##// END OF EJS Templates
Bug 912 champ HK_LFR_SC_POTENTIEL_FLAG passe à OFF...
paul -
r342:ff406706df10 R3++ draft
parent child
Show More
@@ -1,2 +1,2
1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 058c1234c2defe215d3dd655a7ef65abb33c922d header/lfr_common_headers
2 21ada91882790323b08a38518ed1af5a36fa4deb header/lfr_common_headers
@@ -1,1005 +1,1005
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13
13
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 {
16 {
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 *
18 *
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 * @param interrupt_level is the interrupt level that the timer drives.
22 * @param interrupt_level is the interrupt level that the timer drives.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 *
24 *
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 *
26 *
27 */
27 */
28
28
29 rtems_status_code status;
29 rtems_status_code status;
30 rtems_isr_entry old_isr_handler;
30 rtems_isr_entry old_isr_handler;
31
31
32 old_isr_handler = NULL;
32 old_isr_handler = NULL;
33
33
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35
35
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 if (status!=RTEMS_SUCCESSFUL)
37 if (status!=RTEMS_SUCCESSFUL)
38 {
38 {
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 }
40 }
41
41
42 timer_set_clock_divider( timer, clock_divider);
42 timer_set_clock_divider( timer, clock_divider);
43 }
43 }
44
44
45 void timer_start(unsigned char timer)
45 void timer_start(unsigned char timer)
46 {
46 {
47 /** This function starts a GPTIMER timer.
47 /** This function starts a GPTIMER timer.
48 *
48 *
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 *
51 *
52 */
52 */
53
53
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 }
59 }
60
60
61 void timer_stop(unsigned char timer)
61 void timer_stop(unsigned char timer)
62 {
62 {
63 /** This function stops a GPTIMER timer.
63 /** This function stops a GPTIMER timer.
64 *
64 *
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 *
67 *
68 */
68 */
69
69
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 }
73 }
74
74
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 {
76 {
77 /** This function sets the clock divider of a GPTIMER timer.
77 /** This function sets the clock divider of a GPTIMER timer.
78 *
78 *
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 *
82 *
83 */
83 */
84
84
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 }
86 }
87
87
88 // WATCHDOG
88 // WATCHDOG
89
89
90 rtems_isr watchdog_isr( rtems_vector_number vector )
90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 {
91 {
92 rtems_status_code status_code;
92 rtems_status_code status_code;
93
93
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95
95
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97
97
98 exit(0);
98 exit(0);
99 }
99 }
100
100
101 void watchdog_configure(void)
101 void watchdog_configure(void)
102 {
102 {
103 /** This function configure the watchdog.
103 /** This function configure the watchdog.
104 *
104 *
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 *
107 *
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 *
109 *
110 */
110 */
111
111
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113
113
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115
115
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 }
117 }
118
118
119 void watchdog_stop(void)
119 void watchdog_stop(void)
120 {
120 {
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 timer_stop( TIMER_WATCHDOG );
122 timer_stop( TIMER_WATCHDOG );
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 }
124 }
125
125
126 void watchdog_reload(void)
126 void watchdog_reload(void)
127 {
127 {
128 /** This function reloads the watchdog timer counter with the timer reload value.
128 /** This function reloads the watchdog timer counter with the timer reload value.
129 *
129 *
130 * @param void
130 * @param void
131 *
131 *
132 * @return void
132 * @return void
133 *
133 *
134 */
134 */
135
135
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 }
137 }
138
138
139 void watchdog_start(void)
139 void watchdog_start(void)
140 {
140 {
141 /** This function starts the watchdog timer.
141 /** This function starts the watchdog timer.
142 *
142 *
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 *
145 *
146 */
146 */
147
147
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149
149
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154
154
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156
156
157 }
157 }
158
158
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 {
160 {
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162
162
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164
164
165 return 0;
165 return 0;
166 }
166 }
167
167
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 {
169 {
170 /** This function sets the scaler reload register of the apbuart module
170 /** This function sets the scaler reload register of the apbuart module
171 *
171 *
172 * @param regs is the address of the apbuart registers in memory
172 * @param regs is the address of the apbuart registers in memory
173 * @param value is the value that will be stored in the scaler register
173 * @param value is the value that will be stored in the scaler register
174 *
174 *
175 * The value shall be set by the software to get data on the serial interface.
175 * The value shall be set by the software to get data on the serial interface.
176 *
176 *
177 */
177 */
178
178
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180
180
181 apbuart_regs->scaler = value;
181 apbuart_regs->scaler = value;
182
182
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 }
184 }
185
185
186 //************
186 //************
187 // RTEMS TASKS
187 // RTEMS TASKS
188
188
189 rtems_task load_task(rtems_task_argument argument)
189 rtems_task load_task(rtems_task_argument argument)
190 {
190 {
191 BOOT_PRINTF("in LOAD *** \n")
191 BOOT_PRINTF("in LOAD *** \n")
192
192
193 rtems_status_code status;
193 rtems_status_code status;
194 unsigned int i;
194 unsigned int i;
195 unsigned int j;
195 unsigned int j;
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198
198
199 watchdog_period_id = RTEMS_ID_NONE;
199 watchdog_period_id = RTEMS_ID_NONE;
200
200
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202
202
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 if( status != RTEMS_SUCCESSFUL ) {
204 if( status != RTEMS_SUCCESSFUL ) {
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 }
206 }
207
207
208 i = 0;
208 i = 0;
209 j = 0;
209 j = 0;
210
210
211 watchdog_configure();
211 watchdog_configure();
212
212
213 watchdog_start();
213 watchdog_start();
214
214
215 set_sy_lfr_watchdog_enabled( true );
215 set_sy_lfr_watchdog_enabled( true );
216
216
217 while(1){
217 while(1){
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 watchdog_reload();
219 watchdog_reload();
220 i = i + 1;
220 i = i + 1;
221 if ( i == WATCHDOG_LOOP_PRINTF )
221 if ( i == WATCHDOG_LOOP_PRINTF )
222 {
222 {
223 i = 0;
223 i = 0;
224 j = j + 1;
224 j = j + 1;
225 PRINTF1("%d\n", j)
225 PRINTF1("%d\n", j)
226 }
226 }
227 #ifdef DEBUG_WATCHDOG
227 #ifdef DEBUG_WATCHDOG
228 if (j == WATCHDOG_LOOP_DEBUG )
228 if (j == WATCHDOG_LOOP_DEBUG )
229 {
229 {
230 status = rtems_task_delete(RTEMS_SELF);
230 status = rtems_task_delete(RTEMS_SELF);
231 }
231 }
232 #endif
232 #endif
233 }
233 }
234 }
234 }
235
235
236 rtems_task hous_task(rtems_task_argument argument)
236 rtems_task hous_task(rtems_task_argument argument)
237 {
237 {
238 rtems_status_code status;
238 rtems_status_code status;
239 rtems_status_code spare_status;
239 rtems_status_code spare_status;
240 rtems_id queue_id;
240 rtems_id queue_id;
241 rtems_rate_monotonic_period_status period_status;
241 rtems_rate_monotonic_period_status period_status;
242 bool isSynchronized;
242 bool isSynchronized;
243
243
244 queue_id = RTEMS_ID_NONE;
244 queue_id = RTEMS_ID_NONE;
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 isSynchronized = false;
246 isSynchronized = false;
247
247
248 status = get_message_queue_id_send( &queue_id );
248 status = get_message_queue_id_send( &queue_id );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253
253
254 BOOT_PRINTF("in HOUS ***\n");
254 BOOT_PRINTF("in HOUS ***\n");
255
255
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 if( status != RTEMS_SUCCESSFUL ) {
258 if( status != RTEMS_SUCCESSFUL ) {
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 }
260 }
261 }
261 }
262
262
263 status = rtems_rate_monotonic_cancel(HK_id);
263 status = rtems_rate_monotonic_cancel(HK_id);
264 if( status != RTEMS_SUCCESSFUL ) {
264 if( status != RTEMS_SUCCESSFUL ) {
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 }
266 }
267 else {
267 else {
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 }
269 }
270
270
271 // startup phase
271 // startup phase
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 {
277 {
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 {
279 {
280 isSynchronized = true;
280 isSynchronized = true;
281 }
281 }
282 else
282 else
283 {
283 {
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285
285
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 }
287 }
288 }
288 }
289 status = rtems_rate_monotonic_cancel(HK_id);
289 status = rtems_rate_monotonic_cancel(HK_id);
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291
291
292 set_hk_lfr_reset_cause( POWER_ON );
292 set_hk_lfr_reset_cause( POWER_ON );
293
293
294 while(1){ // launch the rate monotonic task
294 while(1){ // launch the rate monotonic task
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 if ( status != RTEMS_SUCCESSFUL ) {
296 if ( status != RTEMS_SUCCESSFUL ) {
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 }
299 }
300 else {
300 else {
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
304
304
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311
311
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313
313
314 spacewire_read_statistics();
314 spacewire_read_statistics();
315
315
316 update_hk_with_grspw_stats();
316 update_hk_with_grspw_stats();
317
317
318 set_hk_lfr_time_not_synchro();
318 set_hk_lfr_time_not_synchro();
319
319
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325
325
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331
331
332 hk_lfr_le_me_he_update();
332 hk_lfr_le_me_he_update();
333
333
334 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
334 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
335 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
335 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
336
336
337 // SEND PACKET
337 // SEND PACKET
338 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
338 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
339 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
339 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
340 if (status != RTEMS_SUCCESSFUL) {
340 if (status != RTEMS_SUCCESSFUL) {
341 PRINTF1("in HOUS *** ERR send: %d\n", status)
341 PRINTF1("in HOUS *** ERR send: %d\n", status)
342 }
342 }
343 }
343 }
344 }
344 }
345
345
346 PRINTF("in HOUS *** deleting task\n")
346 PRINTF("in HOUS *** deleting task\n")
347
347
348 status = rtems_task_delete( RTEMS_SELF ); // should not return
348 status = rtems_task_delete( RTEMS_SELF ); // should not return
349
349
350 return;
350 return;
351 }
351 }
352
352
353 rtems_task avgv_task(rtems_task_argument argument)
353 rtems_task avgv_task(rtems_task_argument argument)
354 {
354 {
355 #define MOVING_AVERAGE 16
355 #define MOVING_AVERAGE 16
356 rtems_status_code status;
356 rtems_status_code status;
357 static unsigned int v[MOVING_AVERAGE] = {0};
357 static unsigned int v[MOVING_AVERAGE] = {0};
358 static unsigned int e1[MOVING_AVERAGE] = {0};
358 static unsigned int e1[MOVING_AVERAGE] = {0};
359 static unsigned int e2[MOVING_AVERAGE] = {0};
359 static unsigned int e2[MOVING_AVERAGE] = {0};
360 float average_v;
360 float average_v;
361 float average_e1;
361 float average_e1;
362 float average_e2;
362 float average_e2;
363 float newValue_v;
363 float newValue_v;
364 float newValue_e1;
364 float newValue_e1;
365 float newValue_e2;
365 float newValue_e2;
366 unsigned char k;
366 unsigned char k;
367 unsigned char indexOfOldValue;
367 unsigned char indexOfOldValue;
368
368
369 BOOT_PRINTF("in AVGV ***\n");
369 BOOT_PRINTF("in AVGV ***\n");
370
370
371 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
371 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
372 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
372 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
373 if( status != RTEMS_SUCCESSFUL ) {
373 if( status != RTEMS_SUCCESSFUL ) {
374 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
374 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
375 }
375 }
376 }
376 }
377
377
378 status = rtems_rate_monotonic_cancel(AVGV_id);
378 status = rtems_rate_monotonic_cancel(AVGV_id);
379 if( status != RTEMS_SUCCESSFUL ) {
379 if( status != RTEMS_SUCCESSFUL ) {
380 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
380 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
381 }
381 }
382 else {
382 else {
383 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
383 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
384 }
384 }
385
385
386 // initialize values
386 // initialize values
387 indexOfOldValue = MOVING_AVERAGE - 1;
387 indexOfOldValue = MOVING_AVERAGE - 1;
388 average_v = INIT_FLOAT;
388 average_v = INIT_FLOAT;
389 average_e1 = INIT_FLOAT;
389 average_e1 = INIT_FLOAT;
390 average_e2 = INIT_FLOAT;
390 average_e2 = INIT_FLOAT;
391 newValue_v = INIT_FLOAT;
391 newValue_v = INIT_FLOAT;
392 newValue_e1 = INIT_FLOAT;
392 newValue_e1 = INIT_FLOAT;
393 newValue_e2 = INIT_FLOAT;
393 newValue_e2 = INIT_FLOAT;
394
394
395 k = INIT_CHAR;
395 k = INIT_CHAR;
396
396
397 while(1)
397 while(1)
398 { // launch the rate monotonic task
398 { // launch the rate monotonic task
399 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
399 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
400 if ( status != RTEMS_SUCCESSFUL )
400 if ( status != RTEMS_SUCCESSFUL )
401 {
401 {
402 PRINTF1( "in AVGV *** ERR period: %d\n", status);
402 PRINTF1( "in AVGV *** ERR period: %d\n", status);
403 }
403 }
404 else
404 else
405 {
405 {
406 // get new values
406 // get new values
407 newValue_v = waveform_picker_regs->v;
407 newValue_v = waveform_picker_regs->v;
408 newValue_e1 = waveform_picker_regs->e1;
408 newValue_e1 = waveform_picker_regs->e1;
409 newValue_e2 = waveform_picker_regs->e2;
409 newValue_e2 = waveform_picker_regs->e2;
410
410
411 // compute the moving average
411 // compute the moving average
412 average_v = average_v + newValue_v - v[k];
412 average_v = average_v + newValue_v - v[k];
413 average_e1 = average_e1 + newValue_e1 - e1[k];
413 average_e1 = average_e1 + newValue_e1 - e1[k];
414 average_e2 = average_e2 + newValue_e2 - e2[k];
414 average_e2 = average_e2 + newValue_e2 - e2[k];
415
415
416 // store new values in buffers
416 // store new values in buffers
417 v[k] = newValue_v;
417 v[k] = newValue_v;
418 e1[k] = newValue_e1;
418 e1[k] = newValue_e1;
419 e2[k] = newValue_e2;
419 e2[k] = newValue_e2;
420 }
420 }
421 if (k == (MOVING_AVERAGE-1))
421 if (k == (MOVING_AVERAGE-1))
422 {
422 {
423 k = 0;
423 k = 0;
424 PRINTF("tick\n");
424 PRINTF("tick\n");
425 }
425 }
426 else
426 else
427 {
427 {
428 k++;
428 k++;
429 }
429 }
430 //update int16 values
430 //update int16 values
431 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
431 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
432 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
432 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
433 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
433 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
434 }
434 }
435
435
436 PRINTF("in AVGV *** deleting task\n");
436 PRINTF("in AVGV *** deleting task\n");
437
437
438 status = rtems_task_delete( RTEMS_SELF ); // should not return
438 status = rtems_task_delete( RTEMS_SELF ); // should not return
439
439
440 return;
440 return;
441 }
441 }
442
442
443 rtems_task dumb_task( rtems_task_argument unused )
443 rtems_task dumb_task( rtems_task_argument unused )
444 {
444 {
445 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
445 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
446 *
446 *
447 * @param unused is the starting argument of the RTEMS task
447 * @param unused is the starting argument of the RTEMS task
448 *
448 *
449 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
449 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
450 *
450 *
451 */
451 */
452
452
453 unsigned int i;
453 unsigned int i;
454 unsigned int intEventOut;
454 unsigned int intEventOut;
455 unsigned int coarse_time = 0;
455 unsigned int coarse_time = 0;
456 unsigned int fine_time = 0;
456 unsigned int fine_time = 0;
457 rtems_event_set event_out;
457 rtems_event_set event_out;
458
458
459 event_out = EVENT_SETS_NONE_PENDING;
459 event_out = EVENT_SETS_NONE_PENDING;
460
460
461 BOOT_PRINTF("in DUMB *** \n")
461 BOOT_PRINTF("in DUMB *** \n")
462
462
463 while(1){
463 while(1){
464 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
464 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
465 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
465 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
466 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
466 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
467 | RTEMS_EVENT_14,
467 | RTEMS_EVENT_14,
468 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
468 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
469 intEventOut = (unsigned int) event_out;
469 intEventOut = (unsigned int) event_out;
470 for ( i=0; i<NB_RTEMS_EVENTS; i++)
470 for ( i=0; i<NB_RTEMS_EVENTS; i++)
471 {
471 {
472 if ( ((intEventOut >> i) & 1) != 0)
472 if ( ((intEventOut >> i) & 1) != 0)
473 {
473 {
474 coarse_time = time_management_regs->coarse_time;
474 coarse_time = time_management_regs->coarse_time;
475 fine_time = time_management_regs->fine_time;
475 fine_time = time_management_regs->fine_time;
476 if (i==EVENT_12)
476 if (i==EVENT_12)
477 {
477 {
478 PRINTF1("%s\n", DUMB_MESSAGE_12)
478 PRINTF1("%s\n", DUMB_MESSAGE_12)
479 }
479 }
480 if (i==EVENT_13)
480 if (i==EVENT_13)
481 {
481 {
482 PRINTF1("%s\n", DUMB_MESSAGE_13)
482 PRINTF1("%s\n", DUMB_MESSAGE_13)
483 }
483 }
484 if (i==EVENT_14)
484 if (i==EVENT_14)
485 {
485 {
486 PRINTF1("%s\n", DUMB_MESSAGE_1)
486 PRINTF1("%s\n", DUMB_MESSAGE_1)
487 }
487 }
488 }
488 }
489 }
489 }
490 }
490 }
491 }
491 }
492
492
493 //*****************************
493 //*****************************
494 // init housekeeping parameters
494 // init housekeeping parameters
495
495
496 void init_housekeeping_parameters( void )
496 void init_housekeeping_parameters( void )
497 {
497 {
498 /** This function initialize the housekeeping_packet global variable with default values.
