arm_math.h
7051 lines
| 227.8 KiB
| text/x-c
|
ObjectiveCLexer
jeandet@pc-de-jeandet3.LAB-LPP.LOCAL
|
r18 | /* ---------------------------------------------------------------------- | ||
* Copyright (C) 2010 ARM Limited. All rights reserved. | ||||
* | ||||
* $Date: 15. July 2011 | ||||
* $Revision: V1.0.10 | ||||
* | ||||
* Project: CMSIS DSP Library | ||||
* Title: arm_math.h | ||||
* | ||||
* Description: Public header file for CMSIS DSP Library | ||||
* | ||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 | ||||
* | ||||
* Version 1.0.10 2011/7/15 | ||||
* Big Endian support added and Merged M0 and M3/M4 Source code. | ||||
* | ||||
* Version 1.0.3 2010/11/29 | ||||
* Re-organized the CMSIS folders and updated documentation. | ||||
* | ||||
* Version 1.0.2 2010/11/11 | ||||
* Documentation updated. | ||||
* | ||||
* Version 1.0.1 2010/10/05 | ||||
* Production release and review comments incorporated. | ||||
* | ||||
* Version 1.0.0 2010/09/20 | ||||
* Production release and review comments incorporated. | ||||
* -------------------------------------------------------------------- */ | ||||
/** | ||||
\mainpage CMSIS DSP Software Library | ||||
* | ||||
* <b>Introduction</b> | ||||
* | ||||
* This user manual describes the CMSIS DSP software library, | ||||
* a suite of common signal processing functions for use on Cortex-M processor based devices. | ||||
* | ||||
* The library is divided into a number of modules each covering a specific category: | ||||
* - Basic math functions | ||||
* - Fast math functions | ||||
* - Complex math functions | ||||
* - Filters | ||||
* - Matrix functions | ||||
* - Transforms | ||||
* - Motor control functions | ||||
* - Statistical functions | ||||
* - Support functions | ||||
* - Interpolation functions | ||||
* | ||||
* The library has separate functions for operating on 8-bit integers, 16-bit integers, | ||||
* 32-bit integer and 32-bit floating-point values. | ||||
* | ||||
* <b>Processor Support</b> | ||||
* | ||||
* The library is completely written in C and is fully CMSIS compliant. | ||||
* High performance is achieved through maximum use of Cortex-M4 intrinsics. | ||||
* | ||||
* The supplied library source code also builds and runs on the Cortex-M3 and Cortex-M0 processor, | ||||
* with the DSP intrinsics being emulated through software. | ||||
* | ||||
* | ||||
* <b>Toolchain Support</b> | ||||
* | ||||
* The library has been developed and tested with MDK-ARM version 4.21. | ||||
* The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. | ||||
* | ||||
* <b>Using the Library</b> | ||||
* | ||||
* The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. | ||||
* - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) | ||||
* - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) | ||||
* - arm_cortexM4l_math.lib (Little endian on Cortex-M4) | ||||
* - arm_cortexM4b_math.lib (Big endian on Cortex-M4) | ||||
* - arm_cortexM3l_math.lib (Little endian on Cortex-M3) | ||||
* - arm_cortexM3b_math.lib (Big endian on Cortex-M3) | ||||
* - arm_cortexM0l_math.lib (Little endian on Cortex-M0) | ||||
* - arm_cortexM0b_math.lib (Big endian on Cortex-M3) | ||||
* | ||||
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. | ||||
* Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single | ||||
* public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. | ||||
* Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or | ||||
* ARM_MATH_CM0 depending on the target processor in the application. | ||||
* | ||||
* <b>Examples</b> | ||||
* | ||||
* The library ships with a number of examples which demonstrate how to use the library functions. | ||||
* | ||||
* <b>Building the Library</b> | ||||
* | ||||
* The library installer contains project files to re build libraries on MDK Tool chain in the <code>CMSIS\DSP_Lib\Source\ARM</code> folder. | ||||
* - arm_cortexM0b_math.uvproj | ||||
* - arm_cortexM0l_math.uvproj | ||||
* - arm_cortexM3b_math.uvproj | ||||
* - arm_cortexM3l_math.uvproj | ||||
* - arm_cortexM4b_math.uvproj | ||||
* - arm_cortexM4l_math.uvproj | ||||
* - arm_cortexM4bf_math.uvproj | ||||
* - arm_cortexM4lf_math.uvproj | ||||
* | ||||
* Each library project have differant pre-processor macros. | ||||
* | ||||
* <b>ARM_MATH_CMx:</b> | ||||
* Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target | ||||
* and ARM_MATH_CM0 for building library on cortex-M0 target. | ||||
* | ||||
* <b>ARM_MATH_BIG_ENDIAN:</b> | ||||
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. | ||||
* | ||||
* <b>ARM_MATH_MATRIX_CHECK:</b> | ||||
* Define macro for checking on the input and output sizes of matrices | ||||
* | ||||
* <b>ARM_MATH_ROUNDING:</b> | ||||
* Define macro for rounding on support functions | ||||
* | ||||
* <b>__FPU_PRESENT:</b> | ||||
* Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries | ||||
* | ||||
* | ||||
* The project can be built by opening the appropriate project in MDK-ARM 4.21 chain and defining the optional pre processor MACROs detailed above. | ||||
* | ||||
* <b>Copyright Notice</b> | ||||
* | ||||
* Copyright (C) 2010 ARM Limited. All rights reserved. | ||||
*/ | ||||
/** | ||||
* @defgroup groupMath Basic Math Functions | ||||
*/ | ||||
/** | ||||
* @defgroup groupFastMath Fast Math Functions | ||||
* This set of functions provides a fast approximation to sine, cosine, and square root. | ||||
* As compared to most of the other functions in the CMSIS math library, the fast math functions | ||||
* operate on individual values and not arrays. | ||||
* There are separate functions for Q15, Q31, and floating-point data. | ||||
* | ||||
*/ | ||||
/** | ||||
* @defgroup groupCmplxMath Complex Math Functions | ||||
* This set of functions operates on complex data vectors. | ||||
* The data in the complex arrays is stored in an interleaved fashion | ||||
* (real, imag, real, imag, ...). | ||||
* In the API functions, the number of samples in a complex array refers | ||||
* to the number of complex values; the array contains twice this number of | ||||
* real values. | ||||
*/ | ||||
/** | ||||
* @defgroup groupFilters Filtering Functions | ||||
*/ | ||||
/** | ||||
* @defgroup groupMatrix Matrix Functions | ||||
* | ||||
* This set of functions provides basic matrix math operations. | ||||
* The functions operate on matrix data structures. For example, | ||||
* the type | ||||
* definition for the floating-point matrix structure is shown | ||||
* below: | ||||
* <pre> | ||||
* typedef struct | ||||
* { | ||||
* uint16_t numRows; // number of rows of the matrix. | ||||
* uint16_t numCols; // number of columns of the matrix. | ||||
* float32_t *pData; // points to the data of the matrix. | ||||
* } arm_matrix_instance_f32; | ||||
* </pre> | ||||
* There are similar definitions for Q15 and Q31 data types. | ||||
* | ||||
* The structure specifies the size of the matrix and then points to | ||||
* an array of data. The array is of size <code>numRows X numCols</code> | ||||
* and the values are arranged in row order. That is, the | ||||
* matrix element (i, j) is stored at: | ||||
* <pre> | ||||
* pData[i*numCols + j] | ||||
* </pre> | ||||
* | ||||
* \par Init Functions | ||||
* There is an associated initialization function for each type of matrix | ||||
* data structure. | ||||
* The initialization function sets the values of the internal structure fields. | ||||
* Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> | ||||
* and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. | ||||
* | ||||
* \par | ||||
* Use of the initialization function is optional. However, if initialization function is used | ||||
* then the instance structure cannot be placed into a const data section. | ||||
* To place the instance structure in a const data | ||||
* section, manually initialize the data structure. For example: | ||||
* <pre> | ||||
* <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> | ||||
* <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> | ||||
* <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> | ||||
* </pre> | ||||
* where <code>nRows</code> specifies the number of rows, <code>nColumns</code> | ||||
* specifies the number of columns, and <code>pData</code> points to the | ||||
* data array. | ||||
* | ||||
* \par Size Checking | ||||
* By default all of the matrix functions perform size checking on the input and | ||||
* output matrices. For example, the matrix addition function verifies that the | ||||
* two input matrices and the output matrix all have the same number of rows and | ||||
* columns. If the size check fails the functions return: | ||||
* <pre> | ||||
* ARM_MATH_SIZE_MISMATCH | ||||
* </pre> | ||||
* Otherwise the functions return | ||||
* <pre> | ||||
* ARM_MATH_SUCCESS | ||||
* </pre> | ||||
* There is some overhead associated with this matrix size checking. | ||||
* The matrix size checking is enabled via the #define | ||||
* <pre> | ||||
* ARM_MATH_MATRIX_CHECK | ||||
* </pre> | ||||
* within the library project settings. By default this macro is defined | ||||
* and size checking is enabled. By changing the project settings and | ||||
* undefining this macro size checking is eliminated and the functions | ||||
* run a bit faster. With size checking disabled the functions always | ||||
* return <code>ARM_MATH_SUCCESS</code>. | ||||
*/ | ||||
/** | ||||
* @defgroup groupTransforms Transform Functions | ||||
*/ | ||||
/** | ||||
* @defgroup groupController Controller Functions | ||||
*/ | ||||
/** | ||||
* @defgroup groupStats Statistics Functions | ||||
*/ | ||||
/** | ||||
* @defgroup groupSupport Support Functions | ||||
*/ | ||||
/** | ||||
* @defgroup groupInterpolation Interpolation Functions | ||||
* These functions perform 1- and 2-dimensional interpolation of data. | ||||
* Linear interpolation is used for 1-dimensional data and | ||||
* bilinear interpolation is used for 2-dimensional data. | ||||
*/ | ||||
/** | ||||
* @defgroup groupExamples Examples | ||||
*/ | ||||
#ifndef _ARM_MATH_H | ||||
#define _ARM_MATH_H | ||||
#define __CMSIS_GENERIC /* disable NVIC and Systick functions */ | ||||
#if defined (ARM_MATH_CM4) | ||||
#include "core_cm4.h" | ||||
#elif defined (ARM_MATH_CM3) | ||||
#include "core_cm3.h" | ||||
#elif defined (ARM_MATH_CM0) | ||||
#include "core_cm0.h" | ||||
#else | ||||
#include "ARMCM4.h" | ||||
#warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....." | ||||
#endif | ||||
#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ | ||||
#include "string.h" | ||||
#include "math.h" | ||||
#ifdef __cplusplus | ||||
extern "C" | ||||
{ | ||||
#endif | ||||
/** | ||||
* @brief Macros required for reciprocal calculation in Normalized LMS | ||||
*/ | ||||
#define DELTA_Q31 (0x100) | ||||
#define DELTA_Q15 0x5 | ||||
#define INDEX_MASK 0x0000003F | ||||
#define PI 3.14159265358979f | ||||
/** | ||||
* @brief Macros required for SINE and COSINE Fast math approximations | ||||
*/ | ||||
#define TABLE_SIZE 256 | ||||
#define TABLE_SPACING_Q31 0x800000 | ||||
#define TABLE_SPACING_Q15 0x80 | ||||
/** | ||||
* @brief Macros required for SINE and COSINE Controller functions | ||||
*/ | ||||
/* 1.31(q31) Fixed value of 2/360 */ | ||||
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */ | ||||
#define INPUT_SPACING 0xB60B61 | ||||
/** | ||||
* @brief Error status returned by some functions in the library. | ||||
*/ | ||||
typedef enum | ||||
{ | ||||
ARM_MATH_SUCCESS = 0, /**< No error */ | ||||
ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ | ||||
ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ | ||||
ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ | ||||
ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ | ||||
ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ | ||||
ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ | ||||
} arm_status; | ||||
/** | ||||
* @brief 8-bit fractional data type in 1.7 format. | ||||
*/ | ||||
typedef int8_t q7_t; | ||||
/** | ||||
* @brief 16-bit fractional data type in 1.15 format. | ||||
*/ | ||||
typedef int16_t q15_t; | ||||
/** | ||||
* @brief 32-bit fractional data type in 1.31 format. | ||||
*/ | ||||
typedef int32_t q31_t; | ||||
/** | ||||
* @brief 64-bit fractional data type in 1.63 format. | ||||
*/ | ||||
typedef int64_t q63_t; | ||||
/** | ||||
* @brief 32-bit floating-point type definition. | ||||
*/ | ||||
typedef float float32_t; | ||||
/** | ||||
* @brief 64-bit floating-point type definition. | ||||
*/ | ||||
typedef double float64_t; | ||||
/** | ||||
* @brief definition to read/write two 16 bit values. | ||||
*/ | ||||
#define __SIMD32(addr) (*(int32_t **) & (addr)) | ||||
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0) | ||||
/** | ||||
* @brief definition to pack two 16 bit values. | ||||
*/ | ||||
#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ | ||||
(((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) | ||||
#endif | ||||
/** | ||||
* @brief definition to pack four 8 bit values. | ||||
*/ | ||||
#ifndef ARM_MATH_BIG_ENDIAN | ||||
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ | ||||
(((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ | ||||
(((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ | ||||
(((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) | ||||
#else | ||||
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ | ||||
(((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ | ||||
(((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ | ||||
(((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) | ||||
#endif | ||||
/** | ||||
* @brief Clips Q63 to Q31 values. | ||||
*/ | ||||
static __INLINE q31_t clip_q63_to_q31( | ||||
q63_t x) | ||||
{ | ||||
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | ||||
((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; | ||||
} | ||||
/** | ||||
* @brief Clips Q63 to Q15 values. | ||||
*/ | ||||
static __INLINE q15_t clip_q63_to_q15( | ||||
q63_t x) | ||||
{ | ||||
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | ||||
((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); | ||||
} | ||||
/** | ||||
* @brief Clips Q31 to Q7 values. | ||||
*/ | ||||
static __INLINE q7_t clip_q31_to_q7( | ||||
q31_t x) | ||||
{ | ||||
return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? | ||||
((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; | ||||
} | ||||
/** | ||||
* @brief Clips Q31 to Q15 values. | ||||
*/ | ||||
static __INLINE q15_t clip_q31_to_q15( | ||||
q31_t x) | ||||
{ | ||||
return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? | ||||
((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; | ||||
} | ||||
/** | ||||
* @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. | ||||
*/ | ||||
static __INLINE q63_t mult32x64( | ||||
q63_t x, | ||||
q31_t y) | ||||
{ | ||||
return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + | ||||
(((q63_t) (x >> 32) * y))); | ||||
} | ||||
#if defined (ARM_MATH_CM0) && defined ( __CC_ARM ) | ||||
#define __CLZ __clz | ||||
#endif | ||||
#if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) ) | ||||
static __INLINE uint32_t __CLZ(q31_t data); | ||||
static __INLINE uint32_t __CLZ(q31_t data) | ||||
{ | ||||
uint32_t count = 0; | ||||
uint32_t mask = 0x80000000; | ||||
while((data & mask) == 0) | ||||
{ | ||||
count += 1u; | ||||
mask = mask >> 1u; | ||||
} | ||||
return(count); | ||||
} | ||||
#endif | ||||
/** | ||||
* @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type. | ||||
*/ | ||||
static __INLINE uint32_t arm_recip_q31( | ||||
q31_t in, | ||||
q31_t * dst, | ||||
q31_t * pRecipTable) | ||||
{ | ||||
uint32_t out, tempVal; | ||||
uint32_t index, i; | ||||
uint32_t signBits; | ||||
if(in > 0) | ||||
{ | ||||
signBits = __CLZ(in) - 1; | ||||
} | ||||
else | ||||
{ | ||||
signBits = __CLZ(-in) - 1; | ||||
} | ||||
/* Convert input sample to 1.31 format */ | ||||
in = in << signBits; | ||||
/* calculation of index for initial approximated Val */ | ||||
index = (uint32_t) (in >> 24u); | ||||
index = (index & INDEX_MASK); | ||||
/* 1.31 with exp 1 */ | ||||
out = pRecipTable[index]; | ||||
/* calculation of reciprocal value */ | ||||
/* running approximation for two iterations */ | ||||
for (i = 0u; i < 2u; i++) | ||||
{ | ||||
tempVal = (q31_t) (((q63_t) in * out) >> 31u); | ||||
tempVal = 0x7FFFFFFF - tempVal; | ||||
/* 1.31 with exp 1 */ | ||||
//out = (q31_t) (((q63_t) out * tempVal) >> 30u); | ||||
out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u); | ||||
} | ||||
/* write output */ | ||||
*dst = out; | ||||
/* return num of signbits of out = 1/in value */ | ||||
return (signBits + 1u); | ||||
} | ||||
/** | ||||
* @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type. | ||||
*/ | ||||
static __INLINE uint32_t arm_recip_q15( | ||||
q15_t in, | ||||
q15_t * dst, | ||||
q15_t * pRecipTable) | ||||
{ | ||||
uint32_t out = 0, tempVal = 0; | ||||
uint32_t index = 0, i = 0; | ||||
uint32_t signBits = 0; | ||||
if(in > 0) | ||||
{ | ||||
signBits = __CLZ(in) - 17; | ||||
} | ||||
else | ||||
{ | ||||
signBits = __CLZ(-in) - 17; | ||||
} | ||||
/* Convert input sample to 1.15 format */ | ||||
in = in << signBits; | ||||
/* calculation of index for initial approximated Val */ | ||||
index = in >> 8; | ||||
index = (index & INDEX_MASK); | ||||
/* 1.15 with exp 1 */ | ||||
out = pRecipTable[index]; | ||||
/* calculation of reciprocal value */ | ||||
/* running approximation for two iterations */ | ||||
for (i = 0; i < 2; i++) | ||||
{ | ||||
tempVal = (q15_t) (((q31_t) in * out) >> 15); | ||||
tempVal = 0x7FFF - tempVal; | ||||
/* 1.15 with exp 1 */ | ||||
out = (q15_t) (((q31_t) out * tempVal) >> 14); | ||||
} | ||||
/* write output */ | ||||
*dst = out; | ||||
/* return num of signbits of out = 1/in value */ | ||||
return (signBits + 1); | ||||
} | ||||
/* | ||||
* @brief C custom defined intrinisic function for only M0 processors | ||||
*/ | ||||
#if defined(ARM_MATH_CM0) | ||||
static __INLINE q31_t __SSAT( | ||||
q31_t x, | ||||
uint32_t y) | ||||
{ | ||||
int32_t posMax, negMin; | ||||
uint32_t i; | ||||
posMax = 1; | ||||
for (i = 0; i < (y - 1); i++) | ||||
{ | ||||
posMax = posMax * 2; | ||||
} | ||||
if(x > 0) | ||||
{ | ||||
posMax = (posMax - 1); | ||||
if(x > posMax) | ||||
{ | ||||
x = posMax; | ||||
} | ||||
} | ||||
else | ||||
{ | ||||
negMin = -posMax; | ||||
if(x < negMin) | ||||
{ | ||||
x = negMin; | ||||
} | ||||
} | ||||
return (x); | ||||
} | ||||
#endif /* end of ARM_MATH_CM0 */ | ||||
/* | ||||
* @brief C custom defined intrinsic function for M3 and M0 processors | ||||
*/ | ||||
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0) | ||||
/* | ||||
* @brief C custom defined QADD8 for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __QADD8( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum; | ||||
q7_t r, s, t, u; | ||||
r = (char) x; | ||||
s = (char) y; | ||||
r = __SSAT((q31_t) (r + s), 8); | ||||
s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8); | ||||
t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8); | ||||
u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8); | ||||
sum = (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) | | ||||
(((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined QSUB8 for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __QSUB8( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum; | ||||
q31_t r, s, t, u; | ||||
r = (char) x; | ||||
s = (char) y; | ||||
r = __SSAT((r - s), 8); | ||||
s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8; | ||||
t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16; | ||||
u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24; | ||||
sum = | ||||
(u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & 0x000000FF); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined QADD16 for M3 and M0 processors | ||||
*/ | ||||
/* | ||||
* @brief C custom defined QADD16 for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __QADD16( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum; | ||||
q31_t r, s; | ||||
r = (short) x; | ||||
s = (short) y; | ||||
r = __SSAT(r + s, 16); | ||||
s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16; | ||||
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined SHADD16 for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SHADD16( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum; | ||||
q31_t r, s; | ||||
r = (short) x; | ||||
s = (short) y; | ||||
r = ((r >> 1) + (s >> 1)); | ||||
s = ((q31_t) ((x >> 17) + (y >> 17))) << 16; | ||||
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined QSUB16 for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __QSUB16( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum; | ||||
q31_t r, s; | ||||
r = (short) x; | ||||
s = (short) y; | ||||
r = __SSAT(r - s, 16); | ||||
s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16; | ||||
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined SHSUB16 for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SHSUB16( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t diff; | ||||
q31_t r, s; | ||||
r = (short) x; | ||||
s = (short) y; | ||||
r = ((r >> 1) - (s >> 1)); | ||||
s = (((x >> 17) - (y >> 17)) << 16); | ||||
diff = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||||
return diff; | ||||
} | ||||
/* | ||||
* @brief C custom defined QASX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __QASX( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum = 0; | ||||
sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) + | ||||
clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16))); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined SHASX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SHASX( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum; | ||||
q31_t r, s; | ||||
r = (short) x; | ||||
s = (short) y; | ||||
r = ((r >> 1) - (y >> 17)); | ||||
s = (((x >> 17) + (s >> 1)) << 16); | ||||
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined QSAX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __QSAX( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum = 0; | ||||
sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) + | ||||
clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16))); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined SHSAX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SHSAX( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
q31_t sum; | ||||
q31_t r, s; | ||||
r = (short) x; | ||||
s = (short) y; | ||||
r = ((r >> 1) + (y >> 17)); | ||||
s = (((x >> 17) - (s >> 1)) << 16); | ||||
sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||||
return sum; | ||||
} | ||||
/* | ||||
* @brief C custom defined SMUSDX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SMUSDX( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
return ((q31_t)(((short) x * (short) (y >> 16)) - | ||||
((short) (x >> 16) * (short) y))); | ||||
} | ||||
/* | ||||
* @brief C custom defined SMUADX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SMUADX( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
return ((q31_t)(((short) x * (short) (y >> 16)) + | ||||
((short) (x >> 16) * (short) y))); | ||||
} | ||||
/* | ||||
* @brief C custom defined QADD for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __QADD( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
