##// END OF EJS Templates
Integration of basic parameters functions in the flight software...
paul -
r179:f0fdfd2b8c4c VHDL_0_1_28
parent child
Show More
@@ -0,0 +1,191
1 # This file was generated by an application wizard of Qt Creator.
2 # The code below handles deployment to Android and Maemo, aswell as copying
3 # of the application data to shadow build directories on desktop.
4 # It is recommended not to modify this file, since newer versions of Qt Creator
5 # may offer an updated version of it.
6
7 defineTest(qtcAddDeployment) {
8 for(deploymentfolder, DEPLOYMENTFOLDERS) {
9 item = item$${deploymentfolder}
10 greaterThan(QT_MAJOR_VERSION, 4) {
11 itemsources = $${item}.files
12 } else {
13 itemsources = $${item}.sources
14 }
15 $$itemsources = $$eval($${deploymentfolder}.source)
16 itempath = $${item}.path
17 $$itempath= $$eval($${deploymentfolder}.target)
18 export($$itemsources)
19 export($$itempath)
20 DEPLOYMENT += $$item
21 }
22
23 MAINPROFILEPWD = $$PWD
24
25 android-no-sdk {
26 for(deploymentfolder, DEPLOYMENTFOLDERS) {
27 item = item$${deploymentfolder}
28 itemfiles = $${item}.files
29 $$itemfiles = $$eval($${deploymentfolder}.source)
30 itempath = $${item}.path
31 $$itempath = /data/user/qt/$$eval($${deploymentfolder}.target)
32 export($$itemfiles)
33 export($$itempath)
34 INSTALLS += $$item
35 }
36
37 target.path = /data/user/qt
38
39 export(target.path)
40 INSTALLS += target
41 } else:android {
42 for(deploymentfolder, DEPLOYMENTFOLDERS) {
43 item = item$${deploymentfolder}
44 itemfiles = $${item}.files
45 $$itemfiles = $$eval($${deploymentfolder}.source)
46 itempath = $${item}.path
47 $$itempath = /assets/$$eval($${deploymentfolder}.target)
48 export($$itemfiles)
49 export($$itempath)
50 INSTALLS += $$item
51 }
52
53 x86 {
54 target.path = /libs/x86
55 } else: armeabi-v7a {
56 target.path = /libs/armeabi-v7a
57 } else {
58 target.path = /libs/armeabi
59 }
60
61 export(target.path)
62 INSTALLS += target
63 } else:win32 {
64 copyCommand =
65 for(deploymentfolder, DEPLOYMENTFOLDERS) {
66 source = $$MAINPROFILEPWD/$$eval($${deploymentfolder}.source)
67 source = $$replace(source, /, \\)
68 sourcePathSegments = $$split(source, \\)
69 target = $$OUT_PWD/$$eval($${deploymentfolder}.target)/$$last(sourcePathSegments)
70 target = $$replace(target, /, \\)
71 target ~= s,\\\\\\.?\\\\,\\,
72 !isEqual(source,$$target) {
73 !isEmpty(copyCommand):copyCommand += &&
74 isEqual(QMAKE_DIR_SEP, \\) {
75 copyCommand += $(COPY_DIR) \"$$source\" \"$$target\"
76 } else {
77 source = $$replace(source, \\\\, /)
78 target = $$OUT_PWD/$$eval($${deploymentfolder}.target)
79 target = $$replace(target, \\\\, /)
80 copyCommand += test -d \"$$target\" || mkdir -p \"$$target\" && cp -r \"$$source\" \"$$target\"
81 }
82 }
83 }
84 !isEmpty(copyCommand) {
85 copyCommand = @echo Copying application data... && $$copyCommand
86 copydeploymentfolders.commands = $$copyCommand
87 first.depends = $(first) copydeploymentfolders
88 export(first.depends)
89 export(copydeploymentfolders.commands)
90 QMAKE_EXTRA_TARGETS += first copydeploymentfolders
91 }
92 } else:ios {
93 copyCommand =
94 for(deploymentfolder, DEPLOYMENTFOLDERS) {
95 source = $$MAINPROFILEPWD/$$eval($${deploymentfolder}.source)
96 source = $$replace(source, \\\\, /)
97 target = $CODESIGNING_FOLDER_PATH/$$eval($${deploymentfolder}.target)
98 target = $$replace(target, \\\\, /)
99 sourcePathSegments = $$split(source, /)
100 targetFullPath = $$target/$$last(sourcePathSegments)
101 targetFullPath ~= s,/\\.?/,/,
102 !isEqual(source,$$targetFullPath) {
103 !isEmpty(copyCommand):copyCommand += &&
104 copyCommand += mkdir -p \"$$target\"
105 copyCommand += && cp -r \"$$source\" \"$$target\"
106 }
107 }
108 !isEmpty(copyCommand) {
109 copyCommand = echo Copying application data... && $$copyCommand
110 !isEmpty(QMAKE_POST_LINK): QMAKE_POST_LINK += ";"
111 QMAKE_POST_LINK += "$$copyCommand"
112 export(QMAKE_POST_LINK)
113 }
114 } else:unix {
115 maemo5 {
116 desktopfile.files = $${TARGET}.desktop
117 desktopfile.path = /usr/share/applications/hildon
118 icon.files = $${TARGET}64.png
119 icon.path = /usr/share/icons/hicolor/64x64/apps
120 } else:!isEmpty(MEEGO_VERSION_MAJOR) {
121 desktopfile.files = $${TARGET}_harmattan.desktop
122 desktopfile.path = /usr/share/applications
123 icon.files = $${TARGET}80.png
124 icon.path = /usr/share/icons/hicolor/80x80/apps
125 } else { # Assumed to be a Desktop Unix
126 copyCommand =
127 for(deploymentfolder, DEPLOYMENTFOLDERS) {
128 source = $$MAINPROFILEPWD/$$eval($${deploymentfolder}.source)
129 source = $$replace(source, \\\\, /)
130 macx {
131 target = $$OUT_PWD/$${TARGET}.app/Contents/Resources/$$eval($${deploymentfolder}.target)
132 } else {
133 target = $$OUT_PWD/$$eval($${deploymentfolder}.target)
134 }
135 target = $$replace(target, \\\\, /)
136 sourcePathSegments = $$split(source, /)
137 targetFullPath = $$target/$$last(sourcePathSegments)
138 targetFullPath ~= s,/\\.?/,/,
139 !isEqual(source,$$targetFullPath) {
140 !isEmpty(copyCommand):copyCommand += &&
141 copyCommand += $(MKDIR) \"$$target\"
142 copyCommand += && $(COPY_DIR) \"$$source\" \"$$target\"
143 }
144 }
145 !isEmpty(copyCommand) {
146 copyCommand = @echo Copying application data... && $$copyCommand
147 copydeploymentfolders.commands = $$copyCommand
148 first.depends = $(first) copydeploymentfolders
149 export(first.depends)
150 export(copydeploymentfolders.commands)
151 QMAKE_EXTRA_TARGETS += first copydeploymentfolders
152 }
153 }
154 !isEmpty(target.path) {
155 installPrefix = $${target.path}
156 } else {
157 installPrefix = /opt/$${TARGET}
158 }
159 for(deploymentfolder, DEPLOYMENTFOLDERS) {
160 item = item$${deploymentfolder}
161 itemfiles = $${item}.files
162 $$itemfiles = $$eval($${deploymentfolder}.source)
163 itempath = $${item}.path
164 $$itempath = $${installPrefix}/$$eval($${deploymentfolder}.target)
165 export($$itemfiles)
166 export($$itempath)
167 INSTALLS += $$item
168 }
169
170 !isEmpty(desktopfile.path) {
171 export(icon.files)
172 export(icon.path)
173 export(desktopfile.files)
174 export(desktopfile.path)
175 INSTALLS += icon desktopfile
176 }
177
178 isEmpty(target.path) {
179 target.path = $${installPrefix}/bin
180 export(target.path)
181 }
182 INSTALLS += target
183 }
184
185 export (ICON)
186 export (INSTALLS)
187 export (DEPLOYMENT)
188 export (LIBS)
189 export (QMAKE_EXTRA_TARGETS)
190 }
191
@@ -0,0 +1,13
1 TEMPLATE = app
2 CONFIG += console
3 CONFIG -= app_bundle
4 CONFIG -= qt
5
6 SOURCES += main.c
7
8 include(deployment.pri)
9 qtcAddDeployment()
10
11 HEADERS += \
12 functions.h
13
@@ -0,0 +1,65
1 #define NB_VALUES_PER_SM 25
2 #define NB_BINS_PER_SM 128
3
4 #define NB_BINS_COMPRESSED_SM_F0 11
5 #define ASM_F0_INDICE_START 17 // 88 bins
6 #define ASM_F0_INDICE_STOP 104 // 2 packets of 44 bins
7 #define NB_BINS_TO_AVERAGE_ASM_F0 8
8
9 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
10 {
11 int frequencyBin;
12 int asmComponent;
13 unsigned int offsetASM;
14 unsigned int offsetASMReorganized;
15
16 // BUILD DATA
17 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
18 {
19 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
20 {
21 offsetASMReorganized =
22 frequencyBin * NB_VALUES_PER_SM
23 + asmComponent;
24 offsetASM =
25 asmComponent * NB_BINS_PER_SM
26 + frequencyBin;
27 averaged_spec_mat_reorganized[offsetASMReorganized ] =
28 averaged_spec_mat[ offsetASM ] / divider;
29 }
30 }
31 }
32
33 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
34 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
35 {
36 int frequencyBin;
37 int asmComponent;
38 int offsetASM;
39 int offsetCompressed;
40 int k;
41
42 // BUILD DATA
43 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
44 {
45 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
46 {
47 offsetCompressed = // NO TIME OFFSET
48 frequencyBin * NB_VALUES_PER_SM
49 + asmComponent;
50 offsetASM = // NO TIME OFFSET
51 asmComponent * NB_BINS_PER_SM
52 + ASMIndexStart
53 + frequencyBin * nbBinsToAverage;
54 compressed_spec_mat[ offsetCompressed ] = 0;
55 for ( k = 0; k < nbBinsToAverage; k++ )
56 {
57 compressed_spec_mat[offsetCompressed ] =
58 ( compressed_spec_mat[ offsetCompressed ]
59 + averaged_spec_mat[ offsetASM + k ] );
60 }
61 compressed_spec_mat[ offsetCompressed ] =
62 compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
63 }
64 }
65 }
@@ -0,0 +1,64
1 #include <stdio.h>
2
3 #include "functions.h"
4
5 int main(void)
6 {
7 printf("Hello World!\n");
8
9 unsigned int asmComponent;
10 unsigned int frequencyBin;
11 unsigned int offset_input_ASM;
12
13 float input_ASM [ NB_VALUES_PER_SM * NB_BINS_PER_SM ];
14 float output_ASM [ NB_VALUES_PER_SM * NB_BINS_PER_SM ];
15 float output_ASM_compressed [ NB_VALUES_PER_SM * NB_BINS_COMPRESSED_SM_F0 ];
16
17 //*******
18 // TEST 1
19
20 offset_input_ASM = 0;
21
22 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
23 {
24 for (frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++)
25 {
26 offset_input_ASM = asmComponent * NB_BINS_PER_SM + frequencyBin;
27 input_ASM[ offset_input_ASM ] = asmComponent;
28 }
29 }
30
31 ASM_reorganize_and_divide( input_ASM, output_ASM,
32 1 ); // divider
33
34 ASM_compress_reorganize_and_divide( input_ASM, output_ASM_compressed,
35 1, // divider
36 NB_BINS_COMPRESSED_SM_F0,
37 NB_BINS_TO_AVERAGE_ASM_F0,
38 ASM_F0_INDICE_START);
39
40 //*******
41 // TEST 2
42 offset_input_ASM = 0;
43
44 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
45 {
46 for (frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++)
47 {
48 offset_input_ASM = asmComponent * NB_BINS_PER_SM + frequencyBin;
49 input_ASM[ offset_input_ASM ] = asmComponent * NB_BINS_PER_SM + frequencyBin;
50 }
51 }
52
53 ASM_reorganize_and_divide( input_ASM, output_ASM,
54 1 ); // divider
55
56 ASM_compress_reorganize_and_divide( input_ASM, output_ASM_compressed,
57 10, // divider
58 NB_BINS_COMPRESSED_SM_F0,
59 NB_BINS_TO_AVERAGE_ASM_F0,
60 ASM_F0_INDICE_START);
61
62 return 0;
63 }
64
@@ -1,2 +1,2
1 19349b3a5e90c2bacc9d369aa948c68aa9e8d5f0 LFR_basic-parameters
1 a309a930a482e851061936696121f4a1cf7005de LFR_basic-parameters
2 da5613aff4446e5c98b3c56bc32ce7008b3e2340 header/lfr_common_headers
2 2b5dc338fb623046072d6eb98c26ad884e17f95e header/lfr_common_headers
@@ -1,110 +1,111
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 # lpp_dpu_destid
4 # lpp_dpu_destid
5 CONFIG += console verbose lpp_dpu_destid
5 CONFIG += console verbose lpp_dpu_destid
6 CONFIG -= qt
6 CONFIG -= qt
7
7
8 include(./sparc.pri)
8 include(./sparc.pri)
9
9
10 # flight software version
10 # flight software version
11 SWVERSION=-1-0
11 SWVERSION=-1-0
12 DEFINES += SW_VERSION_N1=2 # major
12 DEFINES += SW_VERSION_N1=2 # major
13 DEFINES += SW_VERSION_N2=0 # minor
13 DEFINES += SW_VERSION_N2=0 # minor
14 DEFINES += SW_VERSION_N3=2 # patch
14 DEFINES += SW_VERSION_N3=2 # patch
15 DEFINES += SW_VERSION_N4=0 # internal
15 DEFINES += SW_VERSION_N4=1 # internal
16
16
17 # <GCOV>
17 # <GCOV>
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
20 # </GCOV>
20 # </GCOV>
21
21
22 # <CHANGE BEFORE FLIGHT>
22 # <CHANGE BEFORE FLIGHT>
23 contains( CONFIG, lpp_dpu_destid ) {
23 contains( CONFIG, lpp_dpu_destid ) {
24 DEFINES += LPP_DPU_DESTID
24 DEFINES += LPP_DPU_DESTID
25 }
25 }
26 # </CHANGE BEFORE FLIGHT>
26 # </CHANGE BEFORE FLIGHT>
27
27
28 contains( CONFIG, debug_tch ) {
28 contains( CONFIG, debug_tch ) {
29 DEFINES += DEBUG_TCH
29 DEFINES += DEBUG_TCH
30 }
30 }
31 DEFINES += LSB_FIRST_TCH
31
32
32 contains( CONFIG, vhdl_dev ) {
33 contains( CONFIG, vhdl_dev ) {
33 DEFINES += VHDL_DEV
34 DEFINES += VHDL_DEV
34 }
35 }
35
36
36 contains( CONFIG, verbose ) {
37 contains( CONFIG, verbose ) {
37 DEFINES += PRINT_MESSAGES_ON_CONSOLE
38 DEFINES += PRINT_MESSAGES_ON_CONSOLE
38 }
39 }
39
40
40 contains( CONFIG, debug_messages ) {
41 contains( CONFIG, debug_messages ) {
41 DEFINES += DEBUG_MESSAGES
42 DEFINES += DEBUG_MESSAGES
42 }
43 }
43
44
44 contains( CONFIG, cpu_usage_report ) {
45 contains( CONFIG, cpu_usage_report ) {
45 DEFINES += PRINT_TASK_STATISTICS
46 DEFINES += PRINT_TASK_STATISTICS
46 }
47 }
47
48
48 contains( CONFIG, stack_report ) {
49 contains( CONFIG, stack_report ) {
49 DEFINES += PRINT_STACK_REPORT
50 DEFINES += PRINT_STACK_REPORT
50 }
51 }
51
52
52 contains( CONFIG, boot_messages ) {
53 contains( CONFIG, boot_messages ) {
53 DEFINES += BOOT_MESSAGES
54 DEFINES += BOOT_MESSAGES
54 }
55 }
55
56
56 #doxygen.target = doxygen
57 #doxygen.target = doxygen
57 #doxygen.commands = doxygen ../doc/Doxyfile
58 #doxygen.commands = doxygen ../doc/Doxyfile
58 #QMAKE_EXTRA_TARGETS += doxygen
59 #QMAKE_EXTRA_TARGETS += doxygen
59
60
60 TARGET = fsw
61 TARGET = fsw
61
62
62 INCLUDEPATH += \
63 INCLUDEPATH += \
63 $${PWD}/../src \
64 $${PWD}/../src \
64 $${PWD}/../header \
65 $${PWD}/../header \
65 $${PWD}/../header/lfr_common_headers \
66 $${PWD}/../header/lfr_common_headers \
66 $${PWD}/../header/processing \
67 $${PWD}/../header/processing \
67 $${PWD}/../src/LFR_basic-parameters
68 $${PWD}/../LFR_basic-parameters
68
69
69 SOURCES += \
70 SOURCES += \
70 ../src/wf_handler.c \
71 ../src/wf_handler.c \
71 ../src/tc_handler.c \
72 ../src/tc_handler.c \
72 ../src/fsw_misc.c \
73 ../src/fsw_misc.c \
73 ../src/fsw_init.c \
74 ../src/fsw_init.c \
74 ../src/fsw_globals.c \
75 ../src/fsw_globals.c \
75 ../src/fsw_spacewire.c \
76 ../src/fsw_spacewire.c \
76 ../src/tc_load_dump_parameters.c \
77 ../src/tc_load_dump_parameters.c \
77 ../src/tm_lfr_tc_exe.c \
78 ../src/tm_lfr_tc_exe.c \
78 ../src/tc_acceptance.c \
79 ../src/tc_acceptance.c \
79 ../src/processing/fsw_processing.c \
80 ../src/processing/fsw_processing.c \
80 ../src/processing/avf0_prc0.c \
81 ../src/processing/avf0_prc0.c \
81 ../src/processing/avf1_prc1.c \
82 ../src/processing/avf1_prc1.c \
82 ../src/processing/avf2_prc2.c \
83 ../src/processing/avf2_prc2.c \
83 ../src/lfr_cpu_usage_report.c \
84 ../src/lfr_cpu_usage_report.c \
84 ../src/LFR_basic-parameters/basic_parameters.c
85 ../LFR_basic-parameters/basic_parameters.c
85
86
86 HEADERS += \
87 HEADERS += \
87 ../header/wf_handler.h \
88 ../header/wf_handler.h \
88 ../header/tc_handler.h \
89 ../header/tc_handler.h \
89 ../header/grlib_regs.h \
90 ../header/grlib_regs.h \
90 ../header/fsw_misc.h \
91 ../header/fsw_misc.h \
91 ../header/fsw_init.h \
92 ../header/fsw_init.h \
92 ../header/fsw_spacewire.h \
93 ../header/fsw_spacewire.h \
93 ../header/tc_load_dump_parameters.h \
94 ../header/tc_load_dump_parameters.h \
94 ../header/tm_lfr_tc_exe.h \
95 ../header/tm_lfr_tc_exe.h \
95 ../header/tc_acceptance.h \
96 ../header/tc_acceptance.h \
96 ../header/processing/fsw_processing.h \
97 ../header/processing/fsw_processing.h \
97 ../header/processing/avf0_prc0.h \
98 ../header/processing/avf0_prc0.h \
98 ../header/processing/avf1_prc1.h \
99 ../header/processing/avf1_prc1.h \
99 ../header/processing/avf2_prc2.h \
100 ../header/processing/avf2_prc2.h \
100 ../header/fsw_params_wf_handler.h \
101 ../header/fsw_params_wf_handler.h \
101 ../header/lfr_cpu_usage_report.h \
102 ../header/lfr_cpu_usage_report.h \
102 ../src/LFR_basic-parameters/basic_parameters.h \
103 ../src/LFR_basic-parameters/basic_parameters_params.h \
104 ../header/lfr_common_headers/ccsds_types.h \
103 ../header/lfr_common_headers/ccsds_types.h \
105 ../header/lfr_common_headers/fsw_params.h \
104 ../header/lfr_common_headers/fsw_params.h \
106 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
105 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
107 ../header/lfr_common_headers/fsw_params_processing.h \
106 ../header/lfr_common_headers/fsw_params_processing.h \
108 ../header/lfr_common_headers/TC_types.h \
107 ../header/lfr_common_headers/TC_types.h \
109 ../header/lfr_common_headers/tm_byte_positions.h
108 ../header/lfr_common_headers/tm_byte_positions.h \
109 ../LFR_basic-parameters/basic_parameters.h \
110 ../LFR_basic-parameters/basic_parameters_params.h
110
111
@@ -1,124 +1,128
1 #ifndef GRLIB_REGS_H_INCLUDED
1 #ifndef GRLIB_REGS_H_INCLUDED
2 #define GRLIB_REGS_H_INCLUDED
2 #define GRLIB_REGS_H_INCLUDED
3
3
4 #define NB_GPTIMER 3
4 #define NB_GPTIMER 3
5
5
6 struct apbuart_regs_str{
6 struct apbuart_regs_str{
7 volatile unsigned int data;
7 volatile unsigned int data;
8 volatile unsigned int status;
8 volatile unsigned int status;
9 volatile unsigned int ctrl;
9 volatile unsigned int ctrl;
10 volatile unsigned int scaler;
10 volatile unsigned int scaler;
11 volatile unsigned int fifoDebug;
11 volatile unsigned int fifoDebug;
12 };
12 };
13
13
14 struct grgpio_regs_str{
14 struct grgpio_regs_str{
15 volatile int io_port_data_register;
15 volatile int io_port_data_register;
16 int io_port_output_register;
16 int io_port_output_register;
17 int io_port_direction_register;
17 int io_port_direction_register;
18 int interrupt_mak_register;
18 int interrupt_mak_register;
19 int interrupt_polarity_register;
19 int interrupt_polarity_register;
20 int interrupt_edge_register;
20 int interrupt_edge_register;
21 int bypass_register;
21 int bypass_register;
22 int reserved;
22 int reserved;
23 // 0x20-0x3c interrupt map register(s)
23 // 0x20-0x3c interrupt map register(s)
24 };
24 };
25
25
26 typedef struct {
26 typedef struct {
27 volatile unsigned int counter;
27 volatile unsigned int counter;
28 volatile unsigned int reload;
28 volatile unsigned int reload;
29 volatile unsigned int ctrl;
29 volatile unsigned int ctrl;
30 volatile unsigned int unused;
30 volatile unsigned int unused;
31 } timer_regs_t;
31 } timer_regs_t;
32
32
33 typedef struct {
33 typedef struct {
34 volatile unsigned int scaler_value;
34 volatile unsigned int scaler_value;
35 volatile unsigned int scaler_reload;
35 volatile unsigned int scaler_reload;
36 volatile unsigned int conf;
36 volatile unsigned int conf;
37 volatile unsigned int unused0;
37 volatile unsigned int unused0;
38 timer_regs_t timer[NB_GPTIMER];
38 timer_regs_t timer[NB_GPTIMER];
39 } gptimer_regs_t;
39 } gptimer_regs_t;
40
40
41 typedef struct {
41 typedef struct {
42 volatile int ctrl; // bit 0 forces the load of the coarse_time_load value and resets the fine_time
42 volatile int ctrl; // bit 0 forces the load of the coarse_time_load value and resets the fine_time
43 // bit 1 is the soft reset for the time management module
43 // bit 1 is the soft reset for the time management module
44 // bit 2 is the soft reset for the waveform picker and the spectral matrix modules, set to 1 after HW reset
44 // bit 2 is the soft reset for the waveform picker and the spectral matrix modules, set to 1 after HW reset
45 volatile int coarse_time_load;
45 volatile int coarse_time_load;
46 volatile int coarse_time;
46 volatile int coarse_time;
47 volatile int fine_time;
47 volatile int fine_time;
48 } time_management_regs_t;
48 } time_management_regs_t;
49
49
50 // PDB >= 0.1.28
50 // PDB >= 0.1.28
51 typedef struct{
51 typedef struct{
52 int data_shaping; // 0x00 00 *** R1 R0 SP1 SP0 BW
52 int data_shaping; // 0x00 00 *** R1 R0 SP1 SP0 BW
53 int run_burst_enable; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
53 int run_burst_enable; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
54 int addr_data_f0_0; // 0x08
54 int addr_data_f0_0; // 0x08
55 int addr_data_f0_1; // 0x0c
55 int addr_data_f0_1; // 0x0c
56 int addr_data_f1_0; // 0x10
56 int addr_data_f1_0; // 0x10
57 int addr_data_f1_1; // 0x14
57 int addr_data_f1_1; // 0x14
58 int addr_data_f2_0; // 0x18
58 int addr_data_f2_0; // 0x18
59 int addr_data_f2_1; // 0x1c
59 int addr_data_f2_1; // 0x1c
60 int addr_data_f3_0; // 0x20
60 int addr_data_f3_0; // 0x20
61 int addr_data_f3_1; // 0x24
61 int addr_data_f3_1; // 0x24
62 volatile int status; // 0x28
62 volatile int status; // 0x28
63 int delta_snapshot; // 0x2c
63 int delta_snapshot; // 0x2c
64 int delta_f0; // 0x30
64 int delta_f0; // 0x30
65 int delta_f0_2; // 0x34
65 int delta_f0_2; // 0x34
66 int delta_f1; // 0x38
66 int delta_f1; // 0x38
67 int delta_f2; // 0x3c
67 int delta_f2; // 0x3c
68 int nb_data_by_buffer; // 0x40 number of samples in a buffer = 2688
68 int nb_data_by_buffer; // 0x40 number of samples in a buffer = 2688
69 int snapshot_param; // 0x44
69 int snapshot_param; // 0x44
70 int start_date; // 0x48
70 int start_date; // 0x48
71 //
71 //
72 volatile unsigned int f0_0_coarse_time; // 0x4c
72 volatile unsigned int f0_0_coarse_time; // 0x4c
73 volatile unsigned int f0_0_fine_time; // 0x50
73 volatile unsigned int f0_0_fine_time; // 0x50
74 volatile unsigned int f0_1_coarse_time; // 0x54
74 volatile unsigned int f0_1_coarse_time; // 0x54
75 volatile unsigned int f0_1_fine_time; // 0x58
75 volatile unsigned int f0_1_fine_time; // 0x58
76 //
76 //
77 volatile unsigned int f1_0_coarse_time; // 0x5c
77 volatile unsigned int f1_0_coarse_time; // 0x5c
78 volatile unsigned int f1_0_fine_time; // 0x60
78 volatile unsigned int f1_0_fine_time; // 0x60
79 volatile unsigned int f1_1_coarse_time; // 0x64
79 volatile unsigned int f1_1_coarse_time; // 0x64
80 volatile unsigned int f1_1_fine_time; // 0x68
80 volatile unsigned int f1_1_fine_time; // 0x68
81 //
81 //
82 volatile unsigned int f2_0_coarse_time; // 0x6c
82 volatile unsigned int f2_0_coarse_time; // 0x6c
83 volatile unsigned int f2_0_fine_time; // 0x70
83 volatile unsigned int f2_0_fine_time; // 0x70
84 volatile unsigned int f2_1_coarse_time; // 0x74
84 volatile unsigned int f2_1_coarse_time; // 0x74
85 volatile unsigned int f2_1_fine_time; // 0x78
85 volatile unsigned int f2_1_fine_time; // 0x78
86 //
86 //
87 volatile unsigned int f3_0_coarse_time; // 0x7c
87 volatile unsigned int f3_0_coarse_time; // 0x7c
88 volatile unsigned int f3_0_fine_time; // 0x80
88 volatile unsigned int f3_0_fine_time; // 0x80
89 volatile unsigned int f3_1_coarse_time; // 0x84
89 volatile unsigned int f3_1_coarse_time; // 0x84
90 volatile unsigned int f3_1_fine_time; // 0x88
90 volatile unsigned int f3_1_fine_time; // 0x88
91 //
91 //
92 unsigned int buffer_length; // 0x8c = buffer length in burst 2688 / 16 = 168
92 unsigned int buffer_length; // 0x8c = buffer length in burst 2688 / 16 = 168
93 //
94 volatile unsigned int v; // 0x90
95 volatile unsigned int e1; // 0x94
96 volatile unsigned int e2; // 0x98
93 } waveform_picker_regs_0_1_18_t;
97 } waveform_picker_regs_0_1_18_t;
94
98
95 typedef struct {
99 typedef struct {
96 volatile int config; // 0x00
100 volatile int config; // 0x00
97 volatile int status; // 0x04
101 volatile int status; // 0x04
98 volatile int f0_0_address; // 0x08
102 volatile int f0_0_address; // 0x08
99 volatile int f0_1_address; // 0x0C
103 volatile int f0_1_address; // 0x0C
100 //
104 //
101 volatile int f1_0_address; // 0x10
105 volatile int f1_0_address; // 0x10
102 volatile int f1_1_address; // 0x14
106 volatile int f1_1_address; // 0x14
103 volatile int f2_0_address; // 0x18
107 volatile int f2_0_address; // 0x18
104 volatile int f2_1_address; // 0x1C
108 volatile int f2_1_address; // 0x1C
105 //
109 //
106 volatile unsigned int f0_0_coarse_time; // 0x20
110 volatile unsigned int f0_0_coarse_time; // 0x20
107 volatile unsigned int f0_0_fine_time; // 0x24
111 volatile unsigned int f0_0_fine_time; // 0x24
108 volatile unsigned int f0_1_coarse_time; // 0x28
112 volatile unsigned int f0_1_coarse_time; // 0x28
109 volatile unsigned int f0_1_fine_time; // 0x2C
113 volatile unsigned int f0_1_fine_time; // 0x2C
110 //
114 //
111 volatile unsigned int f1_0_coarse_time; // 0x30
115 volatile unsigned int f1_0_coarse_time; // 0x30
112 volatile unsigned int f1_0_fine_time; // 0x34
116 volatile unsigned int f1_0_fine_time; // 0x34
113 volatile unsigned int f1_1_coarse_time; // 0x38
117 volatile unsigned int f1_1_coarse_time; // 0x38
114 volatile unsigned int f1_1_time_time; // 0x3C
118 volatile unsigned int f1_1_fine_time; // 0x3C
115 //
119 //
116 volatile unsigned int f2_0_coarse_time; // 0x40
120 volatile unsigned int f2_0_coarse_time; // 0x40
117 volatile unsigned int f2_0_fine_time; // 0x44
121 volatile unsigned int f2_0_fine_time; // 0x44
118 volatile unsigned int f2_1_coarse_time; // 0x48
122 volatile unsigned int f2_1_coarse_time; // 0x48
119 volatile unsigned int f2_1_fine_time; // 0x4C
123 volatile unsigned int f2_1_fine_time; // 0x4C
120 //
124 //
121 unsigned int matrix_length; // 0x50, length of a spectral matrix in burst 3200 / 16 = 200 = 0xc8
125 unsigned int matrix_length; // 0x50, length of a spectral matrix in burst 3200 / 16 = 200 = 0xc8
122 } spectral_matrix_regs_t;
126 } spectral_matrix_regs_t;
123
127
124 #endif // GRLIB_REGS_H_INCLUDED
128 #endif // GRLIB_REGS_H_INCLUDED
@@ -1,36 +1,37
1 #ifndef AVF0_PRC0_H_INCLUDED
1 #ifndef AVF0_PRC0_H_INCLUDED
2 #define AVF0_PRC0_H_INCLUDED
2 #define AVF0_PRC0_H_INCLUDED
3
3
4 #include "fsw_processing.h"
4 #include "fsw_processing.h"
5 #include "basic_parameters.h"
5 #include "basic_parameters.h"
6
6
7 typedef struct {
7 typedef struct {
8 unsigned int norm_bp1;
8 unsigned int norm_bp1;
9 unsigned int norm_bp2;
9 unsigned int norm_bp2;
10 unsigned int norm_asm;
10 unsigned int norm_asm;
11 unsigned int burst_sbm_bp1;
11 unsigned int burst_sbm_bp1;
12 unsigned int burst_sbm_bp2;
12 unsigned int burst_sbm_bp2;
13 unsigned int burst_bp1;
13 unsigned int burst_bp1;
14 unsigned int burst_bp2;
14 unsigned int burst_bp2;
15 unsigned int sbm1_bp1;
15 unsigned int sbm1_bp1;
16 unsigned int sbm1_bp2;
16 unsigned int sbm1_bp2;
17 unsigned int sbm2_bp1;
17 unsigned int sbm2_bp1;
18 unsigned int sbm2_bp2;
18 unsigned int sbm2_bp2;
19 } nb_sm_before_bp_asm_f0;
19 } nb_sm_before_bp_asm_f0;
20
20
21 //************
21 //************
22 // RTEMS TASKS
22 // RTEMS TASKS
23 rtems_task avf0_task( rtems_task_argument lfrRequestedMode );
23 rtems_task avf0_task( rtems_task_argument lfrRequestedMode );
24 rtems_task prc0_task( rtems_task_argument lfrRequestedMode );
24 rtems_task prc0_task( rtems_task_argument lfrRequestedMode );
25
25
26 //**********
26 //**********
27 // FUNCTIONS
27 // FUNCTIONS
28
28
29 void reset_nb_sm_f0( unsigned char lfrMode );
29 void reset_nb_sm_f0( unsigned char lfrMode );
30 void init_k_coefficients_f0( void );
31 void test_TCH( void );
30
32
31 //*******
33 //*******
32 // EXTERN
34 // EXTERN
33 extern ring_node *ring_node_for_averaging_sm_f0;
34 extern rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
35 extern rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id );
35
36
36 #endif // AVF0_PRC0_H_INCLUDED
37 #endif // AVF0_PRC0_H_INCLUDED
@@ -1,33 +1,34
1 #ifndef AVF1_PRC1_H
1 #ifndef AVF1_PRC1_H
2 #define AVF1_PRC1_H
2 #define AVF1_PRC1_H
3
3
4 #include "fsw_processing.h"
4 #include "fsw_processing.h"
5 #include "basic_parameters.h"
5
6
6 typedef struct {
7 typedef struct {
7 unsigned int norm_bp1;
8 unsigned int norm_bp1;
8 unsigned int norm_bp2;
9 unsigned int norm_bp2;
9 unsigned int norm_asm;
10 unsigned int norm_asm;
10 unsigned int burst_sbm_bp1;
11 unsigned int burst_sbm_bp1;
11 unsigned int burst_sbm_bp2;
12 unsigned int burst_sbm_bp2;
12 unsigned int burst_bp1;
13 unsigned int burst_bp1;
13 unsigned int burst_bp2;
14 unsigned int burst_bp2;
14 unsigned int sbm2_bp1;
15 unsigned int sbm2_bp1;
15 unsigned int sbm2_bp2;
16 unsigned int sbm2_bp2;
16 } nb_sm_before_bp_asm_f1;
17 } nb_sm_before_bp_asm_f1;
17
18
18 //************
19 //************
19 // RTEMS TASKS
20 // RTEMS TASKS
20 rtems_task avf1_task( rtems_task_argument lfrRequestedMode );
21 rtems_task avf1_task( rtems_task_argument lfrRequestedMode );
21 rtems_task prc1_task( rtems_task_argument lfrRequestedMode );
22 rtems_task prc1_task( rtems_task_argument lfrRequestedMode );
22
23
23 //**********
24 //**********
24 // FUNCTIONS
25 // FUNCTIONS
25
26
26 void reset_nb_sm_f1( unsigned char lfrMode );
27 void reset_nb_sm_f1( unsigned char lfrMode );
28 void init_k_coefficients_f1( void );
27
29
28 //*******
30 //*******
29 // EXTERN
31 // EXTERN
30 extern struct ring_node *ring_node_for_averaging_sm_f1;
31 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
32 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
32
33
33 #endif // AVF1_PRC1_H
34 #endif // AVF1_PRC1_H
@@ -1,28 +1,29
1 #ifndef AVF2_PRC2_H
1 #ifndef AVF2_PRC2_H
2 #define AVF2_PRC2_H
2 #define AVF2_PRC2_H
3
3
4 #include "fsw_processing.h"
4 #include "fsw_processing.h"
5 #include "basic_parameters.h"
5
6
6 typedef struct {
7 typedef struct {
7 unsigned int norm_bp1;
8 unsigned int norm_bp1;
8 unsigned int norm_bp2;
9 unsigned int norm_bp2;
9 unsigned int norm_asm;
10 unsigned int norm_asm;
10 } nb_sm_before_bp_asm_f2;
11 } nb_sm_before_bp_asm_f2;
11
12
12 //************
13 //************
13 // RTEMS TASKS
14 // RTEMS TASKS
14 rtems_task avf2_task( rtems_task_argument lfrRequestedMode );
15 rtems_task avf2_task( rtems_task_argument lfrRequestedMode );
15 rtems_task prc2_task( rtems_task_argument lfrRequestedMode );
16 rtems_task prc2_task( rtems_task_argument lfrRequestedMode );
16
17
17 //**********
18 //**********
18 // FUNCTIONS
19 // FUNCTIONS
19
20
20 void reset_nb_sm_f2( void );
21 void reset_nb_sm_f2( void );
21 void SM_average_f2(float *averaged_spec_mat_f2, ring_node *ring_node, unsigned int nbAverageNormF2 );
22 void SM_average_f2(float *averaged_spec_mat_f2, ring_node *ring_node, unsigned int nbAverageNormF2 , asm_msg *msgForMATR);
23 void init_k_coefficients_f2( void );
22
24
23 //*******
25 //*******
24 // EXTERN
26 // EXTERN
25 extern struct ring_node *ring_node_for_averaging_sm_f2;
26 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
27 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
27
28
28 #endif // AVF2_PRC2_H
29 #endif // AVF2_PRC2_H
@@ -1,267 +1,298
1 #ifndef FSW_PROCESSING_H_INCLUDED
1 #ifndef FSW_PROCESSING_H_INCLUDED
2 #define FSW_PROCESSING_H_INCLUDED
2 #define FSW_PROCESSING_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <grspw.h>
5 #include <grspw.h>
6 #include <math.h>
6 #include <math.h>
7 #include <stdlib.h> // abs() is in the stdlib
7 #include <stdlib.h> // abs() is in the stdlib
8 #include <stdio.h> // printf()
8 #include <stdio.h> // printf()
9 #include <math.h>
9 #include <math.h>
10 #include <grlib_regs.h>
10 #include <grlib_regs.h>
11
11
12 #include "fsw_params.h"
12 #include "fsw_params.h"
13 #include "fsw_spacewire.h"
13 #include "fsw_spacewire.h"
14
14
15 typedef struct ring_node_asm
15 typedef struct ring_node_asm
16 {
16 {
17 struct ring_node_asm *next;
17 struct ring_node_asm *next;
18 float matrix[ TOTAL_SIZE_SM ];
18 float matrix[ TOTAL_SIZE_SM ];
19 unsigned int status;
19 unsigned int status;
20 } ring_node_asm;
20 } ring_node_asm;
21
21
22 typedef struct
22 typedef struct
23 {
23 {
24 Header_TM_LFR_SCIENCE_BP_t header;
24 unsigned char targetLogicalAddress;
25 unsigned char protocolIdentifier;
26 unsigned char reserved;
27 unsigned char userApplication;
28 unsigned char packetID[2];
29 unsigned char packetSequenceControl[2];
30 unsigned char packetLength[2];
31 // DATA FIELD HEADER
32 unsigned char spare1_pusVersion_spare2;
33 unsigned char serviceType;
34 unsigned char serviceSubType;
35 unsigned char destinationID;
36 unsigned char time[6];
37 // AUXILIARY HEADER
38 unsigned char sid;
39 unsigned char biaStatusInfo;
40 unsigned char acquisitionTime[6];
41 unsigned char pa_lfr_bp_blk_nr[2];
42 // SOURCE DATA
25 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
43 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
26 } bp_packet;
44 } bp_packet;
27
45
28 typedef struct
46 typedef struct
29 {
47 {
30 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
48 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
31 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
49 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
32 } bp_packet_with_spare;
50 } bp_packet_with_spare;
33
51
34 typedef struct
52 typedef struct
35 {
53 {
36 ring_node_asm *norm;
54 ring_node_asm *norm;
37 ring_node_asm *burst_sbm;
55 ring_node_asm *burst_sbm;
38 rtems_event_set event;
56 rtems_event_set event;
39 unsigned int coarseTime;
57 unsigned int coarseTimeNORM;
40 unsigned int fineTime;
58 unsigned int fineTimeNORM;
59 unsigned int coarseTimeSBM;
60 unsigned int fineTimeSBM;
41 } asm_msg;
61 } asm_msg;
42
62
43 extern volatile int sm_f0[ ];
63 extern volatile int sm_f0[ ];
44 extern volatile int sm_f1[ ];
64 extern volatile int sm_f1[ ];
45 extern volatile int sm_f2[ ];
65 extern volatile int sm_f2[ ];
46
66
47 // parameters
67 // parameters
48 extern struct param_local_str param_local;
68 extern struct param_local_str param_local;
49
69
50 // registers
70 // registers
51 extern time_management_regs_t *time_management_regs;
71 extern time_management_regs_t *time_management_regs;
52 extern spectral_matrix_regs_t *spectral_matrix_regs;
72 extern volatile spectral_matrix_regs_t *spectral_matrix_regs;
53
73
54 extern rtems_name misc_name[5];
74 extern rtems_name misc_name[5];
55 extern rtems_id Task_id[20]; /* array of task ids */
75 extern rtems_id Task_id[20]; /* array of task ids */
56
76
77 //
78 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel);
57 // ISR
79 // ISR
58 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
80 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
59 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
81 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
60
82
61 //******************
83 //******************
62 // Spectral Matrices
84 // Spectral Matrices
63 void reset_nb_sm( void );
85 void reset_nb_sm( void );
64 // SM
86 // SM
65 void SM_init_rings( void );
87 void SM_init_rings( void );
66 void SM_reset_current_ring_nodes( void );
88 void SM_reset_current_ring_nodes( void );
67 // ASM
89 // ASM
68 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
90 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
69
91
70 //*****************
92 //*****************
71 // Basic Parameters
93 // Basic Parameters
72
94
73 void BP_reset_current_ring_nodes( void );
95 void BP_reset_current_ring_nodes( void );
74 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
96 void BP_init_header(bp_packet *header,
75 unsigned int apid, unsigned char sid,
97 unsigned int apid, unsigned char sid,
76 unsigned int packetLength , unsigned char blkNr);
98 unsigned int packetLength , unsigned char blkNr);
77 void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
99 void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
78 unsigned int apid, unsigned char sid,
100 unsigned int apid, unsigned char sid,
79 unsigned int packetLength, unsigned char blkNr );
101 unsigned int packetLength, unsigned char blkNr );
80 void BP_send( char *data,
102 void BP_send( char *data,
81 rtems_id queue_id ,
103 rtems_id queue_id ,
82 unsigned int nbBytesToSend , unsigned int sid );
104 unsigned int nbBytesToSend , unsigned int sid );
83
105
84 //******************
106 //******************
85 // general functions
107 // general functions
86 void reset_sm_status( void );
108 void reset_sm_status( void );
87 void reset_spectral_matrix_regs( void );
109 void reset_spectral_matrix_regs( void );
88 void set_time(unsigned char *time, unsigned char *timeInBuffer );
110 void set_time(unsigned char *time, unsigned char *timeInBuffer );
89 unsigned long long int get_acquisition_time( unsigned char *timePtr );
111 unsigned long long int get_acquisition_time( unsigned char *timePtr );
90 void close_matrix_actions( unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id avf_task_id,
91 ring_node *node_for_averaging, ring_node *ringNode, unsigned long long int time );
92 unsigned char getSID( rtems_event_set event );
112 unsigned char getSID( rtems_event_set event );
93
113
94 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
114 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
95 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
115 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
96
116
97 //***************************************
117 //***************************************
98 // DEFINITIONS OF STATIC INLINE FUNCTIONS
118 // DEFINITIONS OF STATIC INLINE FUNCTIONS
99 static inline void SM_average(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
119 static inline void SM_average(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
100 ring_node *ring_node_tab[],
120 ring_node *ring_node_tab[],
101 unsigned int nbAverageNORM, unsigned int nbAverageSBM );
121 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
122 asm_msg *msgForMATR );
102 static inline void SM_average_debug( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
123 static inline void SM_average_debug( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
103 ring_node *ring_node_tab[],
124 ring_node *ring_node_tab[],
104 unsigned int nbAverageNORM, unsigned int nbAverageSBM );
125 unsigned int nbAverageNORM, unsigned int nbAverageSBM );
105 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
126 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
106 float divider );
127 float divider );
107 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
128 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
108 float divider,
129 float divider,
109 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
130 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
110 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
131 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
111
132
112 void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
133 void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
113 ring_node *ring_node_tab[],
134 ring_node *ring_node_tab[],
114 unsigned int nbAverageNORM, unsigned int nbAverageSBM )
135 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
136 asm_msg *msgForMATR )
115 {
137 {
116 float sum;
138 float sum;
117 unsigned int i;
139 unsigned int i;
118
140
119 for(i=0; i<TOTAL_SIZE_SM; i++)
141 for(i=0; i<TOTAL_SIZE_SM; i++)
120 {
142 {
121 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
143 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
122 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
144 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
123 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
145 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
124 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
146 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
125 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
147 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
126 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
148 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
127 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
149 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
128 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
150 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
129
151
130 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
152 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
131 {
153 {
132 averaged_spec_mat_NORM[ i ] = sum;
154 averaged_spec_mat_NORM[ i ] = sum;
133 averaged_spec_mat_SBM[ i ] = sum;
155 averaged_spec_mat_SBM[ i ] = sum;
156 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
157 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
158 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
159 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
134 }
160 }
135 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
161 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
136 {
162 {
137 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
163 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
138 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
164 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
139 }
165 }
140 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
166 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
141 {
167 {
142 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
168 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
143 averaged_spec_mat_SBM[ i ] = sum;
169 averaged_spec_mat_SBM[ i ] = sum;
170 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
171 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
144 }
172 }
145 else
173 else
146 {
174 {
147 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
175 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
148 }
176 }
149 }
177 }
150 }
178 }
151
179
152 void SM_average_debug( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
180 void SM_average_debug( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
153 ring_node *ring_node_tab[],
181 ring_node *ring_node_tab[],
154 unsigned int nbAverageNORM, unsigned int nbAverageSBM )
182 unsigned int nbAverageNORM, unsigned int nbAverageSBM )
155 {
183 {
156 float sum;
184 float sum;
157 unsigned int i;
185 unsigned int i;
158
186
159 for(i=0; i<TOTAL_SIZE_SM; i++)
187 for(i=0; i<TOTAL_SIZE_SM; i++)
160 {
188 {
161 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ];
189 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ];
162
190
163 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
191 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
164 {
192 {
165 averaged_spec_mat_NORM[ i ] = sum;
193 averaged_spec_mat_NORM[ i ] = sum;
166 averaged_spec_mat_SBM[ i ] = sum;
194 averaged_spec_mat_SBM[ i ] = sum;
167 }
195 }
168 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
196 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
169 {
197 {
170 averaged_spec_mat_NORM[ i ] = sum;
198 averaged_spec_mat_NORM[ i ] = sum;
171 averaged_spec_mat_SBM[ i ] = sum;
199 averaged_spec_mat_SBM[ i ] = sum;
172 }
200 }
173 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
201 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
174 {
202 {
175 averaged_spec_mat_NORM[ i ] = sum;
203 averaged_spec_mat_NORM[ i ] = sum;
176 averaged_spec_mat_SBM[ i ] = sum;
204 averaged_spec_mat_SBM[ i ] = sum;
177 }
205 }
178 else
206 else
179 {
207 {
180 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
208 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
181 }
209 }
182 }
210 }
183 }
211 }
184
212
185 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
213 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
186 {
214 {
187 int frequencyBin;
215 int frequencyBin;
188 int asmComponent;
216 int asmComponent;
189 unsigned int offsetAveragedSpecMatReorganized;
217 unsigned int offsetASM;
190 unsigned int offsetAveragedSpecMat;
218 unsigned int offsetASMReorganized;
191
219
220 // BUILD DATA
192 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
221 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
193 {
222 {
194 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
223 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
195 {
224 {
196 offsetAveragedSpecMatReorganized =
225 offsetASMReorganized =
197 frequencyBin * NB_VALUES_PER_SM
226 frequencyBin * NB_VALUES_PER_SM
198 + asmComponent;
227 + asmComponent;
199 offsetAveragedSpecMat =
228 offsetASM =
200 asmComponent * NB_BINS_PER_SM
229 asmComponent * NB_BINS_PER_SM
201 + frequencyBin;
230 + frequencyBin;
202 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
231 averaged_spec_mat_reorganized[offsetASMReorganized ] =
203 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
232 averaged_spec_mat[ offsetASM ] / divider;
204 }
233 }
205 }
234 }
206 }
235 }
207
236
208 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
237 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
209 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
238 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
210 {
239 {
211 int frequencyBin;
240 int frequencyBin;
212 int asmComponent;
241 int asmComponent;
213 int offsetASM;
242 int offsetASM;
214 int offsetCompressed;
243 int offsetCompressed;
215 int k;
244 int k;
216
245
217 // build data
246 // BUILD DATA
218 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
247 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
219 {
248 {
220 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
249 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
221 {
250 {
222 offsetCompressed = // NO TIME OFFSET
251 offsetCompressed = // NO TIME OFFSET
223 frequencyBin * NB_VALUES_PER_SM
252 frequencyBin * NB_VALUES_PER_SM
224 + asmComponent;
253 + asmComponent;
225 offsetASM = // NO TIME OFFSET
254 offsetASM = // NO TIME OFFSET
226 asmComponent * NB_BINS_PER_SM
255 asmComponent * NB_BINS_PER_SM
227 + ASMIndexStart
256 + ASMIndexStart
228 + frequencyBin * nbBinsToAverage;
257 + frequencyBin * nbBinsToAverage;
229 compressed_spec_mat[ offsetCompressed ] = 0;
258 compressed_spec_mat[ offsetCompressed ] = 0;
230 for ( k = 0; k < nbBinsToAverage; k++ )
259 for ( k = 0; k < nbBinsToAverage; k++ )
231 {
260 {
232 compressed_spec_mat[offsetCompressed ] =
261 compressed_spec_mat[offsetCompressed ] =
233 ( compressed_spec_mat[ offsetCompressed ]
262 ( compressed_spec_mat[ offsetCompressed ]
234 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
263 + averaged_spec_mat[ offsetASM + k ] );
235 }
264 }
265 compressed_spec_mat[ offsetCompressed ] =
266 compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
236 }
267 }
237 }
268 }
238 }
269 }
239
270
240 void ASM_convert( volatile float *input_matrix, char *output_matrix)
271 void ASM_convert( volatile float *input_matrix, char *output_matrix)
241 {
272 {
242 unsigned int frequencyBin;
273 unsigned int frequencyBin;
243 unsigned int asmComponent;
274 unsigned int asmComponent;
244 char * pt_char_input;
275 char * pt_char_input;
245 char * pt_char_output;
276 char * pt_char_output;
246 unsigned int offsetInput;
277 unsigned int offsetInput;
247 unsigned int offsetOutput;
278 unsigned int offsetOutput;
248
279
249 pt_char_input = (char*) &input_matrix;
280 pt_char_input = (char*) &input_matrix;
250 pt_char_output = (char*) &output_matrix;
281 pt_char_output = (char*) &output_matrix;
251
282
252 // convert all other data
283 // convert all other data
253 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
284 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
254 {
285 {
255 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
286 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
256 {
287 {
257 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
288 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
258 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
289 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
259 pt_char_input = (char*) &input_matrix [ offsetInput ];
290 pt_char_input = (char*) &input_matrix [ offsetInput ];
260 pt_char_output = (char*) &output_matrix[ offsetOutput ];
291 pt_char_output = (char*) &output_matrix[ offsetOutput ];
261 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
292 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
262 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
293 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
263 }
294 }
264 }
295 }
265 }
296 }
266
297
267 #endif // FSW_PROCESSING_H_INCLUDED
298 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,782 +1,787
1 /** This is the RTEMS initialization module.
