@@ -1,1 +1,1 | |||||
1 | Subproject commit 698d7cfa01b05427c2377ce2799f1290b9eab2ca |
|
1 | Subproject commit 483146a07a5ffeec8f0a2d61459e94d95e851572 |
@@ -3,9 +3,12 | |||||
3 |
|
3 | |||
4 | #include <Data/ScalarTimeSerie.h> |
|
4 | #include <Data/ScalarTimeSerie.h> | |
5 | #include <Data/SpectrogramTimeSerie.h> |
|
5 | #include <Data/SpectrogramTimeSerie.h> | |
|
6 | #include <Data/TimeSeriesUtils.h> | |||
6 | #include <Data/VectorTimeSerie.h> |
|
7 | #include <Data/VectorTimeSerie.h> | |
7 |
|
8 | |||
|
9 | #include <Common/cpp_utils.h> | |||
8 | #include <Variable/Variable2.h> |
|
10 | #include <Variable/Variable2.h> | |
|
11 | #include <algorithm> | |||
9 |
|
12 | |||
10 | Q_LOGGING_CATEGORY(LOG_VisualizationGraphHelper, "VisualizationGraphHelper") |
|
13 | Q_LOGGING_CATEGORY(LOG_VisualizationGraphHelper, "VisualizationGraphHelper") | |
11 |
|
14 | |||
@@ -321,31 +324,14 struct PlottablesUpdater<T, | |||||
321 | { |
|
324 | { | |
322 | static void setPlotYAxisRange(T& dataSeries, const DateTimeRange& xAxisRange, QCustomPlot& plot) |
|
325 | static void setPlotYAxisRange(T& dataSeries, const DateTimeRange& xAxisRange, QCustomPlot& plot) | |
323 | { |
|
326 | { | |
324 | // TODO |
|
327 | auto [minValue, maxValue] = dataSeries.axis_range(1); | |
325 | // double min, max; |
|
328 | std::cout << "min=" << minValue << " max=" << maxValue << std::endl; | |
326 | // std::tie(min, max) = dataSeries.yBounds(); |
|
|||
327 |
|
||||
328 | // if (!std::isnan(min) && !std::isnan(max)) |
|
|||
329 | // { |
|
|||
330 | // plot.yAxis->setRange(QCPRange { min, max }); |
|
|||
331 | // } |
|
|||
332 | double minValue = 0., maxValue = 0.; |
|
|||
333 | if (auto serie = dynamic_cast<SpectrogramTimeSerie*>(&dataSeries)) |
|
|||
334 | { |
|
|||
335 | auto& yAxis = serie->axis(1); |
|
|||
336 | if (yAxis.size()) |
|
|||
337 | { |
|
|||
338 | minValue = *std::min_element(std::cbegin(yAxis), std::cend(yAxis)); |
|
|||
339 | maxValue = *std::max_element(std::cbegin(yAxis), std::cend(yAxis)); |
|
|||
340 | } |
|
|||
341 | } |
|
|||
342 | plot.yAxis->setRange(QCPRange { minValue, maxValue }); |
|
329 | plot.yAxis->setRange(QCPRange { minValue, maxValue }); | |
343 | } |
|
330 | } | |
344 |
|
331 | |||
345 | static void updatePlottables( |
|
332 | static void updatePlottables( | |
346 | T& dataSeries, PlottablesMap& plottables, const DateTimeRange& range, bool rescaleAxes) |
|
333 | T& dataSeries, PlottablesMap& plottables, const DateTimeRange& range, bool rescaleAxes) | |
347 | { |
|
334 | { | |
348 | // TODO |
|
|||
349 | if (plottables.empty()) |
|
335 | if (plottables.empty()) | |
350 | { |
|
336 | { | |
351 | qCDebug(LOG_VisualizationGraphHelper()) |
|
337 | qCDebug(LOG_VisualizationGraphHelper()) | |
@@ -353,80 +339,82 struct PlottablesUpdater<T, | |||||
353 | return; |
|
339 | return; | |
354 | } |
|
340 | } | |
355 |
|
341 | |||
356 |
|
342 | // Gets the colormap to update (normally there is only one colormap) | ||
357 | // // Gets the colormap to update (normally there is only one colormap) |
|
|||
358 | Q_ASSERT(plottables.size() == 1); |
|
343 | Q_ASSERT(plottables.size() == 1); | |