return clip_q63_to_q31((q63_t) x + y); | ||||
} | ||||
/* | ||||
* @brief C custom defined QSUB for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __QSUB( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
return clip_q63_to_q31((q63_t) x - y); | ||||
} | ||||
/* | ||||
* @brief C custom defined SMLAD for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SMLAD( | ||||
q31_t x, | ||||
q31_t y, | ||||
q31_t sum) | ||||
{ | ||||
return (sum + ((short) (x >> 16) * (short) (y >> 16)) + | ||||
((short) x * (short) y)); | ||||
} | ||||
/* | ||||
* @brief C custom defined SMLADX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SMLADX( | ||||
q31_t x, | ||||
q31_t y, | ||||
q31_t sum) | ||||
{ | ||||
return (sum + ((short) (x >> 16) * (short) (y)) + | ||||
((short) x * (short) (y >> 16))); | ||||
} | ||||
/* | ||||
* @brief C custom defined SMLSDX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SMLSDX( | ||||
q31_t x, | ||||
q31_t y, | ||||
q31_t sum) | ||||
{ | ||||
return (sum - ((short) (x >> 16) * (short) (y)) + | ||||
((short) x * (short) (y >> 16))); | ||||
} | ||||
/* | ||||
* @brief C custom defined SMLALD for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q63_t __SMLALD( | ||||
q31_t x, | ||||
q31_t y, | ||||
q63_t sum) | ||||
{ | ||||
return (sum + ((short) (x >> 16) * (short) (y >> 16)) + | ||||
((short) x * (short) y)); | ||||
} | ||||
/* | ||||
* @brief C custom defined SMLALDX for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q63_t __SMLALDX( | ||||
q31_t x, | ||||
q31_t y, | ||||
q63_t sum) | ||||
{ | ||||
return (sum + ((short) (x >> 16) * (short) y)) + | ||||
((short) x * (short) (y >> 16)); | ||||
} | ||||
/* | ||||
* @brief C custom defined SMUAD for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SMUAD( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
return (((x >> 16) * (y >> 16)) + | ||||
(((x << 16) >> 16) * ((y << 16) >> 16))); | ||||
} | ||||
/* | ||||
* @brief C custom defined SMUSD for M3 and M0 processors | ||||
*/ | ||||
static __INLINE q31_t __SMUSD( | ||||
q31_t x, | ||||
q31_t y) | ||||
{ | ||||
return (-((x >> 16) * (y >> 16)) + | ||||
(((x << 16) >> 16) * ((y << 16) >> 16))); | ||||
} | ||||
#endif /* (ARM_MATH_CM3) || defined (ARM_MATH_CM0) */ | ||||
/** | ||||
* @brief Instance structure for the Q7 FIR filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of filter coefficients in the filter. */ | ||||
q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
} arm_fir_instance_q7; | ||||
/** | ||||
* @brief Instance structure for the Q15 FIR filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of filter coefficients in the filter. */ | ||||
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
} arm_fir_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 FIR filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of filter coefficients in the filter. */ | ||||
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | ||||
} arm_fir_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point FIR filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of filter coefficients in the filter. */ | ||||
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | ||||
} arm_fir_instance_f32; | ||||
/** | ||||
* @brief Processing function for the Q7 FIR filter. | ||||
* @param[in] *S points to an instance of the Q7 FIR filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_q7( | ||||
const arm_fir_instance_q7 * S, | ||||
q7_t * pSrc, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q7 FIR filter. | ||||
* @param[in,out] *S points to an instance of the Q7 FIR structure. | ||||
* @param[in] numTaps Number of filter coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of samples that are processed. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_init_q7( | ||||
arm_fir_instance_q7 * S, | ||||
uint16_t numTaps, | ||||
q7_t * pCoeffs, | ||||
q7_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q15 FIR filter. | ||||
* @param[in] *S points to an instance of the Q15 FIR structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_q15( | ||||
const arm_fir_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. | ||||
* @param[in] *S points to an instance of the Q15 FIR filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_fast_q15( | ||||
const arm_fir_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q15 FIR filter. | ||||
* @param[in,out] *S points to an instance of the Q15 FIR filter structure. | ||||
* @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of samples that are processed at a time. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if | ||||
* <code>numTaps</code> is not a supported value. | ||||
*/ | ||||
arm_status arm_fir_init_q15( | ||||
arm_fir_instance_q15 * S, | ||||
uint16_t numTaps, | ||||
q15_t * pCoeffs, | ||||
q15_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q31 FIR filter. | ||||
* @param[in] *S points to an instance of the Q31 FIR filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_q31( | ||||
const arm_fir_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. | ||||
* @param[in] *S points to an instance of the Q31 FIR structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_fast_q31( | ||||
const arm_fir_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q31 FIR filter. | ||||
* @param[in,out] *S points to an instance of the Q31 FIR structure. | ||||
* @param[in] numTaps Number of filter coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of samples that are processed at a time. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_init_q31( | ||||
arm_fir_instance_q31 * S, | ||||
uint16_t numTaps, | ||||
q31_t * pCoeffs, | ||||
q31_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the floating-point FIR filter. | ||||
* @param[in] *S points to an instance of the floating-point FIR structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_f32( | ||||
const arm_fir_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the floating-point FIR filter. | ||||
* @param[in,out] *S points to an instance of the floating-point FIR filter structure. | ||||
* @param[in] numTaps Number of filter coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of samples that are processed at a time. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_init_f32( | ||||
arm_fir_instance_f32 * S, | ||||
uint16_t numTaps, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the Q15 Biquad cascade filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | ||||
q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | ||||
q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | ||||
int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | ||||
} arm_biquad_casd_df1_inst_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 Biquad cascade filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | ||||
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | ||||
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | ||||
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | ||||
} arm_biquad_casd_df1_inst_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point Biquad cascade filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | ||||
float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | ||||
float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | ||||
} arm_biquad_casd_df1_inst_f32; | ||||
/** | ||||
* @brief Processing function for the Q15 Biquad cascade filter. | ||||
* @param[in] *S points to an instance of the Q15 Biquad cascade structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_biquad_cascade_df1_q15( | ||||
const arm_biquad_casd_df1_inst_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q15 Biquad cascade filter. | ||||
* @param[in,out] *S points to an instance of the Q15 Biquad cascade structure. | ||||
* @param[in] numStages number of 2nd order stages in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | ||||
* @return none | ||||
*/ | ||||
void arm_biquad_cascade_df1_init_q15( | ||||
arm_biquad_casd_df1_inst_q15 * S, | ||||
uint8_t numStages, | ||||
q15_t * pCoeffs, | ||||
q15_t * pState, | ||||
int8_t postShift); | ||||
/** | ||||
* @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. | ||||
* @param[in] *S points to an instance of the Q15 Biquad cascade structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_biquad_cascade_df1_fast_q15( | ||||
const arm_biquad_casd_df1_inst_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q31 Biquad cascade filter | ||||
* @param[in] *S points to an instance of the Q31 Biquad cascade structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_biquad_cascade_df1_q31( | ||||
const arm_biquad_casd_df1_inst_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. | ||||
* @param[in] *S points to an instance of the Q31 Biquad cascade structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_biquad_cascade_df1_fast_q31( | ||||
const arm_biquad_casd_df1_inst_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q31 Biquad cascade filter. | ||||
* @param[in,out] *S points to an instance of the Q31 Biquad cascade structure. | ||||
* @param[in] numStages number of 2nd order stages in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | ||||
* @return none | ||||
*/ | ||||
void arm_biquad_cascade_df1_init_q31( | ||||
arm_biquad_casd_df1_inst_q31 * S, | ||||
uint8_t numStages, | ||||
q31_t * pCoeffs, | ||||
q31_t * pState, | ||||
int8_t postShift); | ||||
/** | ||||
* @brief Processing function for the floating-point Biquad cascade filter. | ||||
* @param[in] *S points to an instance of the floating-point Biquad cascade structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_biquad_cascade_df1_f32( | ||||
const arm_biquad_casd_df1_inst_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the floating-point Biquad cascade filter. | ||||
* @param[in,out] *S points to an instance of the floating-point Biquad cascade structure. | ||||
* @param[in] numStages number of 2nd order stages in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @return none | ||||
*/ | ||||
void arm_biquad_cascade_df1_init_f32( | ||||
arm_biquad_casd_df1_inst_f32 * S, | ||||
uint8_t numStages, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState); | ||||
/** | ||||
* @brief Instance structure for the floating-point matrix structure. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numRows; /**< number of rows of the matrix. */ | ||||
uint16_t numCols; /**< number of columns of the matrix. */ | ||||
float32_t *pData; /**< points to the data of the matrix. */ | ||||
} arm_matrix_instance_f32; | ||||
/** | ||||
* @brief Instance structure for the Q15 matrix structure. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numRows; /**< number of rows of the matrix. */ | ||||
uint16_t numCols; /**< number of columns of the matrix. */ | ||||
q15_t *pData; /**< points to the data of the matrix. */ | ||||
} arm_matrix_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 matrix structure. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numRows; /**< number of rows of the matrix. */ | ||||
uint16_t numCols; /**< number of columns of the matrix. */ | ||||
q31_t *pData; /**< points to the data of the matrix. */ | ||||
} arm_matrix_instance_q31; | ||||
/** | ||||
* @brief Floating-point matrix addition. | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_add_f32( | ||||
const arm_matrix_instance_f32 * pSrcA, | ||||
const arm_matrix_instance_f32 * pSrcB, | ||||
arm_matrix_instance_f32 * pDst); | ||||
/** | ||||
* @brief Q15 matrix addition. | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_add_q15( | ||||
const arm_matrix_instance_q15 * pSrcA, | ||||
const arm_matrix_instance_q15 * pSrcB, | ||||
arm_matrix_instance_q15 * pDst); | ||||
/** | ||||
* @brief Q31 matrix addition. | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_add_q31( | ||||
const arm_matrix_instance_q31 * pSrcA, | ||||
const arm_matrix_instance_q31 * pSrcB, | ||||
arm_matrix_instance_q31 * pDst); | ||||
/** | ||||
* @brief Floating-point matrix transpose. | ||||
* @param[in] *pSrc points to the input matrix | ||||
* @param[out] *pDst points to the output matrix | ||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | ||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_trans_f32( | ||||
const arm_matrix_instance_f32 * pSrc, | ||||
arm_matrix_instance_f32 * pDst); | ||||
/** | ||||
* @brief Q15 matrix transpose. | ||||
* @param[in] *pSrc points to the input matrix | ||||
* @param[out] *pDst points to the output matrix | ||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | ||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_trans_q15( | ||||
const arm_matrix_instance_q15 * pSrc, | ||||
arm_matrix_instance_q15 * pDst); | ||||
/** | ||||
* @brief Q31 matrix transpose. | ||||
* @param[in] *pSrc points to the input matrix | ||||
* @param[out] *pDst points to the output matrix | ||||
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | ||||
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_trans_q31( | ||||
const arm_matrix_instance_q31 * pSrc, | ||||
arm_matrix_instance_q31 * pDst); | ||||
/** | ||||
* @brief Floating-point matrix multiplication | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_mult_f32( | ||||
const arm_matrix_instance_f32 * pSrcA, | ||||
const arm_matrix_instance_f32 * pSrcB, | ||||
arm_matrix_instance_f32 * pDst); | ||||
/** | ||||
* @brief Q15 matrix multiplication | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_mult_q15( | ||||
const arm_matrix_instance_q15 * pSrcA, | ||||
const arm_matrix_instance_q15 * pSrcB, | ||||
arm_matrix_instance_q15 * pDst, | ||||
q15_t * pState); | ||||
/** | ||||
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @param[in] *pState points to the array for storing intermediate results | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_mult_fast_q15( | ||||
const arm_matrix_instance_q15 * pSrcA, | ||||
const arm_matrix_instance_q15 * pSrcB, | ||||
arm_matrix_instance_q15 * pDst, | ||||
q15_t * pState); | ||||
/** | ||||
* @brief Q31 matrix multiplication | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_mult_q31( | ||||
const arm_matrix_instance_q31 * pSrcA, | ||||
const arm_matrix_instance_q31 * pSrcB, | ||||
arm_matrix_instance_q31 * pDst); | ||||
/** | ||||
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_mult_fast_q31( | ||||
const arm_matrix_instance_q31 * pSrcA, | ||||
const arm_matrix_instance_q31 * pSrcB, | ||||
arm_matrix_instance_q31 * pDst); | ||||
/** | ||||
* @brief Floating-point matrix subtraction | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_sub_f32( | ||||
const arm_matrix_instance_f32 * pSrcA, | ||||
const arm_matrix_instance_f32 * pSrcB, | ||||
arm_matrix_instance_f32 * pDst); | ||||
/** | ||||
* @brief Q15 matrix subtraction | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_sub_q15( | ||||
const arm_matrix_instance_q15 * pSrcA, | ||||
const arm_matrix_instance_q15 * pSrcB, | ||||
arm_matrix_instance_q15 * pDst); | ||||
/** | ||||
* @brief Q31 matrix subtraction | ||||
* @param[in] *pSrcA points to the first input matrix structure | ||||
* @param[in] *pSrcB points to the second input matrix structure | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_sub_q31( | ||||
const arm_matrix_instance_q31 * pSrcA, | ||||
const arm_matrix_instance_q31 * pSrcB, | ||||
arm_matrix_instance_q31 * pDst); | ||||
/** | ||||
* @brief Floating-point matrix scaling. | ||||
* @param[in] *pSrc points to the input matrix | ||||
* @param[in] scale scale factor | ||||
* @param[out] *pDst points to the output matrix | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_scale_f32( | ||||
const arm_matrix_instance_f32 * pSrc, | ||||
float32_t scale, | ||||
arm_matrix_instance_f32 * pDst); | ||||
/** | ||||
* @brief Q15 matrix scaling. | ||||
* @param[in] *pSrc points to input matrix | ||||
* @param[in] scaleFract fractional portion of the scale factor | ||||
* @param[in] shift number of bits to shift the result by | ||||
* @param[out] *pDst points to output matrix | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_scale_q15( | ||||
const arm_matrix_instance_q15 * pSrc, | ||||
q15_t scaleFract, | ||||
int32_t shift, | ||||
arm_matrix_instance_q15 * pDst); | ||||
/** | ||||
* @brief Q31 matrix scaling. | ||||
* @param[in] *pSrc points to input matrix | ||||
* @param[in] scaleFract fractional portion of the scale factor | ||||
* @param[in] shift number of bits to shift the result by | ||||
* @param[out] *pDst points to output matrix structure | ||||
* @return The function returns either | ||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
*/ | ||||
arm_status arm_mat_scale_q31( | ||||
const arm_matrix_instance_q31 * pSrc, | ||||
q31_t scaleFract, | ||||
int32_t shift, | ||||
arm_matrix_instance_q31 * pDst); | ||||
/** | ||||
* @brief Q31 matrix initialization. | ||||
* @param[in,out] *S points to an instance of the floating-point matrix structure. | ||||
* @param[in] nRows number of rows in the matrix. | ||||
* @param[in] nColumns number of columns in the matrix. | ||||
* @param[in] *pData points to the matrix data array. | ||||
* @return none | ||||
*/ | ||||
void arm_mat_init_q31( | ||||
arm_matrix_instance_q31 * S, | ||||
uint16_t nRows, | ||||
uint16_t nColumns, | ||||
q31_t *pData); | ||||
/** | ||||
* @brief Q15 matrix initialization. | ||||
* @param[in,out] *S points to an instance of the floating-point matrix structure. | ||||
* @param[in] nRows number of rows in the matrix. | ||||
* @param[in] nColumns number of columns in the matrix. | ||||
* @param[in] *pData points to the matrix data array. | ||||
* @return none | ||||
*/ | ||||
void arm_mat_init_q15( | ||||
arm_matrix_instance_q15 * S, | ||||
uint16_t nRows, | ||||
uint16_t nColumns, | ||||
q15_t *pData); | ||||
/** | ||||
* @brief Floating-point matrix initialization. | ||||
* @param[in,out] *S points to an instance of the floating-point matrix structure. | ||||
* @param[in] nRows number of rows in the matrix. | ||||
* @param[in] nColumns number of columns in the matrix. | ||||
* @param[in] *pData points to the matrix data array. | ||||
* @return none | ||||
*/ | ||||
void arm_mat_init_f32( | ||||
arm_matrix_instance_f32 * S, | ||||
uint16_t nRows, | ||||
uint16_t nColumns, | ||||
float32_t *pData); | ||||
/** | ||||
* @brief Instance structure for the Q15 PID Control. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | ||||
#ifdef ARM_MATH_CM0 | ||||
q15_t A1; | ||||
q15_t A2; | ||||
#else | ||||
q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ | ||||
#endif | ||||
q15_t state[3]; /**< The state array of length 3. */ | ||||
q15_t Kp; /**< The proportional gain. */ | ||||
q15_t Ki; /**< The integral gain. */ | ||||
q15_t Kd; /**< The derivative gain. */ | ||||
} arm_pid_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 PID Control. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | ||||
q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | ||||
q31_t A2; /**< The derived gain, A2 = Kd . */ | ||||
q31_t state[3]; /**< The state array of length 3. */ | ||||
q31_t Kp; /**< The proportional gain. */ | ||||
q31_t Ki; /**< The integral gain. */ | ||||
q31_t Kd; /**< The derivative gain. */ | ||||
} arm_pid_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point PID Control. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | ||||
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | ||||
float32_t A2; /**< The derived gain, A2 = Kd . */ | ||||
float32_t state[3]; /**< The state array of length 3. */ | ||||
float32_t Kp; /**< The proportional gain. */ | ||||
float32_t Ki; /**< The integral gain. */ | ||||
float32_t Kd; /**< The derivative gain. */ | ||||
} arm_pid_instance_f32; | ||||
/** | ||||
* @brief Initialization function for the floating-point PID Control. | ||||
* @param[in,out] *S points to an instance of the PID structure. | ||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | ||||
* @return none. | ||||
*/ | ||||
void arm_pid_init_f32( | ||||
arm_pid_instance_f32 * S, | ||||
int32_t resetStateFlag); | ||||
/** | ||||
* @brief Reset function for the floating-point PID Control. | ||||
* @param[in,out] *S is an instance of the floating-point PID Control structure | ||||
* @return none | ||||
*/ | ||||
void arm_pid_reset_f32( | ||||
arm_pid_instance_f32 * S); | ||||
/** | ||||
* @brief Initialization function for the Q31 PID Control. | ||||
* @param[in,out] *S points to an instance of the Q15 PID structure. | ||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | ||||
* @return none. | ||||
*/ | ||||
void arm_pid_init_q31( | ||||
arm_pid_instance_q31 * S, | ||||
int32_t resetStateFlag); | ||||
/** | ||||
* @brief Reset function for the Q31 PID Control. | ||||
* @param[in,out] *S points to an instance of the Q31 PID Control structure | ||||
* @return none | ||||
*/ | ||||
void arm_pid_reset_q31( | ||||
arm_pid_instance_q31 * S); | ||||
/** | ||||
* @brief Initialization function for the Q15 PID Control. | ||||
* @param[in,out] *S points to an instance of the Q15 PID structure. | ||||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | ||||
* @return none. | ||||
*/ | ||||
void arm_pid_init_q15( | ||||
arm_pid_instance_q15 * S, | ||||
int32_t resetStateFlag); | ||||
/** | ||||
* @brief Reset function for the Q15 PID Control. | ||||
* @param[in,out] *S points to an instance of the q15 PID Control structure | ||||
* @return none | ||||
*/ | ||||
void arm_pid_reset_q15( | ||||
arm_pid_instance_q15 * S); | ||||
/** | ||||
* @brief Instance structure for the floating-point Linear Interpolate function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint32_t nValues; | ||||
float32_t x1; | ||||
float32_t xSpacing; | ||||
float32_t *pYData; /**< pointer to the table of Y values */ | ||||
} arm_linear_interp_instance_f32; | ||||
/** | ||||
* @brief Instance structure for the floating-point bilinear interpolation function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numRows; /**< number of rows in the data table. */ | ||||
uint16_t numCols; /**< number of columns in the data table. */ | ||||
float32_t *pData; /**< points to the data table. */ | ||||
} arm_bilinear_interp_instance_f32; | ||||
/** | ||||
* @brief Instance structure for the Q31 bilinear interpolation function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numRows; /**< number of rows in the data table. */ | ||||
uint16_t numCols; /**< number of columns in the data table. */ | ||||
q31_t *pData; /**< points to the data table. */ | ||||
} arm_bilinear_interp_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the Q15 bilinear interpolation function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numRows; /**< number of rows in the data table. */ | ||||
uint16_t numCols; /**< number of columns in the data table. */ | ||||
q15_t *pData; /**< points to the data table. */ | ||||
} arm_bilinear_interp_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q15 bilinear interpolation function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numRows; /**< number of rows in the data table. */ | ||||
uint16_t numCols; /**< number of columns in the data table. */ | ||||
q7_t *pData; /**< points to the data table. */ | ||||
} arm_bilinear_interp_instance_q7; | ||||
/** | ||||
* @brief Q7 vector multiplication. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_mult_q7( | ||||
q7_t * pSrcA, | ||||