1 /** This is the RTEMS initialization module.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * This module contains two very different information:
6 * This module contains two very different information:
7 * - specific instructions to configure the compilation of the RTEMS executive
7 * - specific instructions to configure the compilation of the RTEMS executive
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 *
9 *
10 */
10 */
11
11
12 //*************************
12 //*************************
13 // GPL reminder to be added
13 // GPL reminder to be added
14 //*************************
14 //*************************
15
15
16 #include <rtems.h>
16 #include <rtems.h>
17
17
18 /* configuration information */
18 /* configuration information */
19
19
20 #define CONFIGURE_INIT
20 #define CONFIGURE_INIT
21
21
22 #include <bsp.h> /* for device driver prototypes */
22 #include <bsp.h> /* for device driver prototypes */
23
23
24 /* configuration information */
24 /* configuration information */
25
25
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28
28
29 #define CONFIGURE_MAXIMUM_TASKS 20
29 #define CONFIGURE_MAXIMUM_TASKS 20
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
35 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 #define CONFIGURE_MAXIMUM_PERIODS 5
37 #define CONFIGURE_MAXIMUM_PERIODS 5
38 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
39 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 #ifdef PRINT_STACK_REPORT
40 #ifdef PRINT_STACK_REPORT
41 #define CONFIGURE_STACK_CHECKER_ENABLED
41 #define CONFIGURE_STACK_CHECKER_ENABLED
42 #endif
42 #endif
43
43
44 #include <rtems/confdefs.h>
44 #include <rtems/confdefs.h>
45
45
46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 #ifdef RTEMS_DRVMGR_STARTUP
47 #ifdef RTEMS_DRVMGR_STARTUP
48 #ifdef LEON3
48 #ifdef LEON3
49 /* Add Timer and UART Driver */
49 /* Add Timer and UART Driver */
50 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
51 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
52 #endif
52 #endif
53 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
54 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
55 #endif
55 #endif
56 #endif
56 #endif
57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
58 #include <drvmgr/drvmgr_confdefs.h>
58 #include <drvmgr/drvmgr_confdefs.h>
59 #endif
59 #endif
60
60
61 #include "fsw_init.h"
61 #include "fsw_init.h"
62 #include "fsw_config.c"
62 #include "fsw_config.c"
63
63
64 rtems_task Init( rtems_task_argument ignored )
64 rtems_task Init( rtems_task_argument ignored )
65 {
65 {
66 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 /** This is the RTEMS INIT taks, it the first task launched by the system.
67 *
67 *
68 * @param unused is the starting argument of the RTEMS task
68 * @param unused is the starting argument of the RTEMS task
69 *
69 *
70 * The INIT task create and run all other RTEMS tasks.
70 * The INIT task create and run all other RTEMS tasks.
71 *
71 *
72 */
72 */
73
73
74 unsigned char *vhdlVersion;
74 unsigned char *vhdlVersion;
75
75
76 reset_lfr();
76 reset_lfr();
77
77
78 reset_local_time();
78 reset_local_time();
79
79
80 rtems_cpu_usage_reset();
80 rtems_cpu_usage_reset();
81
81
82 rtems_status_code status;
82 rtems_status_code status;
83 rtems_status_code status_spw;
83 rtems_status_code status_spw;
84 rtems_isr_entry old_isr_handler;
84 rtems_isr_entry old_isr_handler;
85
85
86 // UART settings
86 // UART settings
87 send_console_outputs_on_apbuart_port();
87 send_console_outputs_on_apbuart_port();
88 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
88 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
89 enable_apbuart_transmitter();
89 enable_apbuart_transmitter();
90 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
90 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
91
91
92 PRINTF("\n\n\n\n\n")
92 PRINTF("\n\n\n\n\n")
93 PRINTF("*************************\n")
93 PRINTF("*************************\n")
94 PRINTF("** LFR Flight Software **\n")
94 PRINTF("** LFR Flight Software **\n")
95 PRINTF1("** %d.", SW_VERSION_N1)
95 PRINTF1("** %d.", SW_VERSION_N1)
96 PRINTF1("%d." , SW_VERSION_N2)
96 PRINTF1("%d." , SW_VERSION_N2)
97 PRINTF1("%d." , SW_VERSION_N3)
97 PRINTF1("%d." , SW_VERSION_N3)
98 PRINTF1("%d **\n", SW_VERSION_N4)
98 PRINTF1("%d **\n", SW_VERSION_N4)
99
99
100 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
100 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
101 PRINTF("** VHDL **\n")
101 PRINTF("** VHDL **\n")
102 PRINTF1("** %d.", vhdlVersion[1])
102 PRINTF1("** %d.", vhdlVersion[1])
103 PRINTF1("%d." , vhdlVersion[2])
103 PRINTF1("%d." , vhdlVersion[2])
104 PRINTF1("%d **\n", vhdlVersion[3])
104 PRINTF1("%d **\n", vhdlVersion[3])
105 PRINTF("*************************\n")
105 PRINTF("*************************\n")
106 PRINTF("\n\n")
106 PRINTF("\n\n")
107
107
108 init_parameter_dump();
108 init_parameter_dump();
109 init_local_mode_parameters();
109 init_local_mode_parameters();
110 init_housekeeping_parameters();
110 init_housekeeping_parameters();
111 init_k_coefficients_f0();
112 init_k_coefficients_f1();
113 init_k_coefficients_f2();
111
114
112 // waveform picker initialization
115 // waveform picker initialization
113 WFP_init_rings(); // initialize the waveform rings
116 WFP_init_rings(); // initialize the waveform rings
114 WFP_reset_current_ring_nodes();
117 WFP_reset_current_ring_nodes();
115 reset_waveform_picker_regs();
118 reset_waveform_picker_regs();
116
119
117 // spectral matrices initialization
120 // spectral matrices initialization
118 SM_init_rings(); // initialize spectral matrices rings
121 SM_init_rings(); // initialize spectral matrices rings
119 SM_reset_current_ring_nodes();
122 SM_reset_current_ring_nodes();
120 reset_spectral_matrix_regs();
123 reset_spectral_matrix_regs();
121
124
122 updateLFRCurrentMode();
125 updateLFRCurrentMode();
123
126
124 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
127 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
125
128
126 create_names(); // create all names
129 create_names(); // create all names
127
130
128 status = create_message_queues(); // create message queues
131 status = create_message_queues(); // create message queues
129 if (status != RTEMS_SUCCESSFUL)
132 if (status != RTEMS_SUCCESSFUL)
130 {
133 {
131 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
134 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
132 }
135 }
133
136
134 status = create_all_tasks(); // create all tasks
137 status = create_all_tasks(); // create all tasks
135 if (status != RTEMS_SUCCESSFUL)
138 if (status != RTEMS_SUCCESSFUL)
136 {
139 {
137 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
140 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
138 }
141 }
139
142
140 // **************************
143 // **************************
141 // <SPACEWIRE INITIALIZATION>
144 // <SPACEWIRE INITIALIZATION>
142 grspw_timecode_callback = &timecode_irq_handler;
145 grspw_timecode_callback = &timecode_irq_handler;
143
146
144 status_spw = spacewire_open_link(); // (1) open the link
147 status_spw = spacewire_open_link(); // (1) open the link
145 if ( status_spw != RTEMS_SUCCESSFUL )
148 if ( status_spw != RTEMS_SUCCESSFUL )
146 {
149 {
147 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
150 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
148 }
151 }
149
152
150 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
153 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
151 {
154 {
152 status_spw = spacewire_configure_link( fdSPW );
155 status_spw = spacewire_configure_link( fdSPW );
153 if ( status_spw != RTEMS_SUCCESSFUL )
156 if ( status_spw != RTEMS_SUCCESSFUL )
154 {
157 {
155 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
158 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
156 }
159 }
157 }
160 }
158
161
159 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
162 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
160 {
163 {
161 status_spw = spacewire_start_link( fdSPW );
164 status_spw = spacewire_start_link( fdSPW );
162 if ( status_spw != RTEMS_SUCCESSFUL )
165 if ( status_spw != RTEMS_SUCCESSFUL )
163 {
166 {
164 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
167 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
165 }
168 }
166 }
169 }
167 // </SPACEWIRE INITIALIZATION>
170 // </SPACEWIRE INITIALIZATION>
168 // ***************************
171 // ***************************
169
172
170 status = start_all_tasks(); // start all tasks
173 status = start_all_tasks(); // start all tasks
171 if (status != RTEMS_SUCCESSFUL)
174 if (status != RTEMS_SUCCESSFUL)
172 {
175 {
173 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
176 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
174 }
177 }
175
178
176 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
179 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
177 status = start_recv_send_tasks();
180 status = start_recv_send_tasks();
178 if ( status != RTEMS_SUCCESSFUL )
181 if ( status != RTEMS_SUCCESSFUL )
179 {
182 {
180 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
183 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
181 }
184 }
182
185
183 // suspend science tasks, they will be restarted later depending on the mode
186 // suspend science tasks, they will be restarted later depending on the mode
184 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
187 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
185 if (status != RTEMS_SUCCESSFUL)
188 if (status != RTEMS_SUCCESSFUL)
186 {
189 {
187 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
190 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
188 }
191 }
189
192
190 //******************************
193 //******************************
191 // <SPECTRAL MATRICES SIMULATOR>
194 // <SPECTRAL MATRICES SIMULATOR>
192 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
195 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
193 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
196 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
194 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
197 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
195 // </SPECTRAL MATRICES SIMULATOR>
198 // </SPECTRAL MATRICES SIMULATOR>
196 //*******************************
199 //*******************************
197
200
198 // configure IRQ handling for the waveform picker unit
201 // configure IRQ handling for the waveform picker unit
199 status = rtems_interrupt_catch( waveforms_isr,
202 status = rtems_interrupt_catch( waveforms_isr,
200 IRQ_SPARC_WAVEFORM_PICKER,
203 IRQ_SPARC_WAVEFORM_PICKER,
201 &old_isr_handler) ;
204 &old_isr_handler) ;
202 // configure IRQ handling for the spectral matrices unit
205 // configure IRQ handling for the spectral matrices unit
203 status = rtems_interrupt_catch( spectral_matrices_isr,
206 status = rtems_interrupt_catch( spectral_matrices_isr,
204 IRQ_SPARC_SPECTRAL_MATRIX,
207 IRQ_SPARC_SPECTRAL_MATRIX,
205 &old_isr_handler) ;
208 &old_isr_handler) ;
206
209
207 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
210 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
208 if ( status_spw != RTEMS_SUCCESSFUL )
211 if ( status_spw != RTEMS_SUCCESSFUL )
209 {
212 {
210 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
213 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
211 if ( status != RTEMS_SUCCESSFUL ) {
214 if ( status != RTEMS_SUCCESSFUL ) {
212 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
215 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
213 }
216 }
214 }
217 }
215
218
216 BOOT_PRINTF("delete INIT\n")
219 BOOT_PRINTF("delete INIT\n")
217
220
221 // test_TCH();
222
218 status = rtems_task_delete(RTEMS_SELF);
223 status = rtems_task_delete(RTEMS_SELF);
219
224
220 }
225 }
221
226
222 void init_local_mode_parameters( void )
227 void init_local_mode_parameters( void )
223 {
228 {
224 /** This function initialize the param_local global variable with default values.
229 /** This function initialize the param_local global variable with default values.
225 *
230 *
226 */
231 */
227
232
228 unsigned int i;
233 unsigned int i;
229
234
230 // LOCAL PARAMETERS
235 // LOCAL PARAMETERS
231
236
232 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
237 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
233 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
238 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
234 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
239 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
235
240
236 // init sequence counters
241 // init sequence counters
237
242
238 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
243 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
239 {
244 {
240 sequenceCounters_TC_EXE[i] = 0x00;
245 sequenceCounters_TC_EXE[i] = 0x00;
241 }
246 }
242 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
247 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
243 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
248 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
244 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
249 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
245 sequenceCounterParameterDump = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
250 sequenceCounterParameterDump = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
246 }
251 }
247
252
248 void reset_local_time( void )
253 void reset_local_time( void )
249 {
254 {
250 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
255 time_management_regs->ctrl = time_management_regs->ctrl | 0x02; // [0010] software reset, coarse time = 0x80000000
251 }
256 }
252
257
253 void create_names( void ) // create all names for tasks and queues
258 void create_names( void ) // create all names for tasks and queues
254 {
259 {
255 /** This function creates all RTEMS names used in the software for tasks and queues.
260 /** This function creates all RTEMS names used in the software for tasks and queues.
256 *
261 *
257 * @return RTEMS directive status codes:
262 * @return RTEMS directive status codes:
258 * - RTEMS_SUCCESSFUL - successful completion
263 * - RTEMS_SUCCESSFUL - successful completion
259 *
264 *
260 */
265 */
261
266
262 // task names
267 // task names
263 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
268 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
264 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
269 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
265 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
270 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
266 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
271 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
267 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
272 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
268 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
273 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
269 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
274 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
270 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
275 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
271 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
276 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
272 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
277 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
273 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
278 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
274 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
279 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
275 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
280 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
276 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
281 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
277 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
282 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
278 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
283 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
279 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
284 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
280 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
285 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
281 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
286 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
282
287
283 // rate monotonic period names
288 // rate monotonic period names
284 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
289 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
285
290
286 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
291 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
287 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
292 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
288 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
293 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
289 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
294 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
290 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
295 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
291 }
296 }
292
297
293 int create_all_tasks( void ) // create all tasks which run in the software
298 int create_all_tasks( void ) // create all tasks which run in the software
294 {
299 {
295 /** This function creates all RTEMS tasks used in the software.
300 /** This function creates all RTEMS tasks used in the software.
296 *
301 *
297 * @return RTEMS directive status codes:
302 * @return RTEMS directive status codes:
298 * - RTEMS_SUCCESSFUL - task created successfully
303 * - RTEMS_SUCCESSFUL - task created successfully
299 * - RTEMS_INVALID_ADDRESS - id is NULL
304 * - RTEMS_INVALID_ADDRESS - id is NULL
300 * - RTEMS_INVALID_NAME - invalid task name
305 * - RTEMS_INVALID_NAME - invalid task name
301 * - RTEMS_INVALID_PRIORITY - invalid task priority
306 * - RTEMS_INVALID_PRIORITY - invalid task priority
302 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
307 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
303 * - RTEMS_TOO_MANY - too many tasks created
308 * - RTEMS_TOO_MANY - too many tasks created
304 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
309 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
305 * - RTEMS_TOO_MANY - too many global objects
310 * - RTEMS_TOO_MANY - too many global objects
306 *
311 *
307 */
312 */
308
313
309 rtems_status_code status;
314 rtems_status_code status;
310
315
311 //**********
316 //**********
312 // SPACEWIRE
317 // SPACEWIRE
313 // RECV
318 // RECV
314 status = rtems_task_create(
319 status = rtems_task_create(
315 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
320 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
316 RTEMS_DEFAULT_MODES,
321 RTEMS_DEFAULT_MODES,
317 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
322 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
318 );
323 );
319 if (status == RTEMS_SUCCESSFUL) // SEND
324 if (status == RTEMS_SUCCESSFUL) // SEND
320 {
325 {
321 status = rtems_task_create(
326 status = rtems_task_create(
322 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
327 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
323 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
328 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
324 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
329 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
325 );
330 );
326 }
331 }
327 if (status == RTEMS_SUCCESSFUL) // WTDG
332 if (status == RTEMS_SUCCESSFUL) // WTDG
328 {
333 {
329 status = rtems_task_create(
334 status = rtems_task_create(
330 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
335 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
331 RTEMS_DEFAULT_MODES,
336 RTEMS_DEFAULT_MODES,
332 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
337 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
333 );
338 );
334 }
339 }
335 if (status == RTEMS_SUCCESSFUL) // ACTN
340 if (status == RTEMS_SUCCESSFUL) // ACTN
336 {
341 {
337 status = rtems_task_create(
342 status = rtems_task_create(
338 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
343 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
339 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
344 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
340 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
345 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
341 );
346 );
342 }
347 }
343 if (status == RTEMS_SUCCESSFUL) // SPIQ
348 if (status == RTEMS_SUCCESSFUL) // SPIQ
344 {
349 {
345 status = rtems_task_create(
350 status = rtems_task_create(
346 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
351 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
347 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
352 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
348 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
353 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
349 );
354 );
350 }
355 }
351
356
352 //******************
357 //******************
353 // SPECTRAL MATRICES
358 // SPECTRAL MATRICES
354 if (status == RTEMS_SUCCESSFUL) // AVF0
359 if (status == RTEMS_SUCCESSFUL) // AVF0
355 {
360 {
356 status = rtems_task_create(
361 status = rtems_task_create(
357 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
362 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
358 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
363 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
359 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
364 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
360 );
365 );
361 }
366 }
362 if (status == RTEMS_SUCCESSFUL) // PRC0
367 if (status == RTEMS_SUCCESSFUL) // PRC0
363 {
368 {
364 status = rtems_task_create(
369 status = rtems_task_create(
365 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
370 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * 2,
366 RTEMS_DEFAULT_MODES,
371 RTEMS_DEFAULT_MODES,
367 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
372 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
368 );
373 );
369 }
374 }
370 if (status == RTEMS_SUCCESSFUL) // AVF1
375 if (status == RTEMS_SUCCESSFUL) // AVF1
371 {
376 {
372 status = rtems_task_create(
377 status = rtems_task_create(
373 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
378 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
374 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
379 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
375 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
380 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
376 );
381 );
377 }
382 }
378 if (status == RTEMS_SUCCESSFUL) // PRC1
383 if (status == RTEMS_SUCCESSFUL) // PRC1
379 {
384 {
380 status = rtems_task_create(
385 status = rtems_task_create(
381 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
386 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * 2,
382 RTEMS_DEFAULT_MODES,
387 RTEMS_DEFAULT_MODES,
383 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
388 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
384 );
389 );
385 }
390 }
386 if (status == RTEMS_SUCCESSFUL) // AVF2
391 if (status == RTEMS_SUCCESSFUL) // AVF2
387 {
392 {
388 status = rtems_task_create(
393 status = rtems_task_create(
389 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
394 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
390 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
395 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
391 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
396 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
392 );
397 );
393 }
398 }
394 if (status == RTEMS_SUCCESSFUL) // PRC2
399 if (status == RTEMS_SUCCESSFUL) // PRC2
395 {
400 {
396 status = rtems_task_create(
401 status = rtems_task_create(
397 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
402 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * 2,
398 RTEMS_DEFAULT_MODES,
403 RTEMS_DEFAULT_MODES,
399 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
404 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
400 );
405 );
401 }
406 }
402
407
403 //****************
408 //****************
404 // WAVEFORM PICKER
409 // WAVEFORM PICKER
405 if (status == RTEMS_SUCCESSFUL) // WFRM
410 if (status == RTEMS_SUCCESSFUL) // WFRM
406 {
411 {
407 status = rtems_task_create(
412 status = rtems_task_create(
408 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
413 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
409 RTEMS_DEFAULT_MODES,
414 RTEMS_DEFAULT_MODES,
410 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
415 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
411 );
416 );
412 }
417 }
413 if (status == RTEMS_SUCCESSFUL) // CWF3
418 if (status == RTEMS_SUCCESSFUL) // CWF3
414 {
419 {
415 status = rtems_task_create(
420 status = rtems_task_create(
416 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
421 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
417 RTEMS_DEFAULT_MODES,
422 RTEMS_DEFAULT_MODES,
418 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
423 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
419 );
424 );
420 }
425 }
421 if (status == RTEMS_SUCCESSFUL) // CWF2
426 if (status == RTEMS_SUCCESSFUL) // CWF2
422 {
427 {
423 status = rtems_task_create(
428 status = rtems_task_create(
424 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
429 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
425 RTEMS_DEFAULT_MODES,
430 RTEMS_DEFAULT_MODES,
426 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
431 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
427 );
432 );
428 }
433 }
429 if (status == RTEMS_SUCCESSFUL) // CWF1
434 if (status == RTEMS_SUCCESSFUL) // CWF1
430 {
435 {
431 status = rtems_task_create(
436 status = rtems_task_create(
432 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
437 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
433 RTEMS_DEFAULT_MODES,
438 RTEMS_DEFAULT_MODES,
434 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
439 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
435 );
440 );
436 }
441 }
437 if (status == RTEMS_SUCCESSFUL) // SWBD
442 if (status == RTEMS_SUCCESSFUL) // SWBD
438 {
443 {
439 status = rtems_task_create(
444 status = rtems_task_create(
440 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
445 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
441 RTEMS_DEFAULT_MODES,
446 RTEMS_DEFAULT_MODES,
442 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
447 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
443 );
448 );
444 }
449 }
445
450
446 //*****
451 //*****
447 // MISC
452 // MISC
448 if (status == RTEMS_SUCCESSFUL) // STAT
453 if (status == RTEMS_SUCCESSFUL) // STAT
449 {
454 {
450 status = rtems_task_create(
455 status = rtems_task_create(
451 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
456 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
452 RTEMS_DEFAULT_MODES,
457 RTEMS_DEFAULT_MODES,
453 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
458 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
454 );
459 );
455 }
460 }
456 if (status == RTEMS_SUCCESSFUL) // DUMB
461 if (status == RTEMS_SUCCESSFUL) // DUMB
457 {
462 {
458 status = rtems_task_create(
463 status = rtems_task_create(
459 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
464 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
460 RTEMS_DEFAULT_MODES,
465 RTEMS_DEFAULT_MODES,
461 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
466 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
462 );
467 );
463 }
468 }
464 if (status == RTEMS_SUCCESSFUL) // HOUS
469 if (status == RTEMS_SUCCESSFUL) // HOUS
465 {
470 {
466 status = rtems_task_create(
471 status = rtems_task_create(
467 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
472 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
468 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
473 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
469 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
474 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
470 );
475 );
471 }
476 }
472
477
473 return status;
478 return status;
474 }
479 }
475
480
476 int start_recv_send_tasks( void )
481 int start_recv_send_tasks( void )
477 {
482 {
478 rtems_status_code status;
483 rtems_status_code status;
479
484
480 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
485 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
481 if (status!=RTEMS_SUCCESSFUL) {
486 if (status!=RTEMS_SUCCESSFUL) {
482 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
487 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
483 }
488 }
484
489
485 if (status == RTEMS_SUCCESSFUL) // SEND
490 if (status == RTEMS_SUCCESSFUL) // SEND
486 {
491 {
487 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
492 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
488 if (status!=RTEMS_SUCCESSFUL) {
493 if (status!=RTEMS_SUCCESSFUL) {
489 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
494 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
490 }
495 }
491 }
496 }
492
497
493 return status;
498 return status;
494 }
499 }
495
500
496 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
501 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
497 {
502 {
498 /** This function starts all RTEMS tasks used in the software.
503 /** This function starts all RTEMS tasks used in the software.
499 *
504 *
500 * @return RTEMS directive status codes:
505 * @return RTEMS directive status codes:
501 * - RTEMS_SUCCESSFUL - ask started successfully
506 * - RTEMS_SUCCESSFUL - ask started successfully
502 * - RTEMS_INVALID_ADDRESS - invalid task entry point
507 * - RTEMS_INVALID_ADDRESS - invalid task entry point
503 * - RTEMS_INVALID_ID - invalid task id
508 * - RTEMS_INVALID_ID - invalid task id
504 * - RTEMS_INCORRECT_STATE - task not in the dormant state
509 * - RTEMS_INCORRECT_STATE - task not in the dormant state
505 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
510 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
506 *
511 *
507 */
512 */
508 // starts all the tasks fot eh flight software
513 // starts all the tasks fot eh flight software
509
514
510 rtems_status_code status;
515 rtems_status_code status;
511
516
512 //**********
517 //**********
513 // SPACEWIRE
518 // SPACEWIRE
514 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
519 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
515 if (status!=RTEMS_SUCCESSFUL) {
520 if (status!=RTEMS_SUCCESSFUL) {
516 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
521 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
517 }
522 }
518
523
519 if (status == RTEMS_SUCCESSFUL) // WTDG
524 if (status == RTEMS_SUCCESSFUL) // WTDG
520 {
525 {
521 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
526 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
522 if (status!=RTEMS_SUCCESSFUL) {
527 if (status!=RTEMS_SUCCESSFUL) {
523 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
528 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
524 }
529 }
525 }
530 }
526
531
527 if (status == RTEMS_SUCCESSFUL) // ACTN
532 if (status == RTEMS_SUCCESSFUL) // ACTN
528 {
533 {
529 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
534 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
530 if (status!=RTEMS_SUCCESSFUL) {
535 if (status!=RTEMS_SUCCESSFUL) {
531 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
536 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
532 }
537 }
533 }
538 }
534
539
535 //******************
540 //******************
536 // SPECTRAL MATRICES
541 // SPECTRAL MATRICES
537 if (status == RTEMS_SUCCESSFUL) // AVF0
542 if (status == RTEMS_SUCCESSFUL) // AVF0
538 {
543 {
539 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
544 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
540 if (status!=RTEMS_SUCCESSFUL) {
545 if (status!=RTEMS_SUCCESSFUL) {
541 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
546 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
542 }
547 }
543 }
548 }
544 if (status == RTEMS_SUCCESSFUL) // PRC0
549 if (status == RTEMS_SUCCESSFUL) // PRC0
545 {
550 {
546 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
551 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
547 if (status!=RTEMS_SUCCESSFUL) {
552 if (status!=RTEMS_SUCCESSFUL) {
548 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
553 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
549 }
554 }
550 }
555 }
551 if (status == RTEMS_SUCCESSFUL) // AVF1
556 if (status == RTEMS_SUCCESSFUL) // AVF1
552 {
557 {
553 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
558 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
554 if (status!=RTEMS_SUCCESSFUL) {
559 if (status!=RTEMS_SUCCESSFUL) {
555 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
560 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
556 }
561 }
557 }
562 }
558 if (status == RTEMS_SUCCESSFUL) // PRC1
563 if (status == RTEMS_SUCCESSFUL) // PRC1
559 {
564 {
560 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
565 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
561 if (status!=RTEMS_SUCCESSFUL) {
566 if (status!=RTEMS_SUCCESSFUL) {
562 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
567 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
563 }
568 }
564 }
569 }
565 if (status == RTEMS_SUCCESSFUL) // AVF2
570 if (status == RTEMS_SUCCESSFUL) // AVF2
566 {
571 {
567 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
572 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
568 if (status!=RTEMS_SUCCESSFUL) {
573 if (status!=RTEMS_SUCCESSFUL) {
569 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
574 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
570 }
575 }
571 }
576 }
572 if (status == RTEMS_SUCCESSFUL) // PRC2
577 if (status == RTEMS_SUCCESSFUL) // PRC2
573 {
578 {
574 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
579 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
575 if (status!=RTEMS_SUCCESSFUL) {
580 if (status!=RTEMS_SUCCESSFUL) {
576 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
581 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
577 }
582 }
578 }
583 }
579
584
580 //****************
585 //****************
581 // WAVEFORM PICKER
586 // WAVEFORM PICKER
582 if (status == RTEMS_SUCCESSFUL) // WFRM
587 if (status == RTEMS_SUCCESSFUL) // WFRM
583 {
588 {
584 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
589 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
585 if (status!=RTEMS_SUCCESSFUL) {
590 if (status!=RTEMS_SUCCESSFUL) {
586 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
591 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
587 }
592 }
588 }
593 }
589 if (status == RTEMS_SUCCESSFUL) // CWF3
594 if (status == RTEMS_SUCCESSFUL) // CWF3
590 {
595 {
591 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
596 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
592 if (status!=RTEMS_SUCCESSFUL) {
597 if (status!=RTEMS_SUCCESSFUL) {
593 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
598 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
594 }
599 }
595 }
600 }
596 if (status == RTEMS_SUCCESSFUL) // CWF2
601 if (status == RTEMS_SUCCESSFUL) // CWF2
597 {
602 {
598 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
603 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
599 if (status!=RTEMS_SUCCESSFUL) {
604 if (status!=RTEMS_SUCCESSFUL) {
600 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
605 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
601 }
606 }
602 }
607 }
603 if (status == RTEMS_SUCCESSFUL) // CWF1
608 if (status == RTEMS_SUCCESSFUL) // CWF1
604 {
609 {
605 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
610 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
606 if (status!=RTEMS_SUCCESSFUL) {
611 if (status!=RTEMS_SUCCESSFUL) {
607 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
612 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
608 }
613 }
609 }
614 }
610 if (status == RTEMS_SUCCESSFUL) // SWBD
615 if (status == RTEMS_SUCCESSFUL) // SWBD
611 {
616 {
612 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
617 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
613 if (status!=RTEMS_SUCCESSFUL) {
618 if (status!=RTEMS_SUCCESSFUL) {
614 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
619 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
615 }
620 }
616 }
621 }
617
622
618 //*****
623 //*****
619 // MISC
624 // MISC
620 if (status == RTEMS_SUCCESSFUL) // HOUS
625 if (status == RTEMS_SUCCESSFUL) // HOUS
621 {
626 {
622 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
627 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
623 if (status!=RTEMS_SUCCESSFUL) {
628 if (status!=RTEMS_SUCCESSFUL) {
624 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
629 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
625 }
630 }
626 }
631 }
627 if (status == RTEMS_SUCCESSFUL) // DUMB
632 if (status == RTEMS_SUCCESSFUL) // DUMB
628 {
633 {
629 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
634 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
630 if (status!=RTEMS_SUCCESSFUL) {
635 if (status!=RTEMS_SUCCESSFUL) {
631 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
636 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
632 }
637 }
633 }
638 }
634 if (status == RTEMS_SUCCESSFUL) // STAT
639 if (status == RTEMS_SUCCESSFUL) // STAT
635 {
640 {
636 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
641 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
637 if (status!=RTEMS_SUCCESSFUL) {
642 if (status!=RTEMS_SUCCESSFUL) {
638 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
643 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
639 }
644 }
640 }
645 }
641
646
642 return status;
647 return status;
643 }
648 }
644
649
645 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
650 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
646 {
651 {
647 rtems_status_code status_recv;
652 rtems_status_code status_recv;
648 rtems_status_code status_send;
653 rtems_status_code status_send;
649 rtems_status_code status_q_p0;
654 rtems_status_code status_q_p0;
650 rtems_status_code status_q_p1;
655 rtems_status_code status_q_p1;
651 rtems_status_code status_q_p2;
656 rtems_status_code status_q_p2;
652 rtems_status_code ret;
657 rtems_status_code ret;
653 rtems_id queue_id;
658 rtems_id queue_id;
654
659
655 //****************************************
660 //****************************************
656 // create the queue for handling valid TCs
661 // create the queue for handling valid TCs
657 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
662 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
658 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
663 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
659 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
664 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
660 if ( status_recv != RTEMS_SUCCESSFUL ) {
665 if ( status_recv != RTEMS_SUCCESSFUL ) {
661 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
666 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
662 }
667 }
663
668
664 //************************************************
669 //************************************************
665 // create the queue for handling TM packet sending
670 // create the queue for handling TM packet sending
666 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
671 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
667 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
672 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
668 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
673 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
669 if ( status_send != RTEMS_SUCCESSFUL ) {
674 if ( status_send != RTEMS_SUCCESSFUL ) {
670 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
675 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
671 }
676 }
672
677
673 //*****************************************************************************
678 //*****************************************************************************
674 // create the queue for handling averaged spectral matrices for processing @ f0
679 // create the queue for handling averaged spectral matrices for processing @ f0
675 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
680 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
676 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
681 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
677 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
682 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
678 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
683 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
679 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
684 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
680 }
685 }
681
686
682 //*****************************************************************************
687 //*****************************************************************************
683 // create the queue for handling averaged spectral matrices for processing @ f1
688 // create the queue for handling averaged spectral matrices for processing @ f1
684 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
689 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
685 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
690 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
686 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
691 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
687 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
692 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
688 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
693 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
689 }
694 }
690
695
691 //*****************************************************************************
696 //*****************************************************************************
692 // create the queue for handling averaged spectral matrices for processing @ f2
697 // create the queue for handling averaged spectral matrices for processing @ f2
693 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
698 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
694 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
699 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
695 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
700 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
696 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
701 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
697 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
702 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
698 }
703 }
699
704
700 if ( status_recv != RTEMS_SUCCESSFUL )
705 if ( status_recv != RTEMS_SUCCESSFUL )
701 {
706 {
702 ret = status_recv;
707 ret = status_recv;
703 }
708 }
704 else if( status_send != RTEMS_SUCCESSFUL )
709 else if( status_send != RTEMS_SUCCESSFUL )
705 {
710 {
706 ret = status_send;
711 ret = status_send;
707 }
712 }
708 else if( status_q_p0 != RTEMS_SUCCESSFUL )
713 else if( status_q_p0 != RTEMS_SUCCESSFUL )
709 {
714 {
710 ret = status_q_p0;
715 ret = status_q_p0;
711 }
716 }
712 else if( status_q_p1 != RTEMS_SUCCESSFUL )
717 else if( status_q_p1 != RTEMS_SUCCESSFUL )
713 {
718 {
714 ret = status_q_p1;
719 ret = status_q_p1;
715 }
720 }
716 else
721 else
717 {
722 {
718 ret = status_q_p2;
723 ret = status_q_p2;
719 }
724 }
720
725
721 return ret;
726 return ret;
722 }
727 }
723
728
724 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
729 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
725 {
730 {
726 rtems_status_code status;
731 rtems_status_code status;
727 rtems_name queue_name;
732 rtems_name queue_name;
728
733
729 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
734 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
730
735
731 status = rtems_message_queue_ident( queue_name, 0, queue_id );
736 status = rtems_message_queue_ident( queue_name, 0, queue_id );
732
737
733 return status;
738 return status;
734 }
739 }
735
740
736 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
741 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
737 {
742 {
738 rtems_status_code status;
743 rtems_status_code status;
739 rtems_name queue_name;
744 rtems_name queue_name;
740
745
741 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
746 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
742
747
743 status = rtems_message_queue_ident( queue_name, 0, queue_id );
748 status = rtems_message_queue_ident( queue_name, 0, queue_id );
744
749
745 return status;
750 return status;
746 }
751 }
747
752
748 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
753 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
749 {
754 {
750 rtems_status_code status;
755 rtems_status_code status;
751 rtems_name queue_name;
756 rtems_name queue_name;
752
757
753 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
758 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
754
759
755 status = rtems_message_queue_ident( queue_name, 0, queue_id );
760 status = rtems_message_queue_ident( queue_name, 0, queue_id );
756
761
757 return status;
762 return status;
758 }
763 }
759
764
760 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
765 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
761 {
766 {
762 rtems_status_code status;
767 rtems_status_code status;
763 rtems_name queue_name;
768 rtems_name queue_name;
764
769
765 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
770 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
766
771
767 status = rtems_message_queue_ident( queue_name, 0, queue_id );
772 status = rtems_message_queue_ident( queue_name, 0, queue_id );
768
773
769 return status;
774 return status;
770 }
775 }
771
776
772 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
777 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
773 {
778 {
774 rtems_status_code status;
779 rtems_status_code status;
775 rtems_name queue_name;
780 rtems_name queue_name;
776
781
777 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
782 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
778
783
779 status = rtems_message_queue_ident( queue_name, 0, queue_id );
784 status = rtems_message_queue_ident( queue_name, 0, queue_id );
780
785
781 return status;
786 return status;
782 }
787 }
@@ -1,574 +1,487
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 {
12 {
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 *
14 *
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 * @param interrupt_level is the interrupt level that the timer drives.