359 | auto colormap = dynamic_cast<QCPColorMap*>(plottables.at(0)); |
|
344 | auto colormap = dynamic_cast<QCPColorMap*>(plottables.at(0)); | |
360 | Q_ASSERT(colormap != nullptr); |
|
345 | Q_ASSERT(colormap != nullptr); | |
|
346 | auto plot = colormap->parentPlot(); | |||
|
347 | auto [minValue, maxValue] = dataSeries.axis_range(1); | |||
|
348 | plot->yAxis->setRange(QCPRange { minValue, maxValue }); | |||
361 | if (auto serie = dynamic_cast<SpectrogramTimeSerie*>(&dataSeries)) |
|
349 | if (auto serie = dynamic_cast<SpectrogramTimeSerie*>(&dataSeries)) | |
362 | { |
|
350 | { | |
363 | colormap->data()->setSize(serie->shape()[0], serie->shape()[1]); |
|
351 | if (serie->size(0) > 2) | |
364 | if (serie->size(0)) |
|
|||
365 | { |
|
352 | { | |
|
353 | const auto& xAxis = serie->axis(0); | |||
|
354 | auto yAxis = serie->axis(1); // copy for in place reverse order | |||
|
355 | std::reverse(std::begin(yAxis), std::end(yAxis)); | |||
|
356 | auto xAxisProperties = TimeSeriesUtils::axis_analysis<TimeSeriesUtils::IsLinear, | |||
|
357 | TimeSeriesUtils::CheckMedian>(xAxis); | |||
|
358 | auto yAxisProperties = TimeSeriesUtils::axis_analysis<TimeSeriesUtils::IsLog, | |||
|
359 | TimeSeriesUtils::DontCheckMedian>(yAxis); | |||
|
360 | ||||
|
361 | int colormap_h_size = std::min(32000, | |||
|
362 | static_cast<int>(xAxisProperties.range / xAxisProperties.max_resolution)); | |||
|
363 | auto colormap_v_size | |||
|
364 | = static_cast<int>(yAxisProperties.range / yAxisProperties.max_resolution); | |||
|
365 | ||||
|
366 | colormap->data()->setSize(colormap_h_size, colormap_v_size); | |||
366 | colormap->data()->setRange( |
|
367 | colormap->data()->setRange( | |
367 | QCPRange { serie->begin()->t(), (serie->end() - 1)->t() }, |
|
368 | QCPRange { serie->begin()->t(), (serie->end() - 1)->t() }, | |
368 |
|
|
369 | { minValue, maxValue }); | |
369 | for (int x_index = 0; x_index < serie->shape()[0]; x_index++) |
|
370 | ||
|
371 | std::vector<std::pair<int, int>> y_access_pattern; | |||
|
372 | for (int y_index = 0, cel_index = 0; y_index < colormap_v_size; y_index++) | |||
370 | { |
|
373 | { | |
371 | auto pixline = (*serie)[x_index]; |
|
374 | double current_y = pow( | |
372 | for (int y_index = 0; y_index < serie->shape()[1]; y_index++) |
|
375 | 10., (yAxisProperties.max_resolution * y_index) + std::log10(minValue)); | |
|
376 | if (current_y > yAxis[cel_index]) | |||
|
377 | cel_index++; | |||
|
378 | y_access_pattern.push_back({ y_index, yAxis.size() - 1 - cel_index }); | |||
|
379 | } | |||
|
380 | ||||
|
381 | auto line = serie->begin(); | |||
|
382 | double current_time = xAxis[0]; | |||
|
383 | int x_index = 0; | |||
|
384 | ||||
|
385 | while (x_index < colormap_h_size) | |||
|
386 | { | |||
|
387 | if (current_time > (line + 1)->t()) | |||
373 | { |
|
388 | { | |
374 |
|
|
389 | line++; | |
375 | colormap->data()->setCell(x_index, y_index, value); |
|
390 | } | |
376 | if (std::isnan(value)) |
|
391 | if ((current_time - xAxis[0]) | |
|
392 | > (x_index * xAxisProperties.range / colormap_h_size)) | |||
|
393 | { | |||
|
394 | x_index++; | |||