q7_t * pSrcB, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q15 vector multiplication. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_mult_q15( | ||||
q15_t * pSrcA, | ||||
q15_t * pSrcB, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q31 vector multiplication. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_mult_q31( | ||||
q31_t * pSrcA, | ||||
q31_t * pSrcB, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Floating-point vector multiplication. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_mult_f32( | ||||
float32_t * pSrcA, | ||||
float32_t * pSrcB, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the Q15 CFFT/CIFFT function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t fftLen; /**< length of the FFT. */ | ||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||||
q15_t *pTwiddle; /**< points to the twiddle factor table. */ | ||||
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | ||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||||
} arm_cfft_radix4_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 CFFT/CIFFT function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t fftLen; /**< length of the FFT. */ | ||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||||
q31_t *pTwiddle; /**< points to the twiddle factor table. */ | ||||
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | ||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||||
} arm_cfft_radix4_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point CFFT/CIFFT function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t fftLen; /**< length of the FFT. */ | ||||
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||||
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||||
float32_t *pTwiddle; /**< points to the twiddle factor table. */ | ||||
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | ||||
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||||
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||||
float32_t onebyfftLen; /**< value of 1/fftLen. */ | ||||
} arm_cfft_radix4_instance_f32; | ||||
/** | ||||
* @brief Processing function for the Q15 CFFT/CIFFT. | ||||
* @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure. | ||||
* @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | ||||
* @return none. | ||||
*/ | ||||
void arm_cfft_radix4_q15( | ||||
const arm_cfft_radix4_instance_q15 * S, | ||||
q15_t * pSrc); | ||||
/** | ||||
* @brief Initialization function for the Q15 CFFT/CIFFT. | ||||
* @param[in,out] *S points to an instance of the Q15 CFFT/CIFFT structure. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | ||||
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | ||||
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | ||||
*/ | ||||
arm_status arm_cfft_radix4_init_q15( | ||||
arm_cfft_radix4_instance_q15 * S, | ||||
uint16_t fftLen, | ||||
uint8_t ifftFlag, | ||||
uint8_t bitReverseFlag); | ||||
/** | ||||
* @brief Processing function for the Q31 CFFT/CIFFT. | ||||
* @param[in] *S points to an instance of the Q31 CFFT/CIFFT structure. | ||||
* @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | ||||
* @return none. | ||||
*/ | ||||
void arm_cfft_radix4_q31( | ||||
const arm_cfft_radix4_instance_q31 * S, | ||||
q31_t * pSrc); | ||||
/** | ||||
* @brief Initialization function for the Q31 CFFT/CIFFT. | ||||
* @param[in,out] *S points to an instance of the Q31 CFFT/CIFFT structure. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | ||||
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | ||||
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | ||||
*/ | ||||
arm_status arm_cfft_radix4_init_q31( | ||||
arm_cfft_radix4_instance_q31 * S, | ||||
uint16_t fftLen, | ||||
uint8_t ifftFlag, | ||||
uint8_t bitReverseFlag); | ||||
/** | ||||
* @brief Processing function for the floating-point CFFT/CIFFT. | ||||
* @param[in] *S points to an instance of the floating-point CFFT/CIFFT structure. | ||||
* @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. | ||||
* @return none. | ||||
*/ | ||||
void arm_cfft_radix4_f32( | ||||
const arm_cfft_radix4_instance_f32 * S, | ||||
float32_t * pSrc); | ||||
/** | ||||
* @brief Initialization function for the floating-point CFFT/CIFFT. | ||||
* @param[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. | ||||
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value. | ||||
*/ | ||||
arm_status arm_cfft_radix4_init_f32( | ||||
arm_cfft_radix4_instance_f32 * S, | ||||
uint16_t fftLen, | ||||
uint8_t ifftFlag, | ||||
uint8_t bitReverseFlag); | ||||
/*---------------------------------------------------------------------- | ||||
* Internal functions prototypes FFT function | ||||
----------------------------------------------------------------------*/ | ||||
/** | ||||
* @brief Core function for the floating-point CFFT butterfly process. | ||||
* @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] *pCoef points to the twiddle coefficient buffer. | ||||
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | ||||
* @return none. | ||||
*/ | ||||
void arm_radix4_butterfly_f32( | ||||
float32_t * pSrc, | ||||
uint16_t fftLen, | ||||
float32_t * pCoef, | ||||
uint16_t twidCoefModifier); | ||||
/** | ||||
* @brief Core function for the floating-point CIFFT butterfly process. | ||||
* @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] *pCoef points to twiddle coefficient buffer. | ||||
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | ||||
* @param[in] onebyfftLen value of 1/fftLen. | ||||
* @return none. | ||||
*/ | ||||
void arm_radix4_butterfly_inverse_f32( | ||||
float32_t * pSrc, | ||||
uint16_t fftLen, | ||||
float32_t * pCoef, | ||||
uint16_t twidCoefModifier, | ||||
float32_t onebyfftLen); | ||||
/** | ||||
* @brief In-place bit reversal function. | ||||
* @param[in, out] *pSrc points to the in-place buffer of floating-point data type. | ||||
* @param[in] fftSize length of the FFT. | ||||
* @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table. | ||||
* @param[in] *pBitRevTab points to the bit reversal table. | ||||
* @return none. | ||||
*/ | ||||
void arm_bitreversal_f32( | ||||
float32_t *pSrc, | ||||
uint16_t fftSize, | ||||
uint16_t bitRevFactor, | ||||
uint16_t *pBitRevTab); | ||||
/** | ||||
* @brief Core function for the Q31 CFFT butterfly process. | ||||
* @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] *pCoef points to twiddle coefficient buffer. | ||||
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | ||||
* @return none. | ||||
*/ | ||||
void arm_radix4_butterfly_q31( | ||||
q31_t *pSrc, | ||||
uint32_t fftLen, | ||||
q31_t *pCoef, | ||||
uint32_t twidCoefModifier); | ||||
/** | ||||
* @brief Core function for the Q31 CIFFT butterfly process. | ||||
* @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] *pCoef points to twiddle coefficient buffer. | ||||
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | ||||
* @return none. | ||||
*/ | ||||
void arm_radix4_butterfly_inverse_q31( | ||||
q31_t * pSrc, | ||||
uint32_t fftLen, | ||||
q31_t * pCoef, | ||||
uint32_t twidCoefModifier); | ||||
/** | ||||
* @brief In-place bit reversal function. | ||||
* @param[in, out] *pSrc points to the in-place buffer of Q31 data type. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table | ||||
* @param[in] *pBitRevTab points to bit reversal table. | ||||
* @return none. | ||||
*/ | ||||
void arm_bitreversal_q31( | ||||
q31_t * pSrc, | ||||
uint32_t fftLen, | ||||
uint16_t bitRevFactor, | ||||
uint16_t *pBitRevTab); | ||||
/** | ||||
* @brief Core function for the Q15 CFFT butterfly process. | ||||
* @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] *pCoef16 points to twiddle coefficient buffer. | ||||
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | ||||
* @return none. | ||||
*/ | ||||
void arm_radix4_butterfly_q15( | ||||
q15_t *pSrc16, | ||||
uint32_t fftLen, | ||||
q15_t *pCoef16, | ||||
uint32_t twidCoefModifier); | ||||
/** | ||||
* @brief Core function for the Q15 CIFFT butterfly process. | ||||
* @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] *pCoef16 points to twiddle coefficient buffer. | ||||
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. | ||||
* @return none. | ||||
*/ | ||||
void arm_radix4_butterfly_inverse_q15( | ||||
q15_t *pSrc16, | ||||
uint32_t fftLen, | ||||
q15_t *pCoef16, | ||||
uint32_t twidCoefModifier); | ||||
/** | ||||
* @brief In-place bit reversal function. | ||||
* @param[in, out] *pSrc points to the in-place buffer of Q15 data type. | ||||
* @param[in] fftLen length of the FFT. | ||||
* @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table | ||||
* @param[in] *pBitRevTab points to bit reversal table. | ||||
* @return none. | ||||
*/ | ||||
void arm_bitreversal_q15( | ||||
q15_t * pSrc, | ||||
uint32_t fftLen, | ||||
uint16_t bitRevFactor, | ||||
uint16_t *pBitRevTab); | ||||
/** | ||||
* @brief Instance structure for the Q15 RFFT/RIFFT function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint32_t fftLenReal; /**< length of the real FFT. */ | ||||
uint32_t fftLenBy2; /**< length of the complex FFT. */ | ||||
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | ||||
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | ||||
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||||
q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | ||||
q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | ||||
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | ||||
} arm_rfft_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 RFFT/RIFFT function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint32_t fftLenReal; /**< length of the real FFT. */ | ||||
uint32_t fftLenBy2; /**< length of the complex FFT. */ | ||||
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | ||||
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | ||||
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||||
q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | ||||
q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | ||||
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | ||||
} arm_rfft_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point RFFT/RIFFT function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint32_t fftLenReal; /**< length of the real FFT. */ | ||||
uint16_t fftLenBy2; /**< length of the complex FFT. */ | ||||
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | ||||
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | ||||
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||||
float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | ||||
float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | ||||
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | ||||
} arm_rfft_instance_f32; | ||||
/** | ||||
* @brief Processing function for the Q15 RFFT/RIFFT. | ||||
* @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure. | ||||
* @param[in] *pSrc points to the input buffer. | ||||
* @param[out] *pDst points to the output buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_rfft_q15( | ||||
const arm_rfft_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst); | ||||
/** | ||||
* @brief Initialization function for the Q15 RFFT/RIFFT. | ||||
* @param[in, out] *S points to an instance of the Q15 RFFT/RIFFT structure. | ||||
* @param[in] *S_CFFT points to an instance of the Q15 CFFT/CIFFT structure. | ||||
* @param[in] fftLenReal length of the FFT. | ||||
* @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | ||||
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | ||||
*/ | ||||
arm_status arm_rfft_init_q15( | ||||
arm_rfft_instance_q15 * S, | ||||
arm_cfft_radix4_instance_q15 * S_CFFT, | ||||
uint32_t fftLenReal, | ||||
uint32_t ifftFlagR, | ||||
uint32_t bitReverseFlag); | ||||
/** | ||||
* @brief Processing function for the Q31 RFFT/RIFFT. | ||||
* @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure. | ||||
* @param[in] *pSrc points to the input buffer. | ||||
* @param[out] *pDst points to the output buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_rfft_q31( | ||||
const arm_rfft_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst); | ||||
/** | ||||
* @brief Initialization function for the Q31 RFFT/RIFFT. | ||||
* @param[in, out] *S points to an instance of the Q31 RFFT/RIFFT structure. | ||||
* @param[in, out] *S_CFFT points to an instance of the Q31 CFFT/CIFFT structure. | ||||
* @param[in] fftLenReal length of the FFT. | ||||
* @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | ||||
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | ||||
*/ | ||||
arm_status arm_rfft_init_q31( | ||||
arm_rfft_instance_q31 * S, | ||||
arm_cfft_radix4_instance_q31 * S_CFFT, | ||||
uint32_t fftLenReal, | ||||
uint32_t ifftFlagR, | ||||
uint32_t bitReverseFlag); | ||||
/** | ||||
* @brief Initialization function for the floating-point RFFT/RIFFT. | ||||
* @param[in,out] *S points to an instance of the floating-point RFFT/RIFFT structure. | ||||
* @param[in,out] *S_CFFT points to an instance of the floating-point CFFT/CIFFT structure. | ||||
* @param[in] fftLenReal length of the FFT. | ||||
* @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. | ||||
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value. | ||||
*/ | ||||
arm_status arm_rfft_init_f32( | ||||
arm_rfft_instance_f32 * S, | ||||
arm_cfft_radix4_instance_f32 * S_CFFT, | ||||
uint32_t fftLenReal, | ||||
uint32_t ifftFlagR, | ||||
uint32_t bitReverseFlag); | ||||
/** | ||||
* @brief Processing function for the floating-point RFFT/RIFFT. | ||||
* @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure. | ||||
* @param[in] *pSrc points to the input buffer. | ||||
* @param[out] *pDst points to the output buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_rfft_f32( | ||||
const arm_rfft_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst); | ||||
/** | ||||
* @brief Instance structure for the floating-point DCT4/IDCT4 function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t N; /**< length of the DCT4. */ | ||||
uint16_t Nby2; /**< half of the length of the DCT4. */ | ||||
float32_t normalize; /**< normalizing factor. */ | ||||
float32_t *pTwiddle; /**< points to the twiddle factor table. */ | ||||
float32_t *pCosFactor; /**< points to the cosFactor table. */ | ||||
arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ | ||||
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | ||||
} arm_dct4_instance_f32; | ||||
/** | ||||
* @brief Initialization function for the floating-point DCT4/IDCT4. | ||||
* @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure. | ||||
* @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure. | ||||
* @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure. | ||||
* @param[in] N length of the DCT4. | ||||
* @param[in] Nby2 half of the length of the DCT4. | ||||
* @param[in] normalize normalizing factor. | ||||
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. | ||||
*/ | ||||
arm_status arm_dct4_init_f32( | ||||
arm_dct4_instance_f32 * S, | ||||
arm_rfft_instance_f32 * S_RFFT, | ||||
arm_cfft_radix4_instance_f32 * S_CFFT, | ||||
uint16_t N, | ||||
uint16_t Nby2, | ||||
float32_t normalize); | ||||
/** | ||||
* @brief Processing function for the floating-point DCT4/IDCT4. | ||||
* @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. | ||||
* @param[in] *pState points to state buffer. | ||||
* @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_dct4_f32( | ||||
const arm_dct4_instance_f32 * S, | ||||
float32_t * pState, | ||||
float32_t * pInlineBuffer); | ||||
/** | ||||
* @brief Instance structure for the Q31 DCT4/IDCT4 function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t N; /**< length of the DCT4. */ | ||||
uint16_t Nby2; /**< half of the length of the DCT4. */ | ||||
q31_t normalize; /**< normalizing factor. */ | ||||
q31_t *pTwiddle; /**< points to the twiddle factor table. */ | ||||
q31_t *pCosFactor; /**< points to the cosFactor table. */ | ||||
arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ | ||||
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | ||||
} arm_dct4_instance_q31; | ||||
/** | ||||
* @brief Initialization function for the Q31 DCT4/IDCT4. | ||||
* @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure. | ||||
* @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure | ||||
* @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure | ||||
* @param[in] N length of the DCT4. | ||||
* @param[in] Nby2 half of the length of the DCT4. | ||||
* @param[in] normalize normalizing factor. | ||||
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | ||||
*/ | ||||
arm_status arm_dct4_init_q31( | ||||
arm_dct4_instance_q31 * S, | ||||
arm_rfft_instance_q31 * S_RFFT, | ||||
arm_cfft_radix4_instance_q31 * S_CFFT, | ||||
uint16_t N, | ||||
uint16_t Nby2, | ||||
q31_t normalize); | ||||
/** | ||||
* @brief Processing function for the Q31 DCT4/IDCT4. | ||||
* @param[in] *S points to an instance of the Q31 DCT4 structure. | ||||
* @param[in] *pState points to state buffer. | ||||
* @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_dct4_q31( | ||||
const arm_dct4_instance_q31 * S, | ||||
q31_t * pState, | ||||
q31_t * pInlineBuffer); | ||||
/** | ||||
* @brief Instance structure for the Q15 DCT4/IDCT4 function. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t N; /**< length of the DCT4. */ | ||||
uint16_t Nby2; /**< half of the length of the DCT4. */ | ||||
q15_t normalize; /**< normalizing factor. */ | ||||
q15_t *pTwiddle; /**< points to the twiddle factor table. */ | ||||
q15_t *pCosFactor; /**< points to the cosFactor table. */ | ||||
arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ | ||||
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | ||||
} arm_dct4_instance_q15; | ||||
/** | ||||
* @brief Initialization function for the Q15 DCT4/IDCT4. | ||||
* @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure. | ||||
* @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure. | ||||
* @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure. | ||||
* @param[in] N length of the DCT4. | ||||
* @param[in] Nby2 half of the length of the DCT4. | ||||
* @param[in] normalize normalizing factor. | ||||
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | ||||
*/ | ||||
arm_status arm_dct4_init_q15( | ||||
arm_dct4_instance_q15 * S, | ||||
arm_rfft_instance_q15 * S_RFFT, | ||||
arm_cfft_radix4_instance_q15 * S_CFFT, | ||||
uint16_t N, | ||||
uint16_t Nby2, | ||||
q15_t normalize); | ||||
/** | ||||
* @brief Processing function for the Q15 DCT4/IDCT4. | ||||
* @param[in] *S points to an instance of the Q15 DCT4 structure. | ||||
* @param[in] *pState points to state buffer. | ||||
* @param[in,out] *pInlineBuffer points to the in-place input and output buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_dct4_q15( | ||||
const arm_dct4_instance_q15 * S, | ||||
q15_t * pState, | ||||
q15_t * pInlineBuffer); | ||||
/** | ||||
* @brief Floating-point vector addition. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_add_f32( | ||||
float32_t * pSrcA, | ||||
float32_t * pSrcB, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q7 vector addition. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_add_q7( | ||||
q7_t * pSrcA, | ||||
q7_t * pSrcB, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q15 vector addition. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_add_q15( | ||||
q15_t * pSrcA, | ||||
q15_t * pSrcB, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q31 vector addition. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_add_q31( | ||||
q31_t * pSrcA, | ||||
q31_t * pSrcB, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Floating-point vector subtraction. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_sub_f32( | ||||
float32_t * pSrcA, | ||||
float32_t * pSrcB, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q7 vector subtraction. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_sub_q7( | ||||
q7_t * pSrcA, | ||||
q7_t * pSrcB, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q15 vector subtraction. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_sub_q15( | ||||
q15_t * pSrcA, | ||||
q15_t * pSrcB, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q31 vector subtraction. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_sub_q31( | ||||
q31_t * pSrcA, | ||||
q31_t * pSrcB, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Multiplies a floating-point vector by a scalar. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] scale scale factor to be applied | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_scale_f32( | ||||
float32_t * pSrc, | ||||
float32_t scale, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Multiplies a Q7 vector by a scalar. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] scaleFract fractional portion of the scale value | ||||
* @param[in] shift number of bits to shift the result by | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_scale_q7( | ||||
q7_t * pSrc, | ||||
q7_t scaleFract, | ||||
int8_t shift, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Multiplies a Q15 vector by a scalar. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] scaleFract fractional portion of the scale value | ||||
* @param[in] shift number of bits to shift the result by | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_scale_q15( | ||||
q15_t * pSrc, | ||||
q15_t scaleFract, | ||||
int8_t shift, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Multiplies a Q31 vector by a scalar. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] scaleFract fractional portion of the scale value | ||||
* @param[in] shift number of bits to shift the result by | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_scale_q31( | ||||
q31_t * pSrc, | ||||
q31_t scaleFract, | ||||
int8_t shift, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q7 vector absolute value. | ||||
* @param[in] *pSrc points to the input buffer | ||||
* @param[out] *pDst points to the output buffer | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_abs_q7( | ||||
q7_t * pSrc, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Floating-point vector absolute value. | ||||
* @param[in] *pSrc points to the input buffer | ||||
* @param[out] *pDst points to the output buffer | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_abs_f32( | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q15 vector absolute value. | ||||
* @param[in] *pSrc points to the input buffer | ||||
* @param[out] *pDst points to the output buffer | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_abs_q15( | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Q31 vector absolute value. | ||||
* @param[in] *pSrc points to the input buffer | ||||
* @param[out] *pDst points to the output buffer | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_abs_q31( | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Dot product of floating-point vectors. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @param[out] *result output result returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_dot_prod_f32( | ||||
float32_t * pSrcA, | ||||
float32_t * pSrcB, | ||||
uint32_t blockSize, | ||||
float32_t * result); | ||||
/** | ||||
* @brief Dot product of Q7 vectors. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @param[out] *result output result returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_dot_prod_q7( | ||||