18 * @param interrupt_level is the interrupt level that the timer drives.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 *
20 *
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 *
22 *
23 */
23 */
24
24
25 rtems_status_code status;
25 rtems_status_code status;
26 rtems_isr_entry old_isr_handler;
26 rtems_isr_entry old_isr_handler;
27
27
28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29
29
30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 if (status!=RTEMS_SUCCESSFUL)
31 if (status!=RTEMS_SUCCESSFUL)
32 {
32 {
33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 }
34 }
35
35
36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 }
37 }
38
38
39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 {
40 {
41 /** This function starts a GPTIMER timer.
41 /** This function starts a GPTIMER timer.
42 *
42 *
43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 *
45 *
46 */
46 */
47
47
48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 }
53 }
54
54
55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 {
56 {
57 /** This function stops a GPTIMER timer.
57 /** This function stops a GPTIMER timer.
58 *
58 *
59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 *
61 *
62 */
62 */
63
63
64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 }
67 }
68
68
69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 {
70 {
71 /** This function sets the clock divider of a GPTIMER timer.
71 /** This function sets the clock divider of a GPTIMER timer.
72 *
72 *
73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 *
76 *
77 */
77 */
78
78
79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 }
80 }
81
81
82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 {
83 {
84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85
85
86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87
87
88 return 0;
88 return 0;
89 }
89 }
90
90
91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 {
92 {
93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94
94
95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96
96
97 return 0;
97 return 0;
98 }
98 }
99
99
100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 {
101 {
102 /** This function sets the scaler reload register of the apbuart module
102 /** This function sets the scaler reload register of the apbuart module
103 *
103 *
104 * @param regs is the address of the apbuart registers in memory
104 * @param regs is the address of the apbuart registers in memory
105 * @param value is the value that will be stored in the scaler register
105 * @param value is the value that will be stored in the scaler register
106 *
106 *
107 * The value shall be set by the software to get data on the serial interface.
107 * The value shall be set by the software to get data on the serial interface.
108 *
108 *
109 */
109 */
110
110
111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112
112
113 apbuart_regs->scaler = value;
113 apbuart_regs->scaler = value;
114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 }
115 }
116
116
117 //************
117 //************
118 // RTEMS TASKS
118 // RTEMS TASKS
119
119
120 rtems_task stat_task(rtems_task_argument argument)
120 rtems_task stat_task(rtems_task_argument argument)
121 {
121 {
122 int i;
122 int i;
123 int j;
123 int j;
124 i = 0;
124 i = 0;
125 j = 0;
125 j = 0;
126 BOOT_PRINTF("in STAT *** \n")
126 BOOT_PRINTF("in STAT *** \n")
127 while(1){
127 while(1){
128 rtems_task_wake_after(1000);
128 rtems_task_wake_after(1000);
129 PRINTF1("%d\n", j)
129 PRINTF1("%d\n", j)
130 if (i == CPU_USAGE_REPORT_PERIOD) {
130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 // #ifdef PRINT_TASK_STATISTICS
131 // #ifdef PRINT_TASK_STATISTICS
132 // rtems_cpu_usage_report();
132 // rtems_cpu_usage_report();
133 // rtems_cpu_usage_reset();
133 // rtems_cpu_usage_reset();
134 // #endif
134 // #endif
135 i = 0;
135 i = 0;
136 }
136 }
137 else i++;
137 else i++;
138 j++;
138 j++;
139 }
139 }
140 }
140 }
141
141
142 rtems_task hous_task(rtems_task_argument argument)
142 rtems_task hous_task(rtems_task_argument argument)
143 {
143 {
144 rtems_status_code status;
144 rtems_status_code status;
145 rtems_status_code spare_status;
145 rtems_status_code spare_status;
146 rtems_id queue_id;
146 rtems_id queue_id;
147 rtems_rate_monotonic_period_status period_status;
147 rtems_rate_monotonic_period_status period_status;
148
148
149 status = get_message_queue_id_send( &queue_id );
149 status = get_message_queue_id_send( &queue_id );
150 if (status != RTEMS_SUCCESSFUL)
150 if (status != RTEMS_SUCCESSFUL)
151 {
151 {
152 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
153 }
153 }
154
154
155 BOOT_PRINTF("in HOUS ***\n")
155 BOOT_PRINTF("in HOUS ***\n")
156
156
157 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
158 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
159 if( status != RTEMS_SUCCESSFUL ) {
159 if( status != RTEMS_SUCCESSFUL ) {
160 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
160 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
161 }
161 }
162 }
162 }
163
163
164 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
164 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
165 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
165 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
166 housekeeping_packet.reserved = DEFAULT_RESERVED;
166 housekeeping_packet.reserved = DEFAULT_RESERVED;
167 housekeeping_packet.userApplication = CCSDS_USER_APP;
167 housekeeping_packet.userApplication = CCSDS_USER_APP;
168 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
168 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
169 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
169 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
170 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
170 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
171 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
171 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
172 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
172 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
173 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
173 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
174 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
174 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
175 housekeeping_packet.serviceType = TM_TYPE_HK;
175 housekeeping_packet.serviceType = TM_TYPE_HK;
176 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
176 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
177 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
177 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
178 housekeeping_packet.sid = SID_HK;
178 housekeeping_packet.sid = SID_HK;
179
179
180 status = rtems_rate_monotonic_cancel(HK_id);
180 status = rtems_rate_monotonic_cancel(HK_id);
181 if( status != RTEMS_SUCCESSFUL ) {
181 if( status != RTEMS_SUCCESSFUL ) {
182 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
182 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
183 }
183 }
184 else {
184 else {
185 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
185 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
186 }
186 }
187
187
188 // startup phase
188 // startup phase
189 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
190 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
191 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
192 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
193 {
193 {
194 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
195 {
195 {
196 break; // break if LFR is synchronized
196 break; // break if LFR is synchronized
197 }
197 }
198 else
198 else
199 {
199 {
200 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
201 // sched_yield();
201 // sched_yield();
202 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
202 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
203 }
203 }
204 }
204 }
205 status = rtems_rate_monotonic_cancel(HK_id);
205 status = rtems_rate_monotonic_cancel(HK_id);
206 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
206 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
207
207
208 while(1){ // launch the rate monotonic task
208 while(1){ // launch the rate monotonic task
209 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
209 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
210 if ( status != RTEMS_SUCCESSFUL ) {
210 if ( status != RTEMS_SUCCESSFUL ) {
211 PRINTF1( "in HOUS *** ERR period: %d\n", status);
211 PRINTF1( "in HOUS *** ERR period: %d\n", status);
212 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
212 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
213 }
213 }
214 else {
214 else {
215 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
215 housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
216 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
216 housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
217 increment_seq_counter( &sequenceCounterHK );
217 increment_seq_counter( &sequenceCounterHK );
218
218
219 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
219 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
220 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
220 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
221 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
221 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
222 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
222 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
223 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
223 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
224 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
224 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
225
225
226 spacewire_update_statistics();
226 spacewire_update_statistics();
227
227
228 // get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
228 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
229 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
229 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
230
230
231 // SEND PACKET
231 // SEND PACKET
232 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
232 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
233 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
233 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
234 if (status != RTEMS_SUCCESSFUL) {
234 if (status != RTEMS_SUCCESSFUL) {
235 PRINTF1("in HOUS *** ERR send: %d\n", status)
235 PRINTF1("in HOUS *** ERR send: %d\n", status)
236 }
236 }
237 }
237 }
238 }
238 }
239
239
240 PRINTF("in HOUS *** deleting task\n")
240 PRINTF("in HOUS *** deleting task\n")
241
241
242 status = rtems_task_delete( RTEMS_SELF ); // should not return
242 status = rtems_task_delete( RTEMS_SELF ); // should not return
243 printf( "rtems_task_delete returned with status of %d.\n", status );
243 printf( "rtems_task_delete returned with status of %d.\n", status );
244 return;
244 return;
245 }
245 }
246
246
247 rtems_task dumb_task( rtems_task_argument unused )
247 rtems_task dumb_task( rtems_task_argument unused )
248 {
248 {
249 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
249 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
250 *
250 *
251 * @param unused is the starting argument of the RTEMS task
251 * @param unused is the starting argument of the RTEMS task
252 *
252 *
253 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
253 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
254 *
254 *
255 */
255 */
256
256
257 unsigned int i;
257 unsigned int i;
258 unsigned int intEventOut;
258 unsigned int intEventOut;
259 unsigned int coarse_time = 0;
259 unsigned int coarse_time = 0;
260 unsigned int fine_time = 0;
260 unsigned int fine_time = 0;
261 rtems_event_set event_out;
261 rtems_event_set event_out;
262
262
263 char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0
263 char *DumbMessages[12] = {"in DUMB *** default", // RTEMS_EVENT_0
264 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
264 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
265 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
265 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
266 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
266 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
267 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
267 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
268 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
268 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
269 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
269 "VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
270 "ready for dump", // RTEMS_EVENT_7
270 "ready for dump", // RTEMS_EVENT_7
271 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
271 "VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
272 "tick", // RTEMS_EVENT_9
272 "tick", // RTEMS_EVENT_9
273 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
273 "VHDL ERR *** waveform picker", // RTEMS_EVENT_10
274 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11
274 "VHDL ERR *** unexpected ready matrix values" // RTEMS_EVENT_11
275 };
275 };
276
276
277 BOOT_PRINTF("in DUMB *** \n")
277 BOOT_PRINTF("in DUMB *** \n")
278
278
279 while(1){
279 while(1){
280 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
280 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
281 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
281 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
282 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
282 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
284 intEventOut = (unsigned int) event_out;
284 intEventOut = (unsigned int) event_out;
285 for ( i=0; i<32; i++)
285 for ( i=0; i<32; i++)
286 {
286 {
287 if ( ((intEventOut >> i) & 0x0001) != 0)
287 if ( ((intEventOut >> i) & 0x0001) != 0)
288 {
288 {
289 coarse_time = time_management_regs->coarse_time;
289 coarse_time = time_management_regs->coarse_time;
290 fine_time = time_management_regs->fine_time;
290 fine_time = time_management_regs->fine_time;
291 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
291 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
292 if (i==8)
292 if (i==8)
293 {
293 {
294 }
294 }
295 if (i==10)
295 if (i==10)
296 {
296 {
297 }
297 }
298 }
298 }
299 }
299 }
300 }
300 }
301 }
301 }
302
302
303 //*****************************
303 //*****************************
304 // init housekeeping parameters
304 // init housekeeping parameters
305
305
306 void init_housekeeping_parameters( void )
306 void init_housekeeping_parameters( void )
307 {
307 {
308 /** This function initialize the housekeeping_packet global variable with default values.
308 /** This function initialize the housekeeping_packet global variable with default values.
309 *
309 *
310 */
310 */
311
311
312 unsigned int i = 0;
312 unsigned int i = 0;
313 unsigned char *parameters;
313 unsigned char *parameters;
314
314
315 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
315 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
316 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
316 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
317 {
317 {
318 parameters[i] = 0x00;
318 parameters[i] = 0x00;
319 }
319 }
320 // init status word
320 // init status word
321 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
321 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
322 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
322 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
323 // init software version
323 // init software version
324 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
324 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
325 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
325 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
326 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
326 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
327 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
327 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
328 // init fpga version
328 // init fpga version
329 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
329 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
330 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
330 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
331 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
331 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
332 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
332 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
333 }
333 }
334
334
335 void increment_seq_counter( unsigned short *packetSequenceControl )
335 void increment_seq_counter( unsigned short *packetSequenceControl )
336 {
336 {
337 /** This function increment the sequence counter psased in argument.
337 /** This function increment the sequence counter psased in argument.
338 *
338 *
339 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
339 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
340 *
340 *
341 */
341 */
342
342
343 unsigned short segmentation_grouping_flag;
343 unsigned short segmentation_grouping_flag;
344 unsigned short sequence_cnt;
344 unsigned short sequence_cnt;
345
345
346 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
346 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
347 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
347 sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
348
348
349 if ( sequence_cnt < SEQ_CNT_MAX)
349 if ( sequence_cnt < SEQ_CNT_MAX)
350 {
350 {
351 sequence_cnt = sequence_cnt + 1;
351 sequence_cnt = sequence_cnt + 1;
352 }
352 }
353 else
353 else
354 {
354 {
355 sequence_cnt = 0;
355 sequence_cnt = 0;
356 }
356 }
357
357
358 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
358 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
359 }
359 }
360
360
361 void getTime( unsigned char *time)
361 void getTime( unsigned char *time)
362 {
362 {
363 /** This function write the current local time in the time buffer passed in argument.
363 /** This function write the current local time in the time buffer passed in argument.
364 *
364 *
365 */
365 */
366
366
367 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
367 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
368 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
368 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
369 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
369 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
370 time[3] = (unsigned char) (time_management_regs->coarse_time);
370 time[3] = (unsigned char) (time_management_regs->coarse_time);
371 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
371 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
372 time[5] = (unsigned char) (time_management_regs->fine_time);
372 time[5] = (unsigned char) (time_management_regs->fine_time);
373 }
373 }
374
374
375 unsigned long long int getTimeAsUnsignedLongLongInt( )
375 unsigned long long int getTimeAsUnsignedLongLongInt( )
376 {
376 {
377 /** This function write the current local time in the time buffer passed in argument.
377 /** This function write the current local time in the time buffer passed in argument.
378 *
378 *
379 */
379 */
380 unsigned long long int time;
380 unsigned long long int time;
381
381
382 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
382 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
383 + time_management_regs->fine_time;
383 + time_management_regs->fine_time;
384
384
385 return time;
385 return time;
386 }
386 }
387
387
388 void send_dumb_hk( void )
388 void send_dumb_hk( void )
389 {
389 {
390 Packet_TM_LFR_HK_t dummy_hk_packet;
390 Packet_TM_LFR_HK_t dummy_hk_packet;
391 unsigned char *parameters;
391 unsigned char *parameters;
392 unsigned int i;
392 unsigned int i;
393 rtems_id queue_id;
393 rtems_id queue_id;
394
394
395 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
395 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
396 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
396 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
397 dummy_hk_packet.reserved = DEFAULT_RESERVED;
397 dummy_hk_packet.reserved = DEFAULT_RESERVED;
398 dummy_hk_packet.userApplication = CCSDS_USER_APP;
398 dummy_hk_packet.userApplication = CCSDS_USER_APP;
399 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
399 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
400 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
400 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
401 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
401 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
402 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
402 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
403 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
403 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
404 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
404 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
405 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
405 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
406 dummy_hk_packet.serviceType = TM_TYPE_HK;
406 dummy_hk_packet.serviceType = TM_TYPE_HK;
407 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
407 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
408 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
408 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
409 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
409 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
410 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
410 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
411 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
411 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
412 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
412 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
413 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
413 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
414 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
414 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
415 dummy_hk_packet.sid = SID_HK;
415 dummy_hk_packet.sid = SID_HK;
416
416
417 // init status word
417 // init status word
418 dummy_hk_packet.lfr_status_word[0] = 0xff;
418 dummy_hk_packet.lfr_status_word[0] = 0xff;
419 dummy_hk_packet.lfr_status_word[1] = 0xff;
419 dummy_hk_packet.lfr_status_word[1] = 0xff;
420 // init software version
420 // init software version
421 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
421 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
422 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
422 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
423 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
423 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
424 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
424 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
425 // init fpga version
425 // init fpga version
426 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
426 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
427 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
427 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
428 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
428 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
429 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
429 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
430
430
431 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
431 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
432
432
433 for (i=0; i<100; i++)
433 for (i=0; i<100; i++)
434 {
434 {
435 parameters[i] = 0xff;
435 parameters[i] = 0xff;
436 }
436 }
437
437
438 get_message_queue_id_send( &queue_id );
438 get_message_queue_id_send( &queue_id );
439
439
440 rtems_message_queue_send( queue_id, &dummy_hk_packet,
440 rtems_message_queue_send( queue_id, &dummy_hk_packet,
441 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
441 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
442 }
442 }
443
443
444 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
444 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
445 {
445 {
446 unsigned long long int localTime_asLong;
446 unsigned char* v_ptr;
447 unsigned long long int f3_0_AcquisitionTime_asLong;
447 unsigned char* e1_ptr;
448 unsigned long long int f3_1_AcquisitionTime_asLong;
448 unsigned char* e2_ptr;
449 unsigned long long int deltaT;
450 unsigned long long int deltaT_f3_0;
451 unsigned long long int deltaT_f3_1;
452 unsigned char *bufferPtr;
453
454 unsigned int offset_in_samples;
455 unsigned int offset_in_bytes;
456 unsigned char f3;
457
458 bufferPtr = NULL;
459 deltaT = 0;
460 deltaT_f3_0 = 0xffffffff;
461 deltaT_f3_1 = 0xffffffff;
462 f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
463
464 if (lfrCurrentMode == LFR_MODE_STANDBY)
465 {
466 spacecraft_potential[0] = 0x00;
467 spacecraft_potential[1] = 0x00;
468 spacecraft_potential[2] = 0x00;
469 spacecraft_potential[3] = 0x00;
470 spacecraft_potential[4] = 0x00;
471 spacecraft_potential[5] = 0x00;
472 }
473 else
474 {
475 localTime_asLong = get_acquisition_time( (unsigned char *) &time_management_regs->coarse_time );
476 f3_0_AcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &waveform_picker_regs->f3_0_coarse_time );
477 f3_1_AcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &waveform_picker_regs->f3_1_coarse_time );
478 printf("localTime 0x%llx, f3_0 0x%llx, f3_1 0x%llx\n",
479 localTime_asLong,
480 f3_0_AcquisitionTime_asLong,
481 f3_1_AcquisitionTime_asLong);
482
483 if ( localTime_asLong >= f3_0_AcquisitionTime_asLong )
484 {
485 deltaT_f3_0 = localTime_asLong - f3_0_AcquisitionTime_asLong;
486 }
487
488 if ( localTime_asLong > f3_1_AcquisitionTime_asLong )
489 {
490 deltaT_f3_1 = localTime_asLong - f3_1_AcquisitionTime_asLong;
491 }
492
449
493 if ( (deltaT_f3_0 != 0xffffffff) && (deltaT_f3_1 != 0xffffffff) )
450 v_ptr = (unsigned char *) &waveform_picker_regs->v;
494 {
451 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
495 if ( deltaT_f3_0 > deltaT_f3_1 )
452 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
496 {
497 deltaT = deltaT_f3_1;
498 bufferPtr = (unsigned char*) waveform_picker_regs->addr_data_f3_1;
499 }
500 else
501 {
502 deltaT = deltaT_f3_0;
503 bufferPtr = (unsigned char*) waveform_picker_regs->addr_data_f3_0;
504 }
505 }
506 else if ( (deltaT_f3_0 == 0xffffffff) && (deltaT_f3_1 != 0xffffffff) )
507 {
508 deltaT = deltaT_f3_1;
509 bufferPtr = (unsigned char*) waveform_picker_regs->addr_data_f3_1;
510 }
511 else if ( (deltaT_f3_0 != 0xffffffff) && (deltaT_f3_1 == 0xffffffff) )
512 {
513 deltaT = deltaT_f3_0;
514 bufferPtr = (unsigned char*) waveform_picker_regs->addr_data_f3_1;
515 }
516 else
517 {
518 deltaT = 0xffffffff;
519 }
520
453
521 if ( deltaT == 0xffffffff )
454 spacecraft_potential[0] = v_ptr[2];
522 {
455 spacecraft_potential[1] = v_ptr[3];
523 spacecraft_potential[0] = 0x00;
456 spacecraft_potential[2] = e1_ptr[2];
524 spacecraft_potential[1] = 0x00;
457 spacecraft_potential[3] = e1_ptr[3];
525 spacecraft_potential[2] = 0x00;
458 spacecraft_potential[4] = e2_ptr[2];
526 spacecraft_potential[3] = 0x00;
459 spacecraft_potential[5] = e2_ptr[3];
527 spacecraft_potential[4] = 0x00;
528 spacecraft_potential[5] = 0x00;
529 }
530 else
531 {
532 offset_in_samples = ( (double) deltaT ) / 65536. * f3;
533 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
534 {
535 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
536 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT - 1;
537 }
538 offset_in_bytes = offset_in_samples * NB_WORDS_SWF_BLK * 4;
539 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
540 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
541 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
542 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
543 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
544 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
545 }
546 }
547 }
460 }
548
461
549 void get_cpu_load( unsigned char *resource_statistics )
462 void get_cpu_load( unsigned char *resource_statistics )
550 {
463 {
551 unsigned char cpu_load;
464 unsigned char cpu_load;
552
465
553 cpu_load = lfr_rtems_cpu_usage_report();
466 cpu_load = lfr_rtems_cpu_usage_report();
554
467
555 // HK_LFR_CPU_LOAD
468 // HK_LFR_CPU_LOAD
556 resource_statistics[0] = cpu_load;
469 resource_statistics[0] = cpu_load;
557
470
558 // HK_LFR_CPU_LOAD_MAX
471 // HK_LFR_CPU_LOAD_MAX
559 if (cpu_load > resource_statistics[1])
472 if (cpu_load > resource_statistics[1])
560 {
473 {
561 resource_statistics[1] = cpu_load;
474 resource_statistics[1] = cpu_load;
562 }
475 }
563
476
564 // CPU_LOAD_AVE
477 // CPU_LOAD_AVE
565 resource_statistics[2] = 0;
478 resource_statistics[2] = 0;
566
479
567 #ifndef PRINT_TASK_STATISTICS
480 #ifndef PRINT_TASK_STATISTICS
568 rtems_cpu_usage_reset();
481 rtems_cpu_usage_reset();
569 #endif
482 #endif
570
483
571 }
484 }
572
485
573
486
574
487
@@ -1,1103 +1,1113
1 /** Functions related to the SpaceWire interface.
1 /** Functions related to the SpaceWire interface.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle SpaceWire transmissions:
6 * A group of functions to handle SpaceWire transmissions:
7 * - configuration of the SpaceWire link
7 * - configuration of the SpaceWire link
8 * - SpaceWire related interruption requests processing
8 * - SpaceWire related interruption requests processing
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
11 *
11 *
12 */
12 */
13
13
14 #include "fsw_spacewire.h"
14 #include "fsw_spacewire.h"
15
15
16 rtems_name semq_name;
16 rtems_name semq_name;
17 rtems_id semq_id;
17 rtems_id semq_id;
18
18
19 //*****************
19 //*****************
20 // waveform headers
20 // waveform headers
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
24
24
25 //***********
25 //***********
26 // RTEMS TASK
26 // RTEMS TASK
27 rtems_task spiq_task(rtems_task_argument unused)
27 rtems_task spiq_task(rtems_task_argument unused)
28 {
28 {
29 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
29 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
30 *
30 *
31 * @param unused is the starting argument of the RTEMS task
31 * @param unused is the starting argument of the RTEMS task
32 *
32 *
33 */
33 */
34
34
35 rtems_event_set event_out;
35 rtems_event_set event_out;
36 rtems_status_code status;
36 rtems_status_code status;
37 int linkStatus;
37 int linkStatus;
38
38
39 BOOT_PRINTF("in SPIQ *** \n")
39 BOOT_PRINTF("in SPIQ *** \n")
40
40
41 while(true){
41 while(true){
42 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
42 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
43 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
43 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
44
44
45 // [0] SUSPEND RECV AND SEND TASKS
45 // [0] SUSPEND RECV AND SEND TASKS
46 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
46 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
47 if ( status != RTEMS_SUCCESSFUL ) {
47 if ( status != RTEMS_SUCCESSFUL ) {
48 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
48 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
49 }
49 }
50 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
50 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
51 if ( status != RTEMS_SUCCESSFUL ) {
51 if ( status != RTEMS_SUCCESSFUL ) {
52 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
52 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
53 }
53 }
54
54
55 // [1] CHECK THE LINK
55 // [1] CHECK THE LINK
56 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
56 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
57 if ( linkStatus != 5) {
57 if ( linkStatus != 5) {
58 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
58 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
59 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
59 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
60 }
60 }
61
61
62 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
62 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
63 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
63 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
64 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
64 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
65 {
65 {
66 spacewire_compute_stats_offsets();
66 spacewire_compute_stats_offsets();
67 status = spacewire_reset_link( );
67 status = spacewire_reset_link( );
68 }
68 }
69 else // [2.b] in run state, start the link
69 else // [2.b] in run state, start the link
70 {
70 {
71 status = spacewire_stop_and_start_link( fdSPW ); // start the link
71 status = spacewire_stop_and_start_link( fdSPW ); // start the link
72 if ( status != RTEMS_SUCCESSFUL)
72 if ( status != RTEMS_SUCCESSFUL)
73 {
73 {
74 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
74 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
75 }
75 }
76 }
76 }
77
77
78 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
78 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
79 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
79 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
80 {
80 {
81 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
81 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
82 if ( status != RTEMS_SUCCESSFUL ) {
82 if ( status != RTEMS_SUCCESSFUL ) {
83 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
83 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
84 }
84 }
85 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
85 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
86 if ( status != RTEMS_SUCCESSFUL ) {
86 if ( status != RTEMS_SUCCESSFUL ) {
87 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
87 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
88 }
88 }
89 }
89 }
90 else // [3.b] the link is not in run state, go in STANDBY mode
90 else // [3.b] the link is not in run state, go in STANDBY mode
91 {
91 {
92 status = stop_current_mode();
92 status = stop_current_mode();
93 if ( status != RTEMS_SUCCESSFUL ) {
93 if ( status != RTEMS_SUCCESSFUL ) {
94 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
94 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
95 }
95 }
96 status = enter_mode( LFR_MODE_STANDBY, 0 );
96 status = enter_mode( LFR_MODE_STANDBY, 0 );
97 if ( status != RTEMS_SUCCESSFUL ) {
97 if ( status != RTEMS_SUCCESSFUL ) {
98 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
98 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
99 }
99 }
100 // wake the WTDG task up to wait for the link recovery
100 // wake the WTDG task up to wait for the link recovery
101 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
101 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
102 status = rtems_task_suspend( RTEMS_SELF );
102 status = rtems_task_suspend( RTEMS_SELF );
103 }
103 }
104 }
104 }
105 }
105 }
106
106
107 rtems_task recv_task( rtems_task_argument unused )
107 rtems_task recv_task( rtems_task_argument unused )
108 {
108 {
109 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
109 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
110 *
110 *
111 * @param unused is the starting argument of the RTEMS task
111 * @param unused is the starting argument of the RTEMS task
112 *
112 *
113 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
113 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
114 * 1. It reads the incoming data.
114 * 1. It reads the incoming data.
115 * 2. Launches the acceptance procedure.
115 * 2. Launches the acceptance procedure.
116 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
116 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
117 *
117 *
118 */
118 */
119
119
120 int len;
120 int len;
121 ccsdsTelecommandPacket_t currentTC;
121 ccsdsTelecommandPacket_t currentTC;
122 unsigned char computed_CRC[ 2 ];
122 unsigned char computed_CRC[ 2 ];
123 unsigned char currentTC_LEN_RCV[ 2 ];
123 unsigned char currentTC_LEN_RCV[ 2 ];
124 unsigned char destinationID;
124 unsigned char destinationID;
125 unsigned int estimatedPacketLength;
125 unsigned int estimatedPacketLength;
126 unsigned int parserCode;
126 unsigned int parserCode;
127 rtems_status_code status;
127 rtems_status_code status;
128 rtems_id queue_recv_id;
128 rtems_id queue_recv_id;
129 rtems_id queue_send_id;
129 rtems_id queue_send_id;
130
130
131 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
131 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
132
132
133 status = get_message_queue_id_recv( &queue_recv_id );
133 status = get_message_queue_id_recv( &queue_recv_id );
134 if (status != RTEMS_SUCCESSFUL)
134 if (status != RTEMS_SUCCESSFUL)
135 {
135 {
136 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
136 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
137 }
137 }
138
138
139 status = get_message_queue_id_send( &queue_send_id );
139 status = get_message_queue_id_send( &queue_send_id );
140 if (status != RTEMS_SUCCESSFUL)
140 if (status != RTEMS_SUCCESSFUL)
141 {
141 {
142 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
142 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
143 }
143 }
144
144
145 BOOT_PRINTF("in RECV *** \n")
145 BOOT_PRINTF("in RECV *** \n")
146
146
147 while(1)
147 while(1)
148 {
148 {
149 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
149 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
150 if (len == -1){ // error during the read call
150 if (len == -1){ // error during the read call
151 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
151 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
152 }
152 }
153 else {
153 else {
154 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
154 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
155 PRINTF("in RECV *** packet lenght too short\n")
155 PRINTF("in RECV *** packet lenght too short\n")
156 }
156 }
157 else {
157 else {
158 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
158 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
159 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
159 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
160 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
160 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
161 // CHECK THE TC
161 // CHECK THE TC
162 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
162 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
163 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
163 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
164 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
164 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
165 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
165 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
166 || (parserCode == WRONG_SRC_ID) )
166 || (parserCode == WRONG_SRC_ID) )
167 { // send TM_LFR_TC_EXE_CORRUPTED
167 { // send TM_LFR_TC_EXE_CORRUPTED
168 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
168 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
169 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
169 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
170 &&
170 &&
171 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
171 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
172 )
172 )
173 {
173 {
174 if ( parserCode == WRONG_SRC_ID )
174 if ( parserCode == WRONG_SRC_ID )
175 {
175 {
176 destinationID = SID_TC_GROUND;
176 destinationID = SID_TC_GROUND;
177 }
177 }
178 else
178 else
179 {
179 {
180 destinationID = currentTC.sourceID;
180 destinationID = currentTC.sourceID;
181 }
181 }
182 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
182 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
183 computed_CRC, currentTC_LEN_RCV,
183 computed_CRC, currentTC_LEN_RCV,
184 destinationID );
184 destinationID );
185 }
185 }
186 }
186 }
187 else
187 else
188 { // send valid TC to the action launcher
188 { // send valid TC to the action launcher
189 status = rtems_message_queue_send( queue_recv_id, &currentTC,
189 status = rtems_message_queue_send( queue_recv_id, &currentTC,
190 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
190 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
191 }
191 }
192 }
192 }
193 }
193 }
194 }
194 }
195 }
195 }
196
196
197 rtems_task send_task( rtems_task_argument argument)
197 rtems_task send_task( rtems_task_argument argument)
198 {
198 {
199 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
199 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
200 *
200 *
201 * @param unused is the starting argument of the RTEMS task
201 * @param unused is the starting argument of the RTEMS task
202 *
202 *
203 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
203 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
204 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
204 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
205 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
205 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
206 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
206 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
207 * data it contains.
207 * data it contains.
208 *
208 *
209 */
209 */
210
210
211 rtems_status_code status; // RTEMS status code
211 rtems_status_code status; // RTEMS status code
212 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
212 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
213 ring_node *incomingRingNodePtr;
213 ring_node *incomingRingNodePtr;
214 int ring_node_address;
214 int ring_node_address;
215 char *charPtr;
215 char *charPtr;
216 spw_ioctl_pkt_send *spw_ioctl_send;
216 spw_ioctl_pkt_send *spw_ioctl_send;
217 size_t size; // size of the incoming TC packet
217 size_t size; // size of the incoming TC packet
218 u_int32_t count;
218 u_int32_t count;
219 rtems_id queue_id;
219 rtems_id queue_id;
220 unsigned char sid;
220 unsigned char sid;
221
221
222 incomingRingNodePtr = NULL;
222 incomingRingNodePtr = NULL;
223 ring_node_address = 0;
223 ring_node_address = 0;
224 charPtr = (char *) &ring_node_address;
224 charPtr = (char *) &ring_node_address;
225 sid = 0;
225 sid = 0;
226
226
227 init_header_cwf( &headerCWF );
227 init_header_cwf( &headerCWF );
228 init_header_swf( &headerSWF );
228 init_header_swf( &headerSWF );
229 init_header_asm( &headerASM );
229 init_header_asm( &headerASM );
230
230
231 status = get_message_queue_id_send( &queue_id );
231 status = get_message_queue_id_send( &queue_id );
232 if (status != RTEMS_SUCCESSFUL)
232 if (status != RTEMS_SUCCESSFUL)
233 {
233 {
234 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
234 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
235 }
235 }
236
236
237 BOOT_PRINTF("in SEND *** \n")
237 BOOT_PRINTF("in SEND *** \n")
238
238
239 while(1)
239 while(1)
240 {
240 {
241 status = rtems_message_queue_receive( queue_id, incomingData, &size,
241 status = rtems_message_queue_receive( queue_id, incomingData, &size,
242 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
242 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
243
243
244 if (status!=RTEMS_SUCCESSFUL)
244 if (status!=RTEMS_SUCCESSFUL)
245 {
245 {
246 PRINTF1("in SEND *** (1) ERR = %d\n", status)
246 PRINTF1("in SEND *** (1) ERR = %d\n", status)
247 }
247 }
248 else
248 else
249 {
249 {
250 if ( size == sizeof(ring_node*) )
250 if ( size == sizeof(ring_node*) )
251 {
251 {
252 charPtr[0] = incomingData[0];
252 charPtr[0] = incomingData[0];
253 charPtr[1] = incomingData[1];
253 charPtr[1] = incomingData[1];
254 charPtr[2] = incomingData[2];
254 charPtr[2] = incomingData[2];
255 charPtr[3] = incomingData[3];
255 charPtr[3] = incomingData[3];
256 incomingRingNodePtr = (ring_node*) ring_node_address;
256 incomingRingNodePtr = (ring_node*) ring_node_address;
257 sid = incomingRingNodePtr->sid;
257 sid = incomingRingNodePtr->sid;
258 // printf("sid = %d\n", incomingRingNodePtr->sid);
258 // printf("sid = %d\n", incomingRingNodePtr->sid);
259 if ( (sid==SID_NORM_CWF_LONG_F3)
259 if ( (sid==SID_NORM_CWF_LONG_F3)
260 || (sid==SID_BURST_CWF_F2 )
260 || (sid==SID_BURST_CWF_F2 )
261 || (sid==SID_SBM1_CWF_F1 )
261 || (sid==SID_SBM1_CWF_F1 )
262 || (sid==SID_SBM2_CWF_F2 ))
262 || (sid==SID_SBM2_CWF_F2 ))
263 {
263 {
264 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
264 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
265 }
265 }
266 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
266 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
267 {
267 {
268 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
268 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
269 }
269 }
270 else if ( (sid==SID_NORM_CWF_F3) )
270 else if ( (sid==SID_NORM_CWF_F3) )
271 {
271 {
272 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
272 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
273 }
273 }
274 else if ( (sid==SID_NORM_ASM_F0) || (SID_NORM_ASM_F1) || (SID_NORM_ASM_F2) )
274 else if ( (sid==SID_NORM_ASM_F0) || (SID_NORM_ASM_F1) || (SID_NORM_ASM_F2) )
275 {
275 {
276 spw_send_asm( incomingRingNodePtr, &headerASM );
276 spw_send_asm( incomingRingNodePtr, &headerASM );
277 }
277 }
278 else
278 else
279 {
279 {
280 printf("unexpected sid = %d\n", sid);
280 printf("unexpected sid = %d\n", sid);
281 }
281 }
282 }
282 }
283 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
283 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
284 {
284 {
285 status = write( fdSPW, incomingData, size );
285 status = write( fdSPW, incomingData, size );
286 if (status == -1){
286 if (status == -1){
287 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
287 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
288 }
288 }
289 }
289 }
290 else // the incoming message is a spw_ioctl_pkt_send structure
290 else // the incoming message is a spw_ioctl_pkt_send structure
291 {
291 {
292 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
292 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
293 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
293 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
294 if (status == -1){
294 if (status == -1){
295 printf("size = %d, %x, %x, %x, %x, %x\n",
295 printf("size = %d, %x, %x, %x, %x, %x\n",
296 size,
296 size,
297 incomingData[0],
297 incomingData[0],
298 incomingData[1],
298 incomingData[1],
299 incomingData[2],
299 incomingData[2],
300 incomingData[3],
300 incomingData[3],
301 incomingData[4]);
301 incomingData[4]);
302 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
302 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
303 }
303 }
304 }
304 }
305 }
305 }
306
306
307 status = rtems_message_queue_get_number_pending( queue_id, &count );
307 status = rtems_message_queue_get_number_pending( queue_id, &count );
308 if (status != RTEMS_SUCCESSFUL)
308 if (status != RTEMS_SUCCESSFUL)
309 {
309 {
310 PRINTF1("in SEND *** (3) ERR = %d\n", status)
310 PRINTF1("in SEND *** (3) ERR = %d\n", status)
311 }
311 }
312 else
312 else
313 {
313 {
314 if (count > maxCount)
314 if (count > maxCount)
315 {
315 {
316 maxCount = count;
316 maxCount = count;
317 }
317 }
318 }
318 }
319 }
319 }
320 }
320 }
321
321
322 rtems_task wtdg_task( rtems_task_argument argument )
322 rtems_task wtdg_task( rtems_task_argument argument )
323 {
323 {
324 rtems_event_set event_out;
324 rtems_event_set event_out;
325 rtems_status_code status;
325 rtems_status_code status;
326 int linkStatus;
326 int linkStatus;
327
327
328 BOOT_PRINTF("in WTDG ***\n")
328 BOOT_PRINTF("in WTDG ***\n")
329
329
330 while(1)
330 while(1)
331 {
331 {
332 // wait for an RTEMS_EVENT
332 // wait for an RTEMS_EVENT
333 rtems_event_receive( RTEMS_EVENT_0,
333 rtems_event_receive( RTEMS_EVENT_0,
334 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
334 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
335 PRINTF("in WTDG *** wait for the link\n")
335 PRINTF("in WTDG *** wait for the link\n")
336 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
336 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
337 while( linkStatus != 5) // wait for the link
337 while( linkStatus != 5) // wait for the link
338 {
338 {
339 rtems_task_wake_after( 10 );
339 rtems_task_wake_after( 10 );
340 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
340 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
341 }
341 }
342
342
343 status = spacewire_stop_and_start_link( fdSPW );
343 status = spacewire_stop_and_start_link( fdSPW );
344
344
345 if (status != RTEMS_SUCCESSFUL)
345 if (status != RTEMS_SUCCESSFUL)
346 {
346 {
347 PRINTF1("in WTDG *** ERR link not started %d\n", status)
347 PRINTF1("in WTDG *** ERR link not started %d\n", status)
348 }
348 }
349 else
349 else
350 {
350 {
351 PRINTF("in WTDG *** OK link started\n")
351 PRINTF("in WTDG *** OK link started\n")
352 }
352 }
353
353
354 // restart the SPIQ task
354 // restart the SPIQ task
355 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
355 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
356 if ( status != RTEMS_SUCCESSFUL ) {
356 if ( status != RTEMS_SUCCESSFUL ) {
357 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
357 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
358 }
358 }
359
359
360 // restart RECV and SEND
360 // restart RECV and SEND
361 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
361 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
362 if ( status != RTEMS_SUCCESSFUL ) {
362 if ( status != RTEMS_SUCCESSFUL ) {
363 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
363 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
364 }
364 }
365 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
365 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
366 if ( status != RTEMS_SUCCESSFUL ) {
366 if ( status != RTEMS_SUCCESSFUL ) {
367 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
367 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
368 }
368 }
369 }
369 }
370 }
370 }
371
371
372 //****************
372 //****************
373 // OTHER FUNCTIONS
373 // OTHER FUNCTIONS
374 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
374 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
375 {
375 {
376 /** This function opens the SpaceWire link.