498 /** This function initialize the housekeeping_packet global variable with default values.
499 *
499 *
500 */
500 */
501
501
502 unsigned int i = 0;
502 unsigned int i = 0;
503 unsigned char *parameters;
503 unsigned char *parameters;
504 unsigned char sizeOfHK;
504 unsigned char sizeOfHK;
505
505
506 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
506 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
507
507
508 parameters = (unsigned char*) &housekeeping_packet;
508 parameters = (unsigned char*) &housekeeping_packet;
509
509
510 for(i = 0; i< sizeOfHK; i++)
510 for(i = 0; i< sizeOfHK; i++)
511 {
511 {
512 parameters[i] = INIT_CHAR;
512 parameters[i] = INIT_CHAR;
513 }
513 }
514
514
515 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
515 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
516 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
516 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
517 housekeeping_packet.reserved = DEFAULT_RESERVED;
517 housekeeping_packet.reserved = DEFAULT_RESERVED;
518 housekeeping_packet.userApplication = CCSDS_USER_APP;
518 housekeeping_packet.userApplication = CCSDS_USER_APP;
519 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
519 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
520 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
520 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
521 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
521 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
522 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
522 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
523 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
523 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
524 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
524 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
525 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
525 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
526 housekeeping_packet.serviceType = TM_TYPE_HK;
526 housekeeping_packet.serviceType = TM_TYPE_HK;
527 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
527 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
528 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
528 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
529 housekeeping_packet.sid = SID_HK;
529 housekeeping_packet.sid = SID_HK;
530
530
531 // init status word
531 // init status word
532 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
532 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
533 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
533 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
534 // init software version
534 // init software version
535 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
535 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
536 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
536 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
537 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
537 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
538 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
538 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
539 // init fpga version
539 // init fpga version
540 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
540 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
541 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
541 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
542 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
542 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
543 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
543 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
544
544
545 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
545 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
546 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
546 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
547 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
547 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
548 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
548 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
549 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
549 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
550 }
550 }
551
551
552 void increment_seq_counter( unsigned short *packetSequenceControl )
552 void increment_seq_counter( unsigned short *packetSequenceControl )
553 {
553 {
554 /** This function increment the sequence counter passes in argument.
554 /** This function increment the sequence counter passes in argument.
555 *
555 *
556 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
556 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
557 *
557 *
558 */
558 */
559
559
560 unsigned short segmentation_grouping_flag;
560 unsigned short segmentation_grouping_flag;
561 unsigned short sequence_cnt;
561 unsigned short sequence_cnt;
562
562
563 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
563 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
564 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
564 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
565
565
566 if ( sequence_cnt < SEQ_CNT_MAX)
566 if ( sequence_cnt < SEQ_CNT_MAX)
567 {
567 {
568 sequence_cnt = sequence_cnt + 1;
568 sequence_cnt = sequence_cnt + 1;
569 }
569 }
570 else
570 else
571 {
571 {
572 sequence_cnt = 0;
572 sequence_cnt = 0;
573 }
573 }
574
574
575 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
575 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
576 }
576 }
577
577
578 void getTime( unsigned char *time)
578 void getTime( unsigned char *time)
579 {
579 {
580 /** This function write the current local time in the time buffer passed in argument.
580 /** This function write the current local time in the time buffer passed in argument.
581 *
581 *
582 */
582 */
583
583
584 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
584 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
585 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
585 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
586 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
586 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
587 time[3] = (unsigned char) (time_management_regs->coarse_time);
587 time[3] = (unsigned char) (time_management_regs->coarse_time);
588 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
588 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
589 time[5] = (unsigned char) (time_management_regs->fine_time);
589 time[5] = (unsigned char) (time_management_regs->fine_time);
590 }
590 }
591
591
592 unsigned long long int getTimeAsUnsignedLongLongInt( )
592 unsigned long long int getTimeAsUnsignedLongLongInt( )
593 {
593 {
594 /** This function write the current local time in the time buffer passed in argument.
594 /** This function write the current local time in the time buffer passed in argument.
595 *
595 *
596 */
596 */
597 unsigned long long int time;
597 unsigned long long int time;
598
598
599 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
599 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
600 + time_management_regs->fine_time;
600 + time_management_regs->fine_time;
601
601
602 return time;
602 return time;
603 }
603 }
604
604
605 void send_dumb_hk( void )
605 void send_dumb_hk( void )
606 {
606 {
607 Packet_TM_LFR_HK_t dummy_hk_packet;
607 Packet_TM_LFR_HK_t dummy_hk_packet;
608 unsigned char *parameters;
608 unsigned char *parameters;
609 unsigned int i;
609 unsigned int i;
610 rtems_id queue_id;
610 rtems_id queue_id;
611
611
612 queue_id = RTEMS_ID_NONE;
612 queue_id = RTEMS_ID_NONE;
613
613
614 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
614 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
615 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
615 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
616 dummy_hk_packet.reserved = DEFAULT_RESERVED;
616 dummy_hk_packet.reserved = DEFAULT_RESERVED;
617 dummy_hk_packet.userApplication = CCSDS_USER_APP;
617 dummy_hk_packet.userApplication = CCSDS_USER_APP;
618 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
618 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
619 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
619 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
620 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
620 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
621 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
621 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
622 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
622 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
623 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
623 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
624 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
624 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
625 dummy_hk_packet.serviceType = TM_TYPE_HK;
625 dummy_hk_packet.serviceType = TM_TYPE_HK;
626 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
626 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
627 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
627 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
628 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
628 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
629 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
629 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
630 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
630 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
631 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
631 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
632 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
632 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
633 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
633 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
634 dummy_hk_packet.sid = SID_HK;
634 dummy_hk_packet.sid = SID_HK;
635
635
636 // init status word
636 // init status word
637 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
637 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
638 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
638 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
639 // init software version
639 // init software version
640 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
640 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
641 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
641 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
642 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
642 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
643 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
643 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
644 // init fpga version
644 // init fpga version
645 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
645 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
646 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
646 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
647 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
647 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
648 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
648 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
649
649
650 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
650 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
651
651
652 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
652 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
653 {
653 {
654 parameters[i] = INT8_ALL_F;
654 parameters[i] = INT8_ALL_F;
655 }
655 }
656
656
657 get_message_queue_id_send( &queue_id );
657 get_message_queue_id_send( &queue_id );
658
658
659 rtems_message_queue_send( queue_id, &dummy_hk_packet,
659 rtems_message_queue_send( queue_id, &dummy_hk_packet,
660 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
660 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
661 }
661 }
662
662
663 void get_temperatures( unsigned char *temperatures )
663 void get_temperatures( unsigned char *temperatures )
664 {
664 {
665 unsigned char* temp_scm_ptr;
665 unsigned char* temp_scm_ptr;
666 unsigned char* temp_pcb_ptr;
666 unsigned char* temp_pcb_ptr;
667 unsigned char* temp_fpga_ptr;
667 unsigned char* temp_fpga_ptr;
668
668
669 // SEL1 SEL0
669 // SEL1 SEL0
670 // 0 0 => PCB
670 // 0 0 => PCB
671 // 0 1 => FPGA
671 // 0 1 => FPGA
672 // 1 0 => SCM
672 // 1 0 => SCM
673
673
674 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
674 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
675 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
675 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
676 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
676 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
677
677
678 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
678 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
679 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
679 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
680 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
680 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
681 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
681 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
682 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
682 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
683 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
683 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
684 }
684 }
685
685
686 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
686 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
687 {
687 {
688 unsigned char* v_ptr;
688 unsigned char* v_ptr;
689 unsigned char* e1_ptr;
689 unsigned char* e1_ptr;
690 unsigned char* e2_ptr;
690 unsigned char* e2_ptr;
691
691
692 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
692 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
693 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
693 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
694 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
694 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
695
695
696 spacecraft_potential[BYTE_0] = v_ptr[0];
696 spacecraft_potential[BYTE_0] = v_ptr[0];
697 spacecraft_potential[BYTE_1] = v_ptr[1];
697 spacecraft_potential[BYTE_1] = v_ptr[1];
698 spacecraft_potential[BYTE_2] = e1_ptr[0];
698 spacecraft_potential[BYTE_2] = e1_ptr[0];
699 spacecraft_potential[BYTE_3] = e1_ptr[1];
699 spacecraft_potential[BYTE_3] = e1_ptr[1];
700 spacecraft_potential[BYTE_4] = e2_ptr[0];
700 spacecraft_potential[BYTE_4] = e2_ptr[0];
701 spacecraft_potential[BYTE_5] = e2_ptr[1];
701 spacecraft_potential[BYTE_5] = e2_ptr[1];
702 }
702 }
703
703
704 void get_cpu_load( unsigned char *resource_statistics )
704 void get_cpu_load( unsigned char *resource_statistics )
705 {
705 {
706 unsigned char cpu_load;
706 unsigned char cpu_load;
707
707
708 cpu_load = lfr_rtems_cpu_usage_report();
708 cpu_load = lfr_rtems_cpu_usage_report();
709
709
710 // HK_LFR_CPU_LOAD
710 // HK_LFR_CPU_LOAD
711 resource_statistics[0] = cpu_load;
711 resource_statistics[0] = cpu_load;
712
712
713 // HK_LFR_CPU_LOAD_MAX
713 // HK_LFR_CPU_LOAD_MAX
714 if (cpu_load > resource_statistics[1])
714 if (cpu_load > resource_statistics[1])
715 {
715 {
716 resource_statistics[1] = cpu_load;
716 resource_statistics[1] = cpu_load;
717 }
717 }
718
718
719 // CPU_LOAD_AVE
719 // CPU_LOAD_AVE
720 resource_statistics[BYTE_2] = 0;
720 resource_statistics[BYTE_2] = 0;
721
721
722 #ifndef PRINT_TASK_STATISTICS
722 #ifndef PRINT_TASK_STATISTICS
723 rtems_cpu_usage_reset();
723 rtems_cpu_usage_reset();
724 #endif
724 #endif
725
725
726 }
726 }
727
727
728 void set_hk_lfr_sc_potential_flag( bool state )
728 void set_hk_lfr_sc_potential_flag( bool state )
729 {
729 {
730 if (state == true)
730 if (state == true)
731 {
731 {
732 housekeeping_packet.lfr_status_word[1] =
732 housekeeping_packet.lfr_status_word[1] =
733 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
733 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
734 }
734 }
735 else
735 else
736 {
736 {
737 housekeeping_packet.lfr_status_word[1] =
737 housekeeping_packet.lfr_status_word[1] =
738 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
738 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
739 }
739 }
740 }
740 }
741
741
742 void set_sy_lfr_pas_filter_enabled( bool state )
742 void set_sy_lfr_pas_filter_enabled( bool state )
743 {
743 {
744 if (state == true)
744 if (state == true)
745 {
745 {
746 housekeeping_packet.lfr_status_word[1] =
746 housekeeping_packet.lfr_status_word[1] =
747 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0010 0000]
747 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
748 }
748 }
749 else
749 else
750 {
750 {
751 housekeeping_packet.lfr_status_word[1] =
751 housekeeping_packet.lfr_status_word[1] =
752 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1101 1111]
752 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
753 }
753 }
754 }
754 }
755
755
756 void set_sy_lfr_watchdog_enabled( bool state )
756 void set_sy_lfr_watchdog_enabled( bool state )
757 {
757 {
758 if (state == true)
758 if (state == true)
759 {
759 {
760 housekeeping_packet.lfr_status_word[1] =
760 housekeeping_packet.lfr_status_word[1] =
761 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
761 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
762 }
762 }
763 else
763 else
764 {
764 {
765 housekeeping_packet.lfr_status_word[1] =
765 housekeeping_packet.lfr_status_word[1] =
766 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
766 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