|
395 | } | |||
|
396 | if (line->t() <= (current_time + xAxisProperties.max_resolution)) | |||
|
397 | { | |||
|
398 | std::for_each(std::cbegin(y_access_pattern), std::cend(y_access_pattern), | |||
|
399 | [&colormap, &line, x_index](const auto& acc) { | |||
|
400 | colormap->data()->setCell(x_index, acc.first, (*line)[acc.second]); | |||
|
401 | }); | |||
|
402 | } | |||
|
403 | else | |||
|
404 | { | |||
|
405 | for (int y_index = 0; y_index < colormap_v_size; y_index++) | |||
377 | { |
|
406 | { | |
378 |
colormap->data()->set |
|
407 | colormap->data()->setCell(x_index, y_index, std::nan("")); | |
379 | } |
|
408 | } | |
380 | } |
|
409 | } | |
|
410 | current_time += xAxisProperties.max_resolution; | |||
381 | } |
|
411 | } | |
382 | } |
|
412 | } | |
383 | } |
|
413 | ||
384 | // dataSeries.lockRead(); |
|
414 | if (rescaleAxes) | |
385 |
|
415 | { | ||
386 | // // Processing spectrogram data for display in QCustomPlot |
|
416 | plot->rescaleAxes(); | |
387 | // auto its = dataSeries.xAxisRange(range.m_TStart, range.m_TEnd); |
|
417 | } | |
388 |
|
||||
389 | // // Computes logarithmic y-axis resolution for the spectrogram |
|
|||
390 | // auto yData = its.first->y(); |
|
|||
391 | // auto yResolution = DataSeriesUtils::resolution(yData.begin(), yData.end(), true); |
|
|||
392 |
|
||||
393 | // // Generates mesh for colormap |
|
|||
394 | // auto mesh = DataSeriesUtils::regularMesh(its.first, its.second, |
|
|||
395 | // DataSeriesUtils::Resolution { dataSeries.xResolution() }, yResolution); |
|
|||
396 |
|
||||
397 | // dataSeries.unlock(); |
|
|||
398 |
|
||||
399 | // colormap->data()->setSize(mesh.m_NbX, mesh.m_NbY); |
|
|||
400 | // if (!mesh.isEmpty()) |
|
|||
401 | // { |
|
|||
402 | // colormap->data()->setRange(QCPRange { mesh.m_XMin, mesh.xMax() }, |
|
|||
403 | // // y-axis range is converted to linear values |
|
|||
404 | // QCPRange { std::pow(10, mesh.m_YMin), std::pow(10, mesh.yMax()) }); |
|
|||
405 |
|
||||
406 | // // Sets values |
|
|||
407 | // auto index = 0; |
|
|||
408 | // for (auto it = mesh.m_Data.begin(), end = mesh.m_Data.end(); it != end; ++it, |
|
|||
409 | // ++index) |
|
|||
410 | // { |
|
|||
411 | // auto xIndex = index % mesh.m_NbX; |
|
|||
412 | // auto yIndex = index / mesh.m_NbX; |
|
|||
413 |
|
||||
414 | // colormap->data()->setCell(xIndex, yIndex, *it); |
|
|||
415 |
|
||||
416 | // // Makes the NaN values to be transparent in the colormap |
|
|||
417 | // if (std::isnan(*it)) |
|
|||
418 | // { |
|
|||
419 | // colormap->data()->setAlpha(xIndex, yIndex, 0); |
|
|||
420 | // } |
|
|||
421 | // } |
|
|||
422 | // } |
|
|||
423 |
|
||||
424 | // // Rescales axes |
|
|||
425 | auto plot = colormap->parentPlot(); |
|
|||
426 | setPlotYAxisRange(dataSeries, {}, *plot); |
|
|||
427 | if (rescaleAxes) |
|
|||
428 | { |
|
|||
429 | plot->rescaleAxes(); |
|
|||
430 | } |
|
418 | } | |
431 | } |
|
419 | } | |
432 | }; |
|
420 | }; | |
@@ -444,7 +432,8 struct IPlottablesHelper | |||||
444 | }; |
|
432 | }; | |
445 |
|
433 | |||
446 | /** |
|
434 | /** | |
447 |
* Default implementation of IPlottablesHelper, which takes data series to create/update |