376 /** This function opens the SpaceWire link.
377 *
377 *
378 * @return a valid file descriptor in case of success, -1 in case of a failure
378 * @return a valid file descriptor in case of success, -1 in case of a failure
379 *
379 *
380 */
380 */
381 rtems_status_code status;
381 rtems_status_code status;
382
382
383 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
383 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
384 if ( fdSPW < 0 ) {
384 if ( fdSPW < 0 ) {
385 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
385 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
386 }
386 }
387 else
387 else
388 {
388 {
389 status = RTEMS_SUCCESSFUL;
389 status = RTEMS_SUCCESSFUL;
390 }
390 }
391
391
392 return status;
392 return status;
393 }
393 }
394
394
395 int spacewire_start_link( int fd )
395 int spacewire_start_link( int fd )
396 {
396 {
397 rtems_status_code status;
397 rtems_status_code status;
398
398
399 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
399 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
400 // -1 default hardcoded driver timeout
400 // -1 default hardcoded driver timeout
401
401
402 return status;
402 return status;
403 }
403 }
404
404
405 int spacewire_stop_and_start_link( int fd )
405 int spacewire_stop_and_start_link( int fd )
406 {
406 {
407 rtems_status_code status;
407 rtems_status_code status;
408
408
409 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
409 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
410 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
410 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
411 // -1 default hardcoded driver timeout
411 // -1 default hardcoded driver timeout
412
412
413 return status;
413 return status;
414 }
414 }
415
415
416 int spacewire_configure_link( int fd )
416 int spacewire_configure_link( int fd )
417 {
417 {
418 /** This function configures the SpaceWire link.
418 /** This function configures the SpaceWire link.
419 *
419 *
420 * @return GR-RTEMS-DRIVER directive status codes:
420 * @return GR-RTEMS-DRIVER directive status codes:
421 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
421 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
422 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
422 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
423 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
423 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
424 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
424 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
425 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
425 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
426 * - 5 EIO - Error when writing to grswp hardware registers.
426 * - 5 EIO - Error when writing to grswp hardware registers.
427 * - 2 ENOENT - No such file or directory
427 * - 2 ENOENT - No such file or directory
428 */
428 */
429
429
430 rtems_status_code status;
430 rtems_status_code status;
431
431
432 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
432 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
433 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
433 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
434
434
435 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
435 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
436 if (status!=RTEMS_SUCCESSFUL) {
436 if (status!=RTEMS_SUCCESSFUL) {
437 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
437 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
438 }
438 }
439 //
439 //
440 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
440 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
441 if (status!=RTEMS_SUCCESSFUL) {
441 if (status!=RTEMS_SUCCESSFUL) {
442 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
442 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
443 }
443 }
444 //
444 //
445 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
445 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
446 if (status!=RTEMS_SUCCESSFUL) {
446 if (status!=RTEMS_SUCCESSFUL) {
447 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
447 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
448 }
448 }
449 //
449 //
450 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
450 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
451 if (status!=RTEMS_SUCCESSFUL) {
451 if (status!=RTEMS_SUCCESSFUL) {
452 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
452 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
453 }
453 }
454 //
454 //
455 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
455 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
456 if (status!=RTEMS_SUCCESSFUL) {
456 if (status!=RTEMS_SUCCESSFUL) {
457 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
457 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
458 }
458 }
459 //
459 //
460 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
460 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
461 if (status!=RTEMS_SUCCESSFUL) {
461 if (status!=RTEMS_SUCCESSFUL) {
462 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
462 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
463 }
463 }
464 //
464 //
465 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
465 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
466 if (status!=RTEMS_SUCCESSFUL) {
466 if (status!=RTEMS_SUCCESSFUL) {
467 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
467 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
468 }
468 }
469
469
470 return status;
470 return status;
471 }
471 }
472
472
473 int spacewire_reset_link( void )
473 int spacewire_reset_link( void )
474 {
474 {
475 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
475 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
476 *
476 *
477 * @return RTEMS directive status code:
477 * @return RTEMS directive status code:
478 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
478 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
479 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
479 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
480 *
480 *
481 */
481 */
482
482
483 rtems_status_code status_spw;
483 rtems_status_code status_spw;
484 int i;
484 int i;
485
485
486 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
486 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
487 {
487 {
488 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
488 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
489
489
490 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
490 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
491
491
492 status_spw = spacewire_stop_and_start_link( fdSPW );
492 status_spw = spacewire_stop_and_start_link( fdSPW );
493 if ( status_spw != RTEMS_SUCCESSFUL )
493 if ( status_spw != RTEMS_SUCCESSFUL )
494 {
494 {
495 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
495 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
496 }
496 }
497
497
498 if ( status_spw == RTEMS_SUCCESSFUL)
498 if ( status_spw == RTEMS_SUCCESSFUL)
499 {
499 {
500 break;
500 break;
501 }
501 }
502 }
502 }
503
503
504 return status_spw;
504 return status_spw;
505 }
505 }
506
506
507 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
507 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
508 {
508 {
509 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
509 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
510 *
510 *
511 * @param val is the value, 0 or 1, used to set the value of the NP bit.
511 * @param val is the value, 0 or 1, used to set the value of the NP bit.
512 * @param regAddr is the address of the GRSPW control register.
512 * @param regAddr is the address of the GRSPW control register.
513 *
513 *
514 * NP is the bit 20 of the GRSPW control register.
514 * NP is the bit 20 of the GRSPW control register.
515 *
515 *
516 */
516 */
517
517
518 unsigned int *spwptr = (unsigned int*) regAddr;
518 unsigned int *spwptr = (unsigned int*) regAddr;
519
519
520 if (val == 1) {
520 if (val == 1) {
521 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
521 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
522 }
522 }
523 if (val== 0) {
523 if (val== 0) {
524 *spwptr = *spwptr & 0xffdfffff;
524 *spwptr = *spwptr & 0xffdfffff;
525 }
525 }
526 }
526 }
527
527
528 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
528 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
529 {
529 {
530 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
530 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
531 *
531 *
532 * @param val is the value, 0 or 1, used to set the value of the RE bit.
532 * @param val is the value, 0 or 1, used to set the value of the RE bit.
533 * @param regAddr is the address of the GRSPW control register.
533 * @param regAddr is the address of the GRSPW control register.
534 *
534 *
535 * RE is the bit 16 of the GRSPW control register.
535 * RE is the bit 16 of the GRSPW control register.
536 *
536 *
537 */
537 */
538
538
539 unsigned int *spwptr = (unsigned int*) regAddr;
539 unsigned int *spwptr = (unsigned int*) regAddr;
540
540
541 if (val == 1)
541 if (val == 1)
542 {
542 {
543 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
543 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
544 }
544 }
545 if (val== 0)
545 if (val== 0)
546 {
546 {
547 *spwptr = *spwptr & 0xfffdffff;
547 *spwptr = *spwptr & 0xfffdffff;
548 }
548 }
549 }
549 }
550
550
551 void spacewire_compute_stats_offsets( void )
551 void spacewire_compute_stats_offsets( void )
552 {
552 {
553 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
553 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
554 *
554 *
555 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
555 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
556 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
556 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
557 * during the open systel call).
557 * during the open systel call).
558 *
558 *
559 */
559 */
560
560
561 spw_stats spacewire_stats_grspw;
561 spw_stats spacewire_stats_grspw;
562 rtems_status_code status;
562 rtems_status_code status;
563
563
564 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
564 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
565
565
566 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
566 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
567 + spacewire_stats.packets_received;
567 + spacewire_stats.packets_received;
568 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
568 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
569 + spacewire_stats.packets_sent;
569 + spacewire_stats.packets_sent;
570 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
570 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
571 + spacewire_stats.parity_err;
571 + spacewire_stats.parity_err;
572 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
572 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
573 + spacewire_stats.disconnect_err;
573 + spacewire_stats.disconnect_err;
574 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
574 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
575 + spacewire_stats.escape_err;
575 + spacewire_stats.escape_err;
576 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
576 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
577 + spacewire_stats.credit_err;
577 + spacewire_stats.credit_err;
578 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
578 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
579 + spacewire_stats.write_sync_err;
579 + spacewire_stats.write_sync_err;
580 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
580 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
581 + spacewire_stats.rx_rmap_header_crc_err;
581 + spacewire_stats.rx_rmap_header_crc_err;
582 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
582 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
583 + spacewire_stats.rx_rmap_data_crc_err;
583 + spacewire_stats.rx_rmap_data_crc_err;
584 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
584 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
585 + spacewire_stats.early_ep;
585 + spacewire_stats.early_ep;
586 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
586 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
587 + spacewire_stats.invalid_address;
587 + spacewire_stats.invalid_address;
588 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
588 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
589 + spacewire_stats.rx_eep_err;
589 + spacewire_stats.rx_eep_err;
590 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
590 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
591 + spacewire_stats.rx_truncated;
591 + spacewire_stats.rx_truncated;
592 }
592 }
593
593
594 void spacewire_update_statistics( void )
594 void spacewire_update_statistics( void )
595 {
595 {
596 rtems_status_code status;
596 rtems_status_code status;
597 spw_stats spacewire_stats_grspw;
597 spw_stats spacewire_stats_grspw;
598
598
599 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
599 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
600
600
601 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
601 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
602 + spacewire_stats_grspw.packets_received;
602 + spacewire_stats_grspw.packets_received;
603 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
603 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
604 + spacewire_stats_grspw.packets_sent;
604 + spacewire_stats_grspw.packets_sent;
605 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
605 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
606 + spacewire_stats_grspw.parity_err;
606 + spacewire_stats_grspw.parity_err;
607 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
607 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
608 + spacewire_stats_grspw.disconnect_err;
608 + spacewire_stats_grspw.disconnect_err;
609 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
609 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
610 + spacewire_stats_grspw.escape_err;
610 + spacewire_stats_grspw.escape_err;
611 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
611 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
612 + spacewire_stats_grspw.credit_err;
612 + spacewire_stats_grspw.credit_err;
613 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
613 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
614 + spacewire_stats_grspw.write_sync_err;
614 + spacewire_stats_grspw.write_sync_err;
615 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
615 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
616 + spacewire_stats_grspw.rx_rmap_header_crc_err;
616 + spacewire_stats_grspw.rx_rmap_header_crc_err;
617 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
617 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
618 + spacewire_stats_grspw.rx_rmap_data_crc_err;
618 + spacewire_stats_grspw.rx_rmap_data_crc_err;
619 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
619 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
620 + spacewire_stats_grspw.early_ep;
620 + spacewire_stats_grspw.early_ep;
621 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
621 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
622 + spacewire_stats_grspw.invalid_address;
622 + spacewire_stats_grspw.invalid_address;
623 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
623 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
624 + spacewire_stats_grspw.rx_eep_err;
624 + spacewire_stats_grspw.rx_eep_err;
625 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
625 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
626 + spacewire_stats_grspw.rx_truncated;
626 + spacewire_stats_grspw.rx_truncated;
627 //spacewire_stats.tx_link_err;
627 //spacewire_stats.tx_link_err;
628
628
629 //****************************
629 //****************************
630 // DPU_SPACEWIRE_IF_STATISTICS
630 // DPU_SPACEWIRE_IF_STATISTICS
631 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
631 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
632 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
632 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
633 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
633 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
634 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
634 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
635 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
635 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
636 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
636 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
637
637
638 //******************************************
638 //******************************************
639 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
639 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
640 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
640 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
641 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
641 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
642 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
642 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
643 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
643 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
644 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
644 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
645
645
646 //*********************************************
646 //*********************************************
647 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
647 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
648 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
648 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
649 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
649 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
650 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
650 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
651 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
651 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
652 }
652 }
653
653
654 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
654 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
655 {
655 {
656 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_9 );
656 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_9 );
657 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
657 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
658
658
659 grgpio_regs->io_port_direction_register =
659 grgpio_regs->io_port_direction_register =
660 grgpio_regs->io_port_direction_register | 0x04; // [0000 0100], 0 = output disabled, 1 = output enabled
660 grgpio_regs->io_port_direction_register | 0x04; // [0000 0100], 0 = output disabled, 1 = output enabled
661
661
662 if ( (grgpio_regs->io_port_output_register & 0x04) == 0x04 )
662 if ( (grgpio_regs->io_port_output_register & 0x04) == 0x04 )
663 {
663 {
664 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfb; // [1111 1011]
664 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfb; // [1111 1011]
665 }
665 }
666 else
666 else
667 {
667 {
668 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x04; // [0000 0100]
668 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x04; // [0000 0100]
669 }
669 }
670 }
670 }
671
671
672 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
672 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
673 {
673 {
674 int linkStatus;
674 int linkStatus;
675 rtems_status_code status;
675 rtems_status_code status;
676
676
677 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
677 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
678
678
679 if ( linkStatus == 5) {
679 if ( linkStatus == 5) {
680 PRINTF("in spacewire_reset_link *** link is running\n")
680 PRINTF("in spacewire_reset_link *** link is running\n")
681 status = RTEMS_SUCCESSFUL;
681 status = RTEMS_SUCCESSFUL;
682 }
682 }
683 }
683 }
684
684
685 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
685 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
686 {
686 {
687 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
687 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
688 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
688 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
689 header->reserved = DEFAULT_RESERVED;
689 header->reserved = DEFAULT_RESERVED;
690 header->userApplication = CCSDS_USER_APP;
690 header->userApplication = CCSDS_USER_APP;
691 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
691 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
692 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
692 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
693 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
693 header->packetLength[0] = 0x00;
694 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
694 header->packetLength[1] = 0x00;
695 // DATA FIELD HEADER
695 // DATA FIELD HEADER
696 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
696 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
697 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
697 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
698 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
698 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
699 header->destinationID = TM_DESTINATION_ID_GROUND;
699 header->destinationID = TM_DESTINATION_ID_GROUND;
700 header->time[0] = 0x00;
700 header->time[0] = 0x00;
701 header->time[0] = 0x00;
701 header->time[0] = 0x00;
702 header->time[0] = 0x00;
702 header->time[0] = 0x00;
703 header->time[0] = 0x00;
703 header->time[0] = 0x00;
704 header->time[0] = 0x00;
704 header->time[0] = 0x00;
705 header->time[0] = 0x00;
705 header->time[0] = 0x00;
706 // AUXILIARY DATA HEADER
706 // AUXILIARY DATA HEADER
707 header->sid = 0x00;
707 header->sid = 0x00;
708 header->hkBIA = DEFAULT_HKBIA;
708 header->hkBIA = DEFAULT_HKBIA;
709 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
709 header->blkNr[0] = 0x00;
710 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
710 header->blkNr[1] = 0x00;
711 }
711 }
712
712
713 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
713 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
714 {
714 {
715 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
715 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
716 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
716 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
717 header->reserved = DEFAULT_RESERVED;
717 header->reserved = DEFAULT_RESERVED;
718 header->userApplication = CCSDS_USER_APP;
718 header->userApplication = CCSDS_USER_APP;
719 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
719 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
720 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
720 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
721 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
721 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
722 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
722 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
723 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
723 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
724 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
724 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
725 // DATA FIELD HEADER
725 // DATA FIELD HEADER
726 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
726 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
727 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
727 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
728 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
728 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
729 header->destinationID = TM_DESTINATION_ID_GROUND;
729 header->destinationID = TM_DESTINATION_ID_GROUND;
730 header->time[0] = 0x00;
730 header->time[0] = 0x00;
731 header->time[0] = 0x00;
731 header->time[0] = 0x00;
732 header->time[0] = 0x00;
732 header->time[0] = 0x00;
733 header->time[0] = 0x00;
733 header->time[0] = 0x00;
734 header->time[0] = 0x00;
734 header->time[0] = 0x00;
735 header->time[0] = 0x00;
735 header->time[0] = 0x00;
736 // AUXILIARY DATA HEADER
736 // AUXILIARY DATA HEADER
737 header->sid = 0x00;
737 header->sid = 0x00;
738 header->hkBIA = DEFAULT_HKBIA;
738 header->hkBIA = DEFAULT_HKBIA;
739 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
739 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
740 header->pktNr = 0x00;
740 header->pktNr = 0x00;
741 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
741 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
742 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
742 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
743 }
743 }
744
744
745 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
745 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
746 {
746 {
747 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
747 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
748 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
748 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
749 header->reserved = DEFAULT_RESERVED;
749 header->reserved = DEFAULT_RESERVED;
750 header->userApplication = CCSDS_USER_APP;
750 header->userApplication = CCSDS_USER_APP;
751 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
751 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
752 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
752 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
753 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
753 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
754 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
754 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
755 header->packetLength[0] = 0x00;
755 header->packetLength[0] = 0x00;
756 header->packetLength[1] = 0x00;
756 header->packetLength[1] = 0x00;
757 // DATA FIELD HEADER
757 // DATA FIELD HEADER
758 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
758 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
759 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
759 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
760 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
760 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
761 header->destinationID = TM_DESTINATION_ID_GROUND;
761 header->destinationID = TM_DESTINATION_ID_GROUND;
762 header->time[0] = 0x00;
762 header->time[0] = 0x00;
763 header->time[0] = 0x00;
763 header->time[0] = 0x00;
764 header->time[0] = 0x00;
764 header->time[0] = 0x00;
765 header->time[0] = 0x00;
765 header->time[0] = 0x00;
766 header->time[0] = 0x00;
766 header->time[0] = 0x00;
767 header->time[0] = 0x00;
767 header->time[0] = 0x00;
768 // AUXILIARY DATA HEADER
768 // AUXILIARY DATA HEADER
769 header->sid = 0x00;
769 header->sid = 0x00;
770 header->biaStatusInfo = 0x00;
770 header->biaStatusInfo = 0x00;
771 header->pa_lfr_pkt_cnt_asm = 0x00;
771 header->pa_lfr_pkt_cnt_asm = 0x00;
772 header->pa_lfr_pkt_nr_asm = 0x00;
772 header->pa_lfr_pkt_nr_asm = 0x00;
773 header->pa_lfr_asm_blk_nr[0] = 0x00;
773 header->pa_lfr_asm_blk_nr[0] = 0x00;
774 header->pa_lfr_asm_blk_nr[1] = 0x00;
774 header->pa_lfr_asm_blk_nr[1] = 0x00;
775 }
775 }
776
776
777 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
777 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
778 Header_TM_LFR_SCIENCE_CWF_t *header )
778 Header_TM_LFR_SCIENCE_CWF_t *header )
779 {
779 {
780 /** This function sends CWF CCSDS packets (F2, F1 or F0).
780 /** This function sends CWF CCSDS packets (F2, F1 or F0).
781 *
781 *
782 * @param waveform points to the buffer containing the data that will be send.
782 * @param waveform points to the buffer containing the data that will be send.
783 * @param sid is the source identifier of the data that will be sent.
783 * @param sid is the source identifier of the data that will be sent.
784 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
784 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
785 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
785 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
786 * contain information to setup the transmission of the data packets.
786 * contain information to setup the transmission of the data packets.
787 *
787 *
788 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
788 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
789 *
789 *
790 */
790 */
791
791
792 unsigned int i;
792 unsigned int i;
793 int ret;
793 int ret;
794 unsigned int coarseTime;
794 unsigned int coarseTime;
795 unsigned int fineTime;
795 unsigned int fineTime;
796 rtems_status_code status;
796 rtems_status_code status;
797 spw_ioctl_pkt_send spw_ioctl_send_CWF;
797 spw_ioctl_pkt_send spw_ioctl_send_CWF;
798 int *dataPtr;
798 int *dataPtr;
799 unsigned char sid;
799 unsigned char sid;
800
800
801 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
801 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
802 spw_ioctl_send_CWF.options = 0;
802 spw_ioctl_send_CWF.options = 0;
803
803
804 ret = LFR_DEFAULT;
804 ret = LFR_DEFAULT;
805 sid = (unsigned char) ring_node_to_send->sid;
805 sid = (unsigned char) ring_node_to_send->sid;
806
806
807 coarseTime = ring_node_to_send->coarseTime;
807 coarseTime = ring_node_to_send->coarseTime;
808 fineTime = ring_node_to_send->fineTime;
808 fineTime = ring_node_to_send->fineTime;
809 dataPtr = (int*) ring_node_to_send->buffer_address;
809 dataPtr = (int*) ring_node_to_send->buffer_address;
810
810
811 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
812 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
813 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
814 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
815
811 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
816 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
812 {
817 {
813 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
818 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
814 spw_ioctl_send_CWF.hdr = (char*) header;
819 spw_ioctl_send_CWF.hdr = (char*) header;
815 // BUILD THE DATA
820 // BUILD THE DATA
816 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
821 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
817
822
818 // SET PACKET SEQUENCE CONTROL
823 // SET PACKET SEQUENCE CONTROL
819 increment_seq_counter_source_id( header->packetSequenceControl, sid );
824 increment_seq_counter_source_id( header->packetSequenceControl, sid );
820
825
821 // SET SID
826 // SET SID
822 header->sid = sid;
827 header->sid = sid;
823
828
824 // SET PACKET TIME
829 // SET PACKET TIME
825 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
830 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
826 //
831 //
827 header->time[0] = header->acquisitionTime[0];
832 header->time[0] = header->acquisitionTime[0];
828 header->time[1] = header->acquisitionTime[1];
833 header->time[1] = header->acquisitionTime[1];
829 header->time[2] = header->acquisitionTime[2];
834 header->time[2] = header->acquisitionTime[2];
830 header->time[3] = header->acquisitionTime[3];
835 header->time[3] = header->acquisitionTime[3];
831 header->time[4] = header->acquisitionTime[4];
836 header->time[4] = header->acquisitionTime[4];
832 header->time[5] = header->acquisitionTime[5];
837 header->time[5] = header->acquisitionTime[5];
833
838
834 // SET PACKET ID
839 // SET PACKET ID
835 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
840 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
836 {
841 {
837 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
842 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
838 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
843 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
839 }
844 }
840 else
845 else
841 {
846 {
842 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
847 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
843 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
848 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
844 }
849 }
845
850
846 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
851 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
847 if (status != RTEMS_SUCCESSFUL) {
852 if (status != RTEMS_SUCCESSFUL) {
848 printf("%d-%d, ERR %d\n", sid, i, (int) status);
853 printf("%d-%d, ERR %d\n", sid, i, (int) status);
849 ret = LFR_DEFAULT;
854 ret = LFR_DEFAULT;
850 }
855 }
851 }
856 }
852
857
853 return ret;
858 return ret;
854 }
859 }
855
860
856 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
861 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
857 Header_TM_LFR_SCIENCE_SWF_t *header )
862 Header_TM_LFR_SCIENCE_SWF_t *header )
858 {
863 {
859 /** This function sends SWF CCSDS packets (F2, F1 or F0).
864 /** This function sends SWF CCSDS packets (F2, F1 or F0).
860 *
865 *
861 * @param waveform points to the buffer containing the data that will be send.
866 * @param waveform points to the buffer containing the data that will be send.
862 * @param sid is the source identifier of the data that will be sent.
867 * @param sid is the source identifier of the data that will be sent.
863 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
868 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
864 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
869 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
865 * contain information to setup the transmission of the data packets.
870 * contain information to setup the transmission of the data packets.
866 *
871 *
867 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
872 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
868 *
873 *
869 */
874 */
870
875
871 unsigned int i;
876 unsigned int i;
872 int ret;
877 int ret;
873 unsigned int coarseTime;
878 unsigned int coarseTime;
874 unsigned int fineTime;
879 unsigned int fineTime;
875 rtems_status_code status;
880 rtems_status_code status;
876 spw_ioctl_pkt_send spw_ioctl_send_SWF;
881 spw_ioctl_pkt_send spw_ioctl_send_SWF;
877 int *dataPtr;
882 int *dataPtr;
878 unsigned char sid;
883 unsigned char sid;
879
884
880 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
885 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
881 spw_ioctl_send_SWF.options = 0;
886 spw_ioctl_send_SWF.options = 0;
882
887
883 ret = LFR_DEFAULT;
888 ret = LFR_DEFAULT;
884
889
885 coarseTime = ring_node_to_send->coarseTime;
890 coarseTime = ring_node_to_send->coarseTime;
886 fineTime = ring_node_to_send->fineTime;
891 fineTime = ring_node_to_send->fineTime;
887 dataPtr = (int*) ring_node_to_send->buffer_address;
892 dataPtr = (int*) ring_node_to_send->buffer_address;
888 sid = ring_node_to_send->sid;
893 sid = ring_node_to_send->sid;
889
894
890 for (i=0; i<7; i++) // send waveform
895 for (i=0; i<7; i++) // send waveform
891 {
896 {
892 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
897 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
893 spw_ioctl_send_SWF.hdr = (char*) header;
898 spw_ioctl_send_SWF.hdr = (char*) header;
894
899
895 // SET PACKET SEQUENCE CONTROL
900 // SET PACKET SEQUENCE CONTROL
896 increment_seq_counter_source_id( header->packetSequenceControl, sid );
901 increment_seq_counter_source_id( header->packetSequenceControl, sid );
897
902
898 // SET PACKET LENGTH AND BLKNR
903 // SET PACKET LENGTH AND BLKNR
899 if (i == 6)
904 if (i == 6)
900 {
905 {
901 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
906 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
902 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
907 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
903 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
908 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
904 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
909 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
905 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
910 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
906 }
911 }
907 else
912 else
908 {
913 {
909 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
914 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
910 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
915 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
911 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
916 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
912 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
917 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
913 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
918 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
914 }
919 }
915
920
916 // SET PACKET TIME
921 // SET PACKET TIME
917 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
922 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
918 //
923 //
919 header->time[0] = header->acquisitionTime[0];
924 header->time[0] = header->acquisitionTime[0];
920 header->time[1] = header->acquisitionTime[1];
925 header->time[1] = header->acquisitionTime[1];
921 header->time[2] = header->acquisitionTime[2];
926 header->time[2] = header->acquisitionTime[2];
922 header->time[3] = header->acquisitionTime[3];
927 header->time[3] = header->acquisitionTime[3];
923 header->time[4] = header->acquisitionTime[4];
928 header->time[4] = header->acquisitionTime[4];
924 header->time[5] = header->acquisitionTime[5];
929 header->time[5] = header->acquisitionTime[5];
925
930
926 // SET SID
931 // SET SID
927 header->sid = sid;
932 header->sid = sid;
928
933
929 // SET PKTNR
934 // SET PKTNR
930 header->pktNr = i+1; // PKT_NR
935 header->pktNr = i+1; // PKT_NR
931
936
932 // SEND PACKET
937 // SEND PACKET
933 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
938 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
934 if (status != RTEMS_SUCCESSFUL) {
939 if (status != RTEMS_SUCCESSFUL) {
935 printf("%d-%d, ERR %d\n", sid, i, (int) status);
940 printf("%d-%d, ERR %d\n", sid, i, (int) status);
936 ret = LFR_DEFAULT;
941 ret = LFR_DEFAULT;
937 }
942 }
938 }
943 }
939
944
940 return ret;
945 return ret;
941 }
946 }
942
947
943 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
948 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
944 Header_TM_LFR_SCIENCE_CWF_t *header )
949 Header_TM_LFR_SCIENCE_CWF_t *header )
945 {
950 {
946 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
951 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
947 *
952 *
948 * @param waveform points to the buffer containing the data that will be send.
953 * @param waveform points to the buffer containing the data that will be send.
949 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
954 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
950 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
955 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
951 * contain information to setup the transmission of the data packets.
956 * contain information to setup the transmission of the data packets.