767 }
767 }
768 }
768 }
769
769
770 void set_hk_lfr_calib_enable( bool state )
770 void set_hk_lfr_calib_enable( bool state )
771 {
771 {
772 if (state == true)
772 if (state == true)
773 {
773 {
774 housekeeping_packet.lfr_status_word[1] =
774 housekeeping_packet.lfr_status_word[1] =
775 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
775 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
776 }
776 }
777 else
777 else
778 {
778 {
779 housekeeping_packet.lfr_status_word[1] =
779 housekeeping_packet.lfr_status_word[1] =
780 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
780 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
781 }
781 }
782 }
782 }
783
783
784 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
784 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
785 {
785 {
786 housekeeping_packet.lfr_status_word[1] =
786 housekeeping_packet.lfr_status_word[1] =
787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
788
788
789 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
789 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
790 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
790 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
791
791
792 }
792 }
793
793
794 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
794 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
795 {
795 {
796 int delta;
796 int delta;
797
797
798 delta = 0;
798 delta = 0;
799
799
800 if (newValue >= oldValue)
800 if (newValue >= oldValue)
801 {
801 {
802 delta = newValue - oldValue;
802 delta = newValue - oldValue;
803 }
803 }
804 else
804 else
805 {
805 {
806 delta = (255 - oldValue) + newValue;
806 delta = (255 - oldValue) + newValue;
807 }
807 }
808
808
809 *counter = *counter + delta;
809 *counter = *counter + delta;
810 }
810 }
811
811
812 void hk_lfr_le_update( void )
812 void hk_lfr_le_update( void )
813 {
813 {
814 static hk_lfr_le_t old_hk_lfr_le = {0};
814 static hk_lfr_le_t old_hk_lfr_le = {0};
815 hk_lfr_le_t new_hk_lfr_le;
815 hk_lfr_le_t new_hk_lfr_le;
816 unsigned int counter;
816 unsigned int counter;
817
817
818 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
818 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
819
819
820 // DPU
820 // DPU
821 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
821 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
822 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
822 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
823 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
823 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
824 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
824 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
825 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
825 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
826 // TIMECODE
826 // TIMECODE
827 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
827 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
828 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
828 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
829 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
829 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
830 // TIME
830 // TIME
831 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
831 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
832 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
832 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
833 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
833 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
834 //AHB
834 //AHB
835 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
835 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
836 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
836 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
837 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
837 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
838
838
839 // update the le counter
839 // update the le counter
840 // DPU
840 // DPU
841 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
841 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
842 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
842 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
843 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
843 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
844 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
844 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
845 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
845 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
846 // TIMECODE
846 // TIMECODE
847 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
847 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
848 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
848 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
849 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
849 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
850 // TIME
850 // TIME
851 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
851 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
852 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
852 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
853 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
853 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
854 // AHB
854 // AHB
855 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
855 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
856
856
857 // DPU
857 // DPU
858 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
858 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
859 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
859 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
860 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
860 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
861 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
861 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
862 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
862 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
863 // TIMECODE
863 // TIMECODE
864 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
864 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
865 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
865 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
866 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
866 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
867 // TIME
867 // TIME
868 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
868 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
869 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
869 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
870 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
870 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
871 //AHB
871 //AHB
872 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
872 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
873 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
873 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
874 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
874 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
875
875
876 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
876 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
877 // LE
877 // LE
878 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
878 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
879 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
879 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
880 }
880 }
881
881
882 void hk_lfr_me_update( void )
882 void hk_lfr_me_update( void )
883 {
883 {
884 static hk_lfr_me_t old_hk_lfr_me = {0};
884 static hk_lfr_me_t old_hk_lfr_me = {0};
885 hk_lfr_me_t new_hk_lfr_me;
885 hk_lfr_me_t new_hk_lfr_me;
886 unsigned int counter;
886 unsigned int counter;
887
887
888 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
888 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
889
889
890 // get the current values
890 // get the current values
891 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
891 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
892 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
892 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
893 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
893 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
894 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
894 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
895
895
896 // update the me counter
896 // update the me counter
897 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
897 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
898 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
898 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
899 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
899 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
900 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
900 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
901
901
902 // store the counters for the next time
902 // store the counters for the next time
903 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
903 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
904 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
904 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
905 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
905 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
906 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
906 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
907
907
908 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
908 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
909 // ME
909 // ME
910 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
910 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
911 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
911 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
912 }
912 }
913
913
914 void hk_lfr_le_me_he_update()
914 void hk_lfr_le_me_he_update()
915 {
915 {
916
916
917 unsigned int hk_lfr_he_cnt;
917 unsigned int hk_lfr_he_cnt;
918
918
919 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
919 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
920
920
921 //update the low severity error counter
921 //update the low severity error counter
922 hk_lfr_le_update( );
922 hk_lfr_le_update( );
923
923
924 //update the medium severity error counter
924 //update the medium severity error counter
925 hk_lfr_me_update();
925 hk_lfr_me_update();
926
926
927 //update the high severity error counter
927 //update the high severity error counter
928 hk_lfr_he_cnt = 0;
928 hk_lfr_he_cnt = 0;
929
929
930 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
930 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
931 // HE
931 // HE
932 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
932 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
933 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
933 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
934
934
935 }
935 }
936
936
937 void set_hk_lfr_time_not_synchro()
937 void set_hk_lfr_time_not_synchro()
938 {
938 {
939 static unsigned char synchroLost = 1;
939 static unsigned char synchroLost = 1;
940 int synchronizationBit;
940 int synchronizationBit;
941
941
942 // get the synchronization bit
942 // get the synchronization bit
943 synchronizationBit =
943 synchronizationBit =
944 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
944 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
945
945
946 switch (synchronizationBit)
946 switch (synchronizationBit)
947 {
947 {
948 case 0:
948 case 0:
949 if (synchroLost == 1)
949 if (synchroLost == 1)
950 {
950 {
951 synchroLost = 0;
951 synchroLost = 0;
952 }
952 }
953 break;
953 break;
954 case 1:
954 case 1:
955 if (synchroLost == 0 )
955 if (synchroLost == 0 )
956 {
956 {
957 synchroLost = 1;
957 synchroLost = 1;
958 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
958 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
959 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
959 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
960 }
960 }
961 break;
961 break;
962 default:
962 default:
963 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
963 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
964 break;
964 break;
965 }
965 }
966
966
967 }
967 }
968
968
969 void set_hk_lfr_ahb_correctable() // CRITICITY L
969 void set_hk_lfr_ahb_correctable() // CRITICITY L
970 {
970 {
971 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
971 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
972 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
972 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
973 * detected errors in the cache, in the integer unit and in the floating point unit.
973 * detected errors in the cache, in the integer unit and in the floating point unit.
974 *
974 *
975 * @param void
975 * @param void
976 *
976 *
977 * @return void
977 * @return void
978 *
978 *
979 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
979 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
980 *
980 *
981 */
981 */
982
982
983 unsigned int ahb_correctable;
983 unsigned int ahb_correctable;
984 unsigned int instructionErrorCounter;
984 unsigned int instructionErrorCounter;
985 unsigned int dataErrorCounter;
985 unsigned int dataErrorCounter;
986 unsigned int fprfErrorCounter;
986 unsigned int fprfErrorCounter;
987 unsigned int iurfErrorCounter;
987 unsigned int iurfErrorCounter;
988
988
989 instructionErrorCounter = 0;
989 instructionErrorCounter = 0;
990 dataErrorCounter = 0;
990 dataErrorCounter = 0;
991 fprfErrorCounter = 0;
991 fprfErrorCounter = 0;
992 iurfErrorCounter = 0;
992 iurfErrorCounter = 0;
993
993
994 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
994 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
995 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
995 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
996
996
997 ahb_correctable = instructionErrorCounter
997 ahb_correctable = instructionErrorCounter
998 + dataErrorCounter
998 + dataErrorCounter
999 + fprfErrorCounter
999 + fprfErrorCounter
1000 + iurfErrorCounter
1000 + iurfErrorCounter
1001 + housekeeping_packet.hk_lfr_ahb_correctable;
1001 + housekeeping_packet.hk_lfr_ahb_correctable;
1002
1002
1003 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1003 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1004
1004
1005 }
1005 }
@@ -1,1812 +1,1795
1 /** Functions to load and dump parameters in the LFR registers.
1 /** Functions to load and dump parameters in the LFR registers.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TC related to parameter loading and dumping.\n
6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 * TC_LFR_LOAD_COMMON_PAR\n
7 * TC_LFR_LOAD_COMMON_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
12 *
12 *
13 */
13 */
14
14
15 #include "tc_load_dump_parameters.h"
15 #include "tc_load_dump_parameters.h"
16
16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 ring_node kcoefficient_node_1 = {0};
19 ring_node kcoefficient_node_1 = {0};
20 ring_node kcoefficient_node_2 = {0};
20 ring_node kcoefficient_node_2 = {0};
21
21
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 {
23 {
24 /** This function updates the LFR registers with the incoming common parameters.
24 /** This function updates the LFR registers with the incoming common parameters.
25 *
25 *
26 * @param TC points to the TeleCommand packet that is being processed
26 * @param TC points to the TeleCommand packet that is being processed
27 *
27 *
28 *
28 *
29 */
29 */
30
30
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 set_wfp_data_shaping( );
33 set_wfp_data_shaping( );
34 return LFR_SUCCESSFUL;
34 return LFR_SUCCESSFUL;
35 }
35 }
36
36
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 {
38 {
39 /** This function updates the LFR registers with the incoming normal parameters.
39 /** This function updates the LFR registers with the incoming normal parameters.
40 *
40 *
41 * @param TC points to the TeleCommand packet that is being processed
41 * @param TC points to the TeleCommand packet that is being processed
42 * @param queue_id is the id of the queue which handles TM related to this execution step
42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 int flag;
47 int flag;
48 rtems_status_code status;
48 rtems_status_code status;
49
49
50 flag = LFR_SUCCESSFUL;
50 flag = LFR_SUCCESSFUL;
51
51
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 flag = LFR_DEFAULT;
55 flag = LFR_DEFAULT;
56 }
56 }
57
57
58 // CHECK THE PARAMETERS SET CONSISTENCY
58 // CHECK THE PARAMETERS SET CONSISTENCY
59 if (flag == LFR_SUCCESSFUL)
59 if (flag == LFR_SUCCESSFUL)
60 {
60 {
61 flag = check_normal_par_consistency( TC, queue_id );
61 flag = check_normal_par_consistency( TC, queue_id );
62 }
62 }
63
63
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 if (flag == LFR_SUCCESSFUL)
65 if (flag == LFR_SUCCESSFUL)
66 {
66 {
67 result = set_sy_lfr_n_swf_l( TC );
67 result = set_sy_lfr_n_swf_l( TC );
68 result = set_sy_lfr_n_swf_p( TC );
68 result = set_sy_lfr_n_swf_p( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
71 result = set_sy_lfr_n_asm_p( TC );
71 result = set_sy_lfr_n_asm_p( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 }
73 }
74
74
75 return flag;
75 return flag;
76 }
76 }
77
77
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 {
79 {
80 /** This function updates the LFR registers with the incoming burst parameters.
80 /** This function updates the LFR registers with the incoming burst parameters.