q7_t * pSrcA, | ||||
q7_t * pSrcB, | ||||
uint32_t blockSize, | ||||
q31_t * result); | ||||
/** | ||||
* @brief Dot product of Q15 vectors. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @param[out] *result output result returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_dot_prod_q15( | ||||
q15_t * pSrcA, | ||||
q15_t * pSrcB, | ||||
uint32_t blockSize, | ||||
q63_t * result); | ||||
/** | ||||
* @brief Dot product of Q31 vectors. | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[in] blockSize number of samples in each vector | ||||
* @param[out] *result output result returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_dot_prod_q31( | ||||
q31_t * pSrcA, | ||||
q31_t * pSrcB, | ||||
uint32_t blockSize, | ||||
q63_t * result); | ||||
/** | ||||
* @brief Shifts the elements of a Q7 vector a specified number of bits. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_shift_q7( | ||||
q7_t * pSrc, | ||||
int8_t shiftBits, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Shifts the elements of a Q15 vector a specified number of bits. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_shift_q15( | ||||
q15_t * pSrc, | ||||
int8_t shiftBits, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Shifts the elements of a Q31 vector a specified number of bits. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_shift_q31( | ||||
q31_t * pSrc, | ||||
int8_t shiftBits, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Adds a constant offset to a floating-point vector. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] offset is the offset to be added | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_offset_f32( | ||||
float32_t * pSrc, | ||||
float32_t offset, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Adds a constant offset to a Q7 vector. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] offset is the offset to be added | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_offset_q7( | ||||
q7_t * pSrc, | ||||
q7_t offset, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Adds a constant offset to a Q15 vector. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] offset is the offset to be added | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_offset_q15( | ||||
q15_t * pSrc, | ||||
q15_t offset, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Adds a constant offset to a Q31 vector. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[in] offset is the offset to be added | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_offset_q31( | ||||
q31_t * pSrc, | ||||
q31_t offset, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Negates the elements of a floating-point vector. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_negate_f32( | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Negates the elements of a Q7 vector. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_negate_q7( | ||||
q7_t * pSrc, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Negates the elements of a Q15 vector. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_negate_q15( | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Negates the elements of a Q31 vector. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] blockSize number of samples in the vector | ||||
* @return none. | ||||
*/ | ||||
void arm_negate_q31( | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Copies the elements of a floating-point vector. | ||||
* @param[in] *pSrc input pointer | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_copy_f32( | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Copies the elements of a Q7 vector. | ||||
* @param[in] *pSrc input pointer | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_copy_q7( | ||||
q7_t * pSrc, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Copies the elements of a Q15 vector. | ||||
* @param[in] *pSrc input pointer | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_copy_q15( | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Copies the elements of a Q31 vector. | ||||
* @param[in] *pSrc input pointer | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_copy_q31( | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Fills a constant value into a floating-point vector. | ||||
* @param[in] value input value to be filled | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_fill_f32( | ||||
float32_t value, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Fills a constant value into a Q7 vector. | ||||
* @param[in] value input value to be filled | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_fill_q7( | ||||
q7_t value, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Fills a constant value into a Q15 vector. | ||||
* @param[in] value input value to be filled | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_fill_q15( | ||||
q15_t value, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Fills a constant value into a Q31 vector. | ||||
* @param[in] value input value to be filled | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_fill_q31( | ||||
q31_t value, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Convolution of floating-point sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | ||||
* @return none. | ||||
*/ | ||||
void arm_conv_f32( | ||||
float32_t * pSrcA, | ||||
uint32_t srcALen, | ||||
float32_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
float32_t * pDst); | ||||
/** | ||||
* @brief Convolution of Q15 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | ||||
* @return none. | ||||
*/ | ||||
void arm_conv_q15( | ||||
q15_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q15_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q15_t * pDst); | ||||
/** | ||||
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | ||||
* @return none. | ||||
*/ | ||||
void arm_conv_fast_q15( | ||||
q15_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q15_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q15_t * pDst); | ||||
/** | ||||
* @brief Convolution of Q31 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | ||||
* @return none. | ||||
*/ | ||||
void arm_conv_q31( | ||||
q31_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q31_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q31_t * pDst); | ||||
/** | ||||
* @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | ||||
* @return none. | ||||
*/ | ||||
void arm_conv_fast_q31( | ||||
q31_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q31_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q31_t * pDst); | ||||
/** | ||||
* @brief Convolution of Q7 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. | ||||
* @return none. | ||||
*/ | ||||
void arm_conv_q7( | ||||
q7_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q7_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q7_t * pDst); | ||||
/** | ||||
* @brief Partial convolution of floating-point sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] firstIndex is the first output sample to start with. | ||||
* @param[in] numPoints is the number of output points to be computed. | ||||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||||
*/ | ||||
arm_status arm_conv_partial_f32( | ||||
float32_t * pSrcA, | ||||
uint32_t srcALen, | ||||
float32_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
float32_t * pDst, | ||||
uint32_t firstIndex, | ||||
uint32_t numPoints); | ||||
/** | ||||
* @brief Partial convolution of Q15 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] firstIndex is the first output sample to start with. | ||||
* @param[in] numPoints is the number of output points to be computed. | ||||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||||
*/ | ||||
arm_status arm_conv_partial_q15( | ||||
q15_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q15_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q15_t * pDst, | ||||
uint32_t firstIndex, | ||||
uint32_t numPoints); | ||||
/** | ||||
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] firstIndex is the first output sample to start with. | ||||
* @param[in] numPoints is the number of output points to be computed. | ||||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||||
*/ | ||||
arm_status arm_conv_partial_fast_q15( | ||||
q15_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q15_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q15_t * pDst, | ||||
uint32_t firstIndex, | ||||
uint32_t numPoints); | ||||
/** | ||||
* @brief Partial convolution of Q31 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] firstIndex is the first output sample to start with. | ||||
* @param[in] numPoints is the number of output points to be computed. | ||||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||||
*/ | ||||
arm_status arm_conv_partial_q31( | ||||
q31_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q31_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q31_t * pDst, | ||||
uint32_t firstIndex, | ||||
uint32_t numPoints); | ||||
/** | ||||
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] firstIndex is the first output sample to start with. | ||||
* @param[in] numPoints is the number of output points to be computed. | ||||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||||
*/ | ||||
arm_status arm_conv_partial_fast_q31( | ||||
q31_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q31_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q31_t * pDst, | ||||
uint32_t firstIndex, | ||||
uint32_t numPoints); | ||||
/** | ||||
* @brief Partial convolution of Q7 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] firstIndex is the first output sample to start with. | ||||
* @param[in] numPoints is the number of output points to be computed. | ||||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||||
*/ | ||||
arm_status arm_conv_partial_q7( | ||||
q7_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q7_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q7_t * pDst, | ||||
uint32_t firstIndex, | ||||
uint32_t numPoints); | ||||
/** | ||||
* @brief Instance structure for the Q15 FIR decimator. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint8_t M; /**< decimation factor. */ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
} arm_fir_decimate_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 FIR decimator. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint8_t M; /**< decimation factor. */ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
} arm_fir_decimate_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point FIR decimator. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint8_t M; /**< decimation factor. */ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
} arm_fir_decimate_instance_f32; | ||||
/** | ||||
* @brief Processing function for the floating-point FIR decimator. | ||||
* @param[in] *S points to an instance of the floating-point FIR decimator structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_decimate_f32( | ||||
const arm_fir_decimate_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the floating-point FIR decimator. | ||||
* @param[in,out] *S points to an instance of the floating-point FIR decimator structure. | ||||
* @param[in] numTaps number of coefficients in the filter. | ||||
* @param[in] M decimation factor. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||||
* <code>blockSize</code> is not a multiple of <code>M</code>. | ||||
*/ | ||||
arm_status arm_fir_decimate_init_f32( | ||||
arm_fir_decimate_instance_f32 * S, | ||||
uint16_t numTaps, | ||||
uint8_t M, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q15 FIR decimator. | ||||
* @param[in] *S points to an instance of the Q15 FIR decimator structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_decimate_q15( | ||||
const arm_fir_decimate_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | ||||
* @param[in] *S points to an instance of the Q15 FIR decimator structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_decimate_fast_q15( | ||||
const arm_fir_decimate_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q15 FIR decimator. | ||||
* @param[in,out] *S points to an instance of the Q15 FIR decimator structure. | ||||
* @param[in] numTaps number of coefficients in the filter. | ||||
* @param[in] M decimation factor. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||||
* <code>blockSize</code> is not a multiple of <code>M</code>. | ||||
*/ | ||||
arm_status arm_fir_decimate_init_q15( | ||||
arm_fir_decimate_instance_q15 * S, | ||||
uint16_t numTaps, | ||||
uint8_t M, | ||||
q15_t * pCoeffs, | ||||
q15_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q31 FIR decimator. | ||||
* @param[in] *S points to an instance of the Q31 FIR decimator structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_decimate_q31( | ||||
const arm_fir_decimate_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | ||||
* @param[in] *S points to an instance of the Q31 FIR decimator structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_decimate_fast_q31( | ||||
arm_fir_decimate_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q31 FIR decimator. | ||||
* @param[in,out] *S points to an instance of the Q31 FIR decimator structure. | ||||
* @param[in] numTaps number of coefficients in the filter. | ||||
* @param[in] M decimation factor. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||||
* <code>blockSize</code> is not a multiple of <code>M</code>. | ||||
*/ | ||||
arm_status arm_fir_decimate_init_q31( | ||||
arm_fir_decimate_instance_q31 * S, | ||||
uint16_t numTaps, | ||||
uint8_t M, | ||||
q31_t * pCoeffs, | ||||
q31_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the Q15 FIR interpolator. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint8_t L; /**< upsample factor. */ | ||||
uint16_t phaseLength; /**< length of each polyphase filter component. */ | ||||
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | ||||
q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | ||||
} arm_fir_interpolate_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 FIR interpolator. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint8_t L; /**< upsample factor. */ | ||||
uint16_t phaseLength; /**< length of each polyphase filter component. */ | ||||
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | ||||
q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | ||||
} arm_fir_interpolate_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point FIR interpolator. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint8_t L; /**< upsample factor. */ | ||||
uint16_t phaseLength; /**< length of each polyphase filter component. */ | ||||
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | ||||
float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ | ||||
} arm_fir_interpolate_instance_f32; | ||||
/** | ||||
* @brief Processing function for the Q15 FIR interpolator. | ||||
* @param[in] *S points to an instance of the Q15 FIR interpolator structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_interpolate_q15( | ||||
const arm_fir_interpolate_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q15 FIR interpolator. | ||||
* @param[in,out] *S points to an instance of the Q15 FIR interpolator structure. | ||||
* @param[in] L upsample factor. | ||||
* @param[in] numTaps number of filter coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficient buffer. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||||
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | ||||
*/ | ||||
arm_status arm_fir_interpolate_init_q15( | ||||
arm_fir_interpolate_instance_q15 * S, | ||||
uint8_t L, | ||||
uint16_t numTaps, | ||||
q15_t * pCoeffs, | ||||
q15_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q31 FIR interpolator. | ||||
* @param[in] *S points to an instance of the Q15 FIR interpolator structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_interpolate_q31( | ||||
const arm_fir_interpolate_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q31 FIR interpolator. | ||||
* @param[in,out] *S points to an instance of the Q31 FIR interpolator structure. | ||||
* @param[in] L upsample factor. | ||||
* @param[in] numTaps number of filter coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficient buffer. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||||
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | ||||
*/ | ||||
arm_status arm_fir_interpolate_init_q31( | ||||
arm_fir_interpolate_instance_q31 * S, | ||||
uint8_t L, | ||||
uint16_t numTaps, | ||||
q31_t * pCoeffs, | ||||
q31_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the floating-point FIR interpolator. | ||||
* @param[in] *S points to an instance of the floating-point FIR interpolator structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_interpolate_f32( | ||||
const arm_fir_interpolate_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the floating-point FIR interpolator. | ||||
* @param[in,out] *S points to an instance of the floating-point FIR interpolator structure. | ||||
* @param[in] L upsample factor. | ||||
* @param[in] numTaps number of filter coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficient buffer. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||||
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | ||||
*/ | ||||
arm_status arm_fir_interpolate_init_f32( | ||||
arm_fir_interpolate_instance_f32 * S, | ||||
uint8_t L, | ||||
uint16_t numTaps, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the high precision Q31 Biquad cascade filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | ||||
q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ | ||||
q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | ||||
uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ | ||||
} arm_biquad_cas_df1_32x64_ins_q31; | ||||
/** | ||||
* @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_biquad_cas_df1_32x64_q31( | ||||
const arm_biquad_cas_df1_32x64_ins_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure. | ||||
* @param[in] numStages number of 2nd order stages in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] postShift shift to be applied to the output. Varies according to the coefficients format | ||||
* @return none | ||||
*/ | ||||
void arm_biquad_cas_df1_32x64_init_q31( | ||||
arm_biquad_cas_df1_32x64_ins_q31 * S, | ||||
uint8_t numStages, | ||||
q31_t * pCoeffs, | ||||
q63_t * pState, | ||||
uint8_t postShift); | ||||
/** | ||||
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | ||||
float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ | ||||
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | ||||
} arm_biquad_cascade_df2T_instance_f32; | ||||
/** | ||||
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | ||||
* @param[in] *S points to an instance of the filter data structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_biquad_cascade_df2T_f32( | ||||
const arm_biquad_cascade_df2T_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | ||||
* @param[in,out] *S points to an instance of the filter data structure. | ||||
* @param[in] numStages number of 2nd order stages in the filter. | ||||
* @param[in] *pCoeffs points to the filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @return none | ||||
*/ | ||||
void arm_biquad_cascade_df2T_init_f32( | ||||
arm_biquad_cascade_df2T_instance_f32 * S, | ||||
uint8_t numStages, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState); | ||||
/** | ||||
* @brief Instance structure for the Q15 FIR lattice filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numStages; /**< number of filter stages. */ | ||||
q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ | ||||
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | ||||
} arm_fir_lattice_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 FIR lattice filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numStages; /**< number of filter stages. */ | ||||
q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ | ||||
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | ||||
} arm_fir_lattice_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point FIR lattice filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numStages; /**< number of filter stages. */ | ||||
float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ | ||||
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | ||||
} arm_fir_lattice_instance_f32; | ||||
/** | ||||
* @brief Initialization function for the Q15 FIR lattice filter. | ||||
* @param[in] *S points to an instance of the Q15 FIR lattice structure. | ||||
* @param[in] numStages number of filter stages. | ||||
* @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | ||||
* @param[in] *pState points to the state buffer. The array is of length numStages. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_lattice_init_q15( | ||||
arm_fir_lattice_instance_q15 * S, | ||||
uint16_t numStages, | ||||
q15_t * pCoeffs, | ||||
q15_t * pState); | ||||
/** | ||||
* @brief Processing function for the Q15 FIR lattice filter. | ||||
* @param[in] *S points to an instance of the Q15 FIR lattice structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_lattice_q15( | ||||
const arm_fir_lattice_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q31 FIR lattice filter. | ||||
* @param[in] *S points to an instance of the Q31 FIR lattice structure. | ||||
* @param[in] numStages number of filter stages. | ||||
* @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | ||||
* @param[in] *pState points to the state buffer. The array is of length numStages. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_lattice_init_q31( | ||||
arm_fir_lattice_instance_q31 * S, | ||||
uint16_t numStages, | ||||
q31_t * pCoeffs, | ||||
q31_t * pState); | ||||
/** | ||||
* @brief Processing function for the Q31 FIR lattice filter. | ||||
* @param[in] *S points to an instance of the Q31 FIR lattice structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_lattice_q31( | ||||
const arm_fir_lattice_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the floating-point FIR lattice filter. | ||||
* @param[in] *S points to an instance of the floating-point FIR lattice structure. | ||||
* @param[in] numStages number of filter stages. | ||||
* @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. | ||||
* @param[in] *pState points to the state buffer. The array is of length numStages. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_lattice_init_f32( | ||||
arm_fir_lattice_instance_f32 * S, | ||||
uint16_t numStages, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState); | ||||
/** | ||||
* @brief Processing function for the floating-point FIR lattice filter. | ||||
* @param[in] *S points to an instance of the floating-point FIR lattice structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_lattice_f32( | ||||
const arm_fir_lattice_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the Q15 IIR lattice filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numStages; /**< number of stages in the filter. */ | ||||
q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | ||||
q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | ||||
q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | ||||