952 *
957 *
953 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
958 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
954 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
959 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
955 *
960 *
956 */
961 */
957
962
958 unsigned int i;
963 unsigned int i;
959 int ret;
964 int ret;
960 unsigned int coarseTime;
965 unsigned int coarseTime;
961 unsigned int fineTime;
966 unsigned int fineTime;
962 rtems_status_code status;
967 rtems_status_code status;
963 spw_ioctl_pkt_send spw_ioctl_send_CWF;
968 spw_ioctl_pkt_send spw_ioctl_send_CWF;
964 char *dataPtr;
969 char *dataPtr;
965 unsigned char sid;
970 unsigned char sid;
966
971
967 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
972 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
968 spw_ioctl_send_CWF.options = 0;
973 spw_ioctl_send_CWF.options = 0;
969
974
970 ret = LFR_DEFAULT;
975 ret = LFR_DEFAULT;
971 sid = ring_node_to_send->sid;
976 sid = ring_node_to_send->sid;
972
977
973 coarseTime = ring_node_to_send->coarseTime;
978 coarseTime = ring_node_to_send->coarseTime;
974 fineTime = ring_node_to_send->fineTime;
979 fineTime = ring_node_to_send->fineTime;
975 dataPtr = (char*) ring_node_to_send->buffer_address;
980 dataPtr = (char*) ring_node_to_send->buffer_address;
976
981
982 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
983 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
984 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
985 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
986
977 //*********************
987 //*********************
978 // SEND CWF3_light DATA
988 // SEND CWF3_light DATA
979 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
989 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
980 {
990 {
981 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
991 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
982 spw_ioctl_send_CWF.hdr = (char*) header;
992 spw_ioctl_send_CWF.hdr = (char*) header;
983 // BUILD THE DATA
993 // BUILD THE DATA
984 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
994 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
985
995
986 // SET PACKET SEQUENCE COUNTER
996 // SET PACKET SEQUENCE COUNTER
987 increment_seq_counter_source_id( header->packetSequenceControl, sid );
997 increment_seq_counter_source_id( header->packetSequenceControl, sid );
988
998
989 // SET SID
999 // SET SID
990 header->sid = sid;
1000 header->sid = sid;
991
1001
992 // SET PACKET TIME
1002 // SET PACKET TIME
993 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1003 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
994 //
1004 //
995 header->time[0] = header->acquisitionTime[0];
1005 header->time[0] = header->acquisitionTime[0];
996 header->time[1] = header->acquisitionTime[1];
1006 header->time[1] = header->acquisitionTime[1];
997 header->time[2] = header->acquisitionTime[2];
1007 header->time[2] = header->acquisitionTime[2];
998 header->time[3] = header->acquisitionTime[3];
1008 header->time[3] = header->acquisitionTime[3];
999 header->time[4] = header->acquisitionTime[4];
1009 header->time[4] = header->acquisitionTime[4];
1000 header->time[5] = header->acquisitionTime[5];
1010 header->time[5] = header->acquisitionTime[5];
1001
1011
1002 // SET PACKET ID
1012 // SET PACKET ID
1003 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1013 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1004 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1014 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1005
1015
1006 // SEND PACKET
1016 // SEND PACKET
1007 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1017 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1008 if (status != RTEMS_SUCCESSFUL) {
1018 if (status != RTEMS_SUCCESSFUL) {
1009 printf("%d-%d, ERR %d\n", sid, i, (int) status);
1019 printf("%d-%d, ERR %d\n", sid, i, (int) status);
1010 ret = LFR_DEFAULT;
1020 ret = LFR_DEFAULT;
1011 }
1021 }
1012 }
1022 }
1013
1023
1014 return ret;
1024 return ret;
1015 }
1025 }
1016
1026
1017 void spw_send_asm( ring_node *ring_node_to_send,
1027 void spw_send_asm( ring_node *ring_node_to_send,
1018 Header_TM_LFR_SCIENCE_ASM_t *header )
1028 Header_TM_LFR_SCIENCE_ASM_t *header )
1019 {
1029 {
1020 unsigned int i;
1030 unsigned int i;
1021 unsigned int length = 0;
1031 unsigned int length = 0;
1022 rtems_status_code status;
1032 rtems_status_code status;
1023 unsigned int sid;
1033 unsigned int sid;
1024 char *spectral_matrix;
1034 char *spectral_matrix;
1025 int coarseTime;
1035 int coarseTime;
1026 int fineTime;
1036 int fineTime;
1027 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1037 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1028
1038
1029 sid = ring_node_to_send->sid;
1039 sid = ring_node_to_send->sid;
1030 spectral_matrix = (char*) ring_node_to_send->buffer_address;
1040 spectral_matrix = (char*) ring_node_to_send->buffer_address;
1031 coarseTime = ring_node_to_send->coarseTime;
1041 coarseTime = ring_node_to_send->coarseTime;
1032 fineTime = ring_node_to_send->fineTime;
1042 fineTime = ring_node_to_send->fineTime;
1033
1043
1034 for (i=0; i<2; i++)
1044 for (i=0; i<2; i++)
1035 {
1045 {
1036 // (1) BUILD THE DATA
1046 // (1) BUILD THE DATA
1037 switch(sid)
1047 switch(sid)
1038 {
1048 {
1039 case SID_NORM_ASM_F0:
1049 case SID_NORM_ASM_F0:
1040 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
1050 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
1041 spw_ioctl_send_ASM.data = &spectral_matrix[
1051 spw_ioctl_send_ASM.data = &spectral_matrix[
1042 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
1052 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
1043 ];
1053 ];
1044 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
1054 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
1045 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
1055 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
1046 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
1056 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
1047 break;
1057 break;
1048 case SID_NORM_ASM_F1:
1058 case SID_NORM_ASM_F1:
1049 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
1059 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
1050 spw_ioctl_send_ASM.data = &spectral_matrix[
1060 spw_ioctl_send_ASM.data = &spectral_matrix[
1051 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
1061 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
1052 ];
1062 ];
1053 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
1063 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
1054 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
1064 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
1055 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
1065 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
1056 break;
1066 break;
1057 case SID_NORM_ASM_F2:
1067 case SID_NORM_ASM_F2:
1058 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
1068 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
1059 spw_ioctl_send_ASM.data = &spectral_matrix[
1069 spw_ioctl_send_ASM.data = &spectral_matrix[
1060 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
1070 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
1061 ];
1071 ];
1062 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1072 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1063 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1073 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1064 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1074 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1065 break;
1075 break;
1066 default:
1076 default:
1067 PRINTF1("ERR *** in spw_send_asm *** unexpected sid %d\n", sid)
1077 PRINTF1("ERR *** in spw_send_asm *** unexpected sid %d\n", sid)
1068 break;
1078 break;
1069 }
1079 }
1070 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
1080 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
1071 spw_ioctl_send_ASM.hdr = (char *) header;
1081 spw_ioctl_send_ASM.hdr = (char *) header;
1072 spw_ioctl_send_ASM.options = 0;
1082 spw_ioctl_send_ASM.options = 0;
1073
1083
1074 // (2) BUILD THE HEADER
1084 // (2) BUILD THE HEADER
1075 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1085 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1076 header->packetLength[0] = (unsigned char) (length>>8);
1086 header->packetLength[0] = (unsigned char) (length>>8);
1077 header->packetLength[1] = (unsigned char) (length);
1087 header->packetLength[1] = (unsigned char) (length);
1078 header->sid = (unsigned char) sid; // SID
1088 header->sid = (unsigned char) sid; // SID
1079 header->pa_lfr_pkt_cnt_asm = 2;
1089 header->pa_lfr_pkt_cnt_asm = 2;
1080 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1090 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1081
1091
1082 // (3) SET PACKET TIME
1092 // (3) SET PACKET TIME
1083 header->time[0] = (unsigned char) (coarseTime>>24);
1093 header->time[0] = (unsigned char) (coarseTime>>24);
1084 header->time[1] = (unsigned char) (coarseTime>>16);
1094 header->time[1] = (unsigned char) (coarseTime>>16);
1085 header->time[2] = (unsigned char) (coarseTime>>8);
1095 header->time[2] = (unsigned char) (coarseTime>>8);
1086 header->time[3] = (unsigned char) (coarseTime);
1096 header->time[3] = (unsigned char) (coarseTime);
1087 header->time[4] = (unsigned char) (fineTime>>8);
1097 header->time[4] = (unsigned char) (fineTime>>8);
1088 header->time[5] = (unsigned char) (fineTime);
1098 header->time[5] = (unsigned char) (fineTime);
1089 //
1099 //
1090 header->acquisitionTime[0] = header->time[0];
1100 header->acquisitionTime[0] = header->time[0];
1091 header->acquisitionTime[1] = header->time[1];
1101 header->acquisitionTime[1] = header->time[1];
1092 header->acquisitionTime[2] = header->time[2];
1102 header->acquisitionTime[2] = header->time[2];
1093 header->acquisitionTime[3] = header->time[3];
1103 header->acquisitionTime[3] = header->time[3];
1094 header->acquisitionTime[4] = header->time[4];
1104 header->acquisitionTime[4] = header->time[4];
1095 header->acquisitionTime[5] = header->time[5];
1105 header->acquisitionTime[5] = header->time[5];
1096
1106
1097 // (4) SEND PACKET
1107 // (4) SEND PACKET
1098 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1108 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1099 if (status != RTEMS_SUCCESSFUL) {
1109 if (status != RTEMS_SUCCESSFUL) {
1100 printf("in ASM_send *** ERR %d\n", (int) status);
1110 printf("in ASM_send *** ERR %d\n", (int) status);
1101 }
1111 }
1102 }
1112 }
1103 }
1113 }
@@ -1,387 +1,498
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf0_prc0.h"
10 #include "avf0_prc0.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
14
14
15 //***
15 //***
16 // F0
16 // F0
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
19
19
20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
22
22
23 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
23 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
24 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
24 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
25 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
25 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
26 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
26 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
27 //unsigned char bp1_norm_f0 [ TOTAL_SIZE_BP1_NORM_F0 ];
27
28 //unsigned char bp1_sbm_f0 [ TOTAL_SIZE_BP1_SBM_F0 ];
28 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
29 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
29
30
30 //************
31 //************
31 // RTEMS TASKS
32 // RTEMS TASKS
32
33
33 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
34 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
34 {
35 {
35 int i;
36 int i;
36
37
37 rtems_event_set event_out;
38 rtems_event_set event_out;
38 rtems_status_code status;
39 rtems_status_code status;
39 rtems_id queue_id_prc0;
40 rtems_id queue_id_prc0;
40 asm_msg msgForMATR;
41 asm_msg msgForMATR;
42 ring_node *nodeForAveraging;
41 ring_node *ring_node_tab[8];
43 ring_node *ring_node_tab[8];
42 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
44 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
43 ring_node_asm *current_ring_node_asm_norm_f0;
45 ring_node_asm *current_ring_node_asm_norm_f0;
44
46
45 unsigned int nb_norm_bp1;
47 unsigned int nb_norm_bp1;
46 unsigned int nb_norm_bp2;
48 unsigned int nb_norm_bp2;
47 unsigned int nb_norm_asm;
49 unsigned int nb_norm_asm;
48 unsigned int nb_sbm_bp1;
50 unsigned int nb_sbm_bp1;
49 unsigned int nb_sbm_bp2;
51 unsigned int nb_sbm_bp2;
50
52
51 nb_norm_bp1 = 0;
53 nb_norm_bp1 = 0;
52 nb_norm_bp2 = 0;
54 nb_norm_bp2 = 0;
53 nb_norm_asm = 0;
55 nb_norm_asm = 0;
54 nb_sbm_bp1 = 0;
56 nb_sbm_bp1 = 0;
55 nb_sbm_bp2 = 0;
57 nb_sbm_bp2 = 0;
56
58
57 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
59 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
58 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
60 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
59 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
61 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
60 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
62 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
61 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
63 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
62
64
63 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
65 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
64
66
65 status = get_message_queue_id_prc0( &queue_id_prc0 );
67 status = get_message_queue_id_prc0( &queue_id_prc0 );
66 if (status != RTEMS_SUCCESSFUL)
68 if (status != RTEMS_SUCCESSFUL)
67 {
69 {
68 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
70 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
69 }
71 }
70
72
71 while(1){
73 while(1){
72 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
74 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
73
75
74 //****************************************
76 //****************************************
75 // initialize the mesage for the MATR task
77 // initialize the mesage for the MATR task
76 msgForMATR.norm = current_ring_node_asm_norm_f0;
78 msgForMATR.norm = current_ring_node_asm_norm_f0;
77 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
79 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
78 msgForMATR.event = 0x00; // this composite event will be sent to the PRC0 task
80 msgForMATR.event = 0x00; // this composite event will be sent to the PRC0 task
79 msgForMATR.coarseTime = ring_node_for_averaging_sm_f0->coarseTime;
80 msgForMATR.fineTime = ring_node_for_averaging_sm_f0->fineTime;
81 //
81 //
82 //****************************************
82 //****************************************
83
83
84 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
84 nodeForAveraging = getRingNodeForAveraging( 0 );
85
86 ring_node_tab[NB_SM_BEFORE_AVF0-1] = nodeForAveraging;
85 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
87 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
86 {
88 {
87 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
89 nodeForAveraging = nodeForAveraging->previous;
88 ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
90 ring_node_tab[NB_SM_BEFORE_AVF0-i] = nodeForAveraging;
89 }
91 }
90
92
91 // compute the average and store it in the averaged_sm_f1 buffer
93 // compute the average and store it in the averaged_sm_f1 buffer
92 SM_average( current_ring_node_asm_norm_f0->matrix,
94 SM_average( current_ring_node_asm_norm_f0->matrix,
93 current_ring_node_asm_burst_sbm_f0->matrix,
95 current_ring_node_asm_burst_sbm_f0->matrix,
94 ring_node_tab,
96 ring_node_tab,
95 nb_norm_bp1, nb_sbm_bp1 );
97 nb_norm_bp1, nb_sbm_bp1,
98 &msgForMATR );
96
99
97 // update nb_average
100 // update nb_average
98 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
101 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
99 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
102 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
100 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
103 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
101 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
104 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
102 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
105 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
103
106
104 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
107 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
105 {
108 {
106 nb_sbm_bp1 = 0;
109 nb_sbm_bp1 = 0;
107 // set another ring for the ASM storage
110 // set another ring for the ASM storage
108 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
111 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
109 if ( lfrCurrentMode == LFR_MODE_BURST )
112 if ( lfrCurrentMode == LFR_MODE_BURST )
110 {
113 {
111 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F0;
114 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F0;
112 }
115 }
113 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
116 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
114 {
117 {
115 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F0;
118 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F0;
116 }
119 }
117 }
120 }
118
121
119 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
122 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
120 {
123 {
121 nb_sbm_bp2 = 0;
124 nb_sbm_bp2 = 0;
122 if ( lfrCurrentMode == LFR_MODE_BURST )
125 if ( lfrCurrentMode == LFR_MODE_BURST )
123 {
126 {
124 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F0;
127 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F0;
125 }
128 }
126 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
129 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
127 {
130 {
128 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F0;
131 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F0;
129 }
132 }
130 }
133 }
131
134
132 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
135 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
133 {
136 {
134 nb_norm_bp1 = 0;
137 nb_norm_bp1 = 0;
135 // set another ring for the ASM storage
138 // set another ring for the ASM storage
136 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
139 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
137 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
140 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
138 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
141 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
139 {
142 {
140 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
143 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
141 }
144 }
142 }
145 }
143
146
144 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
147 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
145 {
148 {
146 nb_norm_bp2 = 0;
149 nb_norm_bp2 = 0;
147 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
150 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
148 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
151 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
149 {
152 {
150 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
153 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
151 }
154 }
152 }
155 }
153
156
154 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
157 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
155 {
158 {
156 nb_norm_asm = 0;
159 nb_norm_asm = 0;
157 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
160 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
158 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
161 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
159 {
162 {
160 // PRINTF1("%lld\n", localTime)
161 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
163 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
162 }
164 }
163 }
165 }
164
166
165 //*************************
167 //*************************
166 // send the message to MATR
168 // send the message to MATR
167 if (msgForMATR.event != 0x00)
169 if (msgForMATR.event != 0x00)
168 {
170 {
169 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
171 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
170 }
172 }
171
173
172 if (status != RTEMS_SUCCESSFUL) {
174 if (status != RTEMS_SUCCESSFUL) {
173 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
175 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
174 }
176 }
175 }
177 }
176 }
178 }
177
179
178 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
180 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
179 {
181 {
180 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
182 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
181 size_t size; // size of the incoming TC packet
183 size_t size; // size of the incoming TC packet
182 asm_msg *incomingMsg;
184 asm_msg *incomingMsg;
183 //
185 //
184 unsigned char sid;
186 unsigned char sid;
185 rtems_status_code status;
187 rtems_status_code status;
186 rtems_id queue_id;
188 rtems_id queue_id;
187 rtems_id queue_id_q_p0;
189 rtems_id queue_id_q_p0;
188 bp_packet_with_spare packet_norm_bp1_f0;
190 bp_packet_with_spare packet_norm_bp1;
189 bp_packet packet_norm_bp2_f0;
191 bp_packet packet_norm_bp2;
190 bp_packet packet_sbm_bp1_f0;
192 bp_packet packet_sbm_bp1;
191 bp_packet packet_sbm_bp2_f0;
193 bp_packet packet_sbm_bp2;
192 ring_node *current_ring_node_to_send_asm_f0;
194 ring_node *current_ring_node_to_send_asm_f0;
193
195
194 unsigned long long int localTime;
196 unsigned long long int localTime;
195
197
196 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
198 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
197 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
199 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
198 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
200 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
199
201
200 //*************
202 //*************
201 // NORM headers
203 // NORM headers
202 BP_init_header_with_spare( &packet_norm_bp1_f0.header,
204 BP_init_header_with_spare( &packet_norm_bp1.header,
203 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
205 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
204 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
206 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
205 BP_init_header( &packet_norm_bp2_f0.header,
207 BP_init_header( &packet_norm_bp2,
206 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
208 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
207 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
209 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
208
210
209 //****************************
211 //****************************
210 // BURST SBM1 and SBM2 headers
212 // BURST SBM1 and SBM2 headers
211 if ( lfrRequestedMode == LFR_MODE_BURST )
213 if ( lfrRequestedMode == LFR_MODE_BURST )
212 {
214 {
213 BP_init_header( &packet_sbm_bp1_f0.header,
215 BP_init_header( &packet_sbm_bp1,
214 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
216 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
215 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
217 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
216 BP_init_header( &packet_sbm_bp2_f0.header,
218 BP_init_header( &packet_sbm_bp2,
217 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
219 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
218 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
220 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
219 }
221 }
220 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
222 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
221 {
223 {
222 BP_init_header( &packet_sbm_bp1_f0.header,
224 BP_init_header( &packet_sbm_bp1,
223 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
225 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
226 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
225 BP_init_header( &packet_sbm_bp2_f0.header,
227 BP_init_header( &packet_sbm_bp2,
226 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
228 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
227 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
228 }
230 }
229 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
231 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
230 {
232 {
231 BP_init_header( &packet_sbm_bp1_f0.header,
233 BP_init_header( &packet_sbm_bp1,
232 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
234 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
233 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
235 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
234 BP_init_header( &packet_sbm_bp2_f0.header,
236 BP_init_header( &packet_sbm_bp2,
235 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
236 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
237 }
239 }
238 else
240 else
239 {
241 {
240 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
242 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
241 }
243 }
242
244
243 status = get_message_queue_id_send( &queue_id );
245 status = get_message_queue_id_send( &queue_id );
244 if (status != RTEMS_SUCCESSFUL)
246 if (status != RTEMS_SUCCESSFUL)
245 {
247 {
246 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
248 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
247 }
249 }
248 status = get_message_queue_id_prc0( &queue_id_q_p0);
250 status = get_message_queue_id_prc0( &queue_id_q_p0);
249 if (status != RTEMS_SUCCESSFUL)
251 if (status != RTEMS_SUCCESSFUL)
250 {
252 {
251 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
253 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
252 }
254 }
253
255
254 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
256 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
255
257
256 while(1){
258 while(1){
257 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
259 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
258 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
260 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
259
261
260 incomingMsg = (asm_msg*) incomingData;
262 incomingMsg = (asm_msg*) incomingData;
261
263
262 localTime = getTimeAsUnsignedLongLongInt( );
264 localTime = getTimeAsUnsignedLongLongInt( );
263
265
264 //****************
266 //****************
265 //****************
267 //****************
266 // BURST SBM1 SBM2
268 // BURST SBM1 SBM2
267 //****************
269 //****************
268 //****************
270 //****************
269 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
271 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
270 {
272 {
271 sid = getSID( incomingMsg->event );
273 sid = getSID( incomingMsg->event );
272 // 1) compress the matrix for Basic Parameters calculation
274 // 1) compress the matrix for Basic Parameters calculation
273 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f0,
275 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f0,
274 nb_sm_before_f0.burst_sbm_bp1,
276 nb_sm_before_f0.burst_sbm_bp1,
275 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
277 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
276 ASM_F0_INDICE_START);
278 ASM_F0_INDICE_START);
277 // 2) compute the BP1 set
279 // 2) compute the BP1 set
278 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, bp1_sbm_f0 );
280 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
279 // 3) send the BP1 set
281 // 3) send the BP1 set
280 set_time( packet_sbm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
282 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
281 set_time( packet_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
283 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
282 BP_send( (char *) &packet_sbm_bp1_f0, queue_id,
284 BP_send( (char *) &packet_sbm_bp1, queue_id,
283 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
285 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
284 sid);
286 sid);
285 // 4) compute the BP2 set if needed
287 // 4) compute the BP2 set if needed
286 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
288 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
287 {
289 {
288 // 1) compute the BP2 set
290 // 1) compute the BP2 set
289
291 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
290 // 2) send the BP2 set
292 // 2) send the BP2 set
291 set_time( packet_sbm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
293 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
292 set_time( packet_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
294 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
293 BP_send( (char *) &packet_sbm_bp2_f0, queue_id,
295 BP_send( (char *) &packet_sbm_bp2, queue_id,
294 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
296 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
295 sid);
297 sid);
296 }
298 }
297 }
299 }
298
300
299 //*****
301 //*****
300 //*****
302 //*****
301 // NORM
303 // NORM
302 //*****
304 //*****
303 //*****
305 //*****
304 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
306 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
305 {
307 {
306 // 1) compress the matrix for Basic Parameters calculation
308 // 1) compress the matrix for Basic Parameters calculation
307 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f0,
309 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f0,
308 nb_sm_before_f0.norm_bp1,
310 nb_sm_before_f0.norm_bp1,
309 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
311 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
310 ASM_F0_INDICE_START );
312 ASM_F0_INDICE_START );
311 // 2) compute the BP1 set
313 // 2) compute the BP1 set
312 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, bp1_norm_f0 );
314 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
313 // 3) send the BP1 set
315 // 3) send the BP1 set
314 set_time( packet_norm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
316 set_time( packet_norm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
315 set_time( packet_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
317 set_time( packet_norm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
316 BP_send( (char *) &packet_norm_bp1_f0, queue_id,
318 BP_send( (char *) &packet_norm_bp1, queue_id,
317 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
319 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
318 SID_NORM_BP1_F0 );
320 SID_NORM_BP1_F0 );
319 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
321 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
320 {
322 {
321 // 1) compute the BP2 set using the same ASM as the one used for BP1
323 // 1) compute the BP2 set using the same ASM as the one used for BP1
322
324 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
323 // 2) send the BP2 set
325 // 2) send the BP2 set
324 set_time( packet_norm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
326 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
325 set_time( packet_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
327 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
326 BP_send( (char *) &packet_norm_bp2_f0, queue_id,
328 BP_send( (char *) &packet_norm_bp2, queue_id,
327 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
329 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
328 SID_NORM_BP2_F0);
330 SID_NORM_BP2_F0);
331
332 // < TMP DATA>
333 #define INDEX_COMPRESSED 1
334 unsigned int signif;
335 float significand;
336 unsigned int nbitexp = 6;
337 unsigned int nbitsig = 16 - nbitexp; // number of bits for the significand
338 unsigned int rangesig = (1 << nbitsig)-1; // == 2^nbitsig - 1
339 int expmax = 32;
340 int expmin = expmax - ((int) (1 << nbitexp)) + 1;
341 int exponent;
342 float auto_a0;
343 exponent = ( (int) ( (packet_norm_bp2.data[INDEX_COMPRESSED * NB_BYTES_PER_BP2] & 0xfc) >> 2) ) + expmin; // [1111 1100]
344 printf("exponent = %x, computed with exp = %x, expmin = %d\n",
345 exponent,
346 (packet_norm_bp2.data[INDEX_COMPRESSED * NB_BYTES_PER_BP2] & 0xfc) >> 2,
347 expmin);
348 signif = ( (packet_norm_bp2.data[INDEX_COMPRESSED * NB_BYTES_PER_BP2] & 0x3) << 8 ) + packet_norm_bp2.data[INDEX_COMPRESSED * NB_BYTES_PER_BP2+1];
349 significand = ( ( (float) signif ) / ( (float) rangesig) + 1) / 2;
350 auto_a0 = significand * pow(2,exponent);
351 printf("(BP2) [%d] compressed = %f *** AUTO A0 = %x, %x, exponent = %x, significand = %f ===> %f\n",
352 INDEX_COMPRESSED,
353 compressed_sm_norm_f0[INDEX_COMPRESSED * NB_VALUES_PER_SM],
354 packet_norm_bp2.data[ INDEX_COMPRESSED * NB_BYTES_PER_BP2],
355 packet_norm_bp2.data[ INDEX_COMPRESSED * NB_BYTES_PER_BP2 + 1],
356 exponent, significand, auto_a0 );
357 // printf("(BP2) 0 = %f, 1 = %f, 2 = %f, 3 = %f, 4 = %f, 5 = %f, 6 = %f, 7 = %f, 8 = %f, 9 = %f, 10 = %f,\n",
358 // compressed_sm_norm_f0[0 * NB_VALUES_PER_SM],
359 // compressed_sm_norm_f0[1 * NB_VALUES_PER_SM],
360 // compressed_sm_norm_f0[2 * NB_VALUES_PER_SM],
361 // compressed_sm_norm_f0[3 * NB_VALUES_PER_SM],
362 // compressed_sm_norm_f0[4 * NB_VALUES_PER_SM],
363 // compressed_sm_norm_f0[5 * NB_VALUES_PER_SM],
364 // compressed_sm_norm_f0[6 * NB_VALUES_PER_SM],
365 // compressed_sm_norm_f0[7 * NB_VALUES_PER_SM],
366 // compressed_sm_norm_f0[8 * NB_VALUES_PER_SM],
367 // compressed_sm_norm_f0[9 * NB_VALUES_PER_SM],
368 // compressed_sm_norm_f0[10 * NB_VALUES_PER_SM]);
369 // </TMP DATA>
370
329 }
371 }
330 }
372 }
331
373
332 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
374 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
333 {
375 {
334 // 1) reorganize the ASM and divide
376 // 1) reorganize the ASM and divide
335 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
377 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
336 asm_f0_reorganized,
378 asm_f0_reorganized,
337 nb_sm_before_f0.norm_bp1 );
379 nb_sm_before_f0.norm_bp1 );
338 // 2) convert the float array in a char array
380 // 2) convert the float array in a char array
339 ASM_convert( asm_f0_reorganized, (char*) current_ring_node_to_send_asm_f0->buffer_address );
381 ASM_convert( asm_f0_reorganized, (char*) current_ring_node_to_send_asm_f0->buffer_address );
340 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTime;
382 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
341 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTime;
383 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
342 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
384 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
385
386 // < TMP DATA>
387 #define INDEX_TO_LOOK_AT 31
388 float b11;
389 unsigned char *b11_charPtr;
390 b11_charPtr = (unsigned char*) &b11;
391 b11_charPtr[0] = ((unsigned char *) current_ring_node_to_send_asm_f0->buffer_address)[(INDEX_TO_LOOK_AT * NB_VALUES_PER_SM) * 2];
392 b11_charPtr[1] = ((unsigned char *) current_ring_node_to_send_asm_f0->buffer_address)[(INDEX_TO_LOOK_AT * NB_VALUES_PER_SM) * 2 +1];
393 b11_charPtr[2] = 0x00;
394 b11_charPtr[3] = 0x00;
395 printf("(ASM) initial = %f, reorganized and divided = %f, converted = %f\n",
396 incomingMsg->norm->matrix[INDEX_TO_LOOK_AT], // 32 * 96 = 3072 Hz
397 asm_f0_reorganized[ INDEX_TO_LOOK_AT * NB_VALUES_PER_SM ],
398 b11);
399 // </TMP DATA>
400
343 // 3) send the spectral matrix packets
401 // 3) send the spectral matrix packets
344 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
402 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
345 // change asm ring node
403 // change asm ring node
346 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
404 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
347 }
405 }
348
406
349 }
407 }
350 }
408 }
351
409
352 //**********
410 //**********
353 // FUNCTIONS
411 // FUNCTIONS
354
412
355 void reset_nb_sm_f0( unsigned char lfrMode )
413 void reset_nb_sm_f0( unsigned char lfrMode )
356 {
414 {
357 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
415 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
358 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
416 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
359 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
417 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
360 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24; // 0.25 s per digit
418 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24; // 0.25 s per digit
361 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
419 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
362 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
420 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
363 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
421 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
364 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
422 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
365 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
423 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
366
424
367 if (lfrMode == LFR_MODE_SBM1)
425 if (lfrMode == LFR_MODE_SBM1)
368 {
426 {
369 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
427 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
370 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
428 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
371 }
429 }
372 else if (lfrMode == LFR_MODE_SBM2)
430 else if (lfrMode == LFR_MODE_SBM2)
373 {
431 {
374 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
432 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
375 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
433 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
376 }
434 }
377 else if (lfrMode == LFR_MODE_BURST)
435 else if (lfrMode == LFR_MODE_BURST)
378 {
436 {
379 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
437 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
380 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
438 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
381 }
439 }
382 else
440 else
383 {
441 {
384 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
442 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
385 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
443 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
386 }
444 }
387 }
445 }
446
447 void init_k_coefficients_f0( void )
448 {
449 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
450 init_k_coefficients( k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0);
451 }
452
453 void test_TCH( void )
454 {
455 #define NB_BINS_COMPRESSED_MATRIX_TCH 1
456
457 unsigned char LFR_BP1_f0[NB_BINS_COMPRESSED_MATRIX_TCH*NB_BYTES_BP1];
458 unsigned char LFR_BP2_f0[NB_BINS_COMPRESSED_MATRIX_TCH*NB_BYTES_BP2];
459 float k_coefficients[NB_BINS_COMPRESSED_MATRIX_TCH * NB_K_COEFF_PER_BIN];
460
461 float compressed_spectral_matrix_TCH[ NB_BINS_COMPRESSED_MATRIX_TCH * NB_VALUES_PER_SPECTRAL_MATRIX ] = {
462 1.02217712e+06,
463 -8.58216250e+04,
464 -3.22199043e+04,
465 1.01597820e+05,
466 8.10333875e+05,
467 1.19030141e+05,
468 -8.69636688e+05,
469 5.01504031e+05,
470 -1.01948547e+05,
471 1.35475020e+04,
472 -3.67825469e+04,
473 -1.10950273e+05,
474 2.10715000e+04,
475 4.49727383e+04,
476 -4.37282031e+04,
477 3.83337695e+03,
478 1.05317175e+06,
479 -4.04155312e+05,
480 -1.32987891e+05,
481 1.49277250e+05,
482 -4.39122625e+05,
483 9.46006250e+05,
484 2.64386625e+05,
485 3.71843125e+05,
486 3.39770000e+05
487 };
488
489 init_k_coefficients( k_coefficients, NB_BINS_COMPRESSED_MATRIX_TCH );
490
491 printf("\n");
492
493 BP1_set(compressed_spectral_matrix_TCH, k_coefficients, NB_BINS_COMPRESSED_MATRIX_TCH, LFR_BP1_f0);
494
495 printf("\n");
496
497 BP2_set(compressed_spectral_matrix_TCH, NB_BINS_COMPRESSED_MATRIX_TCH, LFR_BP2_f0);
498 }
@@ -1,367 +1,379
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf1_prc1.h"
10 #include "avf1_prc1.h"
11
11
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
13
13
14 extern ring_node sm_ring_f1[ ];
15
14 //***
16 //***
15 // F1
17 // F1
16 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
17 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
18
20
19 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
20 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
21
23
22 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
24 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
23 char asm_f1_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
25 char asm_f1_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
24 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
26 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
25 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
27 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
26
28
29 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
30 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
31
27 //************
32 //************
28 // RTEMS TASKS
33 // RTEMS TASKS
29
34
30 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
35 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
31 {
36 {
32 int i;
37 int i;
33
38
34 rtems_event_set event_out;
39 rtems_event_set event_out;
35 rtems_status_code status;
40 rtems_status_code status;
36 rtems_id queue_id_prc1;
41 rtems_id queue_id_prc1;
37 asm_msg msgForMATR;
42 asm_msg msgForMATR;
38 ring_node *ring_node_tab[8];
43 ring_node *nodeForAveraging;
44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0];
39 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
45 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
40 ring_node_asm *current_ring_node_asm_norm_f1;
46 ring_node_asm *current_ring_node_asm_norm_f1;
41
47
42 unsigned int nb_norm_bp1;
48 unsigned int nb_norm_bp1;
43 unsigned int nb_norm_bp2;
49 unsigned int nb_norm_bp2;
44 unsigned int nb_norm_asm;
50 unsigned int nb_norm_asm;
45 unsigned int nb_sbm_bp1;
51 unsigned int nb_sbm_bp1;
46 unsigned int nb_sbm_bp2;
52 unsigned int nb_sbm_bp2;
47
53
48 nb_norm_bp1 = 0;
54 nb_norm_bp1 = 0;
49 nb_norm_bp2 = 0;
55 nb_norm_bp2 = 0;
50 nb_norm_asm = 0;
56 nb_norm_asm = 0;
51 nb_sbm_bp1 = 0;
57 nb_sbm_bp1 = 0;
52 nb_sbm_bp2 = 0;
58 nb_sbm_bp2 = 0;
53
59
54 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
60 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
55 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
61 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
56 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
62 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
57 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
63 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
58 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
64 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
59
65
60 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
66 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
61
67
62 status = get_message_queue_id_prc1( &queue_id_prc1 );
68 status = get_message_queue_id_prc1( &queue_id_prc1 );
63 if (status != RTEMS_SUCCESSFUL)
69 if (status != RTEMS_SUCCESSFUL)
64 {
70 {
65 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
71 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
66 }
72 }
67
73
68 while(1){
74 while(1){
69 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
75 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
70
76
71 //****************************************
77 //****************************************
72 // initialize the mesage for the MATR task
78 // initialize the mesage for the MATR task
73 msgForMATR.norm = current_ring_node_asm_norm_f1;
79 msgForMATR.norm = current_ring_node_asm_norm_f1;
74 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
80 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f1;
75 msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
81 msgForMATR.event = 0x00; // this composite event will be sent to the PRC1 task
76 msgForMATR.coarseTime = ring_node_for_averaging_sm_f1->coarseTime;
77 msgForMATR.fineTime = ring_node_for_averaging_sm_f1->fineTime;
78 //
82 //
79 //****************************************
83 //****************************************
80
84
81 ring_node_tab[NB_SM_BEFORE_AVF1-1] = ring_node_for_averaging_sm_f1;
85 nodeForAveraging = getRingNodeForAveraging( 1 );
86
87 ring_node_tab[NB_SM_BEFORE_AVF1-1] = nodeForAveraging;
82 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
88 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
83 {
89 {
84 ring_node_for_averaging_sm_f1 = ring_node_for_averaging_sm_f1->previous;
90 nodeForAveraging = nodeForAveraging->previous;
85 ring_node_tab[NB_SM_BEFORE_AVF1-i] = ring_node_for_averaging_sm_f1;
91 ring_node_tab[NB_SM_BEFORE_AVF1-i] = nodeForAveraging;
86 }
92 }
87
93
88 // compute the average and store it in the averaged_sm_f1 buffer
94 // compute the average and store it in the averaged_sm_f1 buffer
89 SM_average( current_ring_node_asm_norm_f1->matrix,
95 SM_average( current_ring_node_asm_norm_f1->matrix,
90 current_ring_node_asm_burst_sbm_f1->matrix,
96 current_ring_node_asm_burst_sbm_f1->matrix,
91 ring_node_tab,
97 ring_node_tab,
92 nb_norm_bp1, nb_sbm_bp1 );
98 nb_norm_bp1, nb_sbm_bp1,
99 &msgForMATR );
93
100
94 // update nb_average
101 // update nb_average
95 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
102 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
96 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
103 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
97 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
104 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
98 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
105 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
99 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
106 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
100
107
101 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
108 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
102 {
109 {
103 nb_sbm_bp1 = 0;
110 nb_sbm_bp1 = 0;
104 // set another ring for the ASM storage
111 // set another ring for the ASM storage
105 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
112 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
106 if ( lfrCurrentMode == LFR_MODE_BURST )
113 if ( lfrCurrentMode == LFR_MODE_BURST )
107 {
114 {
108 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F1;
115 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP1_F1;
109 }
116 }
110 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
117 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
111 {
118 {
112 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F1;
119 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP1_F1;
113 }
120 }
114 }
121 }
115
122
116 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
123 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
117 {
124 {
118 nb_sbm_bp2 = 0;
125 nb_sbm_bp2 = 0;
119 if ( lfrCurrentMode == LFR_MODE_BURST )
126 if ( lfrCurrentMode == LFR_MODE_BURST )
120 {
127 {
121 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F1;
128 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_BP2_F1;
122 }
129 }
123 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
130 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
124 {
131 {
125 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F1;
132 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_SBM_BP2_F1;
126 }
133 }
127 }
134 }
128
135
129 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
136 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
130 {
137 {
131 nb_norm_bp1 = 0;
138 nb_norm_bp1 = 0;
132 // set another ring for the ASM storage
139 // set another ring for the ASM storage
133 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
140 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
134 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
141 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
135 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
142 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
136 {
143 {
137 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
144 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F1;
138 }
145 }
139 }
146 }
140
147
141 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
148 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
142 {
149 {
143 nb_norm_bp2 = 0;
150 nb_norm_bp2 = 0;
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
151 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
152 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
146 {
153 {
147 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
154 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F1;
148 }
155 }
149 }
156 }
150
157
151 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
158 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
152 {
159 {
153 nb_norm_asm = 0;
160 nb_norm_asm = 0;
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
161 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
162 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
156 {
163 {
157 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
164 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F1;
158 }
165 }
159 }
166 }
160
167
161 //*************************
168 //*************************
162 // send the message to MATR
169 // send the message to MATR
163 if (msgForMATR.event != 0x00)
170 if (msgForMATR.event != 0x00)
164 {
171 {
165 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
172 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC1);
166 }
173 }
167
174
168 if (status != RTEMS_SUCCESSFUL) {
175 if (status != RTEMS_SUCCESSFUL) {
169 printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
176 printf("in AVF1 *** Error sending message to PRC1, code %d\n", status);
170 }
177 }
171 }
178 }
172 }
179 }
173
180
174 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
181 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
175 {
182 {
176 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
183 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
177 size_t size; // size of the incoming TC packet
184 size_t size; // size of the incoming TC packet
178 asm_msg *incomingMsg;
185 asm_msg *incomingMsg;
179 //
186 //
180 unsigned char sid;
187 unsigned char sid;
181 rtems_status_code status;
188 rtems_status_code status;
182 rtems_id queue_id_send;
189 rtems_id queue_id_send;
183 rtems_id queue_id_q_p1;
190 rtems_id queue_id_q_p1;
184 bp_packet_with_spare packet_norm_bp1;
191 bp_packet_with_spare packet_norm_bp1;
185 bp_packet packet_norm_bp2;
192 bp_packet packet_norm_bp2;
186 bp_packet packet_sbm_bp1;
193 bp_packet packet_sbm_bp1;
187 bp_packet packet_sbm_bp2;
194 bp_packet packet_sbm_bp2;
188 ring_node *current_ring_node_to_send_asm_f1;
195 ring_node *current_ring_node_to_send_asm_f1;
189
196
190 unsigned long long int localTime;
197 unsigned long long int localTime;
191
198
192 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
199 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
193 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
200 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
194 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
201 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
195
202
196 //*************
203 //*************
197 // NORM headers
204 // NORM headers
198 BP_init_header_with_spare( &packet_norm_bp1.header,
205 BP_init_header_with_spare( &packet_norm_bp1.header,
199 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
206 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
200 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
207 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
201 BP_init_header( &packet_norm_bp2.header,
208 BP_init_header( &packet_norm_bp2,
202 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
209 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
203 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
210 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
204
211
205 //***********************
212 //***********************
206 // BURST and SBM2 headers
213 // BURST and SBM2 headers
207 if ( lfrRequestedMode == LFR_MODE_BURST )
214 if ( lfrRequestedMode == LFR_MODE_BURST )
208 {
215 {
209 BP_init_header( &packet_sbm_bp1.header,
216 BP_init_header( &packet_sbm_bp1,
210 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
217 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
211 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
218 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
212 BP_init_header( &packet_sbm_bp2.header,
219 BP_init_header( &packet_sbm_bp2,
213 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
214 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
215 }
222 }
216 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
223 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
217 {
224 {
218 BP_init_header( &packet_sbm_bp1.header,
225 BP_init_header( &packet_sbm_bp1,
219 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
226 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
220 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
227 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
221 BP_init_header( &packet_sbm_bp2.header,
228 BP_init_header( &packet_sbm_bp2,
222 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
229 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
223 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
230 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
224 }
231 }
225 else
232 else
226 {
233 {
227 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
234 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
228 }
235 }
229
236
230 status = get_message_queue_id_send( &queue_id_send );
237 status = get_message_queue_id_send( &queue_id_send );
231 if (status != RTEMS_SUCCESSFUL)
238 if (status != RTEMS_SUCCESSFUL)
232 {
239 {
233 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
240 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
234 }
241 }
235 status = get_message_queue_id_prc1( &queue_id_q_p1);
242 status = get_message_queue_id_prc1( &queue_id_q_p1);
236 if (status != RTEMS_SUCCESSFUL)
243 if (status != RTEMS_SUCCESSFUL)
237 {
244 {
238 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
245 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
239 }
246 }
240
247
241 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
248 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
242
249
243 while(1){
250 while(1){
244 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
251 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
245 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
252 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
246
253
247 incomingMsg = (asm_msg*) incomingData;
254 incomingMsg = (asm_msg*) incomingData;
248
255
249 localTime = getTimeAsUnsignedLongLongInt( );
256 localTime = getTimeAsUnsignedLongLongInt( );
250 //***********
257 //***********
251 //***********
258 //***********
252 // BURST SBM2
259 // BURST SBM2
253 //***********
260 //***********
254 //***********
261 //***********
255 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
262 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
256 {
263 {
257 sid = getSID( incomingMsg->event );
264 sid = getSID( incomingMsg->event );
258 // 1) compress the matrix for Basic Parameters calculation
265 // 1) compress the matrix for Basic Parameters calculation
259 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f1,
266 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f1,
260 nb_sm_before_f1.burst_sbm_bp1,
267 nb_sm_before_f1.burst_sbm_bp1,
261 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
268 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
262 ASM_F1_INDICE_START);
269 ASM_F1_INDICE_START);
263 // 2) compute the BP1 set
270 // 2) compute the BP1 set
264
271 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
265 // 3) send the BP1 set
272 // 3) send the BP1 set
266 set_time( packet_sbm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
273 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
267 set_time( packet_sbm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
274 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
268 BP_send( (char *) &packet_sbm_bp1, queue_id_send,
275 BP_send( (char *) &packet_sbm_bp1, queue_id_send,
269 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
276 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
270 sid );
277 sid );
271 // 4) compute the BP2 set if needed
278 // 4) compute the BP2 set if needed
272 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