81 *
81 *
82 * @param TC points to the TeleCommand packet that is being processed
82 * @param TC points to the TeleCommand packet that is being processed
83 * @param queue_id is the id of the queue which handles TM related to this execution step
83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 *
84 *
85 */
85 */
86
86
87 int flag;
87 int flag;
88 rtems_status_code status;
88 rtems_status_code status;
89 unsigned char sy_lfr_b_bp_p0;
89 unsigned char sy_lfr_b_bp_p0;
90 unsigned char sy_lfr_b_bp_p1;
90 unsigned char sy_lfr_b_bp_p1;
91 float aux;
91 float aux;
92
92
93 flag = LFR_SUCCESSFUL;
93 flag = LFR_SUCCESSFUL;
94
94
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 flag = LFR_DEFAULT;
97 flag = LFR_DEFAULT;
98 }
98 }
99
99
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102
102
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 if (flag == LFR_SUCCESSFUL)
104 if (flag == LFR_SUCCESSFUL)
105 {
105 {
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 {
107 {
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 flag = WRONG_APP_DATA;
109 flag = WRONG_APP_DATA;
110 }
110 }
111 }
111 }
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 if (flag == LFR_SUCCESSFUL)
113 if (flag == LFR_SUCCESSFUL)
114 {
114 {
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 {
116 {
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 flag = WRONG_APP_DATA;
118 flag = WRONG_APP_DATA;
119 }
119 }
120 }
120 }
121 //****************************************************************
121 //****************************************************************
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 if (flag == LFR_SUCCESSFUL)
123 if (flag == LFR_SUCCESSFUL)
124 {
124 {
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 if (aux > FLOAT_EQUAL_ZERO)
128 if (aux > FLOAT_EQUAL_ZERO)
129 {
129 {
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 flag = LFR_DEFAULT;
131 flag = LFR_DEFAULT;
132 }
132 }
133 }
133 }
134
134
135 // SET THE PARAMETERS
135 // SET THE PARAMETERS
136 if (flag == LFR_SUCCESSFUL)
136 if (flag == LFR_SUCCESSFUL)
137 {
137 {
138 flag = set_sy_lfr_b_bp_p0( TC );
138 flag = set_sy_lfr_b_bp_p0( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
140 }
140 }
141
141
142 return flag;
142 return flag;
143 }
143 }
144
144
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 {
146 {
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 *
148 *
149 * @param TC points to the TeleCommand packet that is being processed
149 * @param TC points to the TeleCommand packet that is being processed
150 * @param queue_id is the id of the queue which handles TM related to this execution step
150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 *
151 *
152 */
152 */
153
153
154 int flag;
154 int flag;
155 rtems_status_code status;
155 rtems_status_code status;
156 unsigned char sy_lfr_s1_bp_p0;
156 unsigned char sy_lfr_s1_bp_p0;
157 unsigned char sy_lfr_s1_bp_p1;
157 unsigned char sy_lfr_s1_bp_p1;
158 float aux;
158 float aux;
159
159
160 flag = LFR_SUCCESSFUL;
160 flag = LFR_SUCCESSFUL;
161
161
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 flag = LFR_DEFAULT;
164 flag = LFR_DEFAULT;
165 }
165 }
166
166
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169
169
170 // sy_lfr_s1_bp_p0
170 // sy_lfr_s1_bp_p0
171 if (flag == LFR_SUCCESSFUL)
171 if (flag == LFR_SUCCESSFUL)
172 {
172 {
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 {
174 {
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 flag = WRONG_APP_DATA;
176 flag = WRONG_APP_DATA;
177 }
177 }
178 }
178 }
179 // sy_lfr_s1_bp_p1
179 // sy_lfr_s1_bp_p1
180 if (flag == LFR_SUCCESSFUL)
180 if (flag == LFR_SUCCESSFUL)
181 {
181 {
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 {
183 {
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 flag = WRONG_APP_DATA;
185 flag = WRONG_APP_DATA;
186 }
186 }
187 }
187 }
188 //******************************************************************
188 //******************************************************************
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 if (flag == LFR_SUCCESSFUL)
190 if (flag == LFR_SUCCESSFUL)
191 {
191 {
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 if (aux > FLOAT_EQUAL_ZERO)
194 if (aux > FLOAT_EQUAL_ZERO)
195 {
195 {
196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 flag = LFR_DEFAULT;
197 flag = LFR_DEFAULT;
198 }
198 }
199 }
199 }
200
200
201 // SET THE PARAMETERS
201 // SET THE PARAMETERS
202 if (flag == LFR_SUCCESSFUL)
202 if (flag == LFR_SUCCESSFUL)
203 {
203 {
204 flag = set_sy_lfr_s1_bp_p0( TC );
204 flag = set_sy_lfr_s1_bp_p0( TC );
205 flag = set_sy_lfr_s1_bp_p1( TC );
205 flag = set_sy_lfr_s1_bp_p1( TC );
206 }
206 }
207
207
208 return flag;
208 return flag;
209 }
209 }
210
210
211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 {
212 {
213 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 *
214 *
215 * @param TC points to the TeleCommand packet that is being processed
215 * @param TC points to the TeleCommand packet that is being processed
216 * @param queue_id is the id of the queue which handles TM related to this execution step
216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 *
217 *
218 */
218 */
219
219
220 int flag;
220 int flag;
221 rtems_status_code status;
221 rtems_status_code status;
222 unsigned char sy_lfr_s2_bp_p0;
222 unsigned char sy_lfr_s2_bp_p0;
223 unsigned char sy_lfr_s2_bp_p1;
223 unsigned char sy_lfr_s2_bp_p1;
224 float aux;
224 float aux;
225
225
226 flag = LFR_SUCCESSFUL;
226 flag = LFR_SUCCESSFUL;
227
227
228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 flag = LFR_DEFAULT;
230 flag = LFR_DEFAULT;
231 }
231 }
232
232
233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235
235
236 // sy_lfr_s2_bp_p0
236 // sy_lfr_s2_bp_p0
237 if (flag == LFR_SUCCESSFUL)
237 if (flag == LFR_SUCCESSFUL)
238 {
238 {
239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 {
240 {
241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 flag = WRONG_APP_DATA;
242 flag = WRONG_APP_DATA;
243 }
243 }
244 }
244 }
245 // sy_lfr_s2_bp_p1
245 // sy_lfr_s2_bp_p1
246 if (flag == LFR_SUCCESSFUL)
246 if (flag == LFR_SUCCESSFUL)
247 {
247 {
248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 {
249 {
250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 flag = WRONG_APP_DATA;
251 flag = WRONG_APP_DATA;
252 }
252 }
253 }
253 }
254 //******************************************************************
254 //******************************************************************
255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 if (flag == LFR_SUCCESSFUL)
256 if (flag == LFR_SUCCESSFUL)
257 {
257 {
258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 if (aux > FLOAT_EQUAL_ZERO)
261 if (aux > FLOAT_EQUAL_ZERO)
262 {
262 {
263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 flag = LFR_DEFAULT;
264 flag = LFR_DEFAULT;
265 }
265 }
266 }
266 }
267
267
268 // SET THE PARAMETERS
268 // SET THE PARAMETERS
269 if (flag == LFR_SUCCESSFUL)
269 if (flag == LFR_SUCCESSFUL)
270 {
270 {
271 flag = set_sy_lfr_s2_bp_p0( TC );
271 flag = set_sy_lfr_s2_bp_p0( TC );
272 flag = set_sy_lfr_s2_bp_p1( TC );
272 flag = set_sy_lfr_s2_bp_p1( TC );
273 }
273 }
274
274
275 return flag;
275 return flag;
276 }
276 }
277
277
278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 {
279 {
280 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 *
281 *
282 * @param TC points to the TeleCommand packet that is being processed
282 * @param TC points to the TeleCommand packet that is being processed
283 * @param queue_id is the id of the queue which handles TM related to this execution step
283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 *
284 *
285 */
285 */
286
286
287 int flag;
287 int flag;
288
288
289 flag = LFR_DEFAULT;
289 flag = LFR_DEFAULT;
290
290
291 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292
292
293 return flag;
293 return flag;
294 }
294 }
295
295
296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 {
297 {
298 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 *
299 *
300 * @param TC points to the TeleCommand packet that is being processed
300 * @param TC points to the TeleCommand packet that is being processed
301 * @param queue_id is the id of the queue which handles TM related to this execution step
301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 *
302 *
303 */
303 */
304
304
305 int flag;
305 int flag;
306
306
307 flag = LFR_DEFAULT;
307 flag = LFR_DEFAULT;
308
308
309 flag = set_sy_lfr_fbins( TC );
309 flag = set_sy_lfr_fbins( TC );
310
310
311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 merge_fbins_masks();
312 merge_fbins_masks();
313
313
314 return flag;
314 return flag;
315 }
315 }
316
316
317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 {
318 {
319 /** This function updates the LFR registers with the incoming sbm2 parameters.
319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 *
320 *
321 * @param TC points to the TeleCommand packet that is being processed
321 * @param TC points to the TeleCommand packet that is being processed
322 * @param queue_id is the id of the queue which handles TM related to this execution step
322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 *
323 *
324 */
324 */
325
325
326 int flag;
326 int flag;
327 unsigned char k;
327 unsigned char k;
328
328
329 flag = LFR_DEFAULT;
329 flag = LFR_DEFAULT;
330 k = INIT_CHAR;
330 k = INIT_CHAR;
331
331
332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
332 flag = check_sy_lfr_filter_parameters( TC, queue_id );
333
333
334 if (flag == LFR_SUCCESSFUL)
334 if (flag == LFR_SUCCESSFUL)
335 {
335 {
336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
336 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
337 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
340 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
341 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
342 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
345 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
346 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
349 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
350 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
351
351
352 //****************************
352 //****************************
353 // store PAS filter parameters
353 // store PAS filter parameters
354 // sy_lfr_pas_filter_enabled
354 // sy_lfr_pas_filter_enabled
355 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
355 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
356 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
356 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
357 // sy_lfr_pas_filter_modulus
357 // sy_lfr_pas_filter_modulus
358 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
358 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
359 // sy_lfr_pas_filter_tbad
359 // sy_lfr_pas_filter_tbad
360 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
360 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
361 parameter_dump_packet.sy_lfr_pas_filter_tbad );
361 parameter_dump_packet.sy_lfr_pas_filter_tbad );
362 // sy_lfr_pas_filter_offset
362 // sy_lfr_pas_filter_offset
363 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
363 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
364 // sy_lfr_pas_filter_shift
364 // sy_lfr_pas_filter_shift
365 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
365 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
366 parameter_dump_packet.sy_lfr_pas_filter_shift );
366 parameter_dump_packet.sy_lfr_pas_filter_shift );
367
367
368 //****************************************************
368 //****************************************************
369 // store the parameter sy_lfr_sc_rw_delta_f as a float
369 // store the parameter sy_lfr_sc_rw_delta_f as a float
370 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
370 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
371 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
371 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
372
372
373 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
373 // copy rw.._k.. from the incoming TC to the local parameter_dump_packet
374 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
374 for (k = 0; k < NB_RW_K_COEFFS * NB_BYTES_PER_RW_K_COEFF; k++)
375 {
375 {
376 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
376 parameter_dump_packet.sy_lfr_rw1_k1[k] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_RW1_K1 + k ];
377 }
377 }
378
378
379 //***********************************************
379 //***********************************************
380 // store the parameter sy_lfr_rw.._k.. as a float
380 // store the parameter sy_lfr_rw.._k.. as a float
381 // rw1_k
381 // rw1_k
382 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
382 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k1, parameter_dump_packet.sy_lfr_rw1_k1 );
383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
383 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k2, parameter_dump_packet.sy_lfr_rw1_k2 );
384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
384 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k3, parameter_dump_packet.sy_lfr_rw1_k3 );
385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
385 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw1_k4, parameter_dump_packet.sy_lfr_rw1_k4 );
386 // rw2_k
386 // rw2_k
387 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
387 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k1, parameter_dump_packet.sy_lfr_rw2_k1 );
388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
388 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k2, parameter_dump_packet.sy_lfr_rw2_k2 );
389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
389 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k3, parameter_dump_packet.sy_lfr_rw2_k3 );
390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
390 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw2_k4, parameter_dump_packet.sy_lfr_rw2_k4 );
391 // rw3_k
391 // rw3_k
392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
392 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k1, parameter_dump_packet.sy_lfr_rw3_k1 );
393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
393 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k2, parameter_dump_packet.sy_lfr_rw3_k2 );
394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
394 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k3, parameter_dump_packet.sy_lfr_rw3_k3 );
395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
395 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw3_k4, parameter_dump_packet.sy_lfr_rw3_k4 );
396 // rw4_k
396 // rw4_k
397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
397 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k1, parameter_dump_packet.sy_lfr_rw4_k1 );
398 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
398 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k2, parameter_dump_packet.sy_lfr_rw4_k2 );
399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
399 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k3, parameter_dump_packet.sy_lfr_rw4_k3 );
400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
400 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_rw4_k4, parameter_dump_packet.sy_lfr_rw4_k4 );
401
401
402 }
402 }
403
403
404 return flag;
404 return flag;
405 }
405 }
406
406
407 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
407 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
408 {
408 {
409 /** This function updates the LFR registers with the incoming sbm2 parameters.
409 /** This function updates the LFR registers with the incoming sbm2 parameters.
410 *
410 *
411 * @param TC points to the TeleCommand packet that is being processed
411 * @param TC points to the TeleCommand packet that is being processed
412 * @param queue_id is the id of the queue which handles TM related to this execution step
412 * @param queue_id is the id of the queue which handles TM related to this execution step
413 *
413 *
414 */
414 */
415
415
416 unsigned int address;
416 unsigned int address;
417 rtems_status_code status;
417 rtems_status_code status;
418 unsigned int freq;
418 unsigned int freq;
419 unsigned int bin;
419 unsigned int bin;
420 unsigned int coeff;
420 unsigned int coeff;
421 unsigned char *kCoeffPtr;
421 unsigned char *kCoeffPtr;
422 unsigned char *kCoeffDumpPtr;
422 unsigned char *kCoeffDumpPtr;
423
423
424 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
424 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
425 // F0 => 11 bins
425 // F0 => 11 bins
426 // F1 => 13 bins
426 // F1 => 13 bins
427 // F2 => 12 bins
427 // F2 => 12 bins
428 // 36 bins to dump in two packets (30 bins max per packet)
428 // 36 bins to dump in two packets (30 bins max per packet)
429
429
430 //*********
430 //*********
431 // PACKET 1
431 // PACKET 1
432 // 11 F0 bins, 13 F1 bins and 6 F2 bins
432 // 11 F0 bins, 13 F1 bins and 6 F2 bins
433 kcoefficients_dump_1.destinationID = TC->sourceID;
433 kcoefficients_dump_1.destinationID = TC->sourceID;
434 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
434 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
435 for( freq = 0;
435 for( freq = 0;
436 freq < NB_BINS_COMPRESSED_SM_F0;
436 freq < NB_BINS_COMPRESSED_SM_F0;
437 freq++ )
437 freq++ )
438 {
438 {
439 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
439 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
440 bin = freq;
440 bin = freq;
441 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
441 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
442 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
442 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
443 {
443 {
444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
445 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 ]; // 2 for the kcoeff_frequency
446 ]; // 2 for the kcoeff_frequency
447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 }
449 }
450 }
450 }
451 for( freq = NB_BINS_COMPRESSED_SM_F0;
451 for( freq = NB_BINS_COMPRESSED_SM_F0;
452 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
452 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
453 freq++ )
453 freq++ )
454 {
454 {
455 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
455 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
456 bin = freq - NB_BINS_COMPRESSED_SM_F0;
456 bin = freq - NB_BINS_COMPRESSED_SM_F0;
457 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
457 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
458 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
458 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
459 {
459 {
460 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
460 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
461 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
461 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
462 ]; // 2 for the kcoeff_frequency
462 ]; // 2 for the kcoeff_frequency
463 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
463 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
464 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
464 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
465 }
465 }
466 }
466 }
467 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
467 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
468 freq < KCOEFF_BLK_NR_PKT1 ;
468 freq < KCOEFF_BLK_NR_PKT1 ;
469 freq++ )
469 freq++ )
470 {
470 {
471 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
471 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
472 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
472 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
473 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
473 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
474 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
474 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
475 {
475 {
476 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
476 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
477 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
477 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
478 ]; // 2 for the kcoeff_frequency
478 ]; // 2 for the kcoeff_frequency
479 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
479 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
480 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
480 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
481 }
481 }
482 }
482 }
483 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
483 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
484 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
484 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
485 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
485 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
486 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
486 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
487 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
487 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
488 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
488 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
489 // SEND DATA
489 // SEND DATA
490 kcoefficient_node_1.status = 1;
490 kcoefficient_node_1.status = 1;
491 address = (unsigned int) &kcoefficient_node_1;
491 address = (unsigned int) &kcoefficient_node_1;
492 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
492 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
493 if (status != RTEMS_SUCCESSFUL) {
493 if (status != RTEMS_SUCCESSFUL) {
494 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
494 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
495 }
495 }
496
496
497 //********
497 //********
498 // PACKET 2
498 // PACKET 2
499 // 6 F2 bins
499 // 6 F2 bins
500 kcoefficients_dump_2.destinationID = TC->sourceID;
500 kcoefficients_dump_2.destinationID = TC->sourceID;
501 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
501 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
502 for( freq = 0;
502 for( freq = 0;
503 freq < KCOEFF_BLK_NR_PKT2;
503 freq < KCOEFF_BLK_NR_PKT2;
504 freq++ )
504 freq++ )
505 {
505 {
506 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
506 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
507 bin = freq + KCOEFF_BLK_NR_PKT2;
507 bin = freq + KCOEFF_BLK_NR_PKT2;
508 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
508 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
509 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
509 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
510 {
510 {
511 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
511 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
512 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
512 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
513 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
513 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
514 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
514 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
515 }
515 }
516 }
516 }
517 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
517 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
518 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
518 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
519 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
519 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
520 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
520 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
521 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
521 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
522 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
522 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
523 // SEND DATA
523 // SEND DATA
524 kcoefficient_node_2.status = 1;
524 kcoefficient_node_2.status = 1;
525 address = (unsigned int) &kcoefficient_node_2;
525 address = (unsigned int) &kcoefficient_node_2;
526 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
526 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
527 if (status != RTEMS_SUCCESSFUL) {
527 if (status != RTEMS_SUCCESSFUL) {
528 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
528 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
529 }
529 }
530
530
531 return status;
531 return status;
532 }
532 }
533
533
534 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
534 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
535 {
535 {
536 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
536 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
537 *
537 *
538 * @param queue_id is the id of the queue which handles TM related to this execution step.