|
435 | * Default implementation of IPlottablesHelper, which takes data series to create/update | |
|
436 | * plottables | |||
448 | * @tparam T the data series' type |
|
437 | * @tparam T the data series' type | |
449 | */ |
|
438 | */ | |
450 | template <typename T> |
|
439 | template <typename T> |
@@ -10,9 +10,42 from spwc.amda import AMDA | |||||
10 |
|
10 | |||
11 | amda = AMDA() |
|
11 | amda = AMDA() | |
12 |
|
12 | |||
13 | def get_sample(metadata,start,stop): |
|
13 | def amda_make_scalar(var=None): | |
14 | ts_type = pysciqlopcore.ScalarTimeSerie |
|
14 | if var is None: | |
15 | default_ctor_args = 1 |
|
15 | return pysciqlopcore.ScalarTimeSerie(1) | |
|
16 | else: | |||
|
17 | return pysciqlopcore.ScalarTimeSerie(var.time,var.data) | |||
|
18 | ||||
|
19 | def amda_make_vector(var=None): | |||
|
20 | if var is None: | |||
|
21 | return pysciqlopcore.VectorTimeSerie(1) | |||
|
22 | else: | |||
|
23 | return pysciqlopcore.VectorTimeSerie(var.time,var.data) | |||
|
24 | ||||
|
25 | def amda_make_multi_comp(var=None): | |||
|
26 | if var is None: | |||
|
27 | return pysciqlopcore.MultiComponentTimeSerie((0,2)) | |||
|
28 | else: | |||
|
29 | return pysciqlopcore.MultiComponentTimeSerie(var.time,var.data) | |||
|
30 | ||||
|
31 | def amda_make_spectro(var=None): | |||
|
32 | if var is None: | |||
|
33 | return pysciqlopcore.SpectrogramTimeSerie((0,2)) | |||
|
34 | else: | |||
|
35 | if "PARAMETER_TABLE_MIN_VALUES[1]" in var.meta: | |||
|
36 | min_v = np.array([ float(v) for v in var.meta["PARAMETER_TABLE_MIN_VALUES[1]"].split(',') ]) | |||
|
37 | max_v = np.array([ float(v) for v in var.meta["PARAMETER_TABLE_MAX_VALUES[1]"].split(',') ]) | |||
|
38 | y = (max_v + min_v)/2. | |||
|
39 | elif "PARAMETER_TABLE_MIN_VALUES[0]" in var.meta: | |||
|
40 | min_v = np.array([ float(v) for v in var.meta["PARAMETER_TABLE_MIN_VALUES[0]"].split(',') ]) | |||
|
41 | max_v = np.array([ float(v) for v in var.meta["PARAMETER_TABLE_MAX_VALUES[0]"].split(',') ]) | |||
|
42 | y = (max_v + min_v)/2. | |||
|
43 | else: | |||
|
44 | y = np.logspace(1,3,var.data.shape[1])[::-1] | |||
|
45 | return pysciqlopcore.SpectrogramTimeSerie(var.time,y,var.data) | |||
|
46 | ||||
|
47 | def amda_get_sample(metadata,start,stop): | |||
|
48 | ts_type = amda_make_scalar | |||
16 | try: |
|
49 | try: | |
17 | param_id = None |
|
50 | param_id = None | |
18 | for key,value in metadata: |
|
51 | for key,value in metadata: | |
@@ -20,18 +53,19 def get_sample(metadata,start,stop): | |||||
20 | param_id = value |
|
53 | param_id = value | |
21 | elif key == 'type': |
|
54 | elif key == 'type': | |
22 | if value == 'vector': |
|
55 | if value == 'vector': | |
23 |
ts_type = |
|
56 | ts_type = amda_make_vector | |
24 | elif value == 'multicomponent': |
|
57 | elif value == 'multicomponent': | |
25 |
ts_type = |
|
58 | ts_type = amda_make_multi_comp | |
26 | default_ctor_args = (0,2) |
|
59 | elif value == 'spectrogram': | |
|
60 | ts_type = amda_make_spectro | |||
27 | tstart=datetime.fromtimestamp(start, tz=timezone.utc) |
|
61 | tstart=datetime.fromtimestamp(start, tz=timezone.utc) | |