} arm_iir_lattice_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q31 IIR lattice filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numStages; /**< number of stages in the filter. */ | ||||
q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | ||||
q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | ||||
q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | ||||
} arm_iir_lattice_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the floating-point IIR lattice filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numStages; /**< number of stages in the filter. */ | ||||
float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | ||||
float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | ||||
float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | ||||
} arm_iir_lattice_instance_f32; | ||||
/** | ||||
* @brief Processing function for the floating-point IIR lattice filter. | ||||
* @param[in] *S points to an instance of the floating-point IIR lattice structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_iir_lattice_f32( | ||||
const arm_iir_lattice_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the floating-point IIR lattice filter. | ||||
* @param[in] *S points to an instance of the floating-point IIR lattice structure. | ||||
* @param[in] numStages number of stages in the filter. | ||||
* @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | ||||
* @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | ||||
* @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_iir_lattice_init_f32( | ||||
arm_iir_lattice_instance_f32 * S, | ||||
uint16_t numStages, | ||||
float32_t *pkCoeffs, | ||||
float32_t *pvCoeffs, | ||||
float32_t *pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q31 IIR lattice filter. | ||||
* @param[in] *S points to an instance of the Q31 IIR lattice structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_iir_lattice_q31( | ||||
const arm_iir_lattice_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q31 IIR lattice filter. | ||||
* @param[in] *S points to an instance of the Q31 IIR lattice structure. | ||||
* @param[in] numStages number of stages in the filter. | ||||
* @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | ||||
* @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | ||||
* @param[in] *pState points to the state buffer. The array is of length numStages+blockSize. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_iir_lattice_init_q31( | ||||
arm_iir_lattice_instance_q31 * S, | ||||
uint16_t numStages, | ||||
q31_t *pkCoeffs, | ||||
q31_t *pvCoeffs, | ||||
q31_t *pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q15 IIR lattice filter. | ||||
* @param[in] *S points to an instance of the Q15 IIR lattice structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_iir_lattice_q15( | ||||
const arm_iir_lattice_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q15 IIR lattice filter. | ||||
* @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure. | ||||
* @param[in] numStages number of stages in the filter. | ||||
* @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages. | ||||
* @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. | ||||
* @param[in] *pState points to state buffer. The array is of length numStages+blockSize. | ||||
* @param[in] blockSize number of samples to process per call. | ||||
* @return none. | ||||
*/ | ||||
void arm_iir_lattice_init_q15( | ||||
arm_iir_lattice_instance_q15 * S, | ||||
uint16_t numStages, | ||||
q15_t *pkCoeffs, | ||||
q15_t *pvCoeffs, | ||||
q15_t *pState, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the floating-point LMS filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | ||||
float32_t mu; /**< step size that controls filter coefficient updates. */ | ||||
} arm_lms_instance_f32; | ||||
/** | ||||
* @brief Processing function for floating-point LMS filter. | ||||
* @param[in] *S points to an instance of the floating-point LMS filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[in] *pRef points to the block of reference data. | ||||
* @param[out] *pOut points to the block of output data. | ||||
* @param[out] *pErr points to the block of error data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_f32( | ||||
const arm_lms_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pRef, | ||||
float32_t * pOut, | ||||
float32_t * pErr, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for floating-point LMS filter. | ||||
* @param[in] *S points to an instance of the floating-point LMS filter structure. | ||||
* @param[in] numTaps number of filter coefficients. | ||||
* @param[in] *pCoeffs points to the coefficient buffer. | ||||
* @param[in] *pState points to state buffer. | ||||
* @param[in] mu step size that controls filter coefficient updates. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_init_f32( | ||||
arm_lms_instance_f32 * S, | ||||
uint16_t numTaps, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState, | ||||
float32_t mu, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the Q15 LMS filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | ||||
q15_t mu; /**< step size that controls filter coefficient updates. */ | ||||
uint32_t postShift; /**< bit shift applied to coefficients. */ | ||||
} arm_lms_instance_q15; | ||||
/** | ||||
* @brief Initialization function for the Q15 LMS filter. | ||||
* @param[in] *S points to an instance of the Q15 LMS filter structure. | ||||
* @param[in] numTaps number of filter coefficients. | ||||
* @param[in] *pCoeffs points to the coefficient buffer. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] mu step size that controls filter coefficient updates. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @param[in] postShift bit shift applied to coefficients. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_init_q15( | ||||
arm_lms_instance_q15 * S, | ||||
uint16_t numTaps, | ||||
q15_t * pCoeffs, | ||||
q15_t * pState, | ||||
q15_t mu, | ||||
uint32_t blockSize, | ||||
uint32_t postShift); | ||||
/** | ||||
* @brief Processing function for Q15 LMS filter. | ||||
* @param[in] *S points to an instance of the Q15 LMS filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[in] *pRef points to the block of reference data. | ||||
* @param[out] *pOut points to the block of output data. | ||||
* @param[out] *pErr points to the block of error data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_q15( | ||||
const arm_lms_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pRef, | ||||
q15_t * pOut, | ||||
q15_t * pErr, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the Q31 LMS filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | ||||
q31_t mu; /**< step size that controls filter coefficient updates. */ | ||||
uint32_t postShift; /**< bit shift applied to coefficients. */ | ||||
} arm_lms_instance_q31; | ||||
/** | ||||
* @brief Processing function for Q31 LMS filter. | ||||
* @param[in] *S points to an instance of the Q15 LMS filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[in] *pRef points to the block of reference data. | ||||
* @param[out] *pOut points to the block of output data. | ||||
* @param[out] *pErr points to the block of error data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_q31( | ||||
const arm_lms_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pRef, | ||||
q31_t * pOut, | ||||
q31_t * pErr, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for Q31 LMS filter. | ||||
* @param[in] *S points to an instance of the Q31 LMS filter structure. | ||||
* @param[in] numTaps number of filter coefficients. | ||||
* @param[in] *pCoeffs points to coefficient buffer. | ||||
* @param[in] *pState points to state buffer. | ||||
* @param[in] mu step size that controls filter coefficient updates. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @param[in] postShift bit shift applied to coefficients. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_init_q31( | ||||
arm_lms_instance_q31 * S, | ||||
uint16_t numTaps, | ||||
q31_t *pCoeffs, | ||||
q31_t *pState, | ||||
q31_t mu, | ||||
uint32_t blockSize, | ||||
uint32_t postShift); | ||||
/** | ||||
* @brief Instance structure for the floating-point normalized LMS filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | ||||
float32_t mu; /**< step size that control filter coefficient updates. */ | ||||
float32_t energy; /**< saves previous frame energy. */ | ||||
float32_t x0; /**< saves previous input sample. */ | ||||
} arm_lms_norm_instance_f32; | ||||
/** | ||||
* @brief Processing function for floating-point normalized LMS filter. | ||||
* @param[in] *S points to an instance of the floating-point normalized LMS filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[in] *pRef points to the block of reference data. | ||||
* @param[out] *pOut points to the block of output data. | ||||
* @param[out] *pErr points to the block of error data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_norm_f32( | ||||
arm_lms_norm_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pRef, | ||||
float32_t * pOut, | ||||
float32_t * pErr, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for floating-point normalized LMS filter. | ||||
* @param[in] *S points to an instance of the floating-point LMS filter structure. | ||||
* @param[in] numTaps number of filter coefficients. | ||||
* @param[in] *pCoeffs points to coefficient buffer. | ||||
* @param[in] *pState points to state buffer. | ||||
* @param[in] mu step size that controls filter coefficient updates. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_norm_init_f32( | ||||
arm_lms_norm_instance_f32 * S, | ||||
uint16_t numTaps, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState, | ||||
float32_t mu, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Instance structure for the Q31 normalized LMS filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | ||||
q31_t mu; /**< step size that controls filter coefficient updates. */ | ||||
uint8_t postShift; /**< bit shift applied to coefficients. */ | ||||
q31_t *recipTable; /**< points to the reciprocal initial value table. */ | ||||
q31_t energy; /**< saves previous frame energy. */ | ||||
q31_t x0; /**< saves previous input sample. */ | ||||
} arm_lms_norm_instance_q31; | ||||
/** | ||||
* @brief Processing function for Q31 normalized LMS filter. | ||||
* @param[in] *S points to an instance of the Q31 normalized LMS filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[in] *pRef points to the block of reference data. | ||||
* @param[out] *pOut points to the block of output data. | ||||
* @param[out] *pErr points to the block of error data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_norm_q31( | ||||
arm_lms_norm_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pRef, | ||||
q31_t * pOut, | ||||
q31_t * pErr, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for Q31 normalized LMS filter. | ||||
* @param[in] *S points to an instance of the Q31 normalized LMS filter structure. | ||||
* @param[in] numTaps number of filter coefficients. | ||||
* @param[in] *pCoeffs points to coefficient buffer. | ||||
* @param[in] *pState points to state buffer. | ||||
* @param[in] mu step size that controls filter coefficient updates. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @param[in] postShift bit shift applied to coefficients. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_norm_init_q31( | ||||
arm_lms_norm_instance_q31 * S, | ||||
uint16_t numTaps, | ||||
q31_t * pCoeffs, | ||||
q31_t * pState, | ||||
q31_t mu, | ||||
uint32_t blockSize, | ||||
uint8_t postShift); | ||||
/** | ||||
* @brief Instance structure for the Q15 normalized LMS filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< Number of coefficients in the filter. */ | ||||
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||||
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | ||||
q15_t mu; /**< step size that controls filter coefficient updates. */ | ||||
uint8_t postShift; /**< bit shift applied to coefficients. */ | ||||
q15_t *recipTable; /**< Points to the reciprocal initial value table. */ | ||||
q15_t energy; /**< saves previous frame energy. */ | ||||
q15_t x0; /**< saves previous input sample. */ | ||||
} arm_lms_norm_instance_q15; | ||||
/** | ||||
* @brief Processing function for Q15 normalized LMS filter. | ||||
* @param[in] *S points to an instance of the Q15 normalized LMS filter structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[in] *pRef points to the block of reference data. | ||||
* @param[out] *pOut points to the block of output data. | ||||
* @param[out] *pErr points to the block of error data. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_norm_q15( | ||||
arm_lms_norm_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pRef, | ||||
q15_t * pOut, | ||||
q15_t * pErr, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for Q15 normalized LMS filter. | ||||
* @param[in] *S points to an instance of the Q15 normalized LMS filter structure. | ||||
* @param[in] numTaps number of filter coefficients. | ||||
* @param[in] *pCoeffs points to coefficient buffer. | ||||
* @param[in] *pState points to state buffer. | ||||
* @param[in] mu step size that controls filter coefficient updates. | ||||
* @param[in] blockSize number of samples to process. | ||||
* @param[in] postShift bit shift applied to coefficients. | ||||
* @return none. | ||||
*/ | ||||
void arm_lms_norm_init_q15( | ||||
arm_lms_norm_instance_q15 * S, | ||||
uint16_t numTaps, | ||||
q15_t * pCoeffs, | ||||
q15_t * pState, | ||||
q15_t mu, | ||||
uint32_t blockSize, | ||||
uint8_t postShift); | ||||
/** | ||||
* @brief Correlation of floating-point sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | ||||
* @return none. | ||||
*/ | ||||
void arm_correlate_f32( | ||||
float32_t * pSrcA, | ||||
uint32_t srcALen, | ||||
float32_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
float32_t * pDst); | ||||
/** | ||||
* @brief Correlation of Q15 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | ||||
* @return none. | ||||
*/ | ||||
void arm_correlate_q15( | ||||
q15_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q15_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q15_t * pDst); | ||||
/** | ||||
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | ||||
* @return none. | ||||
*/ | ||||
void arm_correlate_fast_q15( | ||||
q15_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q15_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q15_t * pDst); | ||||
/** | ||||
* @brief Correlation of Q31 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | ||||
* @return none. | ||||
*/ | ||||
void arm_correlate_q31( | ||||
q31_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q31_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q31_t * pDst); | ||||
/** | ||||
* @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | ||||
* @return none. | ||||
*/ | ||||
void arm_correlate_fast_q31( | ||||
q31_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q31_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q31_t * pDst); | ||||
/** | ||||
* @brief Correlation of Q7 sequences. | ||||
* @param[in] *pSrcA points to the first input sequence. | ||||
* @param[in] srcALen length of the first input sequence. | ||||
* @param[in] *pSrcB points to the second input sequence. | ||||
* @param[in] srcBLen length of the second input sequence. | ||||
* @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | ||||
* @return none. | ||||
*/ | ||||
void arm_correlate_q7( | ||||
q7_t * pSrcA, | ||||
uint32_t srcALen, | ||||
q7_t * pSrcB, | ||||
uint32_t srcBLen, | ||||
q7_t * pDst); | ||||
/** | ||||
* @brief Instance structure for the floating-point sparse FIR filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | ||||
float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | ||||
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | ||||
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | ||||
} arm_fir_sparse_instance_f32; | ||||
/** | ||||
* @brief Instance structure for the Q31 sparse FIR filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | ||||
q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | ||||
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | ||||
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | ||||
} arm_fir_sparse_instance_q31; | ||||
/** | ||||
* @brief Instance structure for the Q15 sparse FIR filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | ||||
q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | ||||
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | ||||
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | ||||
} arm_fir_sparse_instance_q15; | ||||
/** | ||||
* @brief Instance structure for the Q7 sparse FIR filter. | ||||
*/ | ||||
typedef struct | ||||
{ | ||||
uint16_t numTaps; /**< number of coefficients in the filter. */ | ||||
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | ||||
q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | ||||
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | ||||
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | ||||
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | ||||
} arm_fir_sparse_instance_q7; | ||||
/** | ||||
* @brief Processing function for the floating-point sparse FIR filter. | ||||
* @param[in] *S points to an instance of the floating-point sparse FIR structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] *pScratchIn points to a temporary buffer of size blockSize. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_sparse_f32( | ||||
arm_fir_sparse_instance_f32 * S, | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
float32_t * pScratchIn, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the floating-point sparse FIR filter. | ||||
* @param[in,out] *S points to an instance of the floating-point sparse FIR structure. | ||||
* @param[in] numTaps number of nonzero coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the array of filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] *pTapDelay points to the array of offset times. | ||||
* @param[in] maxDelay maximum offset time supported. | ||||
* @param[in] blockSize number of samples that will be processed per block. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_sparse_init_f32( | ||||
arm_fir_sparse_instance_f32 * S, | ||||
uint16_t numTaps, | ||||
float32_t * pCoeffs, | ||||
float32_t * pState, | ||||
int32_t * pTapDelay, | ||||
uint16_t maxDelay, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q31 sparse FIR filter. | ||||
* @param[in] *S points to an instance of the Q31 sparse FIR structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] *pScratchIn points to a temporary buffer of size blockSize. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_sparse_q31( | ||||
arm_fir_sparse_instance_q31 * S, | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
q31_t * pScratchIn, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q31 sparse FIR filter. | ||||
* @param[in,out] *S points to an instance of the Q31 sparse FIR structure. | ||||
* @param[in] numTaps number of nonzero coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the array of filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] *pTapDelay points to the array of offset times. | ||||
* @param[in] maxDelay maximum offset time supported. | ||||
* @param[in] blockSize number of samples that will be processed per block. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_sparse_init_q31( | ||||
arm_fir_sparse_instance_q31 * S, | ||||
uint16_t numTaps, | ||||
q31_t * pCoeffs, | ||||
q31_t * pState, | ||||
int32_t * pTapDelay, | ||||
uint16_t maxDelay, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q15 sparse FIR filter. | ||||
* @param[in] *S points to an instance of the Q15 sparse FIR structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] *pScratchIn points to a temporary buffer of size blockSize. | ||||
* @param[in] *pScratchOut points to a temporary buffer of size blockSize. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_sparse_q15( | ||||
arm_fir_sparse_instance_q15 * S, | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
q15_t * pScratchIn, | ||||
q31_t * pScratchOut, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q15 sparse FIR filter. | ||||
* @param[in,out] *S points to an instance of the Q15 sparse FIR structure. | ||||
* @param[in] numTaps number of nonzero coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the array of filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] *pTapDelay points to the array of offset times. | ||||
* @param[in] maxDelay maximum offset time supported. | ||||
* @param[in] blockSize number of samples that will be processed per block. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_sparse_init_q15( | ||||
arm_fir_sparse_instance_q15 * S, | ||||
uint16_t numTaps, | ||||
q15_t * pCoeffs, | ||||
q15_t * pState, | ||||
int32_t * pTapDelay, | ||||
uint16_t maxDelay, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Processing function for the Q7 sparse FIR filter. | ||||
* @param[in] *S points to an instance of the Q7 sparse FIR structure. | ||||
* @param[in] *pSrc points to the block of input data. | ||||
* @param[out] *pDst points to the block of output data | ||||
* @param[in] *pScratchIn points to a temporary buffer of size blockSize. | ||||
* @param[in] *pScratchOut points to a temporary buffer of size blockSize. | ||||
* @param[in] blockSize number of input samples to process per call. | ||||
* @return none. | ||||
*/ | ||||
void arm_fir_sparse_q7( | ||||
arm_fir_sparse_instance_q7 * S, | ||||
q7_t * pSrc, | ||||
q7_t * pDst, | ||||
q7_t * pScratchIn, | ||||
q31_t * pScratchOut, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Initialization function for the Q7 sparse FIR filter. | ||||
* @param[in,out] *S points to an instance of the Q7 sparse FIR structure. | ||||
* @param[in] numTaps number of nonzero coefficients in the filter. | ||||
* @param[in] *pCoeffs points to the array of filter coefficients. | ||||
* @param[in] *pState points to the state buffer. | ||||
* @param[in] *pTapDelay points to the array of offset times. | ||||
* @param[in] maxDelay maximum offset time supported. | ||||
* @param[in] blockSize number of samples that will be processed per block. | ||||
* @return none | ||||
*/ | ||||
void arm_fir_sparse_init_q7( | ||||
arm_fir_sparse_instance_q7 * S, | ||||
uint16_t numTaps, | ||||
q7_t * pCoeffs, | ||||
q7_t * pState, | ||||
int32_t *pTapDelay, | ||||
uint16_t maxDelay, | ||||
uint32_t blockSize); | ||||
/* | ||||
* @brief Floating-point sin_cos function. | ||||
* @param[in] theta input value in degrees | ||||
* @param[out] *pSinVal points to the processed sine output. | ||||
* @param[out] *pCosVal points to the processed cos output. | ||||
* @return none. | ||||
*/ | ||||
void arm_sin_cos_f32( | ||||
float32_t theta, | ||||
float32_t *pSinVal, | ||||
float32_t *pCcosVal); | ||||
/* | ||||
* @brief Q31 sin_cos function. | ||||
* @param[in] theta scaled input value in degrees | ||||
* @param[out] *pSinVal points to the processed sine output. | ||||
* @param[out] *pCosVal points to the processed cosine output. | ||||
* @return none. | ||||
*/ | ||||
void arm_sin_cos_q31( | ||||
q31_t theta, | ||||
q31_t *pSinVal, | ||||
q31_t *pCosVal); | ||||
/** | ||||