538 * @param queue_id is the id of the queue which handles TM related to this execution step.
539 *
539 *
540 * @return RTEMS directive status codes:
540 * @return RTEMS directive status codes:
541 * - RTEMS_SUCCESSFUL - message sent successfully
541 * - RTEMS_SUCCESSFUL - message sent successfully
542 * - RTEMS_INVALID_ID - invalid queue id
542 * - RTEMS_INVALID_ID - invalid queue id
543 * - RTEMS_INVALID_SIZE - invalid message size
543 * - RTEMS_INVALID_SIZE - invalid message size
544 * - RTEMS_INVALID_ADDRESS - buffer is NULL
544 * - RTEMS_INVALID_ADDRESS - buffer is NULL
545 * - RTEMS_UNSATISFIED - out of message buffers
545 * - RTEMS_UNSATISFIED - out of message buffers
546 * - RTEMS_TOO_MANY - queue s limit has been reached
546 * - RTEMS_TOO_MANY - queue s limit has been reached
547 *
547 *
548 */
548 */
549
549
550 int status;
550 int status;
551
551
552 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
552 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
553 parameter_dump_packet.destinationID = TC->sourceID;
553 parameter_dump_packet.destinationID = TC->sourceID;
554
554
555 // UPDATE TIME
555 // UPDATE TIME
556 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
556 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
557 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
557 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
558 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
558 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
559 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
559 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
560 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
560 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
561 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
561 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
562 // SEND DATA
562 // SEND DATA
563 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
563 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
564 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
564 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
565 if (status != RTEMS_SUCCESSFUL) {
565 if (status != RTEMS_SUCCESSFUL) {
566 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
566 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
567 }
567 }
568
568
569 return status;
569 return status;
570 }
570 }
571
571
572 //***********************
572 //***********************
573 // NORMAL MODE PARAMETERS
573 // NORMAL MODE PARAMETERS
574
574
575 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
575 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
576 {
576 {
577 unsigned char msb;
577 unsigned char msb;
578 unsigned char lsb;
578 unsigned char lsb;
579 int flag;
579 int flag;
580 float aux;
580 float aux;
581 rtems_status_code status;
581 rtems_status_code status;
582
582
583 unsigned int sy_lfr_n_swf_l;
583 unsigned int sy_lfr_n_swf_l;
584 unsigned int sy_lfr_n_swf_p;
584 unsigned int sy_lfr_n_swf_p;
585 unsigned int sy_lfr_n_asm_p;
585 unsigned int sy_lfr_n_asm_p;
586 unsigned char sy_lfr_n_bp_p0;
586 unsigned char sy_lfr_n_bp_p0;
587 unsigned char sy_lfr_n_bp_p1;
587 unsigned char sy_lfr_n_bp_p1;
588 unsigned char sy_lfr_n_cwf_long_f3;
588 unsigned char sy_lfr_n_cwf_long_f3;
589
589
590 flag = LFR_SUCCESSFUL;
590 flag = LFR_SUCCESSFUL;
591
591
592 //***************
592 //***************
593 // get parameters
593 // get parameters
594 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
594 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
595 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
595 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
596 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
596 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
597
597
598 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
598 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
599 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
599 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
600 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
600 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
601
601
602 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
602 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
603 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
603 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
604 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
604 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
605
605
606 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
606 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
607
607
608 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
608 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
609
609
610 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
610 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
611
611
612 //******************
612 //******************
613 // check consistency
613 // check consistency
614 // sy_lfr_n_swf_l
614 // sy_lfr_n_swf_l
615 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
615 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
616 {
616 {
617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
617 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
618 flag = WRONG_APP_DATA;
618 flag = WRONG_APP_DATA;
619 }
619 }
620 // sy_lfr_n_swf_p
620 // sy_lfr_n_swf_p
621 if (flag == LFR_SUCCESSFUL)
621 if (flag == LFR_SUCCESSFUL)
622 {
622 {
623 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
623 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
624 {
624 {
625 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
625 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
626 flag = WRONG_APP_DATA;
626 flag = WRONG_APP_DATA;
627 }
627 }
628 }
628 }
629 // sy_lfr_n_bp_p0
629 // sy_lfr_n_bp_p0
630 if (flag == LFR_SUCCESSFUL)
630 if (flag == LFR_SUCCESSFUL)
631 {
631 {
632 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
632 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
633 {
633 {
634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
634 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
635 flag = WRONG_APP_DATA;
635 flag = WRONG_APP_DATA;
636 }
636 }
637 }
637 }
638 // sy_lfr_n_asm_p
638 // sy_lfr_n_asm_p
639 if (flag == LFR_SUCCESSFUL)
639 if (flag == LFR_SUCCESSFUL)
640 {
640 {
641 if (sy_lfr_n_asm_p == 0)
641 if (sy_lfr_n_asm_p == 0)
642 {
642 {
643 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
643 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
644 flag = WRONG_APP_DATA;
644 flag = WRONG_APP_DATA;
645 }
645 }
646 }
646 }
647 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
647 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
648 if (flag == LFR_SUCCESSFUL)
648 if (flag == LFR_SUCCESSFUL)
649 {
649 {
650 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
650 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
651 if (aux > FLOAT_EQUAL_ZERO)
651 if (aux > FLOAT_EQUAL_ZERO)
652 {
652 {
653 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
653 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
654 flag = WRONG_APP_DATA;
654 flag = WRONG_APP_DATA;
655 }
655 }
656 }
656 }
657 // sy_lfr_n_bp_p1
657 // sy_lfr_n_bp_p1
658 if (flag == LFR_SUCCESSFUL)
658 if (flag == LFR_SUCCESSFUL)
659 {
659 {
660 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
660 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
661 {
661 {
662 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
662 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
663 flag = WRONG_APP_DATA;
663 flag = WRONG_APP_DATA;
664 }
664 }
665 }
665 }
666 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
666 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
667 if (flag == LFR_SUCCESSFUL)
667 if (flag == LFR_SUCCESSFUL)
668 {
668 {
669 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
669 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
670 if (aux > FLOAT_EQUAL_ZERO)
670 if (aux > FLOAT_EQUAL_ZERO)
671 {
671 {
672 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
672 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
673 flag = LFR_DEFAULT;
673 flag = LFR_DEFAULT;
674 }
674 }
675 }
675 }
676 // sy_lfr_n_cwf_long_f3
676 // sy_lfr_n_cwf_long_f3
677
677
678 return flag;
678 return flag;
679 }
679 }
680
680
681 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
681 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
682 {
682 {
683 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
683 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
684 *
684 *
685 * @param TC points to the TeleCommand packet that is being processed
685 * @param TC points to the TeleCommand packet that is being processed
686 * @param queue_id is the id of the queue which handles TM related to this execution step
686 * @param queue_id is the id of the queue which handles TM related to this execution step
687 *
687 *
688 */
688 */
689
689
690 int result;
690 int result;
691
691
692 result = LFR_SUCCESSFUL;
692 result = LFR_SUCCESSFUL;
693
693
694 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
694 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
695 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
695 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
696
696
697 return result;
697 return result;
698 }
698 }
699
699
700 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
700 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
701 {
701 {
702 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
702 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
703 *
703 *
704 * @param TC points to the TeleCommand packet that is being processed
704 * @param TC points to the TeleCommand packet that is being processed
705 * @param queue_id is the id of the queue which handles TM related to this execution step
705 * @param queue_id is the id of the queue which handles TM related to this execution step
706 *
706 *
707 */
707 */
708
708
709 int result;
709 int result;
710
710
711 result = LFR_SUCCESSFUL;
711 result = LFR_SUCCESSFUL;
712
712
713 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
713 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
714 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
714 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
715
715
716 return result;
716 return result;
717 }
717 }
718
718
719 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
719 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
720 {
720 {
721 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
721 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
722 *
722 *
723 * @param TC points to the TeleCommand packet that is being processed
723 * @param TC points to the TeleCommand packet that is being processed
724 * @param queue_id is the id of the queue which handles TM related to this execution step
724 * @param queue_id is the id of the queue which handles TM related to this execution step
725 *
725 *
726 */
726 */
727
727
728 int result;
728 int result;
729
729
730 result = LFR_SUCCESSFUL;
730 result = LFR_SUCCESSFUL;
731
731
732 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
732 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
733 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
733 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
734
734
735 return result;
735 return result;
736 }
736 }
737
737
738 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
738 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
739 {
739 {
740 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
740 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
741 *
741 *
742 * @param TC points to the TeleCommand packet that is being processed
742 * @param TC points to the TeleCommand packet that is being processed
743 * @param queue_id is the id of the queue which handles TM related to this execution step
743 * @param queue_id is the id of the queue which handles TM related to this execution step
744 *
744 *
745 */
745 */
746
746
747 int status;
747 int status;
748
748
749 status = LFR_SUCCESSFUL;
749 status = LFR_SUCCESSFUL;
750
750
751 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
751 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
752
752
753 return status;
753 return status;
754 }
754 }
755
755
756 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
756 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
757 {
757 {
758 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
758 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
759 *
759 *
760 * @param TC points to the TeleCommand packet that is being processed
760 * @param TC points to the TeleCommand packet that is being processed
761 * @param queue_id is the id of the queue which handles TM related to this execution step
761 * @param queue_id is the id of the queue which handles TM related to this execution step
762 *
762 *
763 */
763 */
764
764
765 int status;
765 int status;
766
766
767 status = LFR_SUCCESSFUL;
767 status = LFR_SUCCESSFUL;
768
768
769 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
769 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
770
770
771 return status;
771 return status;
772 }
772 }
773
773
774 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
774 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
775 {
775 {
776 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
776 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
777 *
777 *
778 * @param TC points to the TeleCommand packet that is being processed
778 * @param TC points to the TeleCommand packet that is being processed
779 * @param queue_id is the id of the queue which handles TM related to this execution step
779 * @param queue_id is the id of the queue which handles TM related to this execution step
780 *
780 *
781 */
781 */
782
782
783 int status;
783 int status;
784
784
785 status = LFR_SUCCESSFUL;
785 status = LFR_SUCCESSFUL;
786
786
787 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
787 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
788
788
789 return status;
789 return status;
790 }
790 }
791
791
792 //**********************
792 //**********************
793 // BURST MODE PARAMETERS
793 // BURST MODE PARAMETERS
794 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
794 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
795 {
795 {
796 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
796 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
797 *
797 *
798 * @param TC points to the TeleCommand packet that is being processed
798 * @param TC points to the TeleCommand packet that is being processed
799 * @param queue_id is the id of the queue which handles TM related to this execution step
799 * @param queue_id is the id of the queue which handles TM related to this execution step
800 *
800 *
801 */
801 */
802
802
803 int status;
803 int status;
804
804
805 status = LFR_SUCCESSFUL;
805 status = LFR_SUCCESSFUL;
806
806
807 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
807 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
808
808
809 return status;
809 return status;
810 }
810 }
811
811
812 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
812 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
813 {
813 {
814 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
814 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
815 *
815 *
816 * @param TC points to the TeleCommand packet that is being processed
816 * @param TC points to the TeleCommand packet that is being processed
817 * @param queue_id is the id of the queue which handles TM related to this execution step
817 * @param queue_id is the id of the queue which handles TM related to this execution step
818 *
818 *
819 */
819 */
820
820
821 int status;
821 int status;
822
822
823 status = LFR_SUCCESSFUL;
823 status = LFR_SUCCESSFUL;
824
824
825 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
825 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
826
826
827 return status;
827 return status;
828 }
828 }
829
829
830 //*********************
830 //*********************
831 // SBM1 MODE PARAMETERS
831 // SBM1 MODE PARAMETERS
832 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
832 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
833 {
833 {
834 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
834 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
835 *
835 *
836 * @param TC points to the TeleCommand packet that is being processed
836 * @param TC points to the TeleCommand packet that is being processed
837 * @param queue_id is the id of the queue which handles TM related to this execution step
837 * @param queue_id is the id of the queue which handles TM related to this execution step
838 *
838 *
839 */
839 */
840
840
841 int status;
841 int status;
842
842
843 status = LFR_SUCCESSFUL;
843 status = LFR_SUCCESSFUL;
844
844
845 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
845 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
846
846
847 return status;
847 return status;
848 }
848 }
849
849
850 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
850 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
851 {
851 {
852 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
852 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
853 *
853 *
854 * @param TC points to the TeleCommand packet that is being processed
854 * @param TC points to the TeleCommand packet that is being processed
855 * @param queue_id is the id of the queue which handles TM related to this execution step
855 * @param queue_id is the id of the queue which handles TM related to this execution step
856 *
856 *
857 */
857 */
858
858
859 int status;
859 int status;
860
860
861 status = LFR_SUCCESSFUL;
861 status = LFR_SUCCESSFUL;
862
862
863 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
863 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
864
864
865 return status;
865 return status;
866 }
866 }
867
867
868 //*********************
868 //*********************
869 // SBM2 MODE PARAMETERS
869 // SBM2 MODE PARAMETERS
870 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
870 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
871 {
871 {
872 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
872 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
873 *
873 *
874 * @param TC points to the TeleCommand packet that is being processed
874 * @param TC points to the TeleCommand packet that is being processed
875 * @param queue_id is the id of the queue which handles TM related to this execution step
875 * @param queue_id is the id of the queue which handles TM related to this execution step
876 *
876 *
877 */
877 */
878
878
879 int status;
879 int status;
880
880
881 status = LFR_SUCCESSFUL;
881 status = LFR_SUCCESSFUL;
882
882
883 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
883 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
884
884
885 return status;
885 return status;
886 }
886 }
887
887
888 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
888 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
889 {
889 {
890 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
890 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
891 *
891 *
892 * @param TC points to the TeleCommand packet that is being processed
892 * @param TC points to the TeleCommand packet that is being processed
893 * @param queue_id is the id of the queue which handles TM related to this execution step
893 * @param queue_id is the id of the queue which handles TM related to this execution step
894 *
894 *
895 */
895 */
896
896
897 int status;
897 int status;
898
898
899 status = LFR_SUCCESSFUL;
899 status = LFR_SUCCESSFUL;
900
900
901 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