279 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
273 {
280 {
274 // 1) compute the BP2 set
281 // 1) compute the BP2 set
275
282 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_norm_bp2.data );
276 // 2) send the BP2 set
283 // 2) send the BP2 set
277 set_time( packet_sbm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
284 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
278 set_time( packet_sbm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
285 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
279 BP_send( (char *) &packet_sbm_bp2, queue_id_send,
286 BP_send( (char *) &packet_sbm_bp2, queue_id_send,
280 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
287 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
281 sid );
288 sid );
282 }
289 }
283 }
290 }
284
291
285 //*****
292 //*****
286 //*****
293 //*****
287 // NORM
294 // NORM
288 //*****
295 //*****
289 //*****
296 //*****
290 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
297 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
291 {
298 {
292 // 1) compress the matrix for Basic Parameters calculation
299 // 1) compress the matrix for Basic Parameters calculation
293 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f1,
300 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f1,
294 nb_sm_before_f1.norm_bp1,
301 nb_sm_before_f1.norm_bp1,
295 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
302 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
296 ASM_F0_INDICE_START );
303 ASM_F0_INDICE_START );
297 // 2) compute the BP1 set
304 // 2) compute the BP1 set
298
305 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
299 // 3) send the BP1 set
306 // 3) send the BP1 set
300 set_time( packet_norm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTime );
307 set_time( packet_norm_bp1.header.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
301 set_time( packet_norm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
308 set_time( packet_norm_bp1.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
302 BP_send( (char *) &packet_norm_bp1, queue_id_send,
309 BP_send( (char *) &packet_norm_bp1, queue_id_send,
303 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
310 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
304 SID_NORM_BP1_F1 );
311 SID_NORM_BP1_F1 );
305 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
312 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
306 {
313 {
307 // 1) compute the BP2 set
314 // 1) compute the BP2 set
308
315 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
309 // 2) send the BP2 set
316 // 2) send the BP2 set
310 set_time( packet_norm_bp2.header.time, (unsigned char *) &incomingMsg->coarseTime );
317 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
311 set_time( packet_norm_bp2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
318 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
312 BP_send( (char *) &packet_norm_bp2, queue_id_send,
319 BP_send( (char *) &packet_norm_bp2, queue_id_send,
313 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
320 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
314 SID_NORM_BP2_F1 );
321 SID_NORM_BP2_F1 );
315 }
322 }
316 }
323 }
317
324
318 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
325 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
319 {
326 {
320 // 1) reorganize the ASM and divide
327 // 1) reorganize the ASM and divide
321 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
328 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
322 asm_f1_reorganized,
329 asm_f1_reorganized,
323 nb_sm_before_f1.norm_bp1 );
330 nb_sm_before_f1.norm_bp1 );
324 // 2) convert the float array in a char array
331 // 2) convert the float array in a char array
325 ASM_convert( asm_f1_reorganized, (char*) current_ring_node_to_send_asm_f1->buffer_address );
332 ASM_convert( asm_f1_reorganized, (char*) current_ring_node_to_send_asm_f1->buffer_address );
326 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTime;
333 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
327 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTime;
334 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
328 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
335 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
329 // 3) send the spectral matrix packets
336 // 3) send the spectral matrix packets
330 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
337 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
331 // change asm ring node
338 // change asm ring node
332 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
339 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
333 }
340 }
334
341
335 }
342 }
336 }
343 }
337
344
338 //**********
345 //**********
339 // FUNCTIONS
346 // FUNCTIONS
340
347
341 void reset_nb_sm_f1( unsigned char lfrMode )
348 void reset_nb_sm_f1( unsigned char lfrMode )
342 {
349 {
343 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
350 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
344 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
351 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
345 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
352 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
346 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
353 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
347 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
354 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
348 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
355 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
349 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
356 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
350
357
351 if (lfrMode == LFR_MODE_SBM2)
358 if (lfrMode == LFR_MODE_SBM2)
352 {
359 {
353 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
360 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
354 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
361 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
355 }
362 }
356 else if (lfrMode == LFR_MODE_BURST)
363 else if (lfrMode == LFR_MODE_BURST)
357 {
364 {
358 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
365 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
359 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
366 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
360 }
367 }
361 else
368 else
362 {
369 {
363 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
370 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
364 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
371 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
365 }
372 }
366 }
373 }
367
374
375 void init_k_coefficients_f1( void )
376 {
377 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
378 init_k_coefficients( k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1);
379 }
@@ -1,262 +1,287
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf2_prc2.h"
10 #include "avf2_prc2.h"
11
11
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13
13
14 extern ring_node sm_ring_f2[ ];
15
14 //***
16 //***
15 // F2
17 // F2
16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
17 ring_node_asm asm_ring_burst_sbm_f2[ NB_RING_NODES_ASM_BURST_SBM_F2 ];
19 ring_node_asm asm_ring_burst_sbm_f2[ NB_RING_NODES_ASM_BURST_SBM_F2 ];
18
20
19 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
21 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
20 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
22 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
21
23
22 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
23 char asm_f2_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
25 char asm_f2_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
24 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
26 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
25 float compressed_sm_sbm_f2 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 ];
27 float compressed_sm_sbm_f2 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F2 ];
26
28
29 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
30
27 //************
31 //************
28 // RTEMS TASKS
32 // RTEMS TASKS
29
33
30 //***
34 //***
31 // F2
35 // F2
32 rtems_task avf2_task( rtems_task_argument argument )
36 rtems_task avf2_task( rtems_task_argument argument )
33 {
37 {
34 rtems_event_set event_out;
38 rtems_event_set event_out;
35 rtems_status_code status;
39 rtems_status_code status;
36 rtems_id queue_id_prc2;
40 rtems_id queue_id_prc2;
37 asm_msg msgForMATR;
41 asm_msg msgForMATR;
42 ring_node *nodeForAveraging;
38 ring_node_asm *current_ring_node_asm_norm_f2;
43 ring_node_asm *current_ring_node_asm_norm_f2;
39
44
40 unsigned int nb_norm_bp1;
45 unsigned int nb_norm_bp1;
41 unsigned int nb_norm_bp2;
46 unsigned int nb_norm_bp2;
42 unsigned int nb_norm_asm;
47 unsigned int nb_norm_asm;
43
48
44 nb_norm_bp1 = 0;
49 nb_norm_bp1 = 0;
45 nb_norm_bp2 = 0;
50 nb_norm_bp2 = 0;
46 nb_norm_asm = 0;
51 nb_norm_asm = 0;
47
52
48 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
53 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
49 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
54 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
50 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
55 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
51
56
52 BOOT_PRINTF("in AVF2 ***\n")
57 BOOT_PRINTF("in AVF2 ***\n")
53
58
54 status = get_message_queue_id_prc2( &queue_id_prc2 );
59 status = get_message_queue_id_prc2( &queue_id_prc2 );
55 if (status != RTEMS_SUCCESSFUL)
60 if (status != RTEMS_SUCCESSFUL)
56 {
61 {
57 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
62 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
58 }
63 }
59
64
60 while(1){
65 while(1){
61 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
62
67
63 //****************************************
68 //****************************************
64 // initialize the mesage for the MATR task
69 // initialize the mesage for the MATR task
65 msgForMATR.norm = current_ring_node_asm_norm_f2;
70 msgForMATR.norm = current_ring_node_asm_norm_f2;
66 msgForMATR.burst_sbm = NULL;
71 msgForMATR.burst_sbm = NULL;
67 msgForMATR.event = 0x00; // this composite event will be sent to the PRC2 task
72 msgForMATR.event = 0x00; // this composite event will be sent to the PRC2 task
68 msgForMATR.coarseTime = ring_node_for_averaging_sm_f2->coarseTime;
69 msgForMATR.fineTime = ring_node_for_averaging_sm_f2->fineTime;
70 //
73 //
71 //****************************************
74 //****************************************
72
75
76 nodeForAveraging = getRingNodeForAveraging( 2 );
77
78 // printf(" **0** %x . %x", sm_ring_f2[0].coarseTime, sm_ring_f2[0].fineTime);
79 // printf(" **1** %x . %x", sm_ring_f2[1].coarseTime, sm_ring_f2[1].fineTime);
80 // printf(" **2** %x . %x", sm_ring_f2[2].coarseTime, sm_ring_f2[2].fineTime);
81 // printf(" **3** %x . %x", sm_ring_f2[3].coarseTime, sm_ring_f2[3].fineTime);
82 // printf(" **4** %x . %x", sm_ring_f2[4].coarseTime, sm_ring_f2[4].fineTime);
83 // printf(" **5** %x . %x", sm_ring_f2[5].coarseTime, sm_ring_f2[5].fineTime);
84 // printf(" **6** %x . %x", sm_ring_f2[6].coarseTime, sm_ring_f2[6].fineTime);
85 // printf(" **7** %x . %x", sm_ring_f2[7].coarseTime, sm_ring_f2[7].fineTime);
86 // printf(" **8** %x . %x", sm_ring_f2[8].coarseTime, sm_ring_f2[8].fineTime);
87 // printf(" **9** %x . %x", sm_ring_f2[9].coarseTime, sm_ring_f2[9].fineTime);
88 // printf(" **10** %x . %x\n", sm_ring_f2[10].coarseTime, sm_ring_f2[10].fineTime);
89
73 // compute the average and store it in the averaged_sm_f2 buffer
90 // compute the average and store it in the averaged_sm_f2 buffer
74 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
91 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
75 ring_node_for_averaging_sm_f2,
92 nodeForAveraging,
76 nb_norm_bp1 );
93 nb_norm_bp1,
94 &msgForMATR );
77
95
78 // update nb_average
96 // update nb_average
79 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
97 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
80 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
98 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
81 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
99 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
82
100
83 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
101 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
84 {
102 {
85 nb_norm_bp1 = 0;
103 nb_norm_bp1 = 0;
86 // set another ring for the ASM storage
104 // set another ring for the ASM storage
87 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
105 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
88 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
106 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
89 || (lfrCurrentMode == LFR_MODE_SBM2) )
107 || (lfrCurrentMode == LFR_MODE_SBM2) )
90 {
108 {
91 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F2;
109 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F2;
92 }
110 }
93 }
111 }
94
112
95 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
113 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
96 {
114 {
97 nb_norm_bp2 = 0;
115 nb_norm_bp2 = 0;
98 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
116 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
99 || (lfrCurrentMode == LFR_MODE_SBM2) )
117 || (lfrCurrentMode == LFR_MODE_SBM2) )
100 {
118 {
101 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
119 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F2;
102 }
120 }
103 }
121 }
104
122
105 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
123 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
106 {
124 {
107 nb_norm_asm = 0;
125 nb_norm_asm = 0;
108 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
126 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
109 || (lfrCurrentMode == LFR_MODE_SBM2) )
127 || (lfrCurrentMode == LFR_MODE_SBM2) )
110 {
128 {
111 // PRINTF1("%lld\n", localTime)
112 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
129 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F2;
113 }
130 }
114 }
131 }
115
132
116 //*************************
133 //*************************
117 // send the message to MATR
134 // send the message to MATR
118 if (msgForMATR.event != 0x00)
135 if (msgForMATR.event != 0x00)
119 {
136 {
120 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
137 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
121 }
138 }
122
139
123 if (status != RTEMS_SUCCESSFUL) {
140 if (status != RTEMS_SUCCESSFUL) {
124 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
141 printf("in AVF2 *** Error sending message to MATR, code %d\n", status);
125 }
142 }
126 }
143 }
127 }
144 }
128
145
129 rtems_task prc2_task( rtems_task_argument argument )
146 rtems_task prc2_task( rtems_task_argument argument )
130 {
147 {
131 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
148 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
132 size_t size; // size of the incoming TC packet
149 size_t size; // size of the incoming TC packet
133 asm_msg *incomingMsg;
150 asm_msg *incomingMsg;
134 //
151 //
135 rtems_status_code status;
152 rtems_status_code status;
136 rtems_id queue_id;
153 rtems_id queue_id;
137 rtems_id queue_id_q_p2;
154 rtems_id queue_id_q_p2;
138 bp_packet packet_norm_bp1_f2;
155 bp_packet packet_norm_bp1;
139 bp_packet packet_norm_bp2_f2;
156 bp_packet packet_norm_bp2;
140 ring_node *current_ring_node_to_send_asm_f2;
157 ring_node *current_ring_node_to_send_asm_f2;
141
158
142 unsigned long long int localTime;
159 unsigned long long int localTime;
143
160
144 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
161 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
145 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
162 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
146 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
163 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
147
164
148 incomingMsg = NULL;
165 incomingMsg = NULL;
149
166
150 //*************
167 //*************
151 // NORM headers
168 // NORM headers
152 BP_init_header( &packet_norm_bp1_f2.header,
169 BP_init_header( &packet_norm_bp1,
153 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
170 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
154 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
171 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
155 BP_init_header( &packet_norm_bp2_f2.header,
172 BP_init_header( &packet_norm_bp2,
156 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
173 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
157 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
174 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
158
175
159 status = get_message_queue_id_send( &queue_id );
176 status = get_message_queue_id_send( &queue_id );
160 if (status != RTEMS_SUCCESSFUL)
177 if (status != RTEMS_SUCCESSFUL)
161 {
178 {
162 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
179 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
163 }
180 }
164 status = get_message_queue_id_prc2( &queue_id_q_p2);
181 status = get_message_queue_id_prc2( &queue_id_q_p2);
165 if (status != RTEMS_SUCCESSFUL)
182 if (status != RTEMS_SUCCESSFUL)
166 {
183 {
167 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
184 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
168 }
185 }
169
186
170 BOOT_PRINTF("in PRC2 ***\n")
187 BOOT_PRINTF("in PRC2 ***\n")
171
188
172 while(1){
189 while(1){
173 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
190 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
174 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
191 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
175
192
176 incomingMsg = (asm_msg*) incomingData;
193 incomingMsg = (asm_msg*) incomingData;
177
194
178 localTime = getTimeAsUnsignedLongLongInt( );
195 localTime = getTimeAsUnsignedLongLongInt( );
179
196
180 //*****
197 //*****
181 //*****
198 //*****
182 // NORM
199 // NORM
183 //*****
200 //*****
184 //*****
201 //*****
185 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
202 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
186 {
203 {
187 // 1) compress the matrix for Basic Parameters calculation
204 // 1) compress the matrix for Basic Parameters calculation
188 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f2,
205 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f2,
189 nb_sm_before_f2.norm_bp1,
206 nb_sm_before_f2.norm_bp1,
190 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
207 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
191 ASM_F2_INDICE_START );
208 ASM_F2_INDICE_START );
192 // 2) compute the BP1 set
209 // 2) compute the BP1 set
193
210 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
194 // 3) send the BP1 set
211 // 3) send the BP1 set
195 set_time( packet_norm_bp1_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
212 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
196 set_time( packet_norm_bp1_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
213 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
197 BP_send( (char *) &packet_norm_bp1_f2, queue_id,
214 BP_send( (char *) &packet_norm_bp1, queue_id,
198 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
215 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
199 SID_NORM_BP1_F2 );
216 SID_NORM_BP1_F2 );
200 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
217 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
201 {
218 {
202 // 1) compute the BP2 set using the same ASM as the one used for BP1
219 // 1) compute the BP2 set using the same ASM as the one used for BP1
203
220 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
204 // 2) send the BP2 set
221 // 2) send the BP2 set
205 set_time( packet_norm_bp2_f2.header.time, (unsigned char *) &incomingMsg->coarseTime );
222 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
206 set_time( packet_norm_bp2_f2.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
223 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
207 BP_send( (char *) &packet_norm_bp2_f2, queue_id,
224 BP_send( (char *) &packet_norm_bp2, queue_id,
208 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
225 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
209 SID_NORM_BP2_F2 );
226 SID_NORM_BP2_F2 );
210 }
227 }
211 }
228 }
212
229
213 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
230 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
214 {
231 {
215 // 1) reorganize the ASM and divide
232 // 1) reorganize the ASM and divide
216 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
233 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
217 asm_f2_reorganized,
234 asm_f2_reorganized,
218 nb_sm_before_f2.norm_bp1 );
235 nb_sm_before_f2.norm_bp1 );
219 // 2) convert the float array in a char array
236 // 2) convert the float array in a char array
220 ASM_convert( asm_f2_reorganized, (char*) current_ring_node_to_send_asm_f2->buffer_address );
237 ASM_convert( asm_f2_reorganized, (char*) current_ring_node_to_send_asm_f2->buffer_address );
221 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTime;
238 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
222 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTime;
239 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
223 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
240 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
224 // 3) send the spectral matrix packets
241 // 3) send the spectral matrix packets
225 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
242 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
226 // change asm ring node
243 // change asm ring node
227 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
244 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
228 }
245 }
229
246
230 }
247 }
231 }
248 }
232
249
233 //**********
250 //**********
234 // FUNCTIONS
251 // FUNCTIONS
235
252
236 void reset_nb_sm_f2( void )
253 void reset_nb_sm_f2( void )
237 {
254 {
238 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
255 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
239 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
256 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
240 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
257 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
241 }
258 }
242
259
243 void SM_average_f2( float *averaged_spec_mat_f2,
260 void SM_average_f2( float *averaged_spec_mat_f2,
244 ring_node *ring_node,
261 ring_node *ring_node,
245 unsigned int nbAverageNormF2 )
262 unsigned int nbAverageNormF2,
263 asm_msg *msgForMATR )
246 {
264 {
247 float sum;
265 float sum;
248 unsigned int i;
266 unsigned int i;
249
267
250 for(i=0; i<TOTAL_SIZE_SM; i++)
268 for(i=0; i<TOTAL_SIZE_SM; i++)
251 {
269 {
252 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
270 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
253 if ( (nbAverageNormF2 == 0) )
271 if ( (nbAverageNormF2 == 0) )
254 {
272 {
255 averaged_spec_mat_f2[ i ] = sum;
273 averaged_spec_mat_f2[ i ] = sum;
274 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
275 msgForMATR->fineTimeNORM = ring_node->fineTime;
256 }
276 }
257 else
277 else
258 {
278 {
259 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
279 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
260 }
280 }
261 }
281 }
262 }
282 }
283
284 void init_k_coefficients_f2( void )
285 {
286 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
287 }
@@ -1,523 +1,532
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "fsw_processing.h"
10 #include "fsw_processing.h"
11 #include "fsw_processing_globals.c"
11 #include "fsw_processing_globals.c"
12
12
13 unsigned int nb_sm_f0;
13 unsigned int nb_sm_f0;
14 unsigned int nb_sm_f0_aux_f1;
14 unsigned int nb_sm_f0_aux_f1;
15 unsigned int nb_sm_f1;
15 unsigned int nb_sm_f1;
16 unsigned int nb_sm_f0_aux_f2;
16 unsigned int nb_sm_f0_aux_f2;
17
17
18 //************************
18 //************************
19 // spectral matrices rings
19 // spectral matrices rings
20 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
20 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
21 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
22 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 ring_node *current_ring_node_sm_f0;
23 ring_node *current_ring_node_sm_f0;
24 ring_node *current_ring_node_sm_f1;
24 ring_node *current_ring_node_sm_f1;
25 ring_node *current_ring_node_sm_f2;
25 ring_node *current_ring_node_sm_f2;
26 ring_node *ring_node_for_averaging_sm_f0;
26 ring_node *ring_node_for_averaging_sm_f0;
27 ring_node *ring_node_for_averaging_sm_f1;
27 ring_node *ring_node_for_averaging_sm_f1;
28 ring_node *ring_node_for_averaging_sm_f2;
28 ring_node *ring_node_for_averaging_sm_f2;
29
29
30 //
31 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
32 {
33 ring_node *node;
34
35 node = NULL;
36 switch ( frequencyChannel ) {
37 case 0:
38 node = ring_node_for_averaging_sm_f0;
39 break;
40 case 1:
41 node = ring_node_for_averaging_sm_f1;
42 break;
43 case 2:
44 node = ring_node_for_averaging_sm_f2;
45 break;
46 default:
47 break;
48 }
49
50 return node;
51 }
52
30 //***********************************************************
53 //***********************************************************
31 // Interrupt Service Routine for spectral matrices processing
54 // Interrupt Service Routine for spectral matrices processing
32
55
33 void spectral_matrices_isr_f0( void )
56 void spectral_matrices_isr_f0( void )
34 {
57 {
35 unsigned char status;
58 unsigned char status;
36 unsigned long long int time_0;
59 rtems_status_code status_code;
37 unsigned long long int time_1;
38 unsigned long long int syncBit0;
39 unsigned long long int syncBit1;
40
60
41 status = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
61 status = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
42
62
43 time_0 = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f0_0_coarse_time );
44 time_1 = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f0_1_coarse_time );
45 syncBit0 = ( (unsigned long long int) (spectral_matrix_regs->f0_0_coarse_time & 0x80000000) ) << 16;
46 syncBit1 = ( (unsigned long long int) (spectral_matrix_regs->f0_1_coarse_time & 0x80000000) ) << 16;
47
48 switch(status)
63 switch(status)
49 {
64 {
50 case 0:
65 case 0:
51 break;
66 break;
52 case 3:
67 case 3:
53 // send a message if two buffers are ready
68 // UNEXPECTED VALUE
54 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
55 if ( time_0 < time_1 )
56 {
57 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
58 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
59 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
60 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
61 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
62 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
63 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
64 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
65 }
66 else
67 {
68 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
69 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
70 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
71 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
72 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
73 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
74 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
75 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
76 }
77 spectral_matrix_regs->status = 0x03; // [0011]
69 spectral_matrix_regs->status = 0x03; // [0011]
70 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
78 break;
71 break;
79 case 1:
72 case 1:
80 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
73 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0->previous;
81 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_0 | syncBit0);
82 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
74 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
75 ring_node_for_averaging_sm_f0->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
76 ring_node_for_averaging_sm_f0->fineTime = spectral_matrix_regs->f0_0_fine_time;
83 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
77 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
84 spectral_matrix_regs->status = 0x01; // [0001]
78 spectral_matrix_regs->status = 0x01; // [0000 0001]
79 // if there are enough ring nodes ready, wake up an AVFx task
80 nb_sm_f0 = nb_sm_f0 + 1;
81 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
82 {
83 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
84 {
85 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
86 }
87 nb_sm_f0 = 0;
88 }
85 break;
89 break;
86 case 2:
90 case 2:
87 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0],
91 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0->previous;
88 ring_node_for_averaging_sm_f0, current_ring_node_sm_f0, time_1 | syncBit1);
89 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
92 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
90 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
93 ring_node_for_averaging_sm_f0->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
91 spectral_matrix_regs->status = 0x02; // [0010]
94 ring_node_for_averaging_sm_f0->fineTime = spectral_matrix_regs->f0_1_fine_time;
95 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
96 spectral_matrix_regs->status = 0x02; // [0000 0010]
97 // if there are enough ring nodes ready, wake up an AVFx task
98 nb_sm_f0 = nb_sm_f0 + 1;
99 if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
100 {
101 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
102 {
103 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
104 }
105 nb_sm_f0 = 0;
106 }
92 break;
107 break;
93 }
108 }
94 }
109 }
95
110
96 void spectral_matrices_isr_f1( void )
111 void spectral_matrices_isr_f1( void )
97 {
112 {
113 rtems_status_code status_code;
98 unsigned char status;
114 unsigned char status;
99 unsigned long long int time;
100 unsigned long long int syncBit;
101 rtems_status_code status_code;
102
115
103 status = (spectral_matrix_regs->status & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
116 status = (spectral_matrix_regs->status & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
104
117
105 switch(status)
118 switch(status)
106 {
119 {
107 case 0:
120 case 0:
108 break;
121 break;
109 case 3:
122 case 3:
110 // UNEXPECTED VALUE
123 // UNEXPECTED VALUE
111 spectral_matrix_regs->status = 0xc0; // [1100]
124 spectral_matrix_regs->status = 0xc0; // [1100]
112 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
125 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
113 break;
126 break;
114 case 1:
127 case 1:
115 time = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f1_0_coarse_time );
128 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1->previous;
116 syncBit = ( (unsigned long long int) (spectral_matrix_regs->f1_0_coarse_time & 0x80000000) ) << 16;
117 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1],
118 ring_node_for_averaging_sm_f1, current_ring_node_sm_f1, time | syncBit);
119 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
129 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
130 ring_node_for_averaging_sm_f1->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
131 ring_node_for_averaging_sm_f1->fineTime = spectral_matrix_regs->f1_0_fine_time;
120 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
132 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
121 spectral_matrix_regs->status = 0x04; // [0100]
133 spectral_matrix_regs->status = 0x04; // [0000 0100]
134 // if there are enough ring nodes ready, wake up an AVFx task
135 nb_sm_f1 = nb_sm_f1 + 1;
136 if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
137 {
138 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
139 {
140 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
141 }
142 nb_sm_f1 = 0;
143 }
122 break;
144 break;
123 case 2:
145 case 2:
124 time = get_acquisition_time( (unsigned char *) &spectral_matrix_regs->f1_1_coarse_time );
146 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1->previous;
125 syncBit = ( (unsigned long long int) (spectral_matrix_regs->f1_1_coarse_time & 0x80000000) ) << 16;
126 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1],
127 ring_node_for_averaging_sm_f1, current_ring_node_sm_f1, time | syncBit);
128 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
147 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
148 ring_node_for_averaging_sm_f1->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
149 ring_node_for_averaging_sm_f1->fineTime = spectral_matrix_regs->f1_1_fine_time;
129 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
150 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
130 spectral_matrix_regs->status = 0x08; // [1000]
151 spectral_matrix_regs->status = 0x08; // [1000 0000]
152 // if there are enough ring nodes ready, wake up an AVFx task
153 nb_sm_f1 = nb_sm_f1 + 1;
154 if (nb_sm_f1 == NB_SM_BEFORE_AVF1)
155 {
156 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
157 {
158 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
159 }
160 nb_sm_f1 = 0;
161 }
131 break;
162 break;
132 }
163 }
133 }
164 }
134
165
135 void spectral_matrices_isr_f2( void )
166 void spectral_matrices_isr_f2( void )
136 {
167 {
137 unsigned char status;
168 unsigned char status;
138 rtems_status_code status_code;
169 rtems_status_code status_code;
139
170
140 status = (spectral_matrix_regs->status & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
171 status = (spectral_matrix_regs->status & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
141
172
142 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
143
144 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
145
146 switch(status)
173 switch(status)
147 {
174 {
148 case 0:
175 case 0:
149 break;
176 break;
150 case 3:
177 case 3:
151 // UNEXPECTED VALUE
178 // UNEXPECTED VALUE
152 spectral_matrix_regs->status = 0x30; // [0011 0000]
179 spectral_matrix_regs->status = 0x30; // [0011 0000]
153 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
180 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
154 break;
181 break;
155 case 1:
182 case 1:
183 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
184 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
156 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
185 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
157 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
186 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
158 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
187 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
159 spectral_matrix_regs->status = 0x10; // [0001 0000]
188 spectral_matrix_regs->status = 0x10; // [0001 0000]
160 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
189 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
161 {
190 {
162 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
191 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
163 }
192 }
164 break;
193 break;
165 case 2:
194 case 2:
195 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
196 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
166 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
197 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
167 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
198 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
168 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
199 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
169 spectral_matrix_regs->status = 0x20; // [0010 0000]
200 spectral_matrix_regs->status = 0x20; // [0010 0000]
170 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
201 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
171 {
202 {
172 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
203 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
173 }
204 }
174 break;
205 break;
175 }
206 }
176 }
207 }
177
208
178 void spectral_matrix_isr_error_handler( void )
209 void spectral_matrix_isr_error_handler( void )
179 {
210 {
180 // rtems_status_code status_code;
211 rtems_status_code status_code;
181
212
182 // if (spectral_matrix_regs->status & 0x7c0) // [0111 1100 0000]
213 if (spectral_matrix_regs->status & 0x7c0) // [0111 1100 0000]
183 // {
214 {
184 // status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
215 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
185 // }
216 }
186
217
187 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0x7c0;
218 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x7c0;
188 }
219 }
189
220
190 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
221 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
191 {
222 {
192 // STATUS REGISTER
223 // STATUS REGISTER
193 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
224 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
194 // 10 9 8
225 // 10 9 8
195 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
226 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
196 // 7 6 5 4 3 2 1 0
227 // 7 6 5 4 3 2 1 0
197
228
198 spectral_matrices_isr_f0();
229 spectral_matrices_isr_f0();
199
230
200 spectral_matrices_isr_f1();
231 spectral_matrices_isr_f1();
201
232
202 spectral_matrices_isr_f2();
233 spectral_matrices_isr_f2();
203
234
204 spectral_matrix_isr_error_handler();
235 spectral_matrix_isr_error_handler();
205 }
236 }
206
237
207 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
238 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
208 {
239 {
209 rtems_status_code status_code;
240 rtems_status_code status_code;
210
241
211 //***
242 //***
212 // F0
243 // F0
213 nb_sm_f0 = nb_sm_f0 + 1;
244 nb_sm_f0 = nb_sm_f0 + 1;
214 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
245 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
215 {
246 {
216 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
247 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
217 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
248 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
218 {
249 {
219 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
250 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
220 }
251 }
221 nb_sm_f0 = 0;
252 nb_sm_f0 = 0;
222 }
253 }
223
254
224 //***
255 //***
225 // F1
256 // F1
226 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
257 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
227 if (nb_sm_f0_aux_f1 == 6)
258 if (nb_sm_f0_aux_f1 == 6)
228 {
259 {
229 nb_sm_f0_aux_f1 = 0;
260 nb_sm_f0_aux_f1 = 0;
230 nb_sm_f1 = nb_sm_f1 + 1;
261 nb_sm_f1 = nb_sm_f1 + 1;
231 }
262 }
232 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
263 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
233 {
264 {
234 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
265 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
235 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
266 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
236 {
267 {
237 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
268 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
238 }
269 }
239 nb_sm_f1 = 0;
270 nb_sm_f1 = 0;
240 }
271 }
241
272
242 //***
273 //***
243 // F2
274 // F2
244 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
275 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
245 if (nb_sm_f0_aux_f2 == 96)
276 if (nb_sm_f0_aux_f2 == 96)
246 {
277 {
247 nb_sm_f0_aux_f2 = 0;
278 nb_sm_f0_aux_f2 = 0;
248 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
279 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
249 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
280 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
250 {
281 {
251 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
282 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
252 }
283 }
253 }
284 }
254 }
285 }
255
286
256 //******************
287 //******************
257 // Spectral Matrices
288 // Spectral Matrices
258
289
259 void reset_nb_sm( void )
290 void reset_nb_sm( void )
260 {
291 {
261 nb_sm_f0 = 0;
292 nb_sm_f0 = 0;
262 nb_sm_f0_aux_f1 = 0;
293 nb_sm_f0_aux_f1 = 0;
263 nb_sm_f0_aux_f2 = 0;
294 nb_sm_f0_aux_f2 = 0;
264
295
265 nb_sm_f1 = 0;
296 nb_sm_f1 = 0;
266 }
297 }
267
298
268 void SM_init_rings( void )
299 void SM_init_rings( void )
269 {
300 {
270 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
301 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
271 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
302 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
272 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
303 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
273
304
274 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
305 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
275 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
306 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
276 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
307 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
277 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
308 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
278 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
309 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
279 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
310 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
280 }
311 }
281
312
282 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
313 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
283 {
314 {
284 unsigned char i;
315 unsigned char i;
285
316
286 ring[ nbNodes - 1 ].next
317 ring[ nbNodes - 1 ].next
287 = (ring_node_asm*) &ring[ 0 ];
318 = (ring_node_asm*) &ring[ 0 ];
288
319
289 for(i=0; i<nbNodes-1; i++)
320 for(i=0; i<nbNodes-1; i++)
290 {
321 {
291 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
322 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
292 }
323 }
293 }
324 }
294
325
295 void SM_reset_current_ring_nodes( void )
326 void SM_reset_current_ring_nodes( void )
296 {
327 {
297 current_ring_node_sm_f0 = sm_ring_f0[0].next;
328 current_ring_node_sm_f0 = sm_ring_f0[0].next;
298 current_ring_node_sm_f1 = sm_ring_f1[0].next;
329 current_ring_node_sm_f1 = sm_ring_f1[0].next;
299 current_ring_node_sm_f2 = sm_ring_f2[0].next;
330 current_ring_node_sm_f2 = sm_ring_f2[0].next;
300
331
301 ring_node_for_averaging_sm_f0 = sm_ring_f0;
332 ring_node_for_averaging_sm_f0 = sm_ring_f0;
302 ring_node_for_averaging_sm_f1 = sm_ring_f1;
333 ring_node_for_averaging_sm_f1 = sm_ring_f1;
303 ring_node_for_averaging_sm_f2 = sm_ring_f2;
334 ring_node_for_averaging_sm_f2 = sm_ring_f2;
304 }
335 }
305
336
306 //*****************
337 //*****************
307 // Basic Parameters
338 // Basic Parameters
308
339
309 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
340 void BP_init_header( bp_packet *header,
310 unsigned int apid, unsigned char sid,
341 unsigned int apid, unsigned char sid,
311 unsigned int packetLength, unsigned char blkNr )
342 unsigned int packetLength, unsigned char blkNr )
312 {
343 {
313 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
344 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
314 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
345 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
315 header->reserved = 0x00;
346 header->reserved = 0x00;
316 header->userApplication = CCSDS_USER_APP;
347 header->userApplication = CCSDS_USER_APP;
317 header->packetID[0] = (unsigned char) (apid >> 8);
348 header->packetID[0] = (unsigned char) (apid >> 8);
318 header->packetID[1] = (unsigned char) (apid);
349 header->packetID[1] = (unsigned char) (apid);
319 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
350 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
320 header->packetSequenceControl[1] = 0x00;
351 header->packetSequenceControl[1] = 0x00;
321 header->packetLength[0] = (unsigned char) (packetLength >> 8);
352 header->packetLength[0] = (unsigned char) (packetLength >> 8);
322 header->packetLength[1] = (unsigned char) (packetLength);
353 header->packetLength[1] = (unsigned char) (packetLength);
323 // DATA FIELD HEADER
354 // DATA FIELD HEADER
324 header->spare1_pusVersion_spare2 = 0x10;
355 header->spare1_pusVersion_spare2 = 0x10;
325 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
356 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
326 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
357 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
327 header->destinationID = TM_DESTINATION_ID_GROUND;
358 header->destinationID = TM_DESTINATION_ID_GROUND;
359 header->time[0] = 0x00;
360 header->time[1] = 0x00;
361 header->time[2] = 0x00;
362 header->time[3] = 0x00;
363 header->time[4] = 0x00;
364 header->time[5] = 0x00;
328 // AUXILIARY DATA HEADER
365 // AUXILIARY DATA HEADER
329 header->sid = sid;
366 header->sid = sid;
330 header->biaStatusInfo = 0x00;
367 header->biaStatusInfo = 0x00;
331 header->time[0] = 0x00;
368 header->acquisitionTime[0] = 0x00;
332 header->time[0] = 0x00;
369 header->acquisitionTime[1] = 0x00;
333 header->time[0] = 0x00;
370 header->acquisitionTime[2] = 0x00;
334 header->time[0] = 0x00;
371 header->acquisitionTime[3] = 0x00;
335 header->time[0] = 0x00;
372 header->acquisitionTime[4] = 0x00;
336 header->time[0] = 0x00;
373 header->acquisitionTime[5] = 0x00;
337 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
374 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
338 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
375 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
339 }
376 }
340
377
341 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
378 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
342 unsigned int apid, unsigned char sid,
379 unsigned int apid, unsigned char sid,
343 unsigned int packetLength , unsigned char blkNr)
380 unsigned int packetLength , unsigned char blkNr)
344 {
381 {
345 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
382 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
346 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
383 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
347 header->reserved = 0x00;
384 header->reserved = 0x00;
348 header->userApplication = CCSDS_USER_APP;
385 header->userApplication = CCSDS_USER_APP;
349 header->packetID[0] = (unsigned char) (apid >> 8);
386 header->packetID[0] = (unsigned char) (apid >> 8);
350 header->packetID[1] = (unsigned char) (apid);
387 header->packetID[1] = (unsigned char) (apid);
351 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
388 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
352 header->packetSequenceControl[1] = 0x00;
389 header->packetSequenceControl[1] = 0x00;
353 header->packetLength[0] = (unsigned char) (packetLength >> 8);
390 header->packetLength[0] = (unsigned char) (packetLength >> 8);
354 header->packetLength[1] = (unsigned char) (packetLength);
391 header->packetLength[1] = (unsigned char) (packetLength);
355 // DATA FIELD HEADER
392 // DATA FIELD HEADER
356 header->spare1_pusVersion_spare2 = 0x10;
393 header->spare1_pusVersion_spare2 = 0x10;
357 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
394 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
358 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
395 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
359 header->destinationID = TM_DESTINATION_ID_GROUND;
396 header->destinationID = TM_DESTINATION_ID_GROUND;
360 // AUXILIARY DATA HEADER
397 // AUXILIARY DATA HEADER
361 header->sid = sid;
398 header->sid = sid;
362 header->biaStatusInfo = 0x00;
399 header->biaStatusInfo = 0x00;
363 header->time[0] = 0x00;
400 header->time[0] = 0x00;
364 header->time[0] = 0x00;
401 header->time[0] = 0x00;
365 header->time[0] = 0x00;
402 header->time[0] = 0x00;
366 header->time[0] = 0x00;
403 header->time[0] = 0x00;
367 header->time[0] = 0x00;
404 header->time[0] = 0x00;
368 header->time[0] = 0x00;
405 header->time[0] = 0x00;
369 header->source_data_spare = 0x00;
406 header->source_data_spare = 0x00;
370 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
407 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
371 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
408 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
372 }
409 }
373
410
374 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
411 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
375 {
412 {
376 rtems_status_code status;
413 rtems_status_code status;
377
414
378 // SET THE SEQUENCE_CNT PARAMETER
415 // SET THE SEQUENCE_CNT PARAMETER
379 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
416 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
380 // SEND PACKET
417 // SEND PACKET
381 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
418 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
382 if (status != RTEMS_SUCCESSFUL)
419 if (status != RTEMS_SUCCESSFUL)
383 {
420 {
384 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
421 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
385 }
422 }
386 }
423 }
387
424
388 //******************
425 //******************
389 // general functions
426 // general functions
390
427
391 void reset_sm_status( void )
428 void reset_sm_status( void )
392 {
429 {
393 // error
430 // error
394 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
431 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
395 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
432 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
396 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
433 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
397 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
434 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
398
435
399 spectral_matrix_regs->status = 0x7ff; // [0111 1111 1111]
436 spectral_matrix_regs->status = 0x7ff; // [0111 1111 1111]
400 }
437 }
401
438
402 void reset_spectral_matrix_regs( void )
439 void reset_spectral_matrix_regs( void )
403 {
440 {
404 /** This function resets the spectral matrices module registers.
441 /** This function resets the spectral matrices module registers.
405 *
442 *
406 * The registers affected by this function are located at the following offset addresses:
443 * The registers affected by this function are located at the following offset addresses:
407 *
444 *
408 * - 0x00 config
445 * - 0x00 config
409 * - 0x04 status
446 * - 0x04 status
410 * - 0x08 matrixF0_Address0
447 * - 0x08 matrixF0_Address0
411 * - 0x10 matrixFO_Address1
448 * - 0x10 matrixFO_Address1
412 * - 0x14 matrixF1_Address
449 * - 0x14 matrixF1_Address
413 * - 0x18 matrixF2_Address
450 * - 0x18 matrixF2_Address
414 *
451 *
415 */
452 */
416
453
417 set_sm_irq_onError( 0 );
454 set_sm_irq_onError( 0 );
418
455
419 set_sm_irq_onNewMatrix( 0 );
456 set_sm_irq_onNewMatrix( 0 );
420
457
421 reset_sm_status();
458 reset_sm_status();
422
459
460 // F1
423 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
461 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
424 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
462 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
463 // F2
425 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
464 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
426 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
465 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
466 // F3
427 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
467 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
428 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
468 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
429
469
430 spectral_matrix_regs->matrix_length = 0xc8; // 25 * 128 / 16 = 200 = 0xc8
470 spectral_matrix_regs->matrix_length = 0xc8; // 25 * 128 / 16 = 200 = 0xc8
431 }
471 }
432
472
433 void set_time( unsigned char *time, unsigned char * timeInBuffer )
473 void set_time( unsigned char *time, unsigned char * timeInBuffer )
434 {
474 {
435 time[0] = timeInBuffer[0];
475 time[0] = timeInBuffer[0];
436 time[1] = timeInBuffer[1];
476 time[1] = timeInBuffer[1];
437 time[2] = timeInBuffer[2];
477 time[2] = timeInBuffer[2];
438 time[3] = timeInBuffer[3];
478 time[3] = timeInBuffer[3];
439 time[4] = timeInBuffer[6];
479 time[4] = timeInBuffer[6];
440 time[5] = timeInBuffer[7];
480 time[5] = timeInBuffer[7];
441 }
481 }
442
482
443 unsigned long long int get_acquisition_time( unsigned char *timePtr )
483 unsigned long long int get_acquisition_time( unsigned char *timePtr )
444 {
484 {
445 unsigned long long int acquisitionTimeAslong;
485 unsigned long long int acquisitionTimeAslong;
446 acquisitionTimeAslong = 0x00;
486 acquisitionTimeAslong = 0x00;
447 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
487 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
448 + ( (unsigned long long int) timePtr[1] << 32 )
488 + ( (unsigned long long int) timePtr[1] << 32 )
449 + ( (unsigned long long int) timePtr[2] << 24 )
489 + ( (unsigned long long int) timePtr[2] << 24 )
450 + ( (unsigned long long int) timePtr[3] << 16 )
490 + ( (unsigned long long int) timePtr[3] << 16 )
451 + ( (unsigned long long int) timePtr[6] << 8 )
491 + ( (unsigned long long int) timePtr[6] << 8 )
452 + ( (unsigned long long int) timePtr[7] );
492 + ( (unsigned long long int) timePtr[7] );
453 return acquisitionTimeAslong;
493 return acquisitionTimeAslong;
454 }
494 }
455
495
456 void close_matrix_actions(unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id avf_task_id,
457 ring_node *node_for_averaging, ring_node *ringNode,
458 unsigned long long int time )
459 {
460 unsigned char *timePtr;
461 unsigned char *coarseTimePtr;
462 unsigned char *fineTimePtr;
463 rtems_status_code status_code;
464
465 timePtr = (unsigned char *) &time;
466 coarseTimePtr = (unsigned char *) &node_for_averaging->coarseTime;
467 fineTimePtr = (unsigned char *) &node_for_averaging->fineTime;
468
469 *nb_sm = *nb_sm + 1;
470 if (*nb_sm == nb_sm_before_avf)
471 {
472 node_for_averaging = ringNode;
473 coarseTimePtr[0] = timePtr[2];
474 coarseTimePtr[1] = timePtr[3];
475 coarseTimePtr[2] = timePtr[4];
476 coarseTimePtr[3] = timePtr[5];
477 fineTimePtr[2] = timePtr[6];
478 fineTimePtr[3] = timePtr[7];
479 if (rtems_event_send( avf_task_id, RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
480 {
481 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
482 }
483 *nb_sm = 0;
484 }
485 }
486
487 unsigned char getSID( rtems_event_set event )
496 unsigned char getSID( rtems_event_set event )
488 {
497 {
489 unsigned char sid;
498 unsigned char sid;
490
499
491 rtems_event_set eventSetBURST;
500 rtems_event_set eventSetBURST;
492 rtems_event_set eventSetSBM;
501 rtems_event_set eventSetSBM;
493
502
494 //******
503 //******
495 // BURST
504 // BURST
496 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
505 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
497 | RTEMS_EVENT_BURST_BP1_F1
506 | RTEMS_EVENT_BURST_BP1_F1
498 | RTEMS_EVENT_BURST_BP2_F0
507 | RTEMS_EVENT_BURST_BP2_F0
499 | RTEMS_EVENT_BURST_BP2_F1;
508 | RTEMS_EVENT_BURST_BP2_F1;
500
509
501 //****
510 //****
502 // SBM
511 // SBM
503 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
512 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
504 | RTEMS_EVENT_SBM_BP1_F1
513 | RTEMS_EVENT_SBM_BP1_F1
505 | RTEMS_EVENT_SBM_BP2_F0
514 | RTEMS_EVENT_SBM_BP2_F0
506 | RTEMS_EVENT_SBM_BP2_F1;
515 | RTEMS_EVENT_SBM_BP2_F1;
507
516
508 if (event & eventSetBURST)
517 if (event & eventSetBURST)
509 {
518 {
510 sid = SID_BURST_BP1_F0;
519 sid = SID_BURST_BP1_F0;
511 }
520 }
512 else if (event & eventSetSBM)
521 else if (event & eventSetSBM)
513 {
522 {
514 sid = SID_SBM1_BP1_F0;
523 sid = SID_SBM1_BP1_F0;
515 }
524 }
516 else
525 else
517 {
526 {
518 sid = 0;
527 sid = 0;
519 }
528 }
520
529
521 return sid;
530 return sid;
522 }
531 }
523
532
@@ -1,971 +1,971
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14
14
15 //***********
15 //***********
16 // RTEMS TASK
16 // RTEMS TASK
17
17
18 rtems_task actn_task( rtems_task_argument unused )
18 rtems_task actn_task( rtems_task_argument unused )
19 {
19 {
20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 *
21 *
22 * @param unused is the starting argument of the RTEMS task
22 * @param unused is the starting argument of the RTEMS task
23 *
23 *
24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * on the incoming TeleCommand.
25 * on the incoming TeleCommand.