* @brief Floating-point complex conjugate. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_conj_f32( | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q31 complex conjugate. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_conj_q31( | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q15 complex conjugate. | ||||
* @param[in] *pSrc points to the input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_conj_q15( | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Floating-point complex magnitude squared | ||||
* @param[in] *pSrc points to the complex input vector | ||||
* @param[out] *pDst points to the real output vector | ||||
* @param[in] numSamples number of complex samples in the input vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mag_squared_f32( | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q31 complex magnitude squared | ||||
* @param[in] *pSrc points to the complex input vector | ||||
* @param[out] *pDst points to the real output vector | ||||
* @param[in] numSamples number of complex samples in the input vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mag_squared_q31( | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q15 complex magnitude squared | ||||
* @param[in] *pSrc points to the complex input vector | ||||
* @param[out] *pDst points to the real output vector | ||||
* @param[in] numSamples number of complex samples in the input vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mag_squared_q15( | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @ingroup groupController | ||||
*/ | ||||
/** | ||||
* @defgroup PID PID Motor Control | ||||
* | ||||
* A Proportional Integral Derivative (PID) controller is a generic feedback control | ||||
* loop mechanism widely used in industrial control systems. | ||||
* A PID controller is the most commonly used type of feedback controller. | ||||
* | ||||
* This set of functions implements (PID) controllers | ||||
* for Q15, Q31, and floating-point data types. The functions operate on a single sample | ||||
* of data and each call to the function returns a single processed value. | ||||
* <code>S</code> points to an instance of the PID control data structure. <code>in</code> | ||||
* is the input sample value. The functions return the output value. | ||||
* | ||||
* \par Algorithm: | ||||
* <pre> | ||||
* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] | ||||
* A0 = Kp + Ki + Kd | ||||
* A1 = (-Kp ) - (2 * Kd ) | ||||
* A2 = Kd </pre> | ||||
* | ||||
* \par | ||||
* where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant | ||||
* | ||||
* \par | ||||
* \image html PID.gif "Proportional Integral Derivative Controller" | ||||
* | ||||
* \par | ||||
* The PID controller calculates an "error" value as the difference between | ||||
* the measured output and the reference input. | ||||
* The controller attempts to minimize the error by adjusting the process control inputs. | ||||
* The proportional value determines the reaction to the current error, | ||||
* the integral value determines the reaction based on the sum of recent errors, | ||||
* and the derivative value determines the reaction based on the rate at which the error has been changing. | ||||
* | ||||
* \par Instance Structure | ||||
* The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. | ||||
* A separate instance structure must be defined for each PID Controller. | ||||
* There are separate instance structure declarations for each of the 3 supported data types. | ||||
* | ||||
* \par Reset Functions | ||||
* There is also an associated reset function for each data type which clears the state array. | ||||
* | ||||
* \par Initialization Functions | ||||
* There is also an associated initialization function for each data type. | ||||
* The initialization function performs the following operations: | ||||
* - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. | ||||
* - Zeros out the values in the state buffer. | ||||
* | ||||
* \par | ||||
* Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. | ||||
* | ||||
* \par Fixed-Point Behavior | ||||
* Care must be taken when using the fixed-point versions of the PID Controller functions. | ||||
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. | ||||
* Refer to the function specific documentation below for usage guidelines. | ||||
*/ | ||||
/** | ||||
* @addtogroup PID | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Process function for the floating-point PID Control. | ||||
* @param[in,out] *S is an instance of the floating-point PID Control structure | ||||
* @param[in] in input sample to process | ||||
* @return out processed output sample. | ||||
*/ | ||||
static __INLINE float32_t arm_pid_f32( | ||||
arm_pid_instance_f32 * S, | ||||
float32_t in) | ||||
{ | ||||
float32_t out; | ||||
/* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ | ||||
out = (S->A0 * in) + | ||||
(S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); | ||||
/* Update state */ | ||||
S->state[1] = S->state[0]; | ||||
S->state[0] = in; | ||||
S->state[2] = out; | ||||
/* return to application */ | ||||
return (out); | ||||
} | ||||
/** | ||||
* @brief Process function for the Q31 PID Control. | ||||
* @param[in,out] *S points to an instance of the Q31 PID Control structure | ||||
* @param[in] in input sample to process | ||||
* @return out processed output sample. | ||||
* | ||||
* <b>Scaling and Overflow Behavior:</b> | ||||
* \par | ||||
* The function is implemented using an internal 64-bit accumulator. | ||||
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. | ||||
* Thus, if the accumulator result overflows it wraps around rather than clip. | ||||
* In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. | ||||
* After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. | ||||
*/ | ||||
static __INLINE q31_t arm_pid_q31( | ||||
arm_pid_instance_q31 * S, | ||||
q31_t in) | ||||
{ | ||||
q63_t acc; | ||||
q31_t out; | ||||
/* acc = A0 * x[n] */ | ||||
acc = (q63_t) S->A0 * in; | ||||
/* acc += A1 * x[n-1] */ | ||||
acc += (q63_t) S->A1 * S->state[0]; | ||||
/* acc += A2 * x[n-2] */ | ||||
acc += (q63_t) S->A2 * S->state[1]; | ||||
/* convert output to 1.31 format to add y[n-1] */ | ||||
out = (q31_t) (acc >> 31u); | ||||
/* out += y[n-1] */ | ||||
out += S->state[2]; | ||||
/* Update state */ | ||||
S->state[1] = S->state[0]; | ||||
S->state[0] = in; | ||||
S->state[2] = out; | ||||
/* return to application */ | ||||
return (out); | ||||
} | ||||
/** | ||||
* @brief Process function for the Q15 PID Control. | ||||
* @param[in,out] *S points to an instance of the Q15 PID Control structure | ||||
* @param[in] in input sample to process | ||||
* @return out processed output sample. | ||||
* | ||||
* <b>Scaling and Overflow Behavior:</b> | ||||
* \par | ||||
* The function is implemented using a 64-bit internal accumulator. | ||||
* Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. | ||||
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. | ||||
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. | ||||
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. | ||||
* Lastly, the accumulator is saturated to yield a result in 1.15 format. | ||||
*/ | ||||
static __INLINE q15_t arm_pid_q15( | ||||
arm_pid_instance_q15 * S, | ||||
q15_t in) | ||||
{ | ||||
q63_t acc; | ||||
q15_t out; | ||||
/* Implementation of PID controller */ | ||||
#ifdef ARM_MATH_CM0 | ||||
/* acc = A0 * x[n] */ | ||||
acc = ((q31_t) S->A0 )* in ; | ||||
#else | ||||
/* acc = A0 * x[n] */ | ||||
acc = (q31_t) __SMUAD(S->A0, in); | ||||
#endif | ||||
#ifdef ARM_MATH_CM0 | ||||
/* acc += A1 * x[n-1] + A2 * x[n-2] */ | ||||
acc += (q31_t) S->A1 * S->state[0] ; | ||||
acc += (q31_t) S->A2 * S->state[1] ; | ||||
#else | ||||
/* acc += A1 * x[n-1] + A2 * x[n-2] */ | ||||
acc = __SMLALD(S->A1, (q31_t)__SIMD32(S->state), acc); | ||||
#endif | ||||
/* acc += y[n-1] */ | ||||
acc += (q31_t) S->state[2] << 15; | ||||
/* saturate the output */ | ||||
out = (q15_t) (__SSAT((acc >> 15), 16)); | ||||
/* Update state */ | ||||
S->state[1] = S->state[0]; | ||||
S->state[0] = in; | ||||
S->state[2] = out; | ||||
/* return to application */ | ||||
return (out); | ||||
} | ||||
/** | ||||
* @} end of PID group | ||||
*/ | ||||
/** | ||||
* @brief Floating-point matrix inverse. | ||||
* @param[in] *src points to the instance of the input floating-point matrix structure. | ||||
* @param[out] *dst points to the instance of the output floating-point matrix structure. | ||||
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | ||||
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | ||||
*/ | ||||
arm_status arm_mat_inverse_f32( | ||||
const arm_matrix_instance_f32 * src, | ||||
arm_matrix_instance_f32 * dst); | ||||
/** | ||||
* @ingroup groupController | ||||
*/ | ||||
/** | ||||
* @defgroup clarke Vector Clarke Transform | ||||
* Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. | ||||
* Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents | ||||
* in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. | ||||
* When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below | ||||
* \image html clarke.gif Stator current space vector and its components in (a,b). | ||||
* and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> | ||||
* can be calculated using only <code>Ia</code> and <code>Ib</code>. | ||||
* | ||||
* The function operates on a single sample of data and each call to the function returns the processed output. | ||||
* The library provides separate functions for Q31 and floating-point data types. | ||||
* \par Algorithm | ||||
* \image html clarkeFormula.gif | ||||
* where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and | ||||
* <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. | ||||
* \par Fixed-Point Behavior | ||||
* Care must be taken when using the Q31 version of the Clarke transform. | ||||
* In particular, the overflow and saturation behavior of the accumulator used must be considered. | ||||
* Refer to the function specific documentation below for usage guidelines. | ||||
*/ | ||||
/** | ||||
* @addtogroup clarke | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* | ||||
* @brief Floating-point Clarke transform | ||||
* @param[in] Ia input three-phase coordinate <code>a</code> | ||||
* @param[in] Ib input three-phase coordinate <code>b</code> | ||||
* @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | ||||
* @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | ||||
* @return none. | ||||
*/ | ||||
static __INLINE void arm_clarke_f32( | ||||
float32_t Ia, | ||||
float32_t Ib, | ||||
float32_t * pIalpha, | ||||
float32_t * pIbeta) | ||||
{ | ||||
/* Calculate pIalpha using the equation, pIalpha = Ia */ | ||||
*pIalpha = Ia; | ||||
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ | ||||
*pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); | ||||
} | ||||
/** | ||||
* @brief Clarke transform for Q31 version | ||||
* @param[in] Ia input three-phase coordinate <code>a</code> | ||||
* @param[in] Ib input three-phase coordinate <code>b</code> | ||||
* @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | ||||
* @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | ||||
* @return none. | ||||
* | ||||
* <b>Scaling and Overflow Behavior:</b> | ||||
* \par | ||||
* The function is implemented using an internal 32-bit accumulator. | ||||
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | ||||
* There is saturation on the addition, hence there is no risk of overflow. | ||||
*/ | ||||
static __INLINE void arm_clarke_q31( | ||||
q31_t Ia, | ||||
q31_t Ib, | ||||
q31_t * pIalpha, | ||||
q31_t * pIbeta) | ||||
{ | ||||
q31_t product1, product2; /* Temporary variables used to store intermediate results */ | ||||
/* Calculating pIalpha from Ia by equation pIalpha = Ia */ | ||||
*pIalpha = Ia; | ||||
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ | ||||
product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); | ||||
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */ | ||||
product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); | ||||
/* pIbeta is calculated by adding the intermediate products */ | ||||
*pIbeta = __QADD(product1, product2); | ||||
} | ||||
/** | ||||
* @} end of clarke group | ||||
*/ | ||||
/** | ||||
* @brief Converts the elements of the Q7 vector to Q31 vector. | ||||
* @param[in] *pSrc input pointer | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q7_to_q31( | ||||
q7_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @ingroup groupController | ||||
*/ | ||||
/** | ||||
* @defgroup inv_clarke Vector Inverse Clarke Transform | ||||
* Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. | ||||
* | ||||
* The function operates on a single sample of data and each call to the function returns the processed output. | ||||
* The library provides separate functions for Q31 and floating-point data types. | ||||
* \par Algorithm | ||||
* \image html clarkeInvFormula.gif | ||||
* where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and | ||||
* <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. | ||||
* \par Fixed-Point Behavior | ||||
* Care must be taken when using the Q31 version of the Clarke transform. | ||||
* In particular, the overflow and saturation behavior of the accumulator used must be considered. | ||||
* Refer to the function specific documentation below for usage guidelines. | ||||
*/ | ||||
/** | ||||
* @addtogroup inv_clarke | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Floating-point Inverse Clarke transform | ||||
* @param[in] Ialpha input two-phase orthogonal vector axis alpha | ||||
* @param[in] Ibeta input two-phase orthogonal vector axis beta | ||||
* @param[out] *pIa points to output three-phase coordinate <code>a</code> | ||||
* @param[out] *pIb points to output three-phase coordinate <code>b</code> | ||||
* @return none. | ||||
*/ | ||||
static __INLINE void arm_inv_clarke_f32( | ||||
float32_t Ialpha, | ||||
float32_t Ibeta, | ||||
float32_t * pIa, | ||||
float32_t * pIb) | ||||
{ | ||||
/* Calculating pIa from Ialpha by equation pIa = Ialpha */ | ||||
*pIa = Ialpha; | ||||
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ | ||||
*pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta; | ||||
} | ||||
/** | ||||
* @brief Inverse Clarke transform for Q31 version | ||||
* @param[in] Ialpha input two-phase orthogonal vector axis alpha | ||||
* @param[in] Ibeta input two-phase orthogonal vector axis beta | ||||
* @param[out] *pIa points to output three-phase coordinate <code>a</code> | ||||
* @param[out] *pIb points to output three-phase coordinate <code>b</code> | ||||
* @return none. | ||||
* | ||||
* <b>Scaling and Overflow Behavior:</b> | ||||
* \par | ||||
* The function is implemented using an internal 32-bit accumulator. | ||||
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | ||||
* There is saturation on the subtraction, hence there is no risk of overflow. | ||||
*/ | ||||
static __INLINE void arm_inv_clarke_q31( | ||||
q31_t Ialpha, | ||||
q31_t Ibeta, | ||||
q31_t * pIa, | ||||
q31_t * pIb) | ||||
{ | ||||
q31_t product1, product2; /* Temporary variables used to store intermediate results */ | ||||
/* Calculating pIa from Ialpha by equation pIa = Ialpha */ | ||||
*pIa = Ialpha; | ||||
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ | ||||
product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); | ||||
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */ | ||||
product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); | ||||
/* pIb is calculated by subtracting the products */ | ||||
*pIb = __QSUB(product2, product1); | ||||
} | ||||
/** | ||||
* @} end of inv_clarke group | ||||
*/ | ||||
/** | ||||
* @brief Converts the elements of the Q7 vector to Q15 vector. | ||||
* @param[in] *pSrc input pointer | ||||
* @param[out] *pDst output pointer | ||||
* @param[in] blockSize number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q7_to_q15( | ||||
q7_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @ingroup groupController | ||||
*/ | ||||
/** | ||||
* @defgroup park Vector Park Transform | ||||
* | ||||
* Forward Park transform converts the input two-coordinate vector to flux and torque components. | ||||
* The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents | ||||
* from the stationary to the moving reference frame and control the spatial relationship between | ||||
* the stator vector current and rotor flux vector. | ||||
* If we consider the d axis aligned with the rotor flux, the diagram below shows the | ||||
* current vector and the relationship from the two reference frames: | ||||
* \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" | ||||
* | ||||
* The function operates on a single sample of data and each call to the function returns the processed output. | ||||
* The library provides separate functions for Q31 and floating-point data types. | ||||
* \par Algorithm | ||||
* \image html parkFormula.gif | ||||
* where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, | ||||
* <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | ||||
* cosine and sine values of theta (rotor flux position). | ||||
* \par Fixed-Point Behavior | ||||
* Care must be taken when using the Q31 version of the Park transform. | ||||
* In particular, the overflow and saturation behavior of the accumulator used must be considered. | ||||
* Refer to the function specific documentation below for usage guidelines. | ||||
*/ | ||||
/** | ||||
* @addtogroup park | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Floating-point Park transform | ||||
* @param[in] Ialpha input two-phase vector coordinate alpha | ||||
* @param[in] Ibeta input two-phase vector coordinate beta | ||||
* @param[out] *pId points to output rotor reference frame d | ||||
* @param[out] *pIq points to output rotor reference frame q | ||||
* @param[in] sinVal sine value of rotation angle theta | ||||
* @param[in] cosVal cosine value of rotation angle theta | ||||
* @return none. | ||||
* | ||||
* The function implements the forward Park transform. | ||||
* | ||||
*/ | ||||
static __INLINE void arm_park_f32( | ||||
float32_t Ialpha, | ||||
float32_t Ibeta, | ||||
float32_t * pId, | ||||
float32_t * pIq, | ||||
float32_t sinVal, | ||||
float32_t cosVal) | ||||
{ | ||||
/* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ | ||||
*pId = Ialpha * cosVal + Ibeta * sinVal; | ||||
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ | ||||
*pIq = -Ialpha * sinVal + Ibeta * cosVal; | ||||
} | ||||
/** | ||||
* @brief Park transform for Q31 version | ||||
* @param[in] Ialpha input two-phase vector coordinate alpha | ||||
* @param[in] Ibeta input two-phase vector coordinate beta | ||||
* @param[out] *pId points to output rotor reference frame d | ||||
* @param[out] *pIq points to output rotor reference frame q | ||||
* @param[in] sinVal sine value of rotation angle theta | ||||
* @param[in] cosVal cosine value of rotation angle theta | ||||
* @return none. | ||||
* | ||||
* <b>Scaling and Overflow Behavior:</b> | ||||
* \par | ||||
* The function is implemented using an internal 32-bit accumulator. | ||||
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | ||||
* There is saturation on the addition and subtraction, hence there is no risk of overflow. | ||||
*/ | ||||
static __INLINE void arm_park_q31( | ||||
q31_t Ialpha, | ||||
q31_t Ibeta, | ||||
q31_t * pId, | ||||
q31_t * pIq, | ||||
q31_t sinVal, | ||||
q31_t cosVal) | ||||
{ | ||||
q31_t product1, product2; /* Temporary variables used to store intermediate results */ | ||||
q31_t product3, product4; /* Temporary variables used to store intermediate results */ | ||||
/* Intermediate product is calculated by (Ialpha * cosVal) */ | ||||
product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); | ||||
/* Intermediate product is calculated by (Ibeta * sinVal) */ | ||||
product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); | ||||
/* Intermediate product is calculated by (Ialpha * sinVal) */ | ||||
product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); | ||||
/* Intermediate product is calculated by (Ibeta * cosVal) */ | ||||
product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); | ||||
/* Calculate pId by adding the two intermediate products 1 and 2 */ | ||||
*pId = __QADD(product1, product2); | ||||
/* Calculate pIq by subtracting the two intermediate products 3 from 4 */ | ||||
*pIq = __QSUB(product4, product3); | ||||
} | ||||
/** | ||||
* @} end of park group | ||||
*/ | ||||
/** | ||||
* @brief Converts the elements of the Q7 vector to floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[out] *pDst is output pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q7_to_float( | ||||
q7_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @ingroup groupController | ||||
*/ | ||||
/** | ||||
* @defgroup inv_park Vector Inverse Park transform | ||||
* Inverse Park transform converts the input flux and torque components to two-coordinate vector. | ||||
* | ||||
* The function operates on a single sample of data and each call to the function returns the processed output. | ||||
* The library provides separate functions for Q31 and floating-point data types. | ||||
* \par Algorithm | ||||
* \image html parkInvFormula.gif | ||||
* where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, | ||||
* <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | ||||
* cosine and sine values of theta (rotor flux position). | ||||
* \par Fixed-Point Behavior | ||||
* Care must be taken when using the Q31 version of the Park transform. | ||||
* In particular, the overflow and saturation behavior of the accumulator used must be considered. | ||||
* Refer to the function specific documentation below for usage guidelines. | ||||
*/ | ||||
/** | ||||
* @addtogroup inv_park | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Floating-point Inverse Park transform | ||||
* @param[in] Id input coordinate of rotor reference frame d | ||||
* @param[in] Iq input coordinate of rotor reference frame q | ||||
* @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | ||||
* @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | ||||
* @param[in] sinVal sine value of rotation angle theta | ||||
* @param[in] cosVal cosine value of rotation angle theta | ||||
* @return none. | ||||
*/ | ||||
static __INLINE void arm_inv_park_f32( | ||||
float32_t Id, | ||||
float32_t Iq, | ||||
float32_t * pIalpha, | ||||
float32_t * pIbeta, | ||||
float32_t sinVal, | ||||
float32_t cosVal) | ||||
{ | ||||
/* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ | ||||
*pIalpha = Id * cosVal - Iq * sinVal; | ||||
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ | ||||
*pIbeta = Id * sinVal + Iq * cosVal; | ||||
} | ||||
/** | ||||
* @brief Inverse Park transform for Q31 version | ||||
* @param[in] Id input coordinate of rotor reference frame d | ||||
* @param[in] Iq input coordinate of rotor reference frame q | ||||
* @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha | ||||
* @param[out] *pIbeta points to output two-phase orthogonal vector axis beta | ||||
* @param[in] sinVal sine value of rotation angle theta | ||||
* @param[in] cosVal cosine value of rotation angle theta | ||||
* @return none. | ||||
* | ||||
* <b>Scaling and Overflow Behavior:</b> | ||||
* \par | ||||
* The function is implemented using an internal 32-bit accumulator. | ||||