901 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
902
902
903 return status;
903 return status;
904 }
904 }
905
905
906 //*******************
906 //*******************
907 // TC_LFR_UPDATE_INFO
907 // TC_LFR_UPDATE_INFO
908 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
908 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
909 {
909 {
910 unsigned int status;
910 unsigned int status;
911
911
912 status = LFR_DEFAULT;
912 status = LFR_DEFAULT;
913
913
914 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
914 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
915 || (mode == LFR_MODE_BURST)
915 || (mode == LFR_MODE_BURST)
916 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
916 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
917 {
917 {
918 status = LFR_SUCCESSFUL;
918 status = LFR_SUCCESSFUL;
919 }
919 }
920 else
920 else
921 {
921 {
922 status = LFR_DEFAULT;
922 status = LFR_DEFAULT;
923 }
923 }
924
924
925 return status;
925 return status;
926 }
926 }
927
927
928 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
928 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
929 {
929 {
930 unsigned int status;
930 unsigned int status;
931
931
932 status = LFR_DEFAULT;
932 status = LFR_DEFAULT;
933
933
934 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
934 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
935 || (mode == TDS_MODE_BURST)
935 || (mode == TDS_MODE_BURST)
936 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
936 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
937 || (mode == TDS_MODE_LFM))
937 || (mode == TDS_MODE_LFM))
938 {
938 {
939 status = LFR_SUCCESSFUL;
939 status = LFR_SUCCESSFUL;
940 }
940 }
941 else
941 else
942 {
942 {
943 status = LFR_DEFAULT;
943 status = LFR_DEFAULT;
944 }
944 }
945
945
946 return status;
946 return status;
947 }
947 }
948
948
949 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
949 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
950 {
950 {
951 unsigned int status;
951 unsigned int status;
952
952
953 status = LFR_DEFAULT;
953 status = LFR_DEFAULT;
954
954
955 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
955 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
956 || (mode == THR_MODE_BURST))
956 || (mode == THR_MODE_BURST))
957 {
957 {
958 status = LFR_SUCCESSFUL;
958 status = LFR_SUCCESSFUL;
959 }
959 }
960 else
960 else
961 {
961 {
962 status = LFR_DEFAULT;
962 status = LFR_DEFAULT;
963 }
963 }
964
964
965 return status;
965 return status;
966 }
966 }
967
967
968 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
968 void set_hk_lfr_sc_rw_f_flag( unsigned char wheel, unsigned char freq, float value )
969 {
969 {
970 unsigned char flag;
970 unsigned char flag;
971 unsigned char flagPosInByte;
971 unsigned char flagPosInByte;
972 unsigned char newFlag;
972 unsigned char newFlag;
973 unsigned char flagMask;
973 unsigned char flagMask;
974
974
975 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
975 // if the frequency value is not a number, the flag is set to 0 and the frequency RWx_Fy is not filtered
976 if (isnan(value))
976 if (isnan(value))
977 {
977 {
978 flag = FLAG_NAN;
978 flag = FLAG_NAN;
979 }
979 }
980 else
980 else
981 {
981 {
982 flag = FLAG_IAN;
982 flag = FLAG_IAN;
983 }
983 }
984
984
985 switch(wheel)
985 switch(wheel)
986 {
986 {
987 case WHEEL_1:
987 case WHEEL_1:
988 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
988 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
989 flagMask = ~(1 << flagPosInByte);
989 flagMask = ~(1 << flagPosInByte);
990 newFlag = flag << flagPosInByte;
990 newFlag = flag << flagPosInByte;
991 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
991 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
992 break;
992 break;
993 case WHEEL_2:
993 case WHEEL_2:
994 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
994 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
995 flagMask = ~(1 << flagPosInByte);
995 flagMask = ~(1 << flagPosInByte);
996 newFlag = flag << flagPosInByte;
996 newFlag = flag << flagPosInByte;
997 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
997 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = (housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags & flagMask) | newFlag;
998 break;
998 break;
999 case WHEEL_3:
999 case WHEEL_3:
1000 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1000 flagPosInByte = FLAG_OFFSET_WHEELS_1_3 - freq;
1001 flagMask = ~(1 << flagPosInByte);
1001 flagMask = ~(1 << flagPosInByte);
1002 newFlag = flag << flagPosInByte;
1002 newFlag = flag << flagPosInByte;
1003 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1003 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1004 break;
1004 break;
1005 case WHEEL_4:
1005 case WHEEL_4:
1006 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1006 flagPosInByte = FLAG_OFFSET_WHEELS_2_4 - freq;
1007 flagMask = ~(1 << flagPosInByte);
1007 flagMask = ~(1 << flagPosInByte);
1008 newFlag = flag << flagPosInByte;
1008 newFlag = flag << flagPosInByte;
1009 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1009 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = (housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags & flagMask) | newFlag;
1010 break;
1010 break;
1011 default:
1011 default:
1012 break;
1012 break;
1013 }
1013 }
1014 }
1014 }
1015
1015
1016 void set_hk_lfr_sc_rw_f_flags( void )
1016 void set_hk_lfr_sc_rw_f_flags( void )
1017 {
1017 {
1018 // RW1
1018 // RW1
1019 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1019 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_1, rw_f.cp_rpw_sc_rw1_f1 );
1020 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1020 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_2, rw_f.cp_rpw_sc_rw1_f2 );
1021 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1021 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_3, rw_f.cp_rpw_sc_rw1_f3 );
1022 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1022 set_hk_lfr_sc_rw_f_flag( WHEEL_1, FREQ_4, rw_f.cp_rpw_sc_rw1_f4 );
1023
1023
1024 // RW2
1024 // RW2
1025 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1025 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_1, rw_f.cp_rpw_sc_rw2_f1 );
1026 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1026 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_2, rw_f.cp_rpw_sc_rw2_f2 );
1027 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1027 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_3, rw_f.cp_rpw_sc_rw2_f3 );
1028 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1028 set_hk_lfr_sc_rw_f_flag( WHEEL_2, FREQ_4, rw_f.cp_rpw_sc_rw2_f4 );
1029
1029
1030 // RW3
1030 // RW3
1031 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1031 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_1, rw_f.cp_rpw_sc_rw3_f1 );
1032 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1032 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_2, rw_f.cp_rpw_sc_rw3_f2 );
1033 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1033 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_3, rw_f.cp_rpw_sc_rw3_f3 );
1034 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1034 set_hk_lfr_sc_rw_f_flag( WHEEL_3, FREQ_4, rw_f.cp_rpw_sc_rw3_f4 );
1035
1035
1036 // RW4
1036 // RW4
1037 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1037 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_1, rw_f.cp_rpw_sc_rw4_f1 );
1038 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1038 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_2, rw_f.cp_rpw_sc_rw4_f2 );
1039 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1039 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_3, rw_f.cp_rpw_sc_rw4_f3 );
1040 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1040 set_hk_lfr_sc_rw_f_flag( WHEEL_4, FREQ_4, rw_f.cp_rpw_sc_rw4_f4 );
1041 }
1041 }
1042
1042
1043 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1043 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
1044 {
1044 {
1045 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1045 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
1046 *
1046 *
1047 * @param TC points to the TeleCommand packet that is being processed
1047 * @param TC points to the TeleCommand packet that is being processed
1048 *
1048 *
1049 */
1049 */
1050
1050
1051 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1051 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
1052
1052
1053 bytePosPtr = (unsigned char *) &TC->packetID;
1053 bytePosPtr = (unsigned char *) &TC->packetID;
1054
1054
1055 // rw1_f
1055 // rw1_f
1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1056 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1057 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1058 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F3 ] );
1059 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1059 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw1_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F4 ] );
1060
1060
1061 // rw2_f
1061 // rw2_f
1062 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1062 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
1063 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1063 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
1064 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1064 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F3 ] );
1065 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1065 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw2_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F4 ] );
1066
1066
1067 // rw3_f
1067 // rw3_f
1068 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1068 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
1069 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1069 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
1070 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1070 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F3 ] );
1071 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1071 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw3_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F4 ] );
1072
1072
1073 // rw4_f
1073 // rw4_f
1074 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1074 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f1, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
1075 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1075 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f2, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
1076 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1076 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f3, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F3 ] );
1077 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1077 copyFloatByChar( (unsigned char*) &rw_f.cp_rpw_sc_rw4_f4, (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F4 ] );
1078
1078
1079 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1079 // test each reaction wheel frequency value. NaN means that the frequency is not filtered
1080
1080
1081 }
1081 }
1082
1082
1083 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff )
1083 void setFBinMask(unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, float kcoeff )
1084 {
1084 {
1085 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1085 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
1086 *
1086 *
1087 * @param fbins_mask
1087 * @param fbins_mask
1088 * @param rw_f is the reaction wheel frequency to filter
1088 * @param rw_f is the reaction wheel frequency to filter
1089 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1089 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
1090 * @param flag [true] filtering enabled [false] filtering disabled
1090 * @param flag [true] filtering enabled [false] filtering disabled
1091 *
1091 *
1092 * @return void
1092 * @return void
1093 *
1093 *
1094 */
1094 */
1095
1095
1096 float f_RW_min;
1096 float f_RW_min;
1097 float f_RW_MAX;
1097 float f_RW_MAX;
1098 float fi_min;
1098 float fi_min;
1099 float fi_MAX;
1099 float fi_MAX;
1100 float fi;
1100 float fi;
1101 float deltaBelow;
1101 float deltaBelow;
1102 float deltaAbove;
1102 float deltaAbove;
1103 int binBelow;
1103 int binBelow;
1104 int binAbove;
1104 int binAbove;
1105 int closestBin;
1105 int closestBin;
1106 unsigned int whichByte;
1106 unsigned int whichByte;
1107 int selectedByte;
1107 int selectedByte;
1108 int bin;
1108 int bin;
1109 int binToRemove[NB_BINS_TO_REMOVE];
1109 int binToRemove[NB_BINS_TO_REMOVE];
1110 int i;
1110 int i;
1111
1111
1112 closestBin = 0;
1112 closestBin = 0;
1113 whichByte = 0;
1113 whichByte = 0;
1114 bin = 0;
1114 bin = 0;
1115
1115
1116 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1116 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1117 {
1117 {
1118 binToRemove[i] = -1;
1118 binToRemove[i] = -1;
1119 }
1119 }
1120
1120
1121 if (!isnan(rw_f))
1121 if (!isnan(rw_f))
1122 {
1122 {
1123
1123
1124 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1124 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1125 f_RW_min = rw_f - ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1125 f_RW_min = rw_f - ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1126 f_RW_MAX = rw_f + ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1126 f_RW_MAX = rw_f + ( (filterPar.sy_lfr_sc_rw_delta_f * kcoeff) / DELTAF_DIV);
1127
1127
1128 // compute the index of the frequency bin immediately below rw_f
1128 // compute the index of the frequency bin immediately below rw_f
1129 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1129 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1130 deltaBelow = rw_f - binBelow * deltaFreq;
1130 deltaBelow = rw_f - binBelow * deltaFreq;
1131
1131
1132 // compute the index of the frequency bin immediately above rw_f
1132 // compute the index of the frequency bin immediately above rw_f
1133 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1133 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1134 deltaAbove = binAbove * deltaFreq - rw_f;
1134 deltaAbove = binAbove * deltaFreq - rw_f;
1135
1135
1136 // search the closest bin
1136 // search the closest bin
1137 if (deltaAbove > deltaBelow)
1137 if (deltaAbove > deltaBelow)
1138 {
1138 {
1139 closestBin = binBelow;
1139 closestBin = binBelow;
1140 }
1140 }
1141 else
1141 else
1142 {
1142 {
1143 closestBin = binAbove;
1143 closestBin = binAbove;
1144 }
1144 }
1145
1145
1146 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1146 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1147 fi = closestBin * deltaFreq;
1147 fi = closestBin * deltaFreq;
1148 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1148 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1149 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1149 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1150
1150
1151 //**************************************************************************************
1151 //**************************************************************************************
1152 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1152 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1153 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1153 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1154 //**************************************************************************************
1154 //**************************************************************************************
1155
1155
1156 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1156 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1157 // => remove f_(i), f_(i-1) and f_(i+1)
1157 // => remove f_(i), f_(i-1) and f_(i+1)
1158 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1158 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1159 {
1159 {
1160 binToRemove[0] = (closestBin - 1) - 1;
1160 binToRemove[0] = (closestBin - 1) - 1;
1161 binToRemove[1] = (closestBin) - 1;
1161 binToRemove[1] = (closestBin) - 1;
1162 binToRemove[2] = (closestBin + 1) - 1;
1162 binToRemove[2] = (closestBin + 1) - 1;
1163 }
1163 }
1164 // 2. ELSE
1164 // 2. ELSE
1165 // => remove the two f_(i) which are around f_RW
1165 // => remove the two f_(i) which are around f_RW
1166 else
1166 else
1167 {
1167 {
1168 binToRemove[0] = (binBelow) - 1;
1168 binToRemove[0] = (binBelow) - 1;
1169 binToRemove[1] = (binAbove) - 1;
1169 binToRemove[1] = (binAbove) - 1;
1170 binToRemove[2] = (-1);
1170 binToRemove[2] = (-1);
1171 }
1171 }
1172
1172
1173 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1173 for (i = 0; i < NB_BINS_TO_REMOVE; i++)
1174 {
1174 {
1175 bin = binToRemove[i];
1175 bin = binToRemove[i];
1176 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1176 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1177 {
1177 {
1178
1178
1179 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1179 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1180 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1180 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1181 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1181 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1182 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1182 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1183 }
1183 }
1184 }
1184 }
1185 }
1185 }
1186 }
1186 }
1187
1187
1188 void build_sy_lfr_rw_mask( unsigned int channel )
1188 void build_sy_lfr_rw_mask( unsigned int channel )
1189 {
1189 {
1190 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1190 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1191 unsigned char *maskPtr;
1191 unsigned char *maskPtr;
1192 double deltaF;
1192 double deltaF;
1193 unsigned k;
1193 unsigned k;
1194
1194
1195 maskPtr = NULL;
1195 maskPtr = NULL;
1196 deltaF = DELTAF_F2;
1196 deltaF = DELTAF_F2;
1197
1197
1198 switch (channel)
1198 switch (channel)
1199 {
1199 {
1200 case CHANNELF0:
1200 case CHANNELF0:
1201 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1201 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1202 deltaF = DELTAF_F0;
1202 deltaF = DELTAF_F0;
1203 break;
1203 break;
1204 case CHANNELF1:
1204 case CHANNELF1:
1205 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1205 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1206 deltaF = DELTAF_F1;
1206 deltaF = DELTAF_F1;
1207 break;
1207 break;
1208 case CHANNELF2:
1208 case CHANNELF2:
1209 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1209 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1210 deltaF = DELTAF_F2;
1210 deltaF = DELTAF_F2;
1211 break;
1211 break;
1212 default:
1212 default:
1213 break;
1213 break;
1214 }
1214 }
1215
1215
1216 for (k = 0; k < BYTES_PER_MASK; k++)
1216 for (k = 0; k < BYTES_PER_MASK; k++)
1217 {
1217 {
1218 local_rw_fbins_mask[k] = INT8_ALL_F;
1218 local_rw_fbins_mask[k] = INT8_ALL_F;
1219 }
1219 }
1220
1220
1221 // RW1
1221 // RW1
1222 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1222 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f1, deltaF, filterPar.sy_lfr_rw1_k1 );
1223 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1223 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f2, deltaF, filterPar.sy_lfr_rw1_k2 );
1224 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1224 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f3, deltaF, filterPar.sy_lfr_rw1_k3 );
1225 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1225 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw1_f4, deltaF, filterPar.sy_lfr_rw1_k4 );
1226
1226
1227 // RW2
1227 // RW2
1228 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1228 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f1, deltaF, filterPar.sy_lfr_rw2_k1 );