26 *
26 *
27 */
27 */
28
28
29 int result;
29 int result;
30 rtems_status_code status; // RTEMS status code
30 rtems_status_code status; // RTEMS status code
31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 size_t size; // size of the incoming TC packet
32 size_t size; // size of the incoming TC packet
33 unsigned char subtype; // subtype of the current TC packet
33 unsigned char subtype; // subtype of the current TC packet
34 unsigned char time[6];
34 unsigned char time[6];
35 rtems_id queue_rcv_id;
35 rtems_id queue_rcv_id;
36 rtems_id queue_snd_id;
36 rtems_id queue_snd_id;
37
37
38 status = get_message_queue_id_recv( &queue_rcv_id );
38 status = get_message_queue_id_recv( &queue_rcv_id );
39 if (status != RTEMS_SUCCESSFUL)
39 if (status != RTEMS_SUCCESSFUL)
40 {
40 {
41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 }
42 }
43
43
44 status = get_message_queue_id_send( &queue_snd_id );
44 status = get_message_queue_id_send( &queue_snd_id );
45 if (status != RTEMS_SUCCESSFUL)
45 if (status != RTEMS_SUCCESSFUL)
46 {
46 {
47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 }
48 }
49
49
50 result = LFR_SUCCESSFUL;
50 result = LFR_SUCCESSFUL;
51 subtype = 0; // subtype of the current TC packet
51 subtype = 0; // subtype of the current TC packet
52
52
53 BOOT_PRINTF("in ACTN *** \n")
53 BOOT_PRINTF("in ACTN *** \n")
54
54
55 while(1)
55 while(1)
56 {
56 {
57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 getTime( time ); // set time to the current time
59 getTime( time ); // set time to the current time
60 if (status!=RTEMS_SUCCESSFUL)
60 if (status!=RTEMS_SUCCESSFUL)
61 {
61 {
62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 }
63 }
64 else
64 else
65 {
65 {
66 subtype = TC.serviceSubType;
66 subtype = TC.serviceSubType;
67 switch(subtype)
67 switch(subtype)
68 {
68 {
69 case TC_SUBTYPE_RESET:
69 case TC_SUBTYPE_RESET:
70 result = action_reset( &TC, queue_snd_id, time );
70 result = action_reset( &TC, queue_snd_id, time );
71 close_action( &TC, result, queue_snd_id );
71 close_action( &TC, result, queue_snd_id );
72 break;
72 break;
73 //
73 //
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 //
78 //
79 case TC_SUBTYPE_LOAD_NORM:
79 case TC_SUBTYPE_LOAD_NORM:
80 result = action_load_normal_par( &TC, queue_snd_id, time );
80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 close_action( &TC, result, queue_snd_id );
81 close_action( &TC, result, queue_snd_id );
82 break;
82 break;
83 //
83 //
84 case TC_SUBTYPE_LOAD_BURST:
84 case TC_SUBTYPE_LOAD_BURST:
85 result = action_load_burst_par( &TC, queue_snd_id, time );
85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 close_action( &TC, result, queue_snd_id );
86 close_action( &TC, result, queue_snd_id );
87 break;
87 break;
88 //
88 //
89 case TC_SUBTYPE_LOAD_SBM1:
89 case TC_SUBTYPE_LOAD_SBM1:
90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 close_action( &TC, result, queue_snd_id );
91 close_action( &TC, result, queue_snd_id );
92 break;
92 break;
93 //
93 //
94 case TC_SUBTYPE_LOAD_SBM2:
94 case TC_SUBTYPE_LOAD_SBM2:
95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 //
98 //
99 case TC_SUBTYPE_DUMP:
99 case TC_SUBTYPE_DUMP:
100 result = action_dump_par( queue_snd_id );
100 result = action_dump_par( queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
102 break;
102 break;
103 //
103 //
104 case TC_SUBTYPE_ENTER:
104 case TC_SUBTYPE_ENTER:
105 result = action_enter_mode( &TC, queue_snd_id );
105 result = action_enter_mode( &TC, queue_snd_id );
106 close_action( &TC, result, queue_snd_id );
106 close_action( &TC, result, queue_snd_id );
107 break;
107 break;
108 //
108 //
109 case TC_SUBTYPE_UPDT_INFO:
109 case TC_SUBTYPE_UPDT_INFO:
110 result = action_update_info( &TC, queue_snd_id );
110 result = action_update_info( &TC, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
112 break;
112 break;
113 //
113 //
114 case TC_SUBTYPE_EN_CAL:
114 case TC_SUBTYPE_EN_CAL:
115 result = action_enable_calibration( &TC, queue_snd_id, time );
115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 //
118 //
119 case TC_SUBTYPE_DIS_CAL:
119 case TC_SUBTYPE_DIS_CAL:
120 result = action_disable_calibration( &TC, queue_snd_id, time );
120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
121 close_action( &TC, result, queue_snd_id );
122 break;
122 break;
123 //
123 //
124 case TC_SUBTYPE_UPDT_TIME:
124 case TC_SUBTYPE_UPDT_TIME:
125 result = action_update_time( &TC );
125 result = action_update_time( &TC );
126 close_action( &TC, result, queue_snd_id );
126 close_action( &TC, result, queue_snd_id );
127 break;
127 break;
128 //
128 //
129 default:
129 default:
130 break;
130 break;
131 }
131 }
132 }
132 }
133 }
133 }
134 }
134 }
135
135
136 //***********
136 //***********
137 // TC ACTIONS
137 // TC ACTIONS
138
138
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 {
140 {
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 *
142 *
143 * @param TC points to the TeleCommand packet that is being processed
143 * @param TC points to the TeleCommand packet that is being processed
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 *
145 *
146 */
146 */
147
147
148 printf("this is the end!!!\n");
148 printf("this is the end!!!\n");
149 exit(0);
149 exit(0);
150 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
150 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
151 return LFR_DEFAULT;
151 return LFR_DEFAULT;
152 }
152 }
153
153
154 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
154 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
155 {
155 {
156 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
156 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
157 *
157 *
158 * @param TC points to the TeleCommand packet that is being processed
158 * @param TC points to the TeleCommand packet that is being processed
159 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
159 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
160 *
160 *
161 */
161 */
162
162
163 rtems_status_code status;
163 rtems_status_code status;
164 unsigned char requestedMode;
164 unsigned char requestedMode;
165 unsigned int *transitionCoarseTime_ptr;
165 unsigned int *transitionCoarseTime_ptr;
166 unsigned int transitionCoarseTime;
166 unsigned int transitionCoarseTime;
167 unsigned char * bytePosPtr;
167 unsigned char * bytePosPtr;
168
168
169 bytePosPtr = (unsigned char *) &TC->packetID;
169 bytePosPtr = (unsigned char *) &TC->packetID;
170
170
171 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
171 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
172 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
172 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
173 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
173 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
174
174
175 status = check_mode_value( requestedMode );
175 status = check_mode_value( requestedMode );
176
176
177 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
177 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
178 {
178 {
179 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
179 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
180 }
180 }
181 else // the mode value is consistent, check the transition
181 else // the mode value is consistent, check the transition
182 {
182 {
183 status = check_mode_transition(requestedMode);
183 status = check_mode_transition(requestedMode);
184 if (status != LFR_SUCCESSFUL)
184 if (status != LFR_SUCCESSFUL)
185 {
185 {
186 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
186 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
187 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
187 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
188 }
188 }
189 }
189 }
190
190
191 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
191 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
192 {
192 {
193 status = check_transition_date( transitionCoarseTime );
193 status = check_transition_date( transitionCoarseTime );
194 if (status != LFR_SUCCESSFUL)
194 if (status != LFR_SUCCESSFUL)
195 {
195 {
196 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
196 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
197 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
197 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
198 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
198 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
199 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
199 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
200 }
200 }
201 }
201 }
202
202
203 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
203 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
204 {
204 {
205 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
205 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
206 status = enter_mode( requestedMode, transitionCoarseTime );
206 status = enter_mode( requestedMode, transitionCoarseTime );
207 }
207 }
208
208
209 return status;
209 return status;
210 }
210 }
211
211
212 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
212 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
213 {
213 {
214 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
214 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
215 *
215 *
216 * @param TC points to the TeleCommand packet that is being processed
216 * @param TC points to the TeleCommand packet that is being processed
217 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
217 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
218 *
218 *
219 * @return LFR directive status code:
219 * @return LFR directive status code:
220 * - LFR_DEFAULT
220 * - LFR_DEFAULT
221 * - LFR_SUCCESSFUL
221 * - LFR_SUCCESSFUL
222 *
222 *
223 */
223 */
224
224
225 unsigned int val;
225 unsigned int val;
226 int result;
226 int result;
227 unsigned int status;
227 unsigned int status;
228 unsigned char mode;
228 unsigned char mode;
229 unsigned char * bytePosPtr;
229 unsigned char * bytePosPtr;
230
230
231 bytePosPtr = (unsigned char *) &TC->packetID;
231 bytePosPtr = (unsigned char *) &TC->packetID;
232
232
233 // check LFR mode
233 // check LFR mode
234 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
234 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
235 status = check_update_info_hk_lfr_mode( mode );
235 status = check_update_info_hk_lfr_mode( mode );
236 if (status == LFR_SUCCESSFUL) // check TDS mode
236 if (status == LFR_SUCCESSFUL) // check TDS mode
237 {
237 {
238 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
238 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
239 status = check_update_info_hk_tds_mode( mode );
239 status = check_update_info_hk_tds_mode( mode );
240 }
240 }
241 if (status == LFR_SUCCESSFUL) // check THR mode
241 if (status == LFR_SUCCESSFUL) // check THR mode
242 {
242 {
243 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
243 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
244 status = check_update_info_hk_thr_mode( mode );
244 status = check_update_info_hk_thr_mode( mode );
245 }
245 }
246 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
246 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
247 {
247 {
248 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
248 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
249 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
249 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
250 val++;
250 val++;
251 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
251 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
253 }
253 }
254
254
255 result = status;
255 result = status;
256
256
257 return result;
257 return result;
258 }
258 }
259
259
260 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
260 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
261 {
261 {
262 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
262 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
263 *
263 *
264 * @param TC points to the TeleCommand packet that is being processed
264 * @param TC points to the TeleCommand packet that is being processed
265 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
265 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
266 *
266 *
267 */
267 */
268
268
269 int result;
269 int result;
270 unsigned char lfrMode;
270 unsigned char lfrMode;
271
271
272 result = LFR_DEFAULT;
272 result = LFR_DEFAULT;
273 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
273 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
274
274
275 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
275 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
276 result = LFR_DEFAULT;
276 result = LFR_DEFAULT;
277
277
278 return result;
278 return result;
279 }
279 }
280
280
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
282 {
282 {
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
284 *
284 *
285 * @param TC points to the TeleCommand packet that is being processed
285 * @param TC points to the TeleCommand packet that is being processed
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
287 *
287 *
288 */
288 */
289
289
290 int result;
290 int result;
291 unsigned char lfrMode;
291 unsigned char lfrMode;
292
292
293 result = LFR_DEFAULT;
293 result = LFR_DEFAULT;
294 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
294 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
295
295
296 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
296 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
297 result = LFR_DEFAULT;
297 result = LFR_DEFAULT;
298
298
299 return result;
299 return result;
300 }
300 }
301
301
302 int action_update_time(ccsdsTelecommandPacket_t *TC)
302 int action_update_time(ccsdsTelecommandPacket_t *TC)
303 {
303 {
304 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
304 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
305 *
305 *
306 * @param TC points to the TeleCommand packet that is being processed
306 * @param TC points to the TeleCommand packet that is being processed
307 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
307 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
308 *
308 *
309 * @return LFR_SUCCESSFUL
309 * @return LFR_SUCCESSFUL
310 *
310 *
311 */
311 */
312
312
313 unsigned int val;
313 unsigned int val;
314
314
315 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
315 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
316 + (TC->dataAndCRC[1] << 16)
316 + (TC->dataAndCRC[1] << 16)
317 + (TC->dataAndCRC[2] << 8)
317 + (TC->dataAndCRC[2] << 8)
318 + TC->dataAndCRC[3];
318 + TC->dataAndCRC[3];
319
319
320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 val++;
322 val++;
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325
325
326 return LFR_SUCCESSFUL;
326 return LFR_SUCCESSFUL;
327 }
327 }
328
328
329 //*******************
329 //*******************
330 // ENTERING THE MODES
330 // ENTERING THE MODES
331 int check_mode_value( unsigned char requestedMode )
331 int check_mode_value( unsigned char requestedMode )
332 {
332 {
333 int status;
333 int status;
334
334
335 if ( (requestedMode != LFR_MODE_STANDBY)
335 if ( (requestedMode != LFR_MODE_STANDBY)
336 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
336 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
337 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
337 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
338 {
338 {
339 status = LFR_DEFAULT;
339 status = LFR_DEFAULT;
340 }
340 }
341 else
341 else
342 {
342 {
343 status = LFR_SUCCESSFUL;
343 status = LFR_SUCCESSFUL;
344 }
344 }
345
345
346 return status;
346 return status;
347 }
347 }
348
348
349 int check_mode_transition( unsigned char requestedMode )
349 int check_mode_transition( unsigned char requestedMode )
350 {
350 {
351 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
351 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
352 *
352 *
353 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
353 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
354 *
354 *
355 * @return LFR directive status codes:
355 * @return LFR directive status codes:
356 * - LFR_SUCCESSFUL - the transition is authorized
356 * - LFR_SUCCESSFUL - the transition is authorized
357 * - LFR_DEFAULT - the transition is not authorized
357 * - LFR_DEFAULT - the transition is not authorized
358 *
358 *
359 */
359 */
360
360
361 int status;
361 int status;
362
362
363 switch (requestedMode)
363 switch (requestedMode)
364 {
364 {
365 case LFR_MODE_STANDBY:
365 case LFR_MODE_STANDBY:
366 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
366 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
367 status = LFR_DEFAULT;
367 status = LFR_DEFAULT;
368 }
368 }
369 else
369 else
370 {
370 {
371 status = LFR_SUCCESSFUL;
371 status = LFR_SUCCESSFUL;
372 }
372 }
373 break;
373 break;
374 case LFR_MODE_NORMAL:
374 case LFR_MODE_NORMAL:
375 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
375 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
376 status = LFR_DEFAULT;
376 status = LFR_DEFAULT;
377 }
377 }
378 else {
378 else {
379 status = LFR_SUCCESSFUL;
379 status = LFR_SUCCESSFUL;
380 }
380 }
381 break;
381 break;
382 case LFR_MODE_BURST:
382 case LFR_MODE_BURST:
383 if ( lfrCurrentMode == LFR_MODE_BURST ) {
383 if ( lfrCurrentMode == LFR_MODE_BURST ) {
384 status = LFR_DEFAULT;
384 status = LFR_DEFAULT;
385 }
385 }
386 else {
386 else {
387 status = LFR_SUCCESSFUL;
387 status = LFR_SUCCESSFUL;
388 }
388 }
389 break;
389 break;
390 case LFR_MODE_SBM1:
390 case LFR_MODE_SBM1:
391 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
391 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
392 status = LFR_DEFAULT;
392 status = LFR_DEFAULT;
393 }
393 }
394 else {
394 else {
395 status = LFR_SUCCESSFUL;
395 status = LFR_SUCCESSFUL;
396 }
396 }
397 break;
397 break;
398 case LFR_MODE_SBM2:
398 case LFR_MODE_SBM2:
399 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
399 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
400 status = LFR_DEFAULT;
400 status = LFR_DEFAULT;
401 }
401 }
402 else {
402 else {
403 status = LFR_SUCCESSFUL;
403 status = LFR_SUCCESSFUL;
404 }
404 }
405 break;
405 break;
406 default:
406 default:
407 status = LFR_DEFAULT;
407 status = LFR_DEFAULT;
408 break;
408 break;
409 }
409 }
410
410
411 return status;
411 return status;
412 }
412 }
413
413
414 int check_transition_date( unsigned int transitionCoarseTime )
414 int check_transition_date( unsigned int transitionCoarseTime )
415 {
415 {
416 int status;
416 int status;
417 unsigned int localCoarseTime;
417 unsigned int localCoarseTime;
418 unsigned int deltaCoarseTime;
418 unsigned int deltaCoarseTime;
419
419
420 status = LFR_SUCCESSFUL;
420 status = LFR_SUCCESSFUL;
421
421
422 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
422 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
423 {
423 {
424 status = LFR_SUCCESSFUL;
424 status = LFR_SUCCESSFUL;
425 }
425 }
426 else
426 else
427 {
427 {
428 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
428 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
429
429
430 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
430 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
431 {
431 {
432 status = LFR_DEFAULT;
432 status = LFR_DEFAULT;
433 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
433 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
434 }
434 }
435
435
436 if (status == LFR_SUCCESSFUL)
436 if (status == LFR_SUCCESSFUL)
437 {
437 {
438 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
438 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
439 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
439 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
440 {
440 {
441 status = LFR_DEFAULT;
441 status = LFR_DEFAULT;
442 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
442 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
443 }
443 }
444 }
444 }
445 }
445 }
446
446
447 return status;
447 return status;
448 }
448 }
449
449
450 int stop_current_mode( void )
450 int stop_current_mode( void )
451 {
451 {
452 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
452 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
453 *
453 *
454 * @return RTEMS directive status codes:
454 * @return RTEMS directive status codes:
455 * - RTEMS_SUCCESSFUL - task restarted successfully
455 * - RTEMS_SUCCESSFUL - task restarted successfully
456 * - RTEMS_INVALID_ID - task id invalid
456 * - RTEMS_INVALID_ID - task id invalid
457 * - RTEMS_ALREADY_SUSPENDED - task already suspended
457 * - RTEMS_ALREADY_SUSPENDED - task already suspended
458 *
458 *
459 */
459 */
460
460
461 rtems_status_code status;
461 rtems_status_code status;
462
462
463 status = RTEMS_SUCCESSFUL;
463 status = RTEMS_SUCCESSFUL;
464
464
465 // (1) mask interruptions
465 // (1) mask interruptions
466 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
466 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
467 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
467 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
468
468
469 // reset lfr VHDL module
470 reset_lfr();
471
472 // (2) reset waveform picker registers
469 // (2) reset waveform picker registers
473 reset_wfp_burst_enable(); // reset burst and enable bits
470 reset_wfp_burst_enable(); // reset burst and enable bits
474 reset_wfp_status(); // reset all the status bits
471 reset_wfp_status(); // reset all the status bits
475
472
476 // (3) reset spectral matrices registers
473 // (3) reset spectral matrices registers
477 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
474 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
478 reset_sm_status();
475 reset_sm_status();
479
476
477 // reset lfr VHDL module
478 reset_lfr();
479
480 reset_extractSWF(); // reset the extractSWF flag to false
480 reset_extractSWF(); // reset the extractSWF flag to false
481
481
482 // (4) clear interruptions
482 // (4) clear interruptions
483 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
483 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
484 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
484 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
485
485
486 // <Spectral Matrices simulator>
486 // <Spectral Matrices simulator>
487 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
487 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
488 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
488 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
489 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
489 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
490 // </Spectral Matrices simulator>
490 // </Spectral Matrices simulator>
491
491
492 // suspend several tasks
492 // suspend several tasks
493 if (lfrCurrentMode != LFR_MODE_STANDBY) {
493 if (lfrCurrentMode != LFR_MODE_STANDBY) {
494 status = suspend_science_tasks();
494 status = suspend_science_tasks();
495 }
495 }
496
496
497 if (status != RTEMS_SUCCESSFUL)
497 if (status != RTEMS_SUCCESSFUL)
498 {
498 {
499 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
499 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
500 }
500 }
501
501
502 return status;
502 return status;
503 }
503 }
504
504
505 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
505 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
506 {
506 {
507 /** This function is launched after a mode transition validation.
507 /** This function is launched after a mode transition validation.
508 *
508 *
509 * @param mode is the mode in which LFR will be put.
509 * @param mode is the mode in which LFR will be put.
510 *
510 *
511 * @return RTEMS directive status codes:
511 * @return RTEMS directive status codes:
512 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
512 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
513 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
513 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
514 *
514 *
515 */
515 */
516
516
517 rtems_status_code status;
517 rtems_status_code status;
518
518
519 //**********************
519 //**********************
520 // STOP THE CURRENT MODE
520 // STOP THE CURRENT MODE
521 status = stop_current_mode();
521 status = stop_current_mode();
522 if (status != RTEMS_SUCCESSFUL)
522 if (status != RTEMS_SUCCESSFUL)
523 {
523 {
524 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
524 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
525 }
525 }
526
526
527 //*************************
527 //*************************
528 // ENTER THE REQUESTED MODE
528 // ENTER THE REQUESTED MODE
529 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
529 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
530 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
530 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
531 {
531 {
532 #ifdef PRINT_TASK_STATISTICS
532 #ifdef PRINT_TASK_STATISTICS
533 rtems_cpu_usage_reset();
533 rtems_cpu_usage_reset();
534 maxCount = 0;
534 maxCount = 0;
535 #endif
535 #endif
536 status = restart_science_tasks( mode );
536 status = restart_science_tasks( mode );
537 launch_spectral_matrix( );
537 launch_spectral_matrix( );
538 launch_waveform_picker( mode, transitionCoarseTime );
538 launch_waveform_picker( mode, transitionCoarseTime );
539 // launch_spectral_matrix_simu( );
539 // launch_spectral_matrix_simu( );
540 }
540 }
541 else if ( mode == LFR_MODE_STANDBY )
541 else if ( mode == LFR_MODE_STANDBY )
542 {
542 {
543 #ifdef PRINT_TASK_STATISTICS
543 #ifdef PRINT_TASK_STATISTICS
544 rtems_cpu_usage_report();
544 rtems_cpu_usage_report();
545 #endif
545 #endif
546
546
547 #ifdef PRINT_STACK_REPORT
547 #ifdef PRINT_STACK_REPORT
548 PRINTF("stack report selected\n")
548 PRINTF("stack report selected\n")
549 rtems_stack_checker_report_usage();
549 rtems_stack_checker_report_usage();
550 #endif
550 #endif
551 PRINTF1("maxCount = %d\n", maxCount)
551 PRINTF1("maxCount = %d\n", maxCount)
552 }
552 }
553 else
553 else
554 {
554 {
555 status = RTEMS_UNSATISFIED;
555 status = RTEMS_UNSATISFIED;
556 }
556 }
557
557
558 if (status != RTEMS_SUCCESSFUL)
558 if (status != RTEMS_SUCCESSFUL)
559 {
559 {
560 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
560 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
561 status = RTEMS_UNSATISFIED;
561 status = RTEMS_UNSATISFIED;
562 }
562 }
563
563
564 return status;
564 return status;
565 }
565 }
566
566
567 int restart_science_tasks(unsigned char lfrRequestedMode )
567 int restart_science_tasks(unsigned char lfrRequestedMode )
568 {
568 {
569 /** This function is used to restart all science tasks.
569 /** This function is used to restart all science tasks.
570 *
570 *
571 * @return RTEMS directive status codes:
571 * @return RTEMS directive status codes:
572 * - RTEMS_SUCCESSFUL - task restarted successfully
572 * - RTEMS_SUCCESSFUL - task restarted successfully
573 * - RTEMS_INVALID_ID - task id invalid
573 * - RTEMS_INVALID_ID - task id invalid
574 * - RTEMS_INCORRECT_STATE - task never started
574 * - RTEMS_INCORRECT_STATE - task never started
575 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
575 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
576 *
576 *
577 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
577 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
578 *
578 *
579 */
579 */
580
580
581 rtems_status_code status[10];
581 rtems_status_code status[10];
582 rtems_status_code ret;
582 rtems_status_code ret;
583
583
584 ret = RTEMS_SUCCESSFUL;
584 ret = RTEMS_SUCCESSFUL;
585
585
586 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
586 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
587 if (status[0] != RTEMS_SUCCESSFUL)
587 if (status[0] != RTEMS_SUCCESSFUL)
588 {
588 {
589 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
589 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
590 }
590 }
591
591
592 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
592 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
593 if (status[1] != RTEMS_SUCCESSFUL)
593 if (status[1] != RTEMS_SUCCESSFUL)
594 {
594 {
595 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
595 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
596 }
596 }
597
597
598 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
598 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
599 if (status[2] != RTEMS_SUCCESSFUL)
599 if (status[2] != RTEMS_SUCCESSFUL)
600 {
600 {
601 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
601 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
602 }
602 }
603
603
604 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
604 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
605 if (status[3] != RTEMS_SUCCESSFUL)
605 if (status[3] != RTEMS_SUCCESSFUL)
606 {
606 {
607 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
607 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
608 }
608 }
609
609
610 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
610 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
611 if (status[4] != RTEMS_SUCCESSFUL)
611 if (status[4] != RTEMS_SUCCESSFUL)
612 {
612 {
613 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
613 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
614 }
614 }
615
615
616 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
616 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
617 if (status[5] != RTEMS_SUCCESSFUL)
617 if (status[5] != RTEMS_SUCCESSFUL)
618 {
618 {
619 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
619 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
620 }
620 }
621
621
622 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
622 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
623 if (status[6] != RTEMS_SUCCESSFUL)
623 if (status[6] != RTEMS_SUCCESSFUL)
624 {
624 {
625 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
625 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
626 }
626 }
627
627
628 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
628 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
629 if (status[7] != RTEMS_SUCCESSFUL)
629 if (status[7] != RTEMS_SUCCESSFUL)
630 {
630 {
631 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
631 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
632 }
632 }
633
633
634 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
634 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
635 if (status[8] != RTEMS_SUCCESSFUL)
635 if (status[8] != RTEMS_SUCCESSFUL)
636 {
636 {
637 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
637 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
638 }
638 }
639
639
640 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
640 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
641 if (status[9] != RTEMS_SUCCESSFUL)
641 if (status[9] != RTEMS_SUCCESSFUL)
642 {
642 {
643 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
643 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
644 }
644 }
645
645
646 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
646 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
647 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
647 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
648 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
648 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
649 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
649 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
650 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
650 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
651 {
651 {
652 ret = RTEMS_UNSATISFIED;
652 ret = RTEMS_UNSATISFIED;
653 }
653 }
654
654
655 return ret;
655 return ret;
656 }
656 }
657
657
658 int suspend_science_tasks()
658 int suspend_science_tasks()
659 {
659 {
660 /** This function suspends the science tasks.
660 /** This function suspends the science tasks.
661 *
661 *
662 * @return RTEMS directive status codes:
662 * @return RTEMS directive status codes:
663 * - RTEMS_SUCCESSFUL - task restarted successfully
663 * - RTEMS_SUCCESSFUL - task restarted successfully
664 * - RTEMS_INVALID_ID - task id invalid
664 * - RTEMS_INVALID_ID - task id invalid
665 * - RTEMS_ALREADY_SUSPENDED - task already suspended
665 * - RTEMS_ALREADY_SUSPENDED - task already suspended
666 *
666 *
667 */
667 */
668
668
669 rtems_status_code status;
669 rtems_status_code status;
670
670
671 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
671 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
672 if (status != RTEMS_SUCCESSFUL)
672 if (status != RTEMS_SUCCESSFUL)
673 {
673 {
674 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
674 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
675 }
675 }
676 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
676 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
677 {
677 {
678 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
678 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
679 if (status != RTEMS_SUCCESSFUL)
679 if (status != RTEMS_SUCCESSFUL)
680 {
680 {
681 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
681 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
682 }
682 }
683 }
683 }
684 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
684 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
685 {
685 {
686 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
686 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
687 if (status != RTEMS_SUCCESSFUL)
687 if (status != RTEMS_SUCCESSFUL)
688 {
688 {
689 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
689 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
690 }
690 }
691 }
691 }
692 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
692 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
693 {
693 {
694 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
694 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
695 if (status != RTEMS_SUCCESSFUL)
695 if (status != RTEMS_SUCCESSFUL)
696 {
696 {
697 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
697 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
698 }
698 }
699 }
699 }
700 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
700 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
701 {
701 {
702 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
702 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
703 if (status != RTEMS_SUCCESSFUL)
703 if (status != RTEMS_SUCCESSFUL)
704 {
704 {
705 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
705 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
706 }
706 }
707 }
707 }
708 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
708 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
709 {
709 {
710 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
710 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
711 if (status != RTEMS_SUCCESSFUL)
711 if (status != RTEMS_SUCCESSFUL)
712 {
712 {
713 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
713 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
714 }
714 }
715 }
715 }
716 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
716 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
717 {
717 {
718 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
718 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
719 if (status != RTEMS_SUCCESSFUL)
719 if (status != RTEMS_SUCCESSFUL)
720 {
720 {
721 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
721 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
722 }
722 }
723 }
723 }
724 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
724 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
725 {
725 {
726 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
726 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
727 if (status != RTEMS_SUCCESSFUL)
727 if (status != RTEMS_SUCCESSFUL)
728 {
728 {
729 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
729 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
730 }
730 }
731 }
731 }
732 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
732 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
733 {
733 {
734 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
734 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
735 if (status != RTEMS_SUCCESSFUL)
735 if (status != RTEMS_SUCCESSFUL)
736 {
736 {
737 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
737 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
738 }
738 }
739 }
739 }
740 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
740 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
741 {
741 {
742 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
742 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
743 if (status != RTEMS_SUCCESSFUL)
743 if (status != RTEMS_SUCCESSFUL)
744 {
744 {
745 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
745 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
746 }
746 }
747 }
747 }
748
748
749 return status;
749 return status;
750 }
750 }
751
751
752 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
752 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
753 {
753 {
754 WFP_reset_current_ring_nodes();
754 WFP_reset_current_ring_nodes();
755
755
756 reset_waveform_picker_regs();
756 reset_waveform_picker_regs();
757
757
758 set_wfp_burst_enable_register( mode );
758 set_wfp_burst_enable_register( mode );
759
759
760 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
760 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
761 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
761 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
762
762
763 if (transitionCoarseTime == 0)
763 if (transitionCoarseTime == 0)
764 {
764 {
765 waveform_picker_regs->start_date = time_management_regs->coarse_time;
765 waveform_picker_regs->start_date = time_management_regs->coarse_time;
766 }
766 }
767 else
767 else
768 {
768 {
769 waveform_picker_regs->start_date = transitionCoarseTime;
769 waveform_picker_regs->start_date = transitionCoarseTime;
770 }
770 }
771
771
772 PRINTF1("commutation coarse time = %d\n", transitionCoarseTime)
772 PRINTF1("commutation coarse time = %x\n", transitionCoarseTime)
773 }
773 }
774
774
775 void launch_spectral_matrix( void )
775 void launch_spectral_matrix( void )
776 {
776 {
777 SM_reset_current_ring_nodes();
777 SM_reset_current_ring_nodes();
778
778
779 reset_spectral_matrix_regs();
779 reset_spectral_matrix_regs();
780
780
781 reset_nb_sm();
781 reset_nb_sm();
782
782
783 set_sm_irq_onNewMatrix( 1 );
783 set_sm_irq_onNewMatrix( 1 );
784
784
785 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
785 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
786 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
786 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
787
787
788 }
788 }
789
789
790 void launch_spectral_matrix_simu( void )
790 void launch_spectral_matrix_simu( void )
791 {
791 {
792 SM_reset_current_ring_nodes();
792 SM_reset_current_ring_nodes();
793 reset_spectral_matrix_regs();
793 reset_spectral_matrix_regs();
794 reset_nb_sm();
794 reset_nb_sm();
795
795
796 // Spectral Matrices simulator
796 // Spectral Matrices simulator
797 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
797 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
798 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
798 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
799 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
799 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
800 }
800 }
801
801
802 void set_sm_irq_onNewMatrix( unsigned char value )
802 void set_sm_irq_onNewMatrix( unsigned char value )
803 {
803 {
804 if (value == 1)
804 if (value == 1)
805 {
805 {
806 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
806 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
807 }
807 }
808 else
808 else
809 {
809 {
810 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
810 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
811 }
811 }
812 }
812 }
813
813
814 void set_sm_irq_onError( unsigned char value )
814 void set_sm_irq_onError( unsigned char value )
815 {
815 {
816 if (value == 1)
816 if (value == 1)
817 {
817 {
818 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
818 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
819 }
819 }
820 else
820 else
821 {
821 {
822 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
822 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
823 }
823 }
824 }
824 }
825
825
826 //****************
826 //****************
827 // CLOSING ACTIONS
827 // CLOSING ACTIONS
828 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
828 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
829 {
829 {
830 /** This function is used to update the HK packets statistics after a successful TC execution.
830 /** This function is used to update the HK packets statistics after a successful TC execution.
831 *
831 *
832 * @param TC points to the TC being processed
832 * @param TC points to the TC being processed
833 * @param time is the time used to date the TC execution
833 * @param time is the time used to date the TC execution
834 *
834 *
835 */
835 */
836
836
837 unsigned int val;
837 unsigned int val;
838
838
839 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
839 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
840 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
840 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
841 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
841 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
842 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
842 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
843 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
843 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
844 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
844 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
845 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
845 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
846 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
846 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
847 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
847 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
848 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
848 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
849 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
849 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
850 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
850 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
851
851
852 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
852 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
853 val++;
853 val++;
854 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
854 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
855 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
855 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
856 }
856 }
857
857
858 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
858 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
859 {
859 {
860 /** This function is used to update the HK packets statistics after a TC rejection.
860 /** This function is used to update the HK packets statistics after a TC rejection.
861 *
861 *
862 * @param TC points to the TC being processed
862 * @param TC points to the TC being processed
863 * @param time is the time used to date the TC rejection
863 * @param time is the time used to date the TC rejection
864 *
864 *
865 */
865 */
866
866
867 unsigned int val;
867 unsigned int val;
868
868
869 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
869 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
870 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
870 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
871 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
871 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
872 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
872 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
873 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
873 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
874 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
874 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
875 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
875 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
876 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
876 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
877 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
877 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
878 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
878 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
879 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
879 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
880 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
880 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
881
881
882 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
882 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
883 val++;
883 val++;
884 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
884 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
885 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
885 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
886 }
886 }
887
887
888 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
888 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
889 {
889 {
890 /** This function is the last step of the TC execution workflow.
890 /** This function is the last step of the TC execution workflow.
891 *
891 *
892 * @param TC points to the TC being processed
892 * @param TC points to the TC being processed
893 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
893 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
894 * @param queue_id is the id of the RTEMS message queue used to send TM packets
894 * @param queue_id is the id of the RTEMS message queue used to send TM packets
895 * @param time is the time used to date the TC execution
895 * @param time is the time used to date the TC execution
896 *
896 *
897 */
897 */
898
898
899 unsigned char requestedMode;
899 unsigned char requestedMode;
900
900
901 if (result == LFR_SUCCESSFUL)
901 if (result == LFR_SUCCESSFUL)
902 {
902 {
903 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
903 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
904 &
904 &
905 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
905 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
906 )
906 )
907 {
907 {
908 send_tm_lfr_tc_exe_success( TC, queue_id );
908 send_tm_lfr_tc_exe_success( TC, queue_id );
909 }
909 }
910 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
910 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
911 {
911 {
912 //**********************************
912 //**********************************
913 // UPDATE THE LFRMODE LOCAL VARIABLE
913 // UPDATE THE LFRMODE LOCAL VARIABLE
914 requestedMode = TC->dataAndCRC[1];
914 requestedMode = TC->dataAndCRC[1];
915 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
915 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
916 updateLFRCurrentMode();
916 updateLFRCurrentMode();
917 }
917 }
918 }
918 }
919 else if (result == LFR_EXE_ERROR)
919 else if (result == LFR_EXE_ERROR)
920 {
920 {
921 send_tm_lfr_tc_exe_error( TC, queue_id );
921 send_tm_lfr_tc_exe_error( TC, queue_id );
922 }
922 }
923 }
923 }
924
924
925 //***************************
925 //***************************
926 // Interrupt Service Routines
926 // Interrupt Service Routines
927 rtems_isr commutation_isr1( rtems_vector_number vector )
927 rtems_isr commutation_isr1( rtems_vector_number vector )
928 {
928 {
929 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
929 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
930 printf("In commutation_isr1 *** Error sending event to DUMB\n");
930 printf("In commutation_isr1 *** Error sending event to DUMB\n");
931 }
931 }
932 }
932 }
933
933
934 rtems_isr commutation_isr2( rtems_vector_number vector )
934 rtems_isr commutation_isr2( rtems_vector_number vector )
935 {
935 {
936 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
936 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
937 printf("In commutation_isr2 *** Error sending event to DUMB\n");
937 printf("In commutation_isr2 *** Error sending event to DUMB\n");
938 }
938 }
939 }
939 }
940
940
941 //****************
941 //****************
942 // OTHER FUNCTIONS
942 // OTHER FUNCTIONS
943 void updateLFRCurrentMode()
943 void updateLFRCurrentMode()
944 {
944 {
945 /** This function updates the value of the global variable lfrCurrentMode.
945 /** This function updates the value of the global variable lfrCurrentMode.