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | ||||
* There is saturation on the addition, hence there is no risk of overflow. | ||||
*/ | ||||
static __INLINE void arm_inv_park_q31( | ||||
q31_t Id, | ||||
q31_t Iq, | ||||
q31_t * pIalpha, | ||||
q31_t * pIbeta, | ||||
q31_t sinVal, | ||||
q31_t cosVal) | ||||
{ | ||||
q31_t product1, product2; /* Temporary variables used to store intermediate results */ | ||||
q31_t product3, product4; /* Temporary variables used to store intermediate results */ | ||||
/* Intermediate product is calculated by (Id * cosVal) */ | ||||
product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); | ||||
/* Intermediate product is calculated by (Iq * sinVal) */ | ||||
product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); | ||||
/* Intermediate product is calculated by (Id * sinVal) */ | ||||
product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); | ||||
/* Intermediate product is calculated by (Iq * cosVal) */ | ||||
product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); | ||||
/* Calculate pIalpha by using the two intermediate products 1 and 2 */ | ||||
*pIalpha = __QSUB(product1, product2); | ||||
/* Calculate pIbeta by using the two intermediate products 3 and 4 */ | ||||
*pIbeta = __QADD(product4, product3); | ||||
} | ||||
/** | ||||
* @} end of Inverse park group | ||||
*/ | ||||
/** | ||||
* @brief Converts the elements of the Q31 vector to floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[out] *pDst is output pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q31_to_float( | ||||
q31_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @ingroup groupInterpolation | ||||
*/ | ||||
/** | ||||
* @defgroup LinearInterpolate Linear Interpolation | ||||
* | ||||
* Linear interpolation is a method of curve fitting using linear polynomials. | ||||
* Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line | ||||
* | ||||
* \par | ||||
* \image html LinearInterp.gif "Linear interpolation" | ||||
* | ||||
* \par | ||||
* A Linear Interpolate function calculates an output value(y), for the input(x) | ||||
* using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) | ||||
* | ||||
* \par Algorithm: | ||||
* <pre> | ||||
* y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) | ||||
* where x0, x1 are nearest values of input x | ||||
* y0, y1 are nearest values to output y | ||||
* </pre> | ||||
* | ||||
* \par | ||||
* This set of functions implements Linear interpolation process | ||||
* for Q7, Q15, Q31, and floating-point data types. The functions operate on a single | ||||
* sample of data and each call to the function returns a single processed value. | ||||
* <code>S</code> points to an instance of the Linear Interpolate function data structure. | ||||
* <code>x</code> is the input sample value. The functions returns the output value. | ||||
* | ||||
* \par | ||||
* if x is outside of the table boundary, Linear interpolation returns first value of the table | ||||
* if x is below input range and returns last value of table if x is above range. | ||||
*/ | ||||
/** | ||||
* @addtogroup LinearInterpolate | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Process function for the floating-point Linear Interpolation Function. | ||||
* @param[in,out] *S is an instance of the floating-point Linear Interpolation structure | ||||
* @param[in] x input sample to process | ||||
* @return y processed output sample. | ||||
* | ||||
*/ | ||||
static __INLINE float32_t arm_linear_interp_f32( | ||||
arm_linear_interp_instance_f32 * S, | ||||
float32_t x) | ||||
{ | ||||
float32_t y; | ||||
float32_t x0, x1; /* Nearest input values */ | ||||
float32_t y0, y1; /* Nearest output values */ | ||||
float32_t xSpacing = S->xSpacing; /* spacing between input values */ | ||||
int32_t i; /* Index variable */ | ||||
float32_t *pYData = S->pYData; /* pointer to output table */ | ||||
/* Calculation of index */ | ||||
i = (x - S->x1) / xSpacing; | ||||
if(i < 0) | ||||
{ | ||||
/* Iniatilize output for below specified range as least output value of table */ | ||||
y = pYData[0]; | ||||
} | ||||
else if(i >= S->nValues) | ||||
{ | ||||
/* Iniatilize output for above specified range as last output value of table */ | ||||
y = pYData[S->nValues-1]; | ||||
} | ||||
else | ||||
{ | ||||
/* Calculation of nearest input values */ | ||||
x0 = S->x1 + i * xSpacing; | ||||
x1 = S->x1 + (i +1) * xSpacing; | ||||
/* Read of nearest output values */ | ||||
y0 = pYData[i]; | ||||
y1 = pYData[i + 1]; | ||||
/* Calculation of output */ | ||||
y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)); | ||||
} | ||||
/* returns output value */ | ||||
return (y); | ||||
} | ||||
/** | ||||
* | ||||
* @brief Process function for the Q31 Linear Interpolation Function. | ||||
* @param[in] *pYData pointer to Q31 Linear Interpolation table | ||||
* @param[in] x input sample to process | ||||
* @param[in] nValues number of table values | ||||
* @return y processed output sample. | ||||
* | ||||
* \par | ||||
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | ||||
* This function can support maximum of table size 2^12. | ||||
* | ||||
*/ | ||||
static __INLINE q31_t arm_linear_interp_q31(q31_t *pYData, | ||||
q31_t x, uint32_t nValues) | ||||
{ | ||||
q31_t y; /* output */ | ||||
q31_t y0, y1; /* Nearest output values */ | ||||
q31_t fract; /* fractional part */ | ||||
int32_t index; /* Index to read nearest output values */ | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
index = ((x & 0xFFF00000) >> 20); | ||||
if(index >= (nValues - 1)) | ||||
{ | ||||
return(pYData[nValues - 1]); | ||||
} | ||||
else if(index < 0) | ||||
{ | ||||
return(pYData[0]); | ||||
} | ||||
else | ||||
{ | ||||
/* 20 bits for the fractional part */ | ||||
/* shift left by 11 to keep fract in 1.31 format */ | ||||
fract = (x & 0x000FFFFF) << 11; | ||||
/* Read two nearest output values from the index in 1.31(q31) format */ | ||||
y0 = pYData[index]; | ||||
y1 = pYData[index + 1u]; | ||||
/* Calculation of y0 * (1-fract) and y is in 2.30 format */ | ||||
y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); | ||||
/* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ | ||||
y += ((q31_t) (((q63_t) y1 * fract) >> 32)); | ||||
/* Convert y to 1.31 format */ | ||||
return (y << 1u); | ||||
} | ||||
} | ||||
/** | ||||
* | ||||
* @brief Process function for the Q15 Linear Interpolation Function. | ||||
* @param[in] *pYData pointer to Q15 Linear Interpolation table | ||||
* @param[in] x input sample to process | ||||
* @param[in] nValues number of table values | ||||
* @return y processed output sample. | ||||
* | ||||
* \par | ||||
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | ||||
* This function can support maximum of table size 2^12. | ||||
* | ||||
*/ | ||||
static __INLINE q15_t arm_linear_interp_q15(q15_t *pYData, q31_t x, uint32_t nValues) | ||||
{ | ||||
q63_t y; /* output */ | ||||
q15_t y0, y1; /* Nearest output values */ | ||||
q31_t fract; /* fractional part */ | ||||
int32_t index; /* Index to read nearest output values */ | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
index = ((x & 0xFFF00000) >> 20u); | ||||
if(index >= (nValues - 1)) | ||||
{ | ||||
return(pYData[nValues - 1]); | ||||
} | ||||
else if(index < 0) | ||||
{ | ||||
return(pYData[0]); | ||||
} | ||||
else | ||||
{ | ||||
/* 20 bits for the fractional part */ | ||||
/* fract is in 12.20 format */ | ||||
fract = (x & 0x000FFFFF); | ||||
/* Read two nearest output values from the index */ | ||||
y0 = pYData[index]; | ||||
y1 = pYData[index + 1u]; | ||||
/* Calculation of y0 * (1-fract) and y is in 13.35 format */ | ||||
y = ((q63_t) y0 * (0xFFFFF - fract)); | ||||
/* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ | ||||
y += ((q63_t) y1 * (fract)); | ||||
/* convert y to 1.15 format */ | ||||
return (y >> 20); | ||||
} | ||||
} | ||||
/** | ||||
* | ||||
* @brief Process function for the Q7 Linear Interpolation Function. | ||||
* @param[in] *pYData pointer to Q7 Linear Interpolation table | ||||
* @param[in] x input sample to process | ||||
* @param[in] nValues number of table values | ||||
* @return y processed output sample. | ||||
* | ||||
* \par | ||||
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | ||||
* This function can support maximum of table size 2^12. | ||||
*/ | ||||
static __INLINE q7_t arm_linear_interp_q7(q7_t *pYData, q31_t x, uint32_t nValues) | ||||
{ | ||||
q31_t y; /* output */ | ||||
q7_t y0, y1; /* Nearest output values */ | ||||
q31_t fract; /* fractional part */ | ||||
int32_t index; /* Index to read nearest output values */ | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
index = ((x & 0xFFF00000) >> 20u); | ||||
if(index >= (nValues - 1)) | ||||
{ | ||||
return(pYData[nValues - 1]); | ||||
} | ||||
else if(index < 0) | ||||
{ | ||||
return(pYData[0]); | ||||
} | ||||
else | ||||
{ | ||||
/* 20 bits for the fractional part */ | ||||
/* fract is in 12.20 format */ | ||||
fract = (x & 0x000FFFFF); | ||||
/* Read two nearest output values from the index and are in 1.7(q7) format */ | ||||
y0 = pYData[index]; | ||||
y1 = pYData[index + 1u]; | ||||
/* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ | ||||
y = ((y0 * (0xFFFFF - fract))); | ||||
/* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ | ||||
y += (y1 * fract); | ||||
/* convert y to 1.7(q7) format */ | ||||
return (y >> 20u); | ||||
} | ||||
} | ||||
/** | ||||
* @} end of LinearInterpolate group | ||||
*/ | ||||
/** | ||||
* @brief Fast approximation to the trigonometric sine function for floating-point data. | ||||
* @param[in] x input value in radians. | ||||
* @return sin(x). | ||||
*/ | ||||
float32_t arm_sin_f32( | ||||
float32_t x); | ||||
/** | ||||
* @brief Fast approximation to the trigonometric sine function for Q31 data. | ||||
* @param[in] x Scaled input value in radians. | ||||
* @return sin(x). | ||||
*/ | ||||
q31_t arm_sin_q31( | ||||
q31_t x); | ||||
/** | ||||
* @brief Fast approximation to the trigonometric sine function for Q15 data. | ||||
* @param[in] x Scaled input value in radians. | ||||
* @return sin(x). | ||||
*/ | ||||
q15_t arm_sin_q15( | ||||
q15_t x); | ||||
/** | ||||
* @brief Fast approximation to the trigonometric cosine function for floating-point data. | ||||
* @param[in] x input value in radians. | ||||
* @return cos(x). | ||||
*/ | ||||
float32_t arm_cos_f32( | ||||
float32_t x); | ||||
/** | ||||
* @brief Fast approximation to the trigonometric cosine function for Q31 data. | ||||
* @param[in] x Scaled input value in radians. | ||||
* @return cos(x). | ||||
*/ | ||||
q31_t arm_cos_q31( | ||||
q31_t x); | ||||
/** | ||||
* @brief Fast approximation to the trigonometric cosine function for Q15 data. | ||||
* @param[in] x Scaled input value in radians. | ||||
* @return cos(x). | ||||
*/ | ||||
q15_t arm_cos_q15( | ||||
q15_t x); | ||||
/** | ||||
* @ingroup groupFastMath | ||||
*/ | ||||
/** | ||||
* @defgroup SQRT Square Root | ||||
* | ||||
* Computes the square root of a number. | ||||
* There are separate functions for Q15, Q31, and floating-point data types. | ||||
* The square root function is computed using the Newton-Raphson algorithm. | ||||
* This is an iterative algorithm of the form: | ||||
* <pre> | ||||
* x1 = x0 - f(x0)/f'(x0) | ||||
* </pre> | ||||
* where <code>x1</code> is the current estimate, | ||||
* <code>x0</code> is the previous estimate and | ||||
* <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. | ||||
* For the square root function, the algorithm reduces to: | ||||
* <pre> | ||||
* x0 = in/2 [initial guess] | ||||
* x1 = 1/2 * ( x0 + in / x0) [each iteration] | ||||
* </pre> | ||||
*/ | ||||
/** | ||||
* @addtogroup SQRT | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* @brief Floating-point square root function. | ||||
* @param[in] in input value. | ||||
* @param[out] *pOut square root of input value. | ||||
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | ||||
* <code>in</code> is negative value and returns zero output for negative values. | ||||
*/ | ||||
static __INLINE arm_status arm_sqrt_f32( | ||||
float32_t in, float32_t *pOut) | ||||
{ | ||||
if(in > 0) | ||||
{ | ||||
// #if __FPU_USED | ||||
#if (__FPU_USED == 1) && defined ( __CC_ARM ) | ||||
*pOut = __sqrtf(in); | ||||
#else | ||||
*pOut = sqrtf(in); | ||||
#endif | ||||
return (ARM_MATH_SUCCESS); | ||||
} | ||||
else | ||||
{ | ||||
*pOut = 0.0f; | ||||
return (ARM_MATH_ARGUMENT_ERROR); | ||||
} | ||||
} | ||||
/** | ||||
* @brief Q31 square root function. | ||||
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. | ||||
* @param[out] *pOut square root of input value. | ||||
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | ||||
* <code>in</code> is negative value and returns zero output for negative values. | ||||
*/ | ||||
arm_status arm_sqrt_q31( | ||||
q31_t in, q31_t *pOut); | ||||
/** | ||||
* @brief Q15 square root function. | ||||
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. | ||||
* @param[out] *pOut square root of input value. | ||||
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | ||||
* <code>in</code> is negative value and returns zero output for negative values. | ||||
*/ | ||||
arm_status arm_sqrt_q15( | ||||
q15_t in, q15_t *pOut); | ||||
/** | ||||
* @} end of SQRT group | ||||
*/ | ||||
/** | ||||
* @brief floating-point Circular write function. | ||||
*/ | ||||
static __INLINE void arm_circularWrite_f32( | ||||
int32_t * circBuffer, | ||||
int32_t L, | ||||
uint16_t * writeOffset, | ||||
int32_t bufferInc, | ||||
const int32_t * src, | ||||
int32_t srcInc, | ||||
uint32_t blockSize) | ||||
{ | ||||
uint32_t i = 0u; | ||||
int32_t wOffset; | ||||
/* Copy the value of Index pointer that points | ||||
* to the current location where the input samples to be copied */ | ||||
wOffset = *writeOffset; | ||||
/* Loop over the blockSize */ | ||||
i = blockSize; | ||||
while(i > 0u) | ||||
{ | ||||
/* copy the input sample to the circular buffer */ | ||||
circBuffer[wOffset] = *src; | ||||
/* Update the input pointer */ | ||||
src += srcInc; | ||||
/* Circularly update wOffset. Watch out for positive and negative value */ | ||||
wOffset += bufferInc; | ||||
if(wOffset >= L) | ||||
wOffset -= L; | ||||
/* Decrement the loop counter */ | ||||
i--; | ||||
} | ||||
/* Update the index pointer */ | ||||
*writeOffset = wOffset; | ||||
} | ||||
/** | ||||
* @brief floating-point Circular Read function. | ||||
*/ | ||||
static __INLINE void arm_circularRead_f32( | ||||
int32_t * circBuffer, | ||||
int32_t L, | ||||
int32_t * readOffset, | ||||
int32_t bufferInc, | ||||
int32_t * dst, | ||||
int32_t * dst_base, | ||||
int32_t dst_length, | ||||
int32_t dstInc, | ||||
uint32_t blockSize) | ||||
{ | ||||
uint32_t i = 0u; | ||||
int32_t rOffset, dst_end; | ||||
/* Copy the value of Index pointer that points | ||||
* to the current location from where the input samples to be read */ | ||||
rOffset = *readOffset; | ||||
dst_end = (int32_t) (dst_base + dst_length); | ||||
/* Loop over the blockSize */ | ||||
i = blockSize; | ||||
while(i > 0u) | ||||
{ | ||||
/* copy the sample from the circular buffer to the destination buffer */ | ||||
*dst = circBuffer[rOffset]; | ||||
/* Update the input pointer */ | ||||
dst += dstInc; | ||||
if(dst == (int32_t *) dst_end) | ||||
{ | ||||
dst = dst_base; | ||||
} | ||||
/* Circularly update rOffset. Watch out for positive and negative value */ | ||||
rOffset += bufferInc; | ||||
if(rOffset >= L) | ||||
{ | ||||
rOffset -= L; | ||||
} | ||||
/* Decrement the loop counter */ | ||||
i--; | ||||
} | ||||
/* Update the index pointer */ | ||||
*readOffset = rOffset; | ||||
} | ||||
/** | ||||
* @brief Q15 Circular write function. | ||||
*/ | ||||
static __INLINE void arm_circularWrite_q15( | ||||
q15_t * circBuffer, | ||||
int32_t L, | ||||
uint16_t * writeOffset, | ||||
int32_t bufferInc, | ||||
const q15_t * src, | ||||
int32_t srcInc, | ||||
uint32_t blockSize) | ||||
{ | ||||
uint32_t i = 0u; | ||||
int32_t wOffset; | ||||
/* Copy the value of Index pointer that points | ||||
* to the current location where the input samples to be copied */ | ||||
wOffset = *writeOffset; | ||||
/* Loop over the blockSize */ | ||||
i = blockSize; | ||||
while(i > 0u) | ||||
{ | ||||
/* copy the input sample to the circular buffer */ | ||||
circBuffer[wOffset] = *src; | ||||
/* Update the input pointer */ | ||||
src += srcInc; | ||||
/* Circularly update wOffset. Watch out for positive and negative value */ | ||||
wOffset += bufferInc; | ||||
if(wOffset >= L) | ||||
wOffset -= L; | ||||
/* Decrement the loop counter */ | ||||
i--; | ||||
} | ||||
/* Update the index pointer */ | ||||
*writeOffset = wOffset; | ||||
} | ||||
/** | ||||
* @brief Q15 Circular Read function. | ||||
*/ | ||||
static __INLINE void arm_circularRead_q15( | ||||
q15_t * circBuffer, | ||||
int32_t L, | ||||
int32_t * readOffset, | ||||
int32_t bufferInc, | ||||
q15_t * dst, | ||||
q15_t * dst_base, | ||||
int32_t dst_length, | ||||
int32_t dstInc, | ||||
uint32_t blockSize) | ||||
{ | ||||
uint32_t i = 0; | ||||
int32_t rOffset, dst_end; | ||||
/* Copy the value of Index pointer that points | ||||
* to the current location from where the input samples to be read */ | ||||
rOffset = *readOffset; | ||||
dst_end = (int32_t) (dst_base + dst_length); | ||||
/* Loop over the blockSize */ | ||||
i = blockSize; | ||||
while(i > 0u) | ||||
{ | ||||
/* copy the sample from the circular buffer to the destination buffer */ | ||||
*dst = circBuffer[rOffset]; | ||||
/* Update the input pointer */ | ||||
dst += dstInc; | ||||
if(dst == (q15_t *) dst_end) | ||||
{ | ||||
dst = dst_base; | ||||
} | ||||
/* Circularly update wOffset. Watch out for positive and negative value */ | ||||
rOffset += bufferInc; | ||||
if(rOffset >= L) | ||||
{ | ||||
rOffset -= L; | ||||
} | ||||
/* Decrement the loop counter */ | ||||
i--; | ||||
} | ||||
/* Update the index pointer */ | ||||
*readOffset = rOffset; | ||||
} | ||||
/** | ||||
* @brief Q7 Circular write function. | ||||
*/ | ||||
static __INLINE void arm_circularWrite_q7( | ||||
q7_t * circBuffer, | ||||
int32_t L, | ||||
uint16_t * writeOffset, | ||||
int32_t bufferInc, | ||||
const q7_t * src, | ||||
int32_t srcInc, | ||||
uint32_t blockSize) | ||||
{ | ||||
uint32_t i = 0u; | ||||
int32_t wOffset; | ||||
/* Copy the value of Index pointer that points | ||||
* to the current location where the input samples to be copied */ | ||||
wOffset = *writeOffset; | ||||
/* Loop over the blockSize */ | ||||
i = blockSize; | ||||
while(i > 0u) | ||||
{ | ||||
/* copy the input sample to the circular buffer */ | ||||
circBuffer[wOffset] = *src; | ||||
/* Update the input pointer */ | ||||
src += srcInc; | ||||
/* Circularly update wOffset. Watch out for positive and negative value */ | ||||
wOffset += bufferInc; | ||||
if(wOffset >= L) | ||||
wOffset -= L; | ||||
/* Decrement the loop counter */ | ||||
i--; | ||||
} | ||||
/* Update the index pointer */ | ||||
*writeOffset = wOffset; | ||||
} | ||||
/** | ||||
* @brief Q7 Circular Read function. | ||||
*/ | ||||
static __INLINE void arm_circularRead_q7( | ||||
q7_t * circBuffer, | ||||
int32_t L, | ||||
int32_t * readOffset, | ||||
int32_t bufferInc, | ||||
q7_t * dst, | ||||
q7_t * dst_base, | ||||
int32_t dst_length, | ||||
int32_t dstInc, | ||||
uint32_t blockSize) | ||||
{ | ||||
uint32_t i = 0; | ||||
int32_t rOffset, dst_end; | ||||
/* Copy the value of Index pointer that points | ||||
* to the current location from where the input samples to be read */ | ||||
rOffset = *readOffset; | ||||
dst_end = (int32_t) (dst_base + dst_length); | ||||
/* Loop over the blockSize */ | ||||
i = blockSize; | ||||
while(i > 0u) | ||||
{ | ||||
/* copy the sample from the circular buffer to the destination buffer */ | ||||
*dst = circBuffer[rOffset]; | ||||
/* Update the input pointer */ | ||||
dst += dstInc; | ||||
if(dst == (q7_t *) dst_end) | ||||
{ | ||||
dst = dst_base; | ||||
} | ||||
/* Circularly update rOffset. Watch out for positive and negative value */ | ||||
rOffset += bufferInc; | ||||
if(rOffset >= L) | ||||
{ | ||||
rOffset -= L; | ||||
} | ||||
/* Decrement the loop counter */ | ||||
i--; | ||||
} | ||||
/* Update the index pointer */ | ||||
*readOffset = rOffset; | ||||
} | ||||
/** | ||||
* @brief Sum of the squares of the elements of a Q31 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_power_q31( | ||||
q31_t * pSrc, | ||||
uint32_t blockSize, | ||||
q63_t * pResult); | ||||
/** | ||||
* @brief Sum of the squares of the elements of a floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_power_f32( | ||||
float32_t * pSrc, | ||||
uint32_t blockSize, | ||||
float32_t * pResult); | ||||
/** | ||||
* @brief Sum of the squares of the elements of a Q15 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_power_q15( | ||||
q15_t * pSrc, | ||||
uint32_t blockSize, | ||||
q63_t * pResult); | ||||
/** | ||||
* @brief Sum of the squares of the elements of a Q7 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_power_q7( | ||||
q7_t * pSrc, | ||||
uint32_t blockSize, | ||||
q31_t * pResult); | ||||
/** | ||||
* @brief Mean value of a Q7 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_mean_q7( | ||||
q7_t * pSrc, | ||||
uint32_t blockSize, | ||||
q7_t * pResult); | ||||
/** | ||||
* @brief Mean value of a Q15 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_mean_q15( | ||||
q15_t * pSrc, | ||||
uint32_t blockSize, | ||||
q15_t * pResult); | ||||
/** | ||||
* @brief Mean value of a Q31 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_mean_q31( | ||||
q31_t * pSrc, | ||||
uint32_t blockSize, | ||||
q31_t * pResult); | ||||
/** | ||||
* @brief Mean value of a floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_mean_f32( | ||||
float32_t * pSrc, | ||||
uint32_t blockSize, | ||||
float32_t * pResult); | ||||
/** | ||||
* @brief Variance of the elements of a floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_var_f32( | ||||
float32_t * pSrc, | ||||
uint32_t blockSize, | ||||
float32_t * pResult); | ||||
/** | ||||
* @brief Variance of the elements of a Q31 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_var_q31( | ||||
q31_t * pSrc, | ||||
uint32_t blockSize, | ||||
q63_t * pResult); | ||||
/** | ||||
* @brief Variance of the elements of a Q15 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_var_q15( | ||||
q15_t * pSrc, | ||||
uint32_t blockSize, | ||||
q31_t * pResult); | ||||
/** | ||||
* @brief Root Mean Square of the elements of a floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_rms_f32( | ||||
float32_t * pSrc, | ||||
uint32_t blockSize, | ||||
float32_t * pResult); | ||||
/** | ||||
* @brief Root Mean Square of the elements of a Q31 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_rms_q31( | ||||
q31_t * pSrc, | ||||
uint32_t blockSize, | ||||
q31_t * pResult); | ||||
/** | ||||
* @brief Root Mean Square of the elements of a Q15 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_rms_q15( | ||||
q15_t * pSrc, | ||||
uint32_t blockSize, | ||||
q15_t * pResult); | ||||
/** | ||||
* @brief Standard deviation of the elements of a floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_std_f32( | ||||
float32_t * pSrc, | ||||
uint32_t blockSize, | ||||
float32_t * pResult); | ||||