1229 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1229 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f2, deltaF, filterPar.sy_lfr_rw2_k2 );
1230 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1230 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f3, deltaF, filterPar.sy_lfr_rw2_k3 );
1231 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1231 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw2_f4, deltaF, filterPar.sy_lfr_rw2_k4 );
1232
1232
1233 // RW3
1233 // RW3
1234 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1234 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f1, deltaF, filterPar.sy_lfr_rw3_k1 );
1235 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1235 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f2, deltaF, filterPar.sy_lfr_rw3_k2 );
1236 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1236 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f3, deltaF, filterPar.sy_lfr_rw3_k3 );
1237 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1237 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw3_f4, deltaF, filterPar.sy_lfr_rw3_k4 );
1238
1238
1239 // RW4
1239 // RW4
1240 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1240 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f1, deltaF, filterPar.sy_lfr_rw4_k1 );
1241 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1241 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f2, deltaF, filterPar.sy_lfr_rw4_k2 );
1242 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1242 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f3, deltaF, filterPar.sy_lfr_rw4_k3 );
1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1243 setFBinMask( local_rw_fbins_mask, rw_f.cp_rpw_sc_rw4_f4, deltaF, filterPar.sy_lfr_rw4_k4 );
1244
1244
1245 // update the value of the fbins related to reaction wheels frequency filtering
1245 // update the value of the fbins related to reaction wheels frequency filtering
1246 if (maskPtr != NULL)
1246 if (maskPtr != NULL)
1247 {
1247 {
1248 for (k = 0; k < BYTES_PER_MASK; k++)
1248 for (k = 0; k < BYTES_PER_MASK; k++)
1249 {
1249 {
1250 maskPtr[k] = local_rw_fbins_mask[k];
1250 maskPtr[k] = local_rw_fbins_mask[k];
1251 }
1251 }
1252 }
1252 }
1253 }
1253 }
1254
1254
1255 void build_sy_lfr_rw_masks( void )
1255 void build_sy_lfr_rw_masks( void )
1256 {
1256 {
1257 build_sy_lfr_rw_mask( CHANNELF0 );
1257 build_sy_lfr_rw_mask( CHANNELF0 );
1258 build_sy_lfr_rw_mask( CHANNELF1 );
1258 build_sy_lfr_rw_mask( CHANNELF1 );
1259 build_sy_lfr_rw_mask( CHANNELF2 );
1259 build_sy_lfr_rw_mask( CHANNELF2 );
1260 }
1260 }
1261
1261
1262 void merge_fbins_masks( void )
1262 void merge_fbins_masks( void )
1263 {
1263 {
1264 unsigned char k;
1264 unsigned char k;
1265
1265
1266 unsigned char *fbins_f0;
1266 unsigned char *fbins_f0;
1267 unsigned char *fbins_f1;
1267 unsigned char *fbins_f1;
1268 unsigned char *fbins_f2;
1268 unsigned char *fbins_f2;
1269 unsigned char *rw_mask_f0;
1269 unsigned char *rw_mask_f0;
1270 unsigned char *rw_mask_f1;
1270 unsigned char *rw_mask_f1;
1271 unsigned char *rw_mask_f2;
1271 unsigned char *rw_mask_f2;
1272
1272
1273 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1273 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1274 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1274 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1275 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1275 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1276 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1276 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1277 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1277 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1278 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1278 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1279
1279
1280 for( k=0; k < BYTES_PER_MASK; k++ )
1280 for( k=0; k < BYTES_PER_MASK; k++ )
1281 {
1281 {
1282 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1282 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1283 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1283 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1284 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1284 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1285 }
1285 }
1286 }
1286 }
1287
1287
1288 //***********
1288 //***********
1289 // FBINS MASK
1289 // FBINS MASK
1290
1290
1291 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1291 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1292 {
1292 {
1293 int status;
1293 int status;
1294 unsigned int k;
1294 unsigned int k;
1295 unsigned char *fbins_mask_dump;
1295 unsigned char *fbins_mask_dump;
1296 unsigned char *fbins_mask_TC;
1296 unsigned char *fbins_mask_TC;
1297
1297
1298 status = LFR_SUCCESSFUL;
1298 status = LFR_SUCCESSFUL;
1299
1299
1300 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1300 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1301 fbins_mask_TC = TC->dataAndCRC;
1301 fbins_mask_TC = TC->dataAndCRC;
1302
1302
1303 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1303 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1304 {
1304 {
1305 fbins_mask_dump[k] = fbins_mask_TC[k];
1305 fbins_mask_dump[k] = fbins_mask_TC[k];
1306 }
1306 }
1307
1307
1308 return status;
1308 return status;
1309 }
1309 }
1310
1310
1311 //***************************
1311 //***************************
1312 // TC_LFR_LOAD_PAS_FILTER_PAR
1312 // TC_LFR_LOAD_PAS_FILTER_PAR
1313
1313
1314 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1314 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1315 {
1315 {
1316 int flag;
1316 int flag;
1317 rtems_status_code status;
1317 rtems_status_code status;
1318
1318
1319 unsigned char sy_lfr_pas_filter_enabled;
1319 unsigned char sy_lfr_pas_filter_enabled;
1320 unsigned char sy_lfr_pas_filter_modulus;
1320 unsigned char sy_lfr_pas_filter_modulus;
1321 float sy_lfr_pas_filter_tbad;
1321 float sy_lfr_pas_filter_tbad;
1322 unsigned char sy_lfr_pas_filter_offset;
1322 unsigned char sy_lfr_pas_filter_offset;
1323 float sy_lfr_pas_filter_shift;
1323 float sy_lfr_pas_filter_shift;
1324 float sy_lfr_sc_rw_delta_f;
1324 float sy_lfr_sc_rw_delta_f;
1325 char *parPtr;
1325 char *parPtr;
1326
1326
1327 flag = LFR_SUCCESSFUL;
1327 flag = LFR_SUCCESSFUL;
1328 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1328 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1329 sy_lfr_pas_filter_shift = INIT_FLOAT;
1329 sy_lfr_pas_filter_shift = INIT_FLOAT;
1330 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1330 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1331 parPtr = NULL;
1331 parPtr = NULL;
1332
1332
1333 //***************
1333 //***************
1334 // get parameters
1334 // get parameters
1335 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1335 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1336 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1336 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1337 copyFloatByChar(
1337 copyFloatByChar(
1338 (unsigned char*) &sy_lfr_pas_filter_tbad,
1338 (unsigned char*) &sy_lfr_pas_filter_tbad,
1339 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1339 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1340 );
1340 );
1341 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1341 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1342 copyFloatByChar(
1342 copyFloatByChar(
1343 (unsigned char*) &sy_lfr_pas_filter_shift,
1343 (unsigned char*) &sy_lfr_pas_filter_shift,
1344 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1344 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1345 );
1345 );
1346 copyFloatByChar(
1346 copyFloatByChar(
1347 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1347 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1348 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1348 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1349 );
1349 );
1350
1350
1351 //******************
1351 //******************
1352 // CHECK CONSISTENCY
1352 // CHECK CONSISTENCY
1353
1353
1354 //**************************
1354 //**************************
1355 // sy_lfr_pas_filter_enabled
1355 // sy_lfr_pas_filter_enabled
1356 // nothing to check, value is 0 or 1
1356 // nothing to check, value is 0 or 1
1357
1357
1358 //**************************
1358 //**************************
1359 // sy_lfr_pas_filter_modulus
1359 // sy_lfr_pas_filter_modulus
1360 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1360 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1361 {
1361 {
1362 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1362 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1363 flag = WRONG_APP_DATA;
1363 flag = WRONG_APP_DATA;
1364 }
1364 }
1365
1365
1366 //***********************
1366 //***********************
1367 // sy_lfr_pas_filter_tbad
1367 // sy_lfr_pas_filter_tbad
1368 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1368 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1369 {
1369 {
1370 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1370 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1371 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1371 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1372 flag = WRONG_APP_DATA;
1372 flag = WRONG_APP_DATA;
1373 }
1373 }
1374
1374
1375 //*************************
1375 //*************************
1376 // sy_lfr_pas_filter_offset
1376 // sy_lfr_pas_filter_offset
1377 if (flag == LFR_SUCCESSFUL)
1377 if (flag == LFR_SUCCESSFUL)
1378 {
1378 {
1379 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1379 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1380 {
1380 {
1381 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1381 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1382 flag = WRONG_APP_DATA;
1382 flag = WRONG_APP_DATA;
1383 }
1383 }
1384 }
1384 }
1385
1385
1386 //************************
1386 //************************
1387 // sy_lfr_pas_filter_shift
1387 // sy_lfr_pas_filter_shift
1388 if (flag == LFR_SUCCESSFUL)
1388 if (flag == LFR_SUCCESSFUL)
1389 {
1389 {
1390 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1390 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1391 {
1391 {
1392 parPtr = (char*) &sy_lfr_pas_filter_shift;
1392 parPtr = (char*) &sy_lfr_pas_filter_shift;
1393 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1393 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1394 flag = WRONG_APP_DATA;
1394 flag = WRONG_APP_DATA;
1395 }
1395 }
1396 }
1396 }
1397
1397
1398 //*************************************
1398 //*************************************
1399 // check global coherency of the values
1399 // check global coherency of the values
1400 if (flag == LFR_SUCCESSFUL)
1400 if (flag == LFR_SUCCESSFUL)
1401 {
1401 {
1402 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1402 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1403 {
1403 {
1404 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1404 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1405 flag = WRONG_APP_DATA;
1405 flag = WRONG_APP_DATA;
1406 }
1406 }
1407 }
1407 }
1408
1408
1409 //*********************
1409 //*********************
1410 // sy_lfr_sc_rw_delta_f
1410 // sy_lfr_sc_rw_delta_f
1411 // nothing to check, no default value in the ICD
1411 // nothing to check, no default value in the ICD
1412
1412
1413 return flag;
1413 return flag;
1414 }
1414 }
1415
1415
1416 //**************
1416 //**************
1417 // KCOEFFICIENTS
1417 // KCOEFFICIENTS
1418 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1418 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1419 {
1419 {
1420 unsigned int kcoeff;
1420 unsigned int kcoeff;
1421 unsigned short sy_lfr_kcoeff_frequency;
1421 unsigned short sy_lfr_kcoeff_frequency;
1422 unsigned short bin;
1422 unsigned short bin;
1423 float *kcoeffPtr_norm;
1423 float *kcoeffPtr_norm;
1424 float *kcoeffPtr_sbm;
1424 float *kcoeffPtr_sbm;
1425 int status;
1425 int status;
1426 unsigned char *kcoeffLoadPtr;
1426 unsigned char *kcoeffLoadPtr;
1427 unsigned char *kcoeffNormPtr;
1427 unsigned char *kcoeffNormPtr;
1428 unsigned char *kcoeffSbmPtr_a;
1428 unsigned char *kcoeffSbmPtr_a;
1429 unsigned char *kcoeffSbmPtr_b;
1429 unsigned char *kcoeffSbmPtr_b;
1430
1430
1431 sy_lfr_kcoeff_frequency = 0;
1431 sy_lfr_kcoeff_frequency = 0;
1432 bin = 0;
1432 bin = 0;
1433 kcoeffPtr_norm = NULL;
1433 kcoeffPtr_norm = NULL;
1434 kcoeffPtr_sbm = NULL;
1434 kcoeffPtr_sbm = NULL;
1435 status = LFR_SUCCESSFUL;
1435 status = LFR_SUCCESSFUL;
1436
1436
1437 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1437 // copy the value of the frequency byte by byte DO NOT USE A SHORT* POINTER
1438 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1438 copyInt16ByChar( (unsigned char*) &sy_lfr_kcoeff_frequency, &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY] );
1439
1439
1440
1440
1441 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1441 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1442 {
1442 {
1443 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1443 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1444 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1444 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1445 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1445 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1446 status = LFR_DEFAULT;
1446 status = LFR_DEFAULT;
1447 }
1447 }
1448 else
1448 else
1449 {
1449 {
1450 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1450 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1451 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1451 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1452 {
1452 {
1453 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1453 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1454 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1454 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1455 bin = sy_lfr_kcoeff_frequency;
1455 bin = sy_lfr_kcoeff_frequency;
1456 }
1456 }
1457 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1457 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1458 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1458 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1459 {
1459 {
1460 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1460 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1461 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1461 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1462 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1462 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1463 }
1463 }
1464 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1464 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1465 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1465 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1466 {
1466 {
1467 kcoeffPtr_norm = k_coeff_intercalib_f2;
1467 kcoeffPtr_norm = k_coeff_intercalib_f2;
1468 kcoeffPtr_sbm = NULL;
1468 kcoeffPtr_sbm = NULL;
1469 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1469 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1470 }
1470 }
1471 }
1471 }
1472
1472
1473 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1473 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1474 {
1474 {
1475 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1475 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1476 {
1476 {
1477 // destination
1477 // destination
1478 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1478 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1479 // source
1479 // source
1480 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1480 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1481 // copy source to destination
1481 // copy source to destination
1482 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1482 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1483 }
1483 }
1484 }
1484 }
1485
1485
1486 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1486 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1487 {
1487 {
1488 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1488 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1489 {
1489 {
1490 // destination
1490 // destination
1491 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1491 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1492 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1492 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1493 // source
1493 // source
1494 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1494 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1495 // copy source to destination
1495 // copy source to destination
1496 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1496 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1497 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1497 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1498 }
1498 }
1499 }
1499 }
1500
1500
1501 // print_k_coeff();
1501 // print_k_coeff();
1502
1502
1503 return status;
1503 return status;
1504 }
1504 }
1505
1505
1506 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1506 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1507 {
1507 {
1508 destination[BYTE_0] = source[BYTE_0];
1508 destination[BYTE_0] = source[BYTE_0];
1509 destination[BYTE_1] = source[BYTE_1];
1509 destination[BYTE_1] = source[BYTE_1];
1510 destination[BYTE_2] = source[BYTE_2];
1510 destination[BYTE_2] = source[BYTE_2];
1511 destination[BYTE_3] = source[BYTE_3];
1511 destination[BYTE_3] = source[BYTE_3];
1512 }
1512 }
1513
1513
1514 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1514 void copyInt32ByChar( unsigned char *destination, unsigned char *source )
1515 {
1515 {
1516 destination[BYTE_0] = source[BYTE_0];
1516 destination[BYTE_0] = source[BYTE_0];
1517 destination[BYTE_1] = source[BYTE_1];
1517 destination[BYTE_1] = source[BYTE_1];
1518 destination[BYTE_2] = source[BYTE_2];
1518 destination[BYTE_2] = source[BYTE_2];
1519 destination[BYTE_3] = source[BYTE_3];
1519 destination[BYTE_3] = source[BYTE_3];
1520 }
1520 }
1521
1521
1522 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1522 void copyInt16ByChar( unsigned char *destination, unsigned char *source )
1523 {
1523 {
1524 destination[BYTE_0] = source[BYTE_0];
1524 destination[BYTE_0] = source[BYTE_0];
1525 destination[BYTE_1] = source[BYTE_1];
1525 destination[BYTE_1] = source[BYTE_1];
1526 }
1526 }
1527
1527
1528 void floatToChar( float value, unsigned char* ptr)
1528 void floatToChar( float value, unsigned char* ptr)
1529 {
1529 {
1530 unsigned char* valuePtr;
1530 unsigned char* valuePtr;
1531
1531
1532 valuePtr = (unsigned char*) &value;
1532 valuePtr = (unsigned char*) &value;
1533
1533
1534 ptr[BYTE_0] = valuePtr[BYTE_0];
1534 ptr[BYTE_0] = valuePtr[BYTE_0];
1535 ptr[BYTE_1] = valuePtr[BYTE_1];
1535 ptr[BYTE_1] = valuePtr[BYTE_1];
1536 ptr[BYTE_2] = valuePtr[BYTE_2];
1536 ptr[BYTE_2] = valuePtr[BYTE_2];
1537 ptr[BYTE_3] = valuePtr[BYTE_3];
1537 ptr[BYTE_3] = valuePtr[BYTE_3];
1538
1539 // <TEST>
1540 printf("\n\n<TEST>\n");
1541
1542 float aux = NAN;
1543 unsigned char* auxPtr;
1544 auxPtr = (unsigned char*) &aux;
1545
1546 printf("aux = %f, value = %f\n", aux, value);
1547
1548 auxPtr[BYTE_0] = valuePtr[BYTE_0];
1549 auxPtr[BYTE_1] = valuePtr[BYTE_1];
1550 auxPtr[BYTE_2] = valuePtr[BYTE_2];
1551 auxPtr[BYTE_3] = valuePtr[BYTE_3];
1552
1553 printf("aux = %f\n", aux);
1554 // </TEST>
1555 }
1538 }
1556
1539
1557 //**********
1540 //**********
1558 // init dump
1541 // init dump
1559
1542
1560 void init_parameter_dump( void )
1543 void init_parameter_dump( void )
1561 {
1544 {
1562 /** This function initialize the parameter_dump_packet global variable with default values.