28 | tend=datetime.fromtimestamp(stop, tz=timezone.utc) |
|
62 | tend=datetime.fromtimestamp(stop, tz=timezone.utc) | |
29 | var = amda.get_parameter(start_time=tstart, stop_time=tend, parameter_id=param_id, method="REST") |
|
63 | var = amda.get_parameter(start_time=tstart, stop_time=tend, parameter_id=param_id, method="REST") | |
30 |
return ts_type(var |
|
64 | return ts_type(var) | |
31 | except Exception as e: |
|
65 | except Exception as e: | |
32 | print(traceback.format_exc()) |
|
66 | print(traceback.format_exc()) | |
33 | print("Error in amda.py ",str(e)) |
|
67 | print("Error in amda.py ",str(e)) | |
34 |
return ts_type( |
|
68 | return ts_type() | |
35 |
|
69 | |||
36 |
|
70 | |||
37 | if len(amda.component) is 0: |
|
71 | if len(amda.component) is 0: | |
@@ -49,17 +83,16 for key,parameter in parameters.items(): | |||||
49 | components = [component['name'] for component in parameter.get('components',[])] |
|
83 | components = [component['name'] for component in parameter.get('components',[])] | |
50 | metadata = [ (key,item) for key,item in parameter.items() if key is not 'components' ] |
|
84 | metadata = [ (key,item) for key,item in parameter.items() if key is not 'components' ] | |
51 | n_components = parameter.get('size',0) |
|
85 | n_components = parameter.get('size',0) | |
52 |
if n_components |
|
86 | if n_components == '3': | |
53 | metadata.append(("type","vector")) |
|
87 | metadata.append(("type","vector")) | |
|
88 | elif parameter.get('display_type','')=="spectrogram": | |||
|
89 | metadata.append(("type","spectrogram")) | |||
54 | elif n_components !=0: |
|
90 | elif n_components !=0: | |
55 | if parameter.get('display_type','')=="spectrogram": |
|
91 | metadata.append(("type","multicomponent")) | |
56 | metadata.append(("type","spectrogram")) |
|
|||
57 | else: |
|
|||
58 | metadata.append(("type","multicomponent")) |
|
|||
59 | else: |
|
92 | else: | |
60 | metadata.append(("type","scalar")) |
|
93 | metadata.append(("type","scalar")) | |
61 | products.append( (path, components, metadata)) |
|
94 | products.append( (path, components, metadata)) | |
62 |
|
95 | |||
63 | PythonProviders.register_product(products, get_sample) |
|
96 | PythonProviders.register_product(products, amda_get_sample) | |
64 |
|
97 | |||
65 |
|
98 |
@@ -64,7 +64,7 def get_data(metadata,start,stop): | |||||
64 | ts_type = pysciqlopcore.MultiComponentTimeSerie |
|
64 | ts_type = pysciqlopcore.MultiComponentTimeSerie | |
65 | default_ctor_args = (0,2) |
|
65 | default_ctor_args = (0,2) | |
66 | elif value == 'spectrogram': |
|
66 | elif value == 'spectrogram': | |
67 | ts_type = lambda t,values: pysciqlopcore.SpectrogramTimeSerie(t,np.logspace(1,3,32),values) |
|
67 | ts_type = lambda t,values: pysciqlopcore.SpectrogramTimeSerie(t,np.logspace(1,3,32)[::-1],values) | |
68 | default_ctor_args = (0,2) |
|
68 | default_ctor_args = (0,2) | |
69 | if key == 'cache' and value == 'true': |
|
69 | if key == 'cache' and value == 'true': | |
70 | use_cache = True |
|
70 | use_cache = True |
General Comments 0
You need to be logged in to leave comments.
Login now