/** | ||||
* @brief Standard deviation of the elements of a Q31 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_std_q31( | ||||
q31_t * pSrc, | ||||
uint32_t blockSize, | ||||
q31_t * pResult); | ||||
/** | ||||
* @brief Standard deviation of the elements of a Q15 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output value. | ||||
* @return none. | ||||
*/ | ||||
void arm_std_q15( | ||||
q15_t * pSrc, | ||||
uint32_t blockSize, | ||||
q15_t * pResult); | ||||
/** | ||||
* @brief Floating-point complex magnitude | ||||
* @param[in] *pSrc points to the complex input vector | ||||
* @param[out] *pDst points to the real output vector | ||||
* @param[in] numSamples number of complex samples in the input vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mag_f32( | ||||
float32_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q31 complex magnitude | ||||
* @param[in] *pSrc points to the complex input vector | ||||
* @param[out] *pDst points to the real output vector | ||||
* @param[in] numSamples number of complex samples in the input vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mag_q31( | ||||
q31_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q15 complex magnitude | ||||
* @param[in] *pSrc points to the complex input vector | ||||
* @param[out] *pDst points to the real output vector | ||||
* @param[in] numSamples number of complex samples in the input vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mag_q15( | ||||
q15_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q15 complex dot product | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @param[out] *realResult real part of the result returned here | ||||
* @param[out] *imagResult imaginary part of the result returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_dot_prod_q15( | ||||
q15_t * pSrcA, | ||||
q15_t * pSrcB, | ||||
uint32_t numSamples, | ||||
q31_t * realResult, | ||||
q31_t * imagResult); | ||||
/** | ||||
* @brief Q31 complex dot product | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @param[out] *realResult real part of the result returned here | ||||
* @param[out] *imagResult imaginary part of the result returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_dot_prod_q31( | ||||
q31_t * pSrcA, | ||||
q31_t * pSrcB, | ||||
uint32_t numSamples, | ||||
q63_t * realResult, | ||||
q63_t * imagResult); | ||||
/** | ||||
* @brief Floating-point complex dot product | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @param[out] *realResult real part of the result returned here | ||||
* @param[out] *imagResult imaginary part of the result returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_dot_prod_f32( | ||||
float32_t * pSrcA, | ||||
float32_t * pSrcB, | ||||
uint32_t numSamples, | ||||
float32_t * realResult, | ||||
float32_t * imagResult); | ||||
/** | ||||
* @brief Q15 complex-by-real multiplication | ||||
* @param[in] *pSrcCmplx points to the complex input vector | ||||
* @param[in] *pSrcReal points to the real input vector | ||||
* @param[out] *pCmplxDst points to the complex output vector | ||||
* @param[in] numSamples number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mult_real_q15( | ||||
q15_t * pSrcCmplx, | ||||
q15_t * pSrcReal, | ||||
q15_t * pCmplxDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q31 complex-by-real multiplication | ||||
* @param[in] *pSrcCmplx points to the complex input vector | ||||
* @param[in] *pSrcReal points to the real input vector | ||||
* @param[out] *pCmplxDst points to the complex output vector | ||||
* @param[in] numSamples number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mult_real_q31( | ||||
q31_t * pSrcCmplx, | ||||
q31_t * pSrcReal, | ||||
q31_t * pCmplxDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Floating-point complex-by-real multiplication | ||||
* @param[in] *pSrcCmplx points to the complex input vector | ||||
* @param[in] *pSrcReal points to the real input vector | ||||
* @param[out] *pCmplxDst points to the complex output vector | ||||
* @param[in] numSamples number of samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mult_real_f32( | ||||
float32_t * pSrcCmplx, | ||||
float32_t * pSrcReal, | ||||
float32_t * pCmplxDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Minimum value of a Q7 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *result is output pointer | ||||
* @param[in] index is the array index of the minimum value in the input buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_min_q7( | ||||
q7_t * pSrc, | ||||
uint32_t blockSize, | ||||
q7_t * result, | ||||
uint32_t * index); | ||||
/** | ||||
* @brief Minimum value of a Q15 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output pointer | ||||
* @param[in] *pIndex is the array index of the minimum value in the input buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_min_q15( | ||||
q15_t * pSrc, | ||||
uint32_t blockSize, | ||||
q15_t * pResult, | ||||
uint32_t * pIndex); | ||||
/** | ||||
* @brief Minimum value of a Q31 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output pointer | ||||
* @param[out] *pIndex is the array index of the minimum value in the input buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_min_q31( | ||||
q31_t * pSrc, | ||||
uint32_t blockSize, | ||||
q31_t * pResult, | ||||
uint32_t * pIndex); | ||||
/** | ||||
* @brief Minimum value of a floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @param[out] *pResult is output pointer | ||||
* @param[out] *pIndex is the array index of the minimum value in the input buffer. | ||||
* @return none. | ||||
*/ | ||||
void arm_min_f32( | ||||
float32_t * pSrc, | ||||
uint32_t blockSize, | ||||
float32_t * pResult, | ||||
uint32_t * pIndex); | ||||
/** | ||||
* @brief Maximum value of a Q7 vector. | ||||
* @param[in] *pSrc points to the input buffer | ||||
* @param[in] blockSize length of the input vector | ||||
* @param[out] *pResult maximum value returned here | ||||
* @param[out] *pIndex index of maximum value returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_max_q7( | ||||
q7_t * pSrc, | ||||
uint32_t blockSize, | ||||
q7_t * pResult, | ||||
uint32_t * pIndex); | ||||
/** | ||||
* @brief Maximum value of a Q15 vector. | ||||
* @param[in] *pSrc points to the input buffer | ||||
* @param[in] blockSize length of the input vector | ||||
* @param[out] *pResult maximum value returned here | ||||
* @param[out] *pIndex index of maximum value returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_max_q15( | ||||
q15_t * pSrc, | ||||
uint32_t blockSize, | ||||
q15_t * pResult, | ||||
uint32_t * pIndex); | ||||
/** | ||||
* @brief Maximum value of a Q31 vector. | ||||
* @param[in] *pSrc points to the input buffer | ||||
* @param[in] blockSize length of the input vector | ||||
* @param[out] *pResult maximum value returned here | ||||
* @param[out] *pIndex index of maximum value returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_max_q31( | ||||
q31_t * pSrc, | ||||
uint32_t blockSize, | ||||
q31_t * pResult, | ||||
uint32_t * pIndex); | ||||
/** | ||||
* @brief Maximum value of a floating-point vector. | ||||
* @param[in] *pSrc points to the input buffer | ||||
* @param[in] blockSize length of the input vector | ||||
* @param[out] *pResult maximum value returned here | ||||
* @param[out] *pIndex index of maximum value returned here | ||||
* @return none. | ||||
*/ | ||||
void arm_max_f32( | ||||
float32_t * pSrc, | ||||
uint32_t blockSize, | ||||
float32_t * pResult, | ||||
uint32_t * pIndex); | ||||
/** | ||||
* @brief Q15 complex-by-complex multiplication | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mult_cmplx_q15( | ||||
q15_t * pSrcA, | ||||
q15_t * pSrcB, | ||||
q15_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Q31 complex-by-complex multiplication | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mult_cmplx_q31( | ||||
q31_t * pSrcA, | ||||
q31_t * pSrcB, | ||||
q31_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Floating-point complex-by-complex multiplication | ||||
* @param[in] *pSrcA points to the first input vector | ||||
* @param[in] *pSrcB points to the second input vector | ||||
* @param[out] *pDst points to the output vector | ||||
* @param[in] numSamples number of complex samples in each vector | ||||
* @return none. | ||||
*/ | ||||
void arm_cmplx_mult_cmplx_f32( | ||||
float32_t * pSrcA, | ||||
float32_t * pSrcB, | ||||
float32_t * pDst, | ||||
uint32_t numSamples); | ||||
/** | ||||
* @brief Converts the elements of the floating-point vector to Q31 vector. | ||||
* @param[in] *pSrc points to the floating-point input vector | ||||
* @param[out] *pDst points to the Q31 output vector | ||||
* @param[in] blockSize length of the input vector | ||||
* @return none. | ||||
*/ | ||||
void arm_float_to_q31( | ||||
float32_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Converts the elements of the floating-point vector to Q15 vector. | ||||
* @param[in] *pSrc points to the floating-point input vector | ||||
* @param[out] *pDst points to the Q15 output vector | ||||
* @param[in] blockSize length of the input vector | ||||
* @return none | ||||
*/ | ||||
void arm_float_to_q15( | ||||
float32_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Converts the elements of the floating-point vector to Q7 vector. | ||||
* @param[in] *pSrc points to the floating-point input vector | ||||
* @param[out] *pDst points to the Q7 output vector | ||||
* @param[in] blockSize length of the input vector | ||||
* @return none | ||||
*/ | ||||
void arm_float_to_q7( | ||||
float32_t * pSrc, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Converts the elements of the Q31 vector to Q15 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[out] *pDst is output pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q31_to_q15( | ||||
q31_t * pSrc, | ||||
q15_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Converts the elements of the Q31 vector to Q7 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[out] *pDst is output pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q31_to_q7( | ||||
q31_t * pSrc, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Converts the elements of the Q15 vector to floating-point vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[out] *pDst is output pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q15_to_float( | ||||
q15_t * pSrc, | ||||
float32_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Converts the elements of the Q15 vector to Q31 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[out] *pDst is output pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q15_to_q31( | ||||
q15_t * pSrc, | ||||
q31_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @brief Converts the elements of the Q15 vector to Q7 vector. | ||||
* @param[in] *pSrc is input pointer | ||||
* @param[out] *pDst is output pointer | ||||
* @param[in] blockSize is the number of samples to process | ||||
* @return none. | ||||
*/ | ||||
void arm_q15_to_q7( | ||||
q15_t * pSrc, | ||||
q7_t * pDst, | ||||
uint32_t blockSize); | ||||
/** | ||||
* @ingroup groupInterpolation | ||||
*/ | ||||
/** | ||||
* @defgroup BilinearInterpolate Bilinear Interpolation | ||||
* | ||||
* Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. | ||||
* The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process | ||||
* determines values between the grid points. | ||||
* Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. | ||||
* Bilinear interpolation is often used in image processing to rescale images. | ||||
* The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. | ||||
* | ||||
* <b>Algorithm</b> | ||||
* \par | ||||
* The instance structure used by the bilinear interpolation functions describes a two dimensional data table. | ||||
* For floating-point, the instance structure is defined as: | ||||
* <pre> | ||||
* typedef struct | ||||
* { | ||||
* uint16_t numRows; | ||||
* uint16_t numCols; | ||||
* float32_t *pData; | ||||
* } arm_bilinear_interp_instance_f32; | ||||
* </pre> | ||||
* | ||||
* \par | ||||
* where <code>numRows</code> specifies the number of rows in the table; | ||||
* <code>numCols</code> specifies the number of columns in the table; | ||||
* and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. | ||||
* The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. | ||||
* That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. | ||||
* | ||||
* \par | ||||
* Let <code>(x, y)</code> specify the desired interpolation point. Then define: | ||||
* <pre> | ||||
* XF = floor(x) | ||||
* YF = floor(y) | ||||
* </pre> | ||||
* \par | ||||
* The interpolated output point is computed as: | ||||
* <pre> | ||||
* f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) | ||||
* + f(XF+1, YF) * (x-XF)*(1-(y-YF)) | ||||
* + f(XF, YF+1) * (1-(x-XF))*(y-YF) | ||||
* + f(XF+1, YF+1) * (x-XF)*(y-YF) | ||||
* </pre> | ||||
* Note that the coordinates (x, y) contain integer and fractional components. | ||||
* The integer components specify which portion of the table to use while the | ||||
* fractional components control the interpolation processor. | ||||
* | ||||
* \par | ||||
* if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. | ||||
*/ | ||||
/** | ||||
* @addtogroup BilinearInterpolate | ||||
* @{ | ||||
*/ | ||||
/** | ||||
* | ||||
* @brief Floating-point bilinear interpolation. | ||||
* @param[in,out] *S points to an instance of the interpolation structure. | ||||
* @param[in] X interpolation coordinate. | ||||
* @param[in] Y interpolation coordinate. | ||||
* @return out interpolated value. | ||||
*/ | ||||
static __INLINE float32_t arm_bilinear_interp_f32( | ||||
const arm_bilinear_interp_instance_f32 * S, | ||||
float32_t X, | ||||
float32_t Y) | ||||
{ | ||||
float32_t out; | ||||
float32_t f00, f01, f10, f11; | ||||
float32_t *pData = S->pData; | ||||
int32_t xIndex, yIndex, index; | ||||
float32_t xdiff, ydiff; | ||||
float32_t b1, b2, b3, b4; | ||||
xIndex = (int32_t) X; | ||||
yIndex = (int32_t) Y; | ||||
/* Care taken for table outside boundary */ | ||||
/* Returns zero output when values are outside table boundary */ | ||||
if(xIndex < 0 || xIndex > (S->numRows-1) || yIndex < 0 || yIndex > ( S->numCols-1)) | ||||
{ | ||||
return(0); | ||||
} | ||||
/* Calculation of index for two nearest points in X-direction */ | ||||
index = (xIndex - 1) + (yIndex-1) * S->numCols ; | ||||
/* Read two nearest points in X-direction */ | ||||
f00 = pData[index]; | ||||
f01 = pData[index + 1]; | ||||
/* Calculation of index for two nearest points in Y-direction */ | ||||
index = (xIndex-1) + (yIndex) * S->numCols; | ||||
/* Read two nearest points in Y-direction */ | ||||
f10 = pData[index]; | ||||
f11 = pData[index + 1]; | ||||
/* Calculation of intermediate values */ | ||||
b1 = f00; | ||||
b2 = f01 - f00; | ||||
b3 = f10 - f00; | ||||
b4 = f00 - f01 - f10 + f11; | ||||
/* Calculation of fractional part in X */ | ||||
xdiff = X - xIndex; | ||||
/* Calculation of fractional part in Y */ | ||||
ydiff = Y - yIndex; | ||||
/* Calculation of bi-linear interpolated output */ | ||||
out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; | ||||
/* return to application */ | ||||
return (out); | ||||
} | ||||
/** | ||||
* | ||||
* @brief Q31 bilinear interpolation. | ||||
* @param[in,out] *S points to an instance of the interpolation structure. | ||||
* @param[in] X interpolation coordinate in 12.20 format. | ||||
* @param[in] Y interpolation coordinate in 12.20 format. | ||||
* @return out interpolated value. | ||||
*/ | ||||
static __INLINE q31_t arm_bilinear_interp_q31( | ||||
arm_bilinear_interp_instance_q31 * S, | ||||
q31_t X, | ||||
q31_t Y) | ||||
{ | ||||
q31_t out; /* Temporary output */ | ||||
q31_t acc = 0; /* output */ | ||||
q31_t xfract, yfract; /* X, Y fractional parts */ | ||||
q31_t x1, x2, y1, y2; /* Nearest output values */ | ||||
int32_t rI, cI; /* Row and column indices */ | ||||
q31_t *pYData = S->pData; /* pointer to output table values */ | ||||
uint32_t nCols = S->numCols; /* num of rows */ | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
rI = ((X & 0xFFF00000) >> 20u); | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
cI = ((Y & 0xFFF00000) >> 20u); | ||||
/* Care taken for table outside boundary */ | ||||
/* Returns zero output when values are outside table boundary */ | ||||
if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | ||||
{ | ||||
return(0); | ||||
} | ||||
/* 20 bits for the fractional part */ | ||||
/* shift left xfract by 11 to keep 1.31 format */ | ||||
xfract = (X & 0x000FFFFF) << 11u; | ||||
/* Read two nearest output values from the index */ | ||||
x1 = pYData[(rI) + nCols * (cI)]; | ||||
x2 = pYData[(rI) + nCols * (cI) + 1u]; | ||||
/* 20 bits for the fractional part */ | ||||
/* shift left yfract by 11 to keep 1.31 format */ | ||||
yfract = (Y & 0x000FFFFF) << 11u; | ||||
/* Read two nearest output values from the index */ | ||||
y1 = pYData[(rI) + nCols * (cI + 1)]; | ||||
y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | ||||
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ | ||||
out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); | ||||
acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); | ||||
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ | ||||
out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); | ||||
acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); | ||||
/* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ | ||||
out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); | ||||
acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | ||||
/* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ | ||||
out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); | ||||
acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | ||||
/* Convert acc to 1.31(q31) format */ | ||||
return (acc << 2u); | ||||
} | ||||
/** | ||||
* @brief Q15 bilinear interpolation. | ||||
* @param[in,out] *S points to an instance of the interpolation structure. | ||||
* @param[in] X interpolation coordinate in 12.20 format. | ||||
* @param[in] Y interpolation coordinate in 12.20 format. | ||||
* @return out interpolated value. | ||||
*/ | ||||
static __INLINE q15_t arm_bilinear_interp_q15( | ||||
arm_bilinear_interp_instance_q15 * S, | ||||
q31_t X, | ||||
q31_t Y) | ||||
{ | ||||
q63_t acc = 0; /* output */ | ||||
q31_t out; /* Temporary output */ | ||||
q15_t x1, x2, y1, y2; /* Nearest output values */ | ||||
q31_t xfract, yfract; /* X, Y fractional parts */ | ||||
int32_t rI, cI; /* Row and column indices */ | ||||
q15_t *pYData = S->pData; /* pointer to output table values */ | ||||
uint32_t nCols = S->numCols; /* num of rows */ | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
rI = ((X & 0xFFF00000) >> 20); | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
cI = ((Y & 0xFFF00000) >> 20); | ||||
/* Care taken for table outside boundary */ | ||||
/* Returns zero output when values are outside table boundary */ | ||||
if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | ||||
{ | ||||
return(0); | ||||
} | ||||
/* 20 bits for the fractional part */ | ||||
/* xfract should be in 12.20 format */ | ||||
xfract = (X & 0x000FFFFF); | ||||
/* Read two nearest output values from the index */ | ||||
x1 = pYData[(rI) + nCols * (cI)]; | ||||
x2 = pYData[(rI) + nCols * (cI) + 1u]; | ||||
/* 20 bits for the fractional part */ | ||||
/* yfract should be in 12.20 format */ | ||||
yfract = (Y & 0x000FFFFF); | ||||
/* Read two nearest output values from the index */ | ||||
y1 = pYData[(rI) + nCols * (cI + 1)]; | ||||
y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | ||||
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ | ||||
/* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ | ||||
/* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ | ||||
out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); | ||||
acc = ((q63_t) out * (0xFFFFF - yfract)); | ||||
/* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ | ||||
out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); | ||||
acc += ((q63_t) out * (xfract)); | ||||
/* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ | ||||
out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); | ||||
acc += ((q63_t) out * (yfract)); | ||||
/* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ | ||||
out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); | ||||
acc += ((q63_t) out * (yfract)); | ||||
/* acc is in 13.51 format and down shift acc by 36 times */ | ||||
/* Convert out to 1.15 format */ | ||||
return (acc >> 36); | ||||
} | ||||
/** | ||||
* @brief Q7 bilinear interpolation. | ||||
* @param[in,out] *S points to an instance of the interpolation structure. | ||||
* @param[in] X interpolation coordinate in 12.20 format. | ||||
* @param[in] Y interpolation coordinate in 12.20 format. | ||||
* @return out interpolated value. | ||||
*/ | ||||
static __INLINE q7_t arm_bilinear_interp_q7( | ||||
arm_bilinear_interp_instance_q7 * S, | ||||
q31_t X, | ||||
q31_t Y) | ||||
{ | ||||
q63_t acc = 0; /* output */ | ||||
q31_t out; /* Temporary output */ | ||||
q31_t xfract, yfract; /* X, Y fractional parts */ | ||||
q7_t x1, x2, y1, y2; /* Nearest output values */ | ||||
int32_t rI, cI; /* Row and column indices */ | ||||
q7_t *pYData = S->pData; /* pointer to output table values */ | ||||
uint32_t nCols = S->numCols; /* num of rows */ | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
rI = ((X & 0xFFF00000) >> 20); | ||||
/* Input is in 12.20 format */ | ||||
/* 12 bits for the table index */ | ||||
/* Index value calculation */ | ||||
cI = ((Y & 0xFFF00000) >> 20); | ||||
/* Care taken for table outside boundary */ | ||||
/* Returns zero output when values are outside table boundary */ | ||||
if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1)) | ||||
{ | ||||
return(0); | ||||
} | ||||
/* 20 bits for the fractional part */ | ||||
/* xfract should be in 12.20 format */ | ||||
xfract = (X & 0x000FFFFF); | ||||
/* Read two nearest output values from the index */ | ||||
x1 = pYData[(rI) + nCols * (cI)]; | ||||
x2 = pYData[(rI) + nCols * (cI) + 1u]; | ||||
/* 20 bits for the fractional part */ | ||||
/* yfract should be in 12.20 format */ | ||||
yfract = (Y & 0x000FFFFF); | ||||
/* Read two nearest output values from the index */ | ||||
y1 = pYData[(rI) + nCols * (cI + 1)]; | ||||
y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | ||||
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ | ||||
out = ((x1 * (0xFFFFF - xfract))); | ||||
acc = (((q63_t) out * (0xFFFFF - yfract))); | ||||
/* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ | ||||
out = ((x2 * (0xFFFFF - yfract))); | ||||
acc += (((q63_t) out * (xfract))); | ||||
/* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ | ||||
out = ((y1 * (0xFFFFF - xfract))); | ||||
acc += (((q63_t) out * (yfract))); | ||||
/* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ | ||||
out = ((y2 * (yfract))); | ||||
acc += (((q63_t) out * (xfract))); | ||||
/* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ | ||||
return (acc >> 40); | ||||
} | ||||
/** | ||||
* @} end of BilinearInterpolate group | ||||
*/ | ||||
#ifdef __cplusplus | ||||
} | ||||
#endif | ||||
#endif /* _ARM_MATH_H */ | ||||
/** | ||||
* | ||||
* End of file. | ||||
*/ | ||||