1545 /** This function initialize the parameter_dump_packet global variable with default values.
1563 *
1546 *
1564 */
1547 */
1565
1548
1566 unsigned int k;
1549 unsigned int k;
1567
1550
1568 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1551 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1569 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1552 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1570 parameter_dump_packet.reserved = CCSDS_RESERVED;
1553 parameter_dump_packet.reserved = CCSDS_RESERVED;
1571 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1554 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1572 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1555 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1573 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1556 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1574 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1557 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1575 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1558 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1576 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1559 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1577 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1560 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1578 // DATA FIELD HEADER
1561 // DATA FIELD HEADER
1579 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1562 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1580 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1563 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1581 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1564 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1582 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1565 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1583 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1566 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1584 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1567 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1585 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1568 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1586 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1569 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1587 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1570 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1588 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1571 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1589 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1572 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1590
1573
1591 //******************
1574 //******************
1592 // COMMON PARAMETERS
1575 // COMMON PARAMETERS
1593 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1576 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1594 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1577 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1595
1578
1596 //******************
1579 //******************
1597 // NORMAL PARAMETERS
1580 // NORMAL PARAMETERS
1598 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1581 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1599 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1582 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1600 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1583 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1601 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1584 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1602 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1585 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1603 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1586 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1604 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1587 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1605 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1588 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1606 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1589 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1607
1590
1608 //*****************
1591 //*****************
1609 // BURST PARAMETERS
1592 // BURST PARAMETERS
1610 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1593 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1611 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1594 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1612
1595
1613 //****************
1596 //****************
1614 // SBM1 PARAMETERS
1597 // SBM1 PARAMETERS
1615 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1598 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1616 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1599 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1617
1600
1618 //****************
1601 //****************
1619 // SBM2 PARAMETERS
1602 // SBM2 PARAMETERS
1620 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1603 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1621 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1604 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1622
1605
1623 //************
1606 //************
1624 // FBINS MASKS
1607 // FBINS MASKS
1625 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1608 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1626 {
1609 {
1627 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1610 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1628 }
1611 }
1629
1612
1630 // PAS FILTER PARAMETERS
1613 // PAS FILTER PARAMETERS
1631 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1614 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1632 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1615 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1633 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1616 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1634 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1617 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1635 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1618 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1636 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1619 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1637 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1620 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1638
1621
1639 // RW1_K
1622 // RW1_K
1640 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1623 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw1_k1);
1641 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1624 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw1_k2);
1642 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1625 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw1_k3);
1643 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1626 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw1_k4);
1644 // RW2_K
1627 // RW2_K
1645 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1628 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw2_k1);
1646 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1629 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw2_k2);
1647 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1630 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw2_k3);
1648 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1631 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw2_k4);
1649 // RW3_K
1632 // RW3_K
1650 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1633 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw3_k1);
1651 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1634 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw3_k2);
1652 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1635 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw3_k3);
1653 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1636 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw3_k4);
1654 // RW4_K
1637 // RW4_K
1655 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1638 floatToChar( DEFAULT_SY_LFR_RW_K1, parameter_dump_packet.sy_lfr_rw4_k1);
1656 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1639 floatToChar( DEFAULT_SY_LFR_RW_K2, parameter_dump_packet.sy_lfr_rw4_k2);
1657 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1640 floatToChar( DEFAULT_SY_LFR_RW_K3, parameter_dump_packet.sy_lfr_rw4_k3);
1658 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1641 floatToChar( DEFAULT_SY_LFR_RW_K4, parameter_dump_packet.sy_lfr_rw4_k4);
1659
1642
1660 // LFR_RW_MASK
1643 // LFR_RW_MASK
1661 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1644 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1662 {
1645 {
1663 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1646 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1664 }
1647 }
1665
1648
1666 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1649 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1667 merge_fbins_masks();
1650 merge_fbins_masks();
1668 }
1651 }
1669
1652
1670 void init_kcoefficients_dump( void )
1653 void init_kcoefficients_dump( void )
1671 {
1654 {
1672 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1655 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1673 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1656 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1674
1657
1675 kcoefficient_node_1.previous = NULL;
1658 kcoefficient_node_1.previous = NULL;
1676 kcoefficient_node_1.next = NULL;
1659 kcoefficient_node_1.next = NULL;
1677 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1660 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1678 kcoefficient_node_1.coarseTime = INIT_CHAR;
1661 kcoefficient_node_1.coarseTime = INIT_CHAR;
1679 kcoefficient_node_1.fineTime = INIT_CHAR;
1662 kcoefficient_node_1.fineTime = INIT_CHAR;
1680 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1663 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1681 kcoefficient_node_1.status = INIT_CHAR;
1664 kcoefficient_node_1.status = INIT_CHAR;
1682
1665
1683 kcoefficient_node_2.previous = NULL;
1666 kcoefficient_node_2.previous = NULL;
1684 kcoefficient_node_2.next = NULL;
1667 kcoefficient_node_2.next = NULL;
1685 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1668 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1686 kcoefficient_node_2.coarseTime = INIT_CHAR;
1669 kcoefficient_node_2.coarseTime = INIT_CHAR;
1687 kcoefficient_node_2.fineTime = INIT_CHAR;
1670 kcoefficient_node_2.fineTime = INIT_CHAR;
1688 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1671 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1689 kcoefficient_node_2.status = INIT_CHAR;
1672 kcoefficient_node_2.status = INIT_CHAR;
1690 }
1673 }
1691
1674
1692 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1675 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1693 {
1676 {
1694 unsigned int k;
1677 unsigned int k;
1695 unsigned int packetLength;
1678 unsigned int packetLength;
1696
1679
1697 packetLength =
1680 packetLength =
1698 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1681 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1699
1682
1700 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1683 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1701 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1684 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1702 kcoefficients_dump->reserved = CCSDS_RESERVED;
1685 kcoefficients_dump->reserved = CCSDS_RESERVED;
1703 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1686 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1704 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1687 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1705 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1688 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1706 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1689 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1707 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1690 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1708 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1691 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1709 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1692 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1710 // DATA FIELD HEADER
1693 // DATA FIELD HEADER
1711 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1694 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1712 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1695 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1713 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1696 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1714 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1697 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1715 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1698 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1716 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1699 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1717 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1700 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1718 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1701 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1719 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1702 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1720 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1703 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1721 kcoefficients_dump->sid = SID_K_DUMP;
1704 kcoefficients_dump->sid = SID_K_DUMP;
1722
1705
1723 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1706 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1724 kcoefficients_dump->pkt_nr = PKTNR_1;
1707 kcoefficients_dump->pkt_nr = PKTNR_1;
1725 kcoefficients_dump->blk_nr = blk_nr;
1708 kcoefficients_dump->blk_nr = blk_nr;
1726
1709
1727 //******************
1710 //******************
1728 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1711 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1729 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1712 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1730 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1713 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1731 {
1714 {
1732 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1715 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1733 }
1716 }
1734 }
1717 }
1735
1718
1736 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1719 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1737 {
1720 {
1738 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1721 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1739 *
1722 *
1740 * @param packet_sequence_control points to the packet sequence control which will be incremented
1723 * @param packet_sequence_control points to the packet sequence control which will be incremented
1741 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1724 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1742 *
1725 *
1743 * If the destination ID is not known, a dedicated counter is incremented.
1726 * If the destination ID is not known, a dedicated counter is incremented.
1744 *
1727 *
1745 */
1728 */
1746
1729
1747 unsigned short sequence_cnt;
1730 unsigned short sequence_cnt;
1748 unsigned short segmentation_grouping_flag;
1731 unsigned short segmentation_grouping_flag;
1749 unsigned short new_packet_sequence_control;
1732 unsigned short new_packet_sequence_control;
1750 unsigned char i;
1733 unsigned char i;
1751
1734
1752 switch (destination_id)
1735 switch (destination_id)
1753 {
1736 {
1754 case SID_TC_GROUND:
1737 case SID_TC_GROUND:
1755 i = GROUND;
1738 i = GROUND;
1756 break;
1739 break;
1757 case SID_TC_MISSION_TIMELINE:
1740 case SID_TC_MISSION_TIMELINE:
1758 i = MISSION_TIMELINE;
1741 i = MISSION_TIMELINE;
1759 break;
1742 break;
1760 case SID_TC_TC_SEQUENCES:
1743 case SID_TC_TC_SEQUENCES:
1761 i = TC_SEQUENCES;
1744 i = TC_SEQUENCES;
1762 break;
1745 break;
1763 case SID_TC_RECOVERY_ACTION_CMD:
1746 case SID_TC_RECOVERY_ACTION_CMD:
1764 i = RECOVERY_ACTION_CMD;
1747 i = RECOVERY_ACTION_CMD;
1765 break;
1748 break;
1766 case SID_TC_BACKUP_MISSION_TIMELINE:
1749 case SID_TC_BACKUP_MISSION_TIMELINE:
1767 i = BACKUP_MISSION_TIMELINE;
1750 i = BACKUP_MISSION_TIMELINE;
1768 break;
1751 break;
1769 case SID_TC_DIRECT_CMD:
1752 case SID_TC_DIRECT_CMD:
1770 i = DIRECT_CMD;
1753 i = DIRECT_CMD;
1771 break;
1754 break;
1772 case SID_TC_SPARE_GRD_SRC1:
1755 case SID_TC_SPARE_GRD_SRC1:
1773 i = SPARE_GRD_SRC1;
1756 i = SPARE_GRD_SRC1;
1774 break;
1757 break;
1775 case SID_TC_SPARE_GRD_SRC2:
1758 case SID_TC_SPARE_GRD_SRC2:
1776 i = SPARE_GRD_SRC2;
1759 i = SPARE_GRD_SRC2;
1777 break;
1760 break;
1778 case SID_TC_OBCP:
1761 case SID_TC_OBCP:
1779 i = OBCP;
1762 i = OBCP;
1780 break;
1763 break;
1781 case SID_TC_SYSTEM_CONTROL:
1764 case SID_TC_SYSTEM_CONTROL:
1782 i = SYSTEM_CONTROL;
1765 i = SYSTEM_CONTROL;
1783 break;
1766 break;
1784 case SID_TC_AOCS:
1767 case SID_TC_AOCS:
1785 i = AOCS;
1768 i = AOCS;
1786 break;
1769 break;
1787 case SID_TC_RPW_INTERNAL:
1770 case SID_TC_RPW_INTERNAL:
1788 i = RPW_INTERNAL;
1771 i = RPW_INTERNAL;
1789 break;
1772 break;
1790 default:
1773 default:
1791 i = GROUND;
1774 i = GROUND;
1792 break;
1775 break;
1793 }
1776 }
1794
1777
1795 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1778 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1796 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1779 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1797
1780
1798 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1781 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1799
1782
1800 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1783 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1801 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1784 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1802
1785
1803 // increment the sequence counter
1786 // increment the sequence counter
1804 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1787 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1805 {
1788 {
1806 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1789 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1807 }
1790 }
1808 else
1791 else
1809 {
1792 {
1810 sequenceCounters_TM_DUMP[ i ] = 0;
1793 sequenceCounters_TM_DUMP[ i ] = 0;
1811 }
1794 }
1812 }
1795 }
General Comments 0
You need to be logged in to leave comments. Login now