimeSerie::raw_value_type*>(PyArray_DATA(_py_obj.get())); | |||
|
187 | std::copy(d_ptr, d_ptr + sz, std::begin(v)); | |||
|
188 | } | |||
|
189 | return v; | |||
|
190 | } | |||
|
191 | ||||
160 | PyObject* py_object() { return _py_obj.py_object(); } |
|
192 | PyObject* py_object() { return _py_obj.py_object(); } | |
161 | }; |
|
193 | }; | |
162 |
|
194 | |||
|
195 | struct NpArray | |||
|
196 | { | |||
|
197 | std::vector<std::size_t> shape; | |||
|
198 | std::vector<double> data; | |||
|
199 | static bool isNpArray(PyObject* obj) { return NpArray_view::isNpArray(obj); } | |||
|
200 | NpArray() = default; | |||
|
201 | explicit NpArray(PyObject* obj) | |||
|
202 | { | |||
|
203 | if (obj) | |||
|
204 | { | |||
|
205 | NpArray_view view { obj }; | |||
|
206 | shape = view.shape(); | |||
|
207 | data = view.to_std_vect(); | |||
|
208 | } | |||
|
209 | } | |||
|
210 | ||||
|
211 | inline std::size_t ndim() { return shape.size(); } | |||
|
212 | ||||
|
213 | std::size_t size(std::size_t index = 0) | |||
|
214 | { | |||
|
215 | if (index < shape.size()) | |||
|
216 | return shape[index]; | |||
|
217 | return 0; | |||
|
218 | } | |||
|
219 | ||||
|
220 | std::size_t flat_size() | |||
|
221 | { | |||
|
222 | return std::accumulate(std::cbegin(shape), std::cend(shape), 1, | |||
|
223 | [](const auto& a, const auto& b) { return a * b; }); | |||
|
224 | } | |||
|
225 | ||||
|
226 | // TODO temporary hack should find a way to avoid this copy | |||
|
227 | std::vector<VectorTimeSerie::raw_value_type> to_std_vect_vect() | |||
|
228 | { | |||
|
229 | auto sz = size(0); | |||
|
230 | std::vector<VectorTimeSerie::raw_value_type> v(sz); | |||
|
231 | if (sz) | |||
|
232 | { | |||
|
233 | assert(ndim() == 2); | |||
|
234 | assert(size(1) == 3); | |||
|
235 | auto d_ptr = reinterpret_cast<VectorTimeSerie::raw_value_type*>(data.data()); | |||
|
236 | std::copy(d_ptr, d_ptr + sz, std::begin(v)); | |||
|
237 | } | |||
|
238 | return v; | |||
|
239 | } | |||
|
240 | ||||
|
241 | // TODO maybe ;) | |||
|
242 | PyObject* py_object() { return nullptr; } | |||
|
243 | }; | |||
|
244 | ||||
163 | inline int test_np_array(NpArray& arr) |
|
245 | inline int test_np_array(NpArray& arr) | |
164 | { |
|
246 | { | |
165 |
auto shape = arr.shape |
|
247 | auto shape = arr.shape; | |
166 | std::cout << "len(shape)=" << shape.size() << std::endl; |
|
248 | std::cout << "len(shape)=" << shape.size() << std::endl; | |
167 | std::for_each(std::cbegin(shape), std::cend(shape), [](auto sz) { |
|
249 | std::for_each(std::cbegin(shape), std::cend(shape), [](auto sz) { | |
168 | static int i = 0; |
|
250 | static int i = 0; | |
@@ -171,7 +253,7 inline int test_np_array(NpArray& arr) | |||||
171 | auto flatsize = std::accumulate(std::cbegin(shape), std::cend(shape), 0); |
|
253 | auto flatsize = std::accumulate(std::cbegin(shape), std::cend(shape), 0); | |
172 | for (auto i = 0; i < flatsize; i++) |
|
254 | for (auto i = 0; i < flatsize; i++) | |
173 | { |
|
255 | { | |
174 |
std::cout << "data[" << i << "]=" << arr.data |
|
256 | std::cout << "data[" << i << "]=" << arr.data[i] << std::endl; | |
175 | } |
|
257 | } | |
176 | return 1; |
|
258 | return 1; | |
177 | } |
|
259 | } |
General Comments 0
You need to be logged in to leave comments.
Login now