946 *
946 *
947 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
947 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
948 *
948 *
949 */
949 */
950 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
950 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
951 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
951 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
952 }
952 }
953
953
954 void set_lfr_soft_reset( unsigned char value )
954 void set_lfr_soft_reset( unsigned char value )
955 {
955 {
956 if (value == 1)
956 if (value == 1)
957 {
957 {
958 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
958 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
959 }
959 }
960 else
960 else
961 {
961 {
962 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
962 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
963 }
963 }
964 }
964 }
965
965
966 void reset_lfr( void )
966 void reset_lfr( void )
967 {
967 {
968 set_lfr_soft_reset( 1 );
968 set_lfr_soft_reset( 1 );
969
969
970 set_lfr_soft_reset( 0 );
970 set_lfr_soft_reset( 0 );
971 }
971 }
@@ -1,1347 +1,1402
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //***************
12 //***************
13 // waveform rings
13 // waveform rings
14 // F0
14 // F0
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 ring_node *current_ring_node_f0;
16 ring_node *current_ring_node_f0;
17 ring_node *ring_node_to_send_swf_f0;
17 ring_node *ring_node_to_send_swf_f0;
18 // F1
18 // F1
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 ring_node *current_ring_node_f1;
20 ring_node *current_ring_node_f1;
21 ring_node *ring_node_to_send_swf_f1;
21 ring_node *ring_node_to_send_swf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
23 // F2
23 // F2
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 ring_node *current_ring_node_f2;
25 ring_node *current_ring_node_f2;
26 ring_node *ring_node_to_send_swf_f2;
26 ring_node *ring_node_to_send_swf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
28 // F3
28 // F3
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node *current_ring_node_f3;
30 ring_node *current_ring_node_f3;
31 ring_node *ring_node_to_send_cwf_f3;
31 ring_node *ring_node_to_send_cwf_f3;
32
32
33 bool extractSWF = false;
33 bool extractSWF = false;
34 bool swf_f0_ready = false;
34 bool swf_f0_ready = false;
35 bool swf_f1_ready = false;
35 bool swf_f1_ready = false;
36 bool swf_f2_ready = false;
36 bool swf_f2_ready = false;
37
37
38 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
38 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
39 ring_node ring_node_wf_snap_extracted;
39 ring_node ring_node_wf_snap_extracted;
40
40
41 //*********************
41 //*********************
42 // Interrupt SubRoutine
42 // Interrupt SubRoutine
43
43
44 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
45 {
46 ring_node *node;
47
48 node = NULL;
49 switch ( frequencyChannel ) {
50 case 1:
51 node = ring_node_to_send_cwf_f1;
52 break;
53 case 2:
54 node = ring_node_to_send_cwf_f2;
55 break;
56 case 3:
57 node = ring_node_to_send_cwf_f3;
58 break;
59 default:
60 break;
61 }
62
63 return node;
64 }
65
66 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
67 {
68 ring_node *node;
69
70 node = NULL;
71 switch ( frequencyChannel ) {
72 case 0:
73 node = ring_node_to_send_swf_f0;
74 break;
75 case 1:
76 node = ring_node_to_send_swf_f1;
77 break;
78 case 2:
79 node = ring_node_to_send_swf_f2;
80 break;
81 default:
82 break;
83 }
84
85 return node;
86 }
87
44 void reset_extractSWF( void )
88 void reset_extractSWF( void )
45 {
89 {
46 extractSWF = false;
90 extractSWF = false;
47 swf_f0_ready = false;
91 swf_f0_ready = false;
48 swf_f1_ready = false;
92 swf_f1_ready = false;
49 swf_f2_ready = false;
93 swf_f2_ready = false;
50 }
94 }
51
95
52 inline void waveforms_isr_f3( void )
96 inline void waveforms_isr_f3( void )
53 {
97 {
54 rtems_status_code spare_status;
98 rtems_status_code spare_status;
55
99
56 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
100 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
57 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
101 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
58 { // in modes other than STANDBY and BURST, send the CWF_F3 data
102 { // in modes other than STANDBY and BURST, send the CWF_F3 data
59 //***
103 //***
60 // F3
104 // F3
61 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
105 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
62 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
106 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
63 current_ring_node_f3 = current_ring_node_f3->next;
107 current_ring_node_f3 = current_ring_node_f3->next;
64 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
108 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
65 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
109 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
66 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
110 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
67 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
111 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
68 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
112 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
69 }
113 }
70 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
114 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
71 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
115 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
72 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
116 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
73 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
117 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
74 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
118 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
75 }
119 }
76 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
120 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
77 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
121 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
78 }
122 }
79 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
123 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
80 }
124 }
81 }
125 }
82 }
126 }
83
127
84 inline void waveforms_isr_normal( void )
128 inline void waveforms_isr_normal( void )
85 {
129 {
86 rtems_status_code status;
130 rtems_status_code status;
87
131
88 if ( ( (waveform_picker_regs->status & 0x30) != 0x00 ) // [0011 0000] check the f2 full bits
132 if ( ( (waveform_picker_regs->status & 0x30) != 0x00 ) // [0011 0000] check the f2 full bits
89 && ( (waveform_picker_regs->status & 0x0c) != 0x00 ) // [0000 1100] check the f1 full bits
133 && ( (waveform_picker_regs->status & 0x0c) != 0x00 ) // [0000 1100] check the f1 full bits
90 && ( (waveform_picker_regs->status & 0x03) != 0x00 )) // [0000 0011] check the f0 full bits
134 && ( (waveform_picker_regs->status & 0x03) != 0x00 )) // [0000 0011] check the f0 full bits
91 {
135 {
92 //***
136 //***
93 // F0
137 // F0
94 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
138 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
95 current_ring_node_f0 = current_ring_node_f0->next;
139 current_ring_node_f0 = current_ring_node_f0->next;
96 if ( (waveform_picker_regs->status & 0x01) == 0x01)
140 if ( (waveform_picker_regs->status & 0x01) == 0x01)
97 {
141 {
98
142
99 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
143 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
100 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
144 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
101 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
145 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
102 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
146 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
103 }
147 }
104 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
148 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
105 {
149 {
106 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
150 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
107 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
151 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
108 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
152 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
109 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
153 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
110 }
154 }
111
155
112 //***
156 //***
113 // F1
157 // F1
114 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
158 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
115 current_ring_node_f1 = current_ring_node_f1->next;
159 current_ring_node_f1 = current_ring_node_f1->next;
116 if ( (waveform_picker_regs->status & 0x04) == 0x04)
160 if ( (waveform_picker_regs->status & 0x04) == 0x04)
117 {
161 {
118 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
162 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
119 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
163 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
120 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
164 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
121 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
165 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
122 }
166 }
123 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
167 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
124 {
168 {
125 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
169 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
126 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
170 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
127 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
171 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
128 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
129 }
173 }
130
174
131 //***
175 //***
132 // F2
176 // F2
133 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
177 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
134 current_ring_node_f2 = current_ring_node_f2->next;
178 current_ring_node_f2 = current_ring_node_f2->next;
135 if ( (waveform_picker_regs->status & 0x10) == 0x10)
179 if ( (waveform_picker_regs->status & 0x10) == 0x10)
136 {
180 {
137 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
181 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
138 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
182 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
139 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
183 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
140 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
184 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
141 }
185 }
142 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
186 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
143 {
187 {
144 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
188 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
145 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
189 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
146 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
190 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
147 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
191 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
148 }
192 }
149 //
193 //
150 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
194 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
151 if ( status != RTEMS_SUCCESSFUL)
195 if ( status != RTEMS_SUCCESSFUL)
152 {
196 {
153 status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
197 status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
154 }
198 }
155 }
199 }
156 }
200 }
157
201
158 inline void waveforms_isr_burst( void )
202 inline void waveforms_isr_burst( void )
159 {
203 {
204 unsigned char status;
160 rtems_status_code spare_status;
205 rtems_status_code spare_status;
161
206
162 if ( (waveform_picker_regs->status & 0x30) != 0 ){ // [0100] check the f2 full bit
207 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
163 // (1) change the receiving buffer for the waveform picker
208
209 switch(status)
210 {
211 case 1:
164 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
212 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
165 current_ring_node_f2 = current_ring_node_f2->next;
213 current_ring_node_f2 = current_ring_node_f2->next;
166 if ( (waveform_picker_regs->status & 0x10) == 0x10)
214 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
167 {
215 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
168 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
216 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
169 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
217 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
170 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
171 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
172 }
173 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
174 {
175 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
176 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
177 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
178 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
179 }
180 // (2) send an event for the waveforms transmission
181 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
218 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
182 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
219 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
183 }
220 }
221 break;
222 case 2:
223 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
224 current_ring_node_f2 = current_ring_node_f2->next;
225 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
226 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
227 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
229 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
230 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
231 }
232 break;
233 default:
234 break;
184 }
235 }
185 }
236 }
186
237
187 inline void waveforms_isr_sbm1( void )
238 inline void waveforms_isr_sbm1( void )
188 {
239 {
189 rtems_status_code status;
240 rtems_status_code status;
190
241
191 //***
242 //***
192 // F1
243 // F1
193 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
244 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
194 // (1) change the receiving buffer for the waveform picker
245 // (1) change the receiving buffer for the waveform picker
195 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
246 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
196 current_ring_node_f1 = current_ring_node_f1->next;
247 current_ring_node_f1 = current_ring_node_f1->next;
197 if ( (waveform_picker_regs->status & 0x04) == 0x04)
248 if ( (waveform_picker_regs->status & 0x04) == 0x04)
198 {
249 {
199 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
250 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
200 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
251 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
201 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
252 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
202 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
203 }
254 }
204 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
255 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
205 {
256 {
206 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
257 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
207 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
258 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
208 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
259 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
209 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
260 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
210 }
261 }
211 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
262 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
212 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
263 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
213 }
264 }
214
265
215 //***
266 //***
216 // F0
267 // F0
217 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) { // [0000 0011] check the f0 full bits
268 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) { // [0000 0011] check the f0 full bits
218 swf_f0_ready = true;
269 swf_f0_ready = true;
219 // change f0 buffer
270 // change f0 buffer
220 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
271 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
221 current_ring_node_f0 = current_ring_node_f0->next;
272 current_ring_node_f0 = current_ring_node_f0->next;
222 if ( (waveform_picker_regs->status & 0x01) == 0x01)
273 if ( (waveform_picker_regs->status & 0x01) == 0x01)
223 {
274 {
224
275
225 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
276 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
226 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
277 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
227 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
278 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
279 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
229 }
280 }
230 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
281 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
231 {
282 {
232 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
283 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
233 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
284 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
234 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
285 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
235 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
286 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
236 }
287 }
237 }
288 }
238
289
239 //***
290 //***
240 // F2
291 // F2
241 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bits
292 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bits
242 swf_f2_ready = true;
293 swf_f2_ready = true;
243 // change f2 buffer
294 // change f2 buffer
244 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
295 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
245 current_ring_node_f2 = current_ring_node_f2->next;
296 current_ring_node_f2 = current_ring_node_f2->next;
246 if ( (waveform_picker_regs->status & 0x10) == 0x10)
297 if ( (waveform_picker_regs->status & 0x10) == 0x10)
247 {
298 {
248 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
299 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
249 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
300 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
250 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
301 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
251 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
302 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
252 }
303 }
253 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
304 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
254 {
305 {
255 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
306 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
256 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
307 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
257 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
308 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
258 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
309 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
259 }
310 }
260 }
311 }
261 }
312 }
262
313
263 inline void waveforms_isr_sbm2( void )
314 inline void waveforms_isr_sbm2( void )
264 {
315 {
265 rtems_status_code status;
316 rtems_status_code status;
266
317
267 //***
318 //***
268 // F2
319 // F2
269 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
320 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
270 // (1) change the receiving buffer for the waveform picker
321 // (1) change the receiving buffer for the waveform picker
271 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
322 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
272 current_ring_node_f2 = current_ring_node_f2->next;
323 current_ring_node_f2 = current_ring_node_f2->next;
273 if ( (waveform_picker_regs->status & 0x10) == 0x10)
324 if ( (waveform_picker_regs->status & 0x10) == 0x10)
274 {
325 {
275 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
326 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
276 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
327 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
277 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
328 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
278 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
329 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
279 }
330 }
280 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
331 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
281 {
332 {
282 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
333 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
283 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
334 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
284 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
335 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
285 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
336 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
286 }
337 }
287 // (2) send an event for the waveforms transmission
338 // (2) send an event for the waveforms transmission
288 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
339 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
289 }
340 }
290
341
291 //***
342 //***
292 // F0
343 // F0
293 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) { // [0000 0011] check the f0 full bit
344 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) { // [0000 0011] check the f0 full bit
294 swf_f0_ready = true;
345 swf_f0_ready = true;
295 // change f0 buffer
346 // change f0 buffer
296 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
347 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
297 current_ring_node_f0 = current_ring_node_f0->next;
348 current_ring_node_f0 = current_ring_node_f0->next;
298 if ( (waveform_picker_regs->status & 0x01) == 0x01)
349 if ( (waveform_picker_regs->status & 0x01) == 0x01)
299 {
350 {
300
351
301 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
352 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
302 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
353 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
303 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
354 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
304 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
355 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
305 }
356 }
306 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
357 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
307 {
358 {
308 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
359 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
309 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
360 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
310 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
361 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
311 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
362 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
312 }
363 }
313 }
364 }
314
365
315 //***
366 //***
316 // F1
367 // F1
317 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bit
368 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bit
318 swf_f1_ready = true;
369 swf_f1_ready = true;
319 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
370 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
320 current_ring_node_f1 = current_ring_node_f1->next;
371 current_ring_node_f1 = current_ring_node_f1->next;
321 if ( (waveform_picker_regs->status & 0x04) == 0x04)
372 if ( (waveform_picker_regs->status & 0x04) == 0x04)
322 {
373 {
323 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
374 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
324 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
375 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
325 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
376 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
326 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
377 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
327 }
378 }
328 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
379 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
329 {
380 {
330 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
381 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
331 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
382 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
332 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
383 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
333 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
384 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
334 }
385 }
335 }
386 }
336 }
387 }
337
388
338 rtems_isr waveforms_isr( rtems_vector_number vector )
389 rtems_isr waveforms_isr( rtems_vector_number vector )
339 {
390 {
340 /** This is the interrupt sub routine called by the waveform picker core.
391 /** This is the interrupt sub routine called by the waveform picker core.
341 *
392 *
342 * This ISR launch different actions depending mainly on two pieces of information:
393 * This ISR launch different actions depending mainly on two pieces of information:
343 * 1. the values read in the registers of the waveform picker.
394 * 1. the values read in the registers of the waveform picker.
344 * 2. the current LFR mode.
395 * 2. the current LFR mode.
345 *
396 *
346 */
397 */
347
398
348 // STATUS
399 // STATUS
349 // new error error buffer full
400 // new error error buffer full
350 // 15 14 13 12 11 10 9 8
401 // 15 14 13 12 11 10 9 8
351 // f3 f2 f1 f0 f3 f2 f1 f0
402 // f3 f2 f1 f0 f3 f2 f1 f0
352 //
403 //
353 // ready buffer
404 // ready buffer
354 // 7 6 5 4 3 2 1 0
405 // 7 6 5 4 3 2 1 0
355 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
406 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
356
407
357 rtems_status_code spare_status;
408 rtems_status_code spare_status;
358
409
359 waveforms_isr_f3();
410 waveforms_isr_f3();
360
411
361 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
412 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
362 {
413 {
363 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
414 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
364 }
415 }
365
416
366 switch(lfrCurrentMode)
417 switch(lfrCurrentMode)
367 {
418 {
368 //********
419 //********
369 // STANDBY
420 // STANDBY
370 case(LFR_MODE_STANDBY):
421 case(LFR_MODE_STANDBY):
371 break;
422 break;
372
423
373 //******
424 //******
374 // NORMAL
425 // NORMAL
375 case(LFR_MODE_NORMAL):
426 case(LFR_MODE_NORMAL):
376 waveforms_isr_normal();
427 waveforms_isr_normal();
377 break;
428 break;
378
429
379 //******
430 //******
380 // BURST
431 // BURST
381 case(LFR_MODE_BURST):
432 case(LFR_MODE_BURST):
382 waveforms_isr_burst();
433 waveforms_isr_burst();
383 break;
434 break;
384
435
385 //*****
436 //*****
386 // SBM1
437 // SBM1
387 case(LFR_MODE_SBM1):
438 case(LFR_MODE_SBM1):
388 waveforms_isr_sbm1();
439 waveforms_isr_sbm1();
389 break;
440 break;
390
441
391 //*****
442 //*****
392 // SBM2
443 // SBM2
393 case(LFR_MODE_SBM2):
444 case(LFR_MODE_SBM2):
394 waveforms_isr_sbm2();
445 waveforms_isr_sbm2();
395 break;
446 break;
396
447
397 //********
448 //********
398 // DEFAULT
449 // DEFAULT
399 default:
450 default:
400 break;
451 break;
401 }
452 }
402 }
453 }
403
454
404 //************
455 //************
405 // RTEMS TASKS
456 // RTEMS TASKS
406
457
407 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
458 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
408 {
459 {
409 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
460 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
410 *
461 *
411 * @param unused is the starting argument of the RTEMS task
462 * @param unused is the starting argument of the RTEMS task
412 *
463 *
413 * The following data packets are sent by this task:
464 * The following data packets are sent by this task:
414 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
465 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
415 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
466 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
416 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
467 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
417 *
468 *
418 */
469 */
419
470
420 rtems_event_set event_out;
471 rtems_event_set event_out;
421 rtems_id queue_id;
472 rtems_id queue_id;
422 rtems_status_code status;
473 rtems_status_code status;
423 bool resynchronisationEngaged;
474 bool resynchronisationEngaged;
424 ring_node *ring_node_wf_snap_extracted_ptr;
475 ring_node *ring_node_wf_snap_extracted_ptr;
425
476
426 ring_node_wf_snap_extracted_ptr = (ring_node *) &ring_node_wf_snap_extracted;
477 ring_node_wf_snap_extracted_ptr = (ring_node *) &ring_node_wf_snap_extracted;
427
478
428 resynchronisationEngaged = false;
479 resynchronisationEngaged = false;
429
480
430 status = get_message_queue_id_send( &queue_id );
481 status = get_message_queue_id_send( &queue_id );
431 if (status != RTEMS_SUCCESSFUL)
482 if (status != RTEMS_SUCCESSFUL)
432 {
483 {
433 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
484 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
434 }
485 }
435
486
436 BOOT_PRINTF("in WFRM ***\n")
487 BOOT_PRINTF("in WFRM ***\n")
437
488
438 while(1){
489 while(1){
439 // wait for an RTEMS_EVENT
490 // wait for an RTEMS_EVENT
440 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
491 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
441 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
492 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
442 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
493 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
443 if(resynchronisationEngaged == false)
494 if(resynchronisationEngaged == false)
444 { // engage resynchronisation
495 { // engage resynchronisation
445 // snapshot_resynchronization( (unsigned char *) ring_node_to_send_swf_f0->coarseTime );
496 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
446 resynchronisationEngaged = true;
497 resynchronisationEngaged = true;
447 }
498 }
448 else
499 else
449 { // reset delta_snapshot to the nominal value
500 { // reset delta_snapshot to the nominal value
450 PRINTF("no resynchronisation, reset delta_snapshot to the nominal value\n")
501 PRINTF("no resynchronisation, reset delta_snapshot to the nominal value\n")
451 // set_wfp_delta_snapshot();
502 set_wfp_delta_snapshot();
452 resynchronisationEngaged = false;
503 resynchronisationEngaged = false;
453 }
504 }
454 //
505 //
455
506
456 if (event_out == RTEMS_EVENT_MODE_NORMAL)
507 if (event_out == RTEMS_EVENT_MODE_NORMAL)
457 {
508 {
458 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
509 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
459 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
510 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
460 ring_node_to_send_swf_f1->sid = SID_NORM_SWF_F1;
511 ring_node_to_send_swf_f1->sid = SID_NORM_SWF_F1;
461 ring_node_to_send_swf_f2->sid = SID_NORM_SWF_F2;
512 ring_node_to_send_swf_f2->sid = SID_NORM_SWF_F2;
462 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
513 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
463 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f1, sizeof( ring_node* ) );
514 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f1, sizeof( ring_node* ) );
464 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f2, sizeof( ring_node* ) );
515 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f2, sizeof( ring_node* ) );
465 }
516 }
466 if (event_out == RTEMS_EVENT_MODE_SBM1)
517 if (event_out == RTEMS_EVENT_MODE_SBM1)
467 {
518 {
468 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
519 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
469 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
520 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
470 ring_node_wf_snap_extracted_ptr->sid = SID_NORM_SWF_F1;
521 ring_node_wf_snap_extracted_ptr->sid = SID_NORM_SWF_F1;
471 ring_node_to_send_swf_f2->sid = SID_NORM_SWF_F2;
522 ring_node_to_send_swf_f2->sid = SID_NORM_SWF_F2;
472 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
523 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
473 status = rtems_message_queue_send( queue_id, &ring_node_wf_snap_extracted_ptr, sizeof( ring_node* ) );
524 status = rtems_message_queue_send( queue_id, &ring_node_wf_snap_extracted_ptr, sizeof( ring_node* ) );
474 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f2, sizeof( ring_node* ) );
525 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f2, sizeof( ring_node* ) );
475 }
526 }
476 if (event_out == RTEMS_EVENT_MODE_SBM2)
527 if (event_out == RTEMS_EVENT_MODE_SBM2)
477 {
528 {
478 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
529 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
479 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
530 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
480 ring_node_to_send_swf_f1->sid = SID_NORM_SWF_F1;
531 ring_node_to_send_swf_f1->sid = SID_NORM_SWF_F1;
481 ring_node_wf_snap_extracted_ptr->sid = SID_NORM_SWF_F2;
532 ring_node_wf_snap_extracted_ptr->sid = SID_NORM_SWF_F2;
482 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
533 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
483 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f1, sizeof( ring_node* ) );
534 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f1, sizeof( ring_node* ) );
484 status = rtems_message_queue_send( queue_id, &ring_node_wf_snap_extracted_ptr, sizeof( ring_node* ) );
535 status = rtems_message_queue_send( queue_id, &ring_node_wf_snap_extracted_ptr, sizeof( ring_node* ) );
485 }
536 }
486 }
537 }
487 }
538 }
488
539
489 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
540 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
490 {
541 {
491 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
542 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
492 *
543 *
493 * @param unused is the starting argument of the RTEMS task
544 * @param unused is the starting argument of the RTEMS task
494 *
545 *
495 * The following data packet is sent by this task:
546 * The following data packet is sent by this task:
496 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
547 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
497 *
548 *
498 */
549 */
499
550
500 rtems_event_set event_out;
551 rtems_event_set event_out;
501 rtems_id queue_id;
552 rtems_id queue_id;
502 rtems_status_code status;
553 rtems_status_code status;
503 ring_node ring_node_cwf3_light;
554 ring_node ring_node_cwf3_light;
504
555
505 status = get_message_queue_id_send( &queue_id );
556 status = get_message_queue_id_send( &queue_id );
506 if (status != RTEMS_SUCCESSFUL)
557 if (status != RTEMS_SUCCESSFUL)
507 {
558 {
508 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
559 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
509 }
560 }
510
561
511 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
562 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
512
563
513 // init the ring_node_cwf3_light structure
564 // init the ring_node_cwf3_light structure
514 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
565 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
515 ring_node_cwf3_light.coarseTime = 0x00;
566 ring_node_cwf3_light.coarseTime = 0x00;
516 ring_node_cwf3_light.fineTime = 0x00;
567 ring_node_cwf3_light.fineTime = 0x00;
517 ring_node_cwf3_light.next = NULL;
568 ring_node_cwf3_light.next = NULL;
518 ring_node_cwf3_light.previous = NULL;
569 ring_node_cwf3_light.previous = NULL;
519 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
570 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
520 ring_node_cwf3_light.status = 0x00;
571 ring_node_cwf3_light.status = 0x00;
521
572
522 BOOT_PRINTF("in CWF3 ***\n")
573 BOOT_PRINTF("in CWF3 ***\n")
523
574
524 while(1){
575 while(1){
525 // wait for an RTEMS_EVENT
576 // wait for an RTEMS_EVENT
526 rtems_event_receive( RTEMS_EVENT_0,
577 rtems_event_receive( RTEMS_EVENT_0,
527 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
578 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
528 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
579 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
529 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
580 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
530 {
581 {
531 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
582 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
532 {
583 {
533 PRINTF("send CWF_LONG_F3\n")
584 PRINTF("send CWF_LONG_F3\n")
534 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
585 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf_f2, sizeof( ring_node* ) );
586 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf_f3, sizeof( ring_node* ) );
536 }
587 }
537 else
588 else
538 {
589 {
539 PRINTF("send CWF_F3 (light)\n")
590 PRINTF("send CWF_F3 (light)\n")
540 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_F3;
541 send_waveform_CWF3_light( ring_node_to_send_cwf_f3, &ring_node_cwf3_light, queue_id );
591 send_waveform_CWF3_light( ring_node_to_send_cwf_f3, &ring_node_cwf3_light, queue_id );
542 }
592 }
543
593
544 }
594 }
545 else
595 else
546 {
596 {
547 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
597 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
548 }
598 }
549 }
599 }
550 }
600 }
551
601
552 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
602 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
553 {
603 {
554 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
604 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
555 *
605 *
556 * @param unused is the starting argument of the RTEMS task
606 * @param unused is the starting argument of the RTEMS task
557 *
607 *
558 * The following data packet is sent by this function:
608 * The following data packet is sent by this function:
559 * - TM_LFR_SCIENCE_BURST_CWF_F2
609 * - TM_LFR_SCIENCE_BURST_CWF_F2
560 * - TM_LFR_SCIENCE_SBM2_CWF_F2
610 * - TM_LFR_SCIENCE_SBM2_CWF_F2
561 *
611 *
562 */
612 */
563
613
564 rtems_event_set event_out;
614 rtems_event_set event_out;
565 rtems_id queue_id;
615 rtems_id queue_id;
566 rtems_status_code status;
616 rtems_status_code status;
617 ring_node *ring_node_to_send;
567
618
568 status = get_message_queue_id_send( &queue_id );
619 status = get_message_queue_id_send( &queue_id );
569 if (status != RTEMS_SUCCESSFUL)
620 if (status != RTEMS_SUCCESSFUL)
570 {
621 {
571 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
622 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
572 }
623 }
573
624
574 BOOT_PRINTF("in CWF2 ***\n")
625 BOOT_PRINTF("in CWF2 ***\n")
575
626
576 while(1){
627 while(1){
577 // wait for an RTEMS_EVENT
628 // wait for an RTEMS_EVENT
578 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
629 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
579 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
630 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
631 ring_node_to_send = getRingNodeToSendCWF( 2 );
632 printf("ring_node_to_send_cwf === coarse = %x, fine = %x\n", ring_node_to_send->coarseTime, ring_node_to_send->fineTime);
633 printf("**0** %x . %x", waveform_ring_f2[0].coarseTime, waveform_ring_f2[0].fineTime);
634 printf(" **1** %x . %x", waveform_ring_f2[1].coarseTime, waveform_ring_f2[1].fineTime);
635 printf(" **2** %x . %x", waveform_ring_f2[2].coarseTime, waveform_ring_f2[2].fineTime);
636 printf(" **3** %x . %x", waveform_ring_f2[3].coarseTime, waveform_ring_f2[3].fineTime);
637 printf(" **4** %x . %x\n", waveform_ring_f2[4].coarseTime, waveform_ring_f2[4].fineTime);
580 if (event_out == RTEMS_EVENT_MODE_BURST)
638 if (event_out == RTEMS_EVENT_MODE_BURST)
581 {
639 {
582 // send_waveform_CWF( ring_node_to_send_cwf_f2, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
640 ring_node_to_send->sid = SID_BURST_CWF_F2;
583 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
641 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
584 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf_f2, sizeof( ring_node* ) );
585 }
642 }
586 if (event_out == RTEMS_EVENT_MODE_SBM2)
643 if (event_out == RTEMS_EVENT_MODE_SBM2)
587 {
644 {
588 // send_waveform_CWF( ring_node_to_send_cwf_f2, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
645 ring_node_to_send->sid = SID_SBM2_CWF_F2;
589 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
646 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
590 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf_f2, sizeof( ring_node* ) );
591 // launch snapshot extraction if needed
647 // launch snapshot extraction if needed
592 if (extractSWF == true)
648 if (extractSWF == true)
593 {
649 {
594 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
650 ring_node_to_send_swf_f2 = ring_node_to_send;
595 // extract the snapshot
651 // extract the snapshot
596 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
652 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
597 // send the snapshot when built
653 // send the snapshot when built
598 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
654 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
599 extractSWF = false;
655 extractSWF = false;
600 }
656 }
601 if (swf_f0_ready && swf_f1_ready)
657 if (swf_f0_ready && swf_f1_ready)
602 {
658 {
603 extractSWF = true;
659 extractSWF = true;
604 swf_f0_ready = false;
660 swf_f0_ready = false;
605 swf_f1_ready = false;
661 swf_f1_ready = false;
606 }
662 }
607 }
663 }
608 }
664 }
609 }
665 }
610
666
611 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
667 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
612 {
668 {
613 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
669 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
614 *
670 *
615 * @param unused is the starting argument of the RTEMS task
671 * @param unused is the starting argument of the RTEMS task
616 *
672 *
617 * The following data packet is sent by this function:
673 * The following data packet is sent by this function:
618 * - TM_LFR_SCIENCE_SBM1_CWF_F1
674 * - TM_LFR_SCIENCE_SBM1_CWF_F1
619 *
675 *
620 */
676 */
621
677
622 rtems_event_set event_out;
678 rtems_event_set event_out;
623 rtems_id queue_id;
679 rtems_id queue_id;
624 rtems_status_code status;
680 rtems_status_code status;
625
681
626 // init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
682 ring_node * ring_node_to_send_cwf;
627
683
628 status = get_message_queue_id_send( &queue_id );
684 status = get_message_queue_id_send( &queue_id );
629 if (status != RTEMS_SUCCESSFUL)
685 if (status != RTEMS_SUCCESSFUL)
630 {
686 {
631 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
687 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
632 }
688 }
633
689
634 BOOT_PRINTF("in CWF1 ***\n")
690 BOOT_PRINTF("in CWF1 ***\n")
635
691
636 while(1){
692 while(1){
637 // wait for an RTEMS_EVENT
693 // wait for an RTEMS_EVENT
638 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
694 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
639 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
695 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
696 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
697 printf("ring_node_to_send_cwf === coarse = %x, fine = %x\n", ring_node_to_send_cwf->coarseTime, ring_node_to_send_cwf->fineTime);
698 printf("**0** %x . %x", waveform_ring_f1[0].coarseTime, waveform_ring_f1[0].fineTime);
699 printf(" **1** %x . %x", waveform_ring_f1[1].coarseTime, waveform_ring_f1[1].fineTime);
700 printf(" **2** %x . %x", waveform_ring_f1[2].coarseTime, waveform_ring_f1[2].fineTime);
701 printf(" **3** %x . %x", waveform_ring_f1[3].coarseTime, waveform_ring_f1[3].fineTime);
702 printf(" **4** %x . %x\n\n", waveform_ring_f1[4].coarseTime, waveform_ring_f1[4].fineTime);
640 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
703 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
641 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf_f1, sizeof( ring_node* ) );
704 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
642 // launch snapshot extraction if needed
705 // launch snapshot extraction if needed
643 if (extractSWF == true)
706 if (extractSWF == true)
644 {
707 {
645 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
708 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
646 // launch the snapshot extraction
709 // launch the snapshot extraction
647 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
710 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
648 extractSWF = false;
711 extractSWF = false;
649 }
712 }
650 if (swf_f0_ready == true)
713 if (swf_f0_ready == true)
651 {
714 {
652 extractSWF = true;
715 extractSWF = true;
653 swf_f0_ready = false; // this step shall be executed only one time
716 swf_f0_ready = false; // this step shall be executed only one time
654 }
717 }
655 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
718 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
656 {
719 {
657 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
720 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
658 swf_f1_ready = false;
721 swf_f1_ready = false;
659 swf_f2_ready = false;
722 swf_f2_ready = false;
660 }
723 }
661 }
724 }
662 }
725 }
663
726
664 rtems_task swbd_task(rtems_task_argument argument)
727 rtems_task swbd_task(rtems_task_argument argument)
665 {
728 {
666 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
729 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
667 *
730 *
668 * @param unused is the starting argument of the RTEMS task
731 * @param unused is the starting argument of the RTEMS task
669 *
732 *
670 */
733 */
671
734
672 rtems_event_set event_out;
735 rtems_event_set event_out;
673
736
674 BOOT_PRINTF("in SWBD ***\n")
737 BOOT_PRINTF("in SWBD ***\n")
675
738
676 while(1){
739 while(1){
677 // wait for an RTEMS_EVENT
740 // wait for an RTEMS_EVENT
678 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
741 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
679 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
742 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
680 if (event_out == RTEMS_EVENT_MODE_SBM1)
743 if (event_out == RTEMS_EVENT_MODE_SBM1)
681 {
744 {
682 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
745 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
683 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
746 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
684 }
747 }
685 else
748 else
686 {
749 {
687 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
750 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
688 }
751 }
689 }
752 }
690 }
753 }
691
754
692 //******************
755 //******************
693 // general functions
756 // general functions
694
757
695 void WFP_init_rings( void )
758 void WFP_init_rings( void )
696 {
759 {
697 // F0 RING
760 // F0 RING
698 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
761 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
699 // F1 RING
762 // F1 RING
700 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
763 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
701 // F2 RING
764 // F2 RING
702 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
765 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
703 // F3 RING
766 // F3 RING
704 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
767 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
705
768
706 ring_node_wf_snap_extracted.buffer_address = (int) wf_snap_extracted;
769 ring_node_wf_snap_extracted.buffer_address = (int) wf_snap_extracted;
707
770
708 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
771 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
709 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
772 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
710 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
773 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
711 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
774 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
712 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
775 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
713 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
776 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
714 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
777 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
715 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
778 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
716
779
717 }
780 }
718
781
719 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
782 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
720 {
783 {
721 unsigned char i;
784 unsigned char i;
722
785
723 //***************
786 //***************
724 // BUFFER ADDRESS
787 // BUFFER ADDRESS
725 for(i=0; i<nbNodes; i++)
788 for(i=0; i<nbNodes; i++)
726 {
789 {
727 ring[i].coarseTime = 0x00;
790 ring[i].coarseTime = 0x00;
728 ring[i].fineTime = 0x00;
791 ring[i].fineTime = 0x00;
729 ring[i].sid = 0x00;
792 ring[i].sid = 0x00;
730 ring[i].status = 0x00;
793 ring[i].status = 0x00;
731 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
794 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
732 }
795 }
733
796
734 //*****
797 //*****
735 // NEXT
798 // NEXT
736 ring[nbNodes-1].next = (ring_node*) &ring[ 0 ];
799 ring[nbNodes-1].next = (ring_node*) &ring[ 0 ];
737 for(i=0; i<nbNodes-1; i++)
800 for(i=0; i<nbNodes-1; i++)
738 {
801 {
739 ring[i].next = (ring_node*) &ring[ i + 1 ];
802 ring[i].next = (ring_node*) &ring[ i + 1 ];
740 }
803 }
741
804
742 //*********
805 //*********
743 // PREVIOUS
806 // PREVIOUS
744 ring[0].previous = (ring_node*) &ring[ nbNodes - 1 ];
807 ring[0].previous = (ring_node*) &ring[ nbNodes - 1 ];
745 for(i=1; i<nbNodes; i++)
808 for(i=1; i<nbNodes; i++)
746 {
809 {
747 ring[i].previous = (ring_node*) &ring[ i - 1 ];
810 ring[i].previous = (ring_node*) &ring[ i - 1 ];
748 }
811 }
749 }
812 }
750
813
751 void WFP_reset_current_ring_nodes( void )
814 void WFP_reset_current_ring_nodes( void )
752 {
815 {
753 current_ring_node_f0 = waveform_ring_f0;
816 current_ring_node_f0 = waveform_ring_f0[0].next;
754 ring_node_to_send_swf_f0 = waveform_ring_f0;
817 current_ring_node_f1 = waveform_ring_f1[0].next;
818 current_ring_node_f2 = waveform_ring_f2[0].next;
819 current_ring_node_f3 = waveform_ring_f3[0].next;
755
820
756 current_ring_node_f1 = waveform_ring_f1;
821 ring_node_to_send_swf_f0 = waveform_ring_f0;
757 ring_node_to_send_cwf_f1 = waveform_ring_f1;
758 ring_node_to_send_swf_f1 = waveform_ring_f1;
822 ring_node_to_send_swf_f1 = waveform_ring_f1;
759
760 current_ring_node_f2 = waveform_ring_f2;
761 ring_node_to_send_cwf_f2 = waveform_ring_f2;
762 ring_node_to_send_swf_f2 = waveform_ring_f2;
823 ring_node_to_send_swf_f2 = waveform_ring_f2;
763
824
764 current_ring_node_f3 = waveform_ring_f3;
825 ring_node_to_send_cwf_f1 = waveform_ring_f1;
826 ring_node_to_send_cwf_f2 = waveform_ring_f2;
765 ring_node_to_send_cwf_f3 = waveform_ring_f3;
827 ring_node_to_send_cwf_f3 = waveform_ring_f3;
766 }
828 }
767
829
768 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
830 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
769 {
831 {
770 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
832 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
771 *
833 *
772 * @param waveform points to the buffer containing the data that will be send.
834 * @param waveform points to the buffer containing the data that will be send.
773 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
835 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
774 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
836 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
775 * contain information to setup the transmission of the data packets.
837 * contain information to setup the transmission of the data packets.
776 *
838 *
777 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
839 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
778 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
840 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
779 *
841 *
780 */
842 */
781
843
782 unsigned int i;
844 unsigned int i;
783 int ret;
845 int ret;
784 rtems_status_code status;
846 rtems_status_code status;
785 spw_ioctl_pkt_send spw_ioctl_send_CWF;
847
786 char *sample;
848 char *sample;
787 int *dataPtr;
849 int *dataPtr;
788
850
789 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
790 spw_ioctl_send_CWF.options = 0;
791
792 ret = LFR_DEFAULT;
851 ret = LFR_DEFAULT;
793
852
794 dataPtr = (int*) ring_node_to_send->buffer_address;
853 dataPtr = (int*) ring_node_to_send->buffer_address;
795
854
796 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
855 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
797 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
856 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
798
857
799 //**********************
858 //**********************
800 // BUILD CWF3_light DATA
859 // BUILD CWF3_light DATA
801 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
860 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
802 {
861 {
803 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
862 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
863 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
864 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
865 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
866 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
808 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
867 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
809 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
868 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
810 }
869 }
811
870
812 // SEND PACKET
871 // SEND PACKET
813 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
872 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
814 if (status != RTEMS_SUCCESSFUL) {
873 if (status != RTEMS_SUCCESSFUL) {
815 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
874 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
816 ret = LFR_DEFAULT;
875 ret = LFR_DEFAULT;
817 }
876 }
818
877
819 return ret;
878 return ret;
820 }
879 }
821
880
822 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
881 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
823 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
882 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
824 {
883 {
825 unsigned long long int acquisitionTimeAsLong;
884 unsigned long long int acquisitionTimeAsLong;
826 unsigned char localAcquisitionTime[6];
885 unsigned char localAcquisitionTime[6];
827 double deltaT;
886 double deltaT;
828
887
829 deltaT = 0.;
888 deltaT = 0.;
830
889
831 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
890 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
832 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
891 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
833 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
892 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
834 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
893 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
835 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
894 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
836 localAcquisitionTime[5] = (unsigned char) ( fineTime );
895 localAcquisitionTime[5] = (unsigned char) ( fineTime );
837
896
838 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
897 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
839 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
898 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
840 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
899 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
841 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
900 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
842 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
901 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
843 + ( (unsigned long long int) localAcquisitionTime[5] );
902 + ( (unsigned long long int) localAcquisitionTime[5] );
844
903
845 switch( sid )
904 switch( sid )
846 {
905 {
847 case SID_NORM_SWF_F0:
906 case SID_NORM_SWF_F0:
848 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
907 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
849 break;
908 break;
850
909
851 case SID_NORM_SWF_F1:
910 case SID_NORM_SWF_F1:
852 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
911 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
853 break;
912 break;
854
913
855 case SID_NORM_SWF_F2:
914 case SID_NORM_SWF_F2:
856 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
915 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
857 break;
916 break;
858
917
859 case SID_SBM1_CWF_F1:
918 case SID_SBM1_CWF_F1:
860 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
919 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
861 break;
920 break;
862
921
863 case SID_SBM2_CWF_F2:
922 case SID_SBM2_CWF_F2:
864 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
923 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
865 break;
924 break;
866
925
867 case SID_BURST_CWF_F2:
926 case SID_BURST_CWF_F2:
868 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
927 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
869 break;
928 break;
870
929
871 case SID_NORM_CWF_F3:
930 case SID_NORM_CWF_F3:
872 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
931 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
873 break;
932 break;
874
933
875 case SID_NORM_CWF_LONG_F3:
934 case SID_NORM_CWF_LONG_F3:
876 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
935 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
877 break;
936 break;
878
937
879 default:
938 default:
880 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
939 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
881 deltaT = 0.;
940 deltaT = 0.;
882 break;
941 break;
883 }
942 }
884
943
885 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
944 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
886 //
945 //
887 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
946 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
888 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
947 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
889 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
948 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
890 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
949 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
891 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
950 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
892 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
951 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
893
952
894 }
953 }
895
954
896 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
955 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
897 {
956 {
898 unsigned int i;
957 unsigned int i;
899 unsigned long long int centerTime_asLong;
958 unsigned long long int centerTime_asLong;
900 unsigned long long int acquisitionTimeF0_asLong;
959 unsigned long long int acquisitionTimeF0_asLong;
901 unsigned long long int acquisitionTime_asLong;
960 unsigned long long int acquisitionTime_asLong;
902 unsigned long long int bufferAcquisitionTime_asLong;
961 unsigned long long int bufferAcquisitionTime_asLong;
903 unsigned char *ptr1;
962 unsigned char *ptr1;
904 unsigned char *ptr2;
963 unsigned char *ptr2;
905 unsigned char *timeCharPtr;
964 unsigned char *timeCharPtr;
906 unsigned char nb_ring_nodes;
965 unsigned char nb_ring_nodes;
907 unsigned long long int frequency_asLong;
966 unsigned long long int frequency_asLong;
908 unsigned long long int nbTicksPerSample_asLong;
967 unsigned long long int nbTicksPerSample_asLong;
909 unsigned long long int nbSamplesPart1_asLong;
968 unsigned long long int nbSamplesPart1_asLong;
910 unsigned long long int sampleOffset_asLong;
969 unsigned long long int sampleOffset_asLong;
911
970
912 unsigned int deltaT_F0;
971 unsigned int deltaT_F0;
913 unsigned int deltaT_F1;
972 unsigned int deltaT_F1;
914 unsigned long long int deltaT_F2;
973 unsigned long long int deltaT_F2;
915
974
916 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
975 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
917 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
976 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
918 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
977 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
919 sampleOffset_asLong = 0x00;
978 sampleOffset_asLong = 0x00;
920
979
921 // (1) get the f0 acquisition time
980 // (1) get the f0 acquisition time
922 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
981 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
923
982
924 // (2) compute the central reference time
983 // (2) compute the central reference time
925 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
984 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
926
985
927 // (3) compute the acquisition time of the current snapshot
986 // (3) compute the acquisition time of the current snapshot
928 switch(frequencyChannel)
987 switch(frequencyChannel)
929 {
988 {
930 case 1: // 1 is for F1 = 4096 Hz
989 case 1: // 1 is for F1 = 4096 Hz
931 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
990 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
932 nb_ring_nodes = NB_RING_NODES_F1;
991 nb_ring_nodes = NB_RING_NODES_F1;
933 frequency_asLong = 4096;
992 frequency_asLong = 4096;
934 nbTicksPerSample_asLong = 16; // 65536 / 4096;
993 nbTicksPerSample_asLong = 16; // 65536 / 4096;
935 break;
994 break;
936 case 2: // 2 is for F2 = 256 Hz
995 case 2: // 2 is for F2 = 256 Hz
937 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
996 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
938 nb_ring_nodes = NB_RING_NODES_F2;
997 nb_ring_nodes = NB_RING_NODES_F2;
939 frequency_asLong = 256;
998 frequency_asLong = 256;
940 nbTicksPerSample_asLong = 256; // 65536 / 256;
999 nbTicksPerSample_asLong = 256; // 65536 / 256;
941 break;
1000 break;
942 default:
1001 default:
943 acquisitionTime_asLong = centerTime_asLong;
1002 acquisitionTime_asLong = centerTime_asLong;
944 frequency_asLong = 256;
1003 frequency_asLong = 256;
945 nbTicksPerSample_asLong = 256;
1004 nbTicksPerSample_asLong = 256;
946 break;
1005 break;
947 }
1006 }
948
1007
949 //****************************************************************************
1008 //****************************************************************************
950 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1009 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
951 for (i=0; i<nb_ring_nodes; i++)
1010 for (i=0; i<nb_ring_nodes; i++)
952 {
1011 {
953 PRINTF1("%d ... ", i)
1012 PRINTF1("%d ... ", i)
954 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) ring_node_to_send->coarseTime );
1013 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) ring_node_to_send->coarseTime );
955 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1014 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
956 {
1015 {
957 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1016 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
958 break;
1017 break;
959 }
1018 }
960 ring_node_to_send = ring_node_to_send->previous;
1019 ring_node_to_send = ring_node_to_send->previous;
961 }
1020 }
962
1021
963 // (5) compute the number of samples to take in the current buffer
1022 // (5) compute the number of samples to take in the current buffer
964 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1023 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
965 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1024 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
966 PRINTF2("sampleOffset_asLong = %llx, nbSamplesPart1_asLong = %llx\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1025 PRINTF2("sampleOffset_asLong = %llx, nbSamplesPart1_asLong = %llx\n", sampleOffset_asLong, nbSamplesPart1_asLong)
967
1026
968 // (6) compute the final acquisition time
1027 // (6) compute the final acquisition time
969 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1028 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
970 sampleOffset_asLong * nbTicksPerSample_asLong;
1029 sampleOffset_asLong * nbTicksPerSample_asLong;
971
1030
972 // (7) copy the acquisition time at the beginning of the extrated snapshot
1031 // (7) copy the acquisition time at the beginning of the extrated snapshot
973 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1032 ptr1 = (unsigned char*) &acquisitionTime_asLong;
974 // fine time
1033 // fine time
975 ptr2 = (unsigned char*) &ring_node_wf_snap_extracted.fineTime;
1034 ptr2 = (unsigned char*) &ring_node_wf_snap_extracted.fineTime;
976 ptr2[2] = ptr1[ 4 + 2 ];
1035 ptr2[2] = ptr1[ 4 + 2 ];
977 ptr2[3] = ptr1[ 5 + 2 ];
1036 ptr2[3] = ptr1[ 5 + 2 ];
978 // coarse time
1037 // coarse time
979 ptr2 = (unsigned char*) &ring_node_wf_snap_extracted.coarseTime;
1038 ptr2 = (unsigned char*) &ring_node_wf_snap_extracted.coarseTime;
980 ptr2[0] = ptr1[ 0 + 2 ];
1039 ptr2[0] = ptr1[ 0 + 2 ];
981 ptr2[1] = ptr1[ 1 + 2 ];
1040 ptr2[1] = ptr1[ 1 + 2 ];
982 ptr2[2] = ptr1[ 2 + 2 ];
1041 ptr2[2] = ptr1[ 2 + 2 ];
983 ptr2[3] = ptr1[ 3 + 2 ];
1042 ptr2[3] = ptr1[ 3 + 2 ];
984
1043
985 // re set the synchronization bit
1044 // re set the synchronization bit
986 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
1045 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
987 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
1046 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
988
1047
989 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
1048 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
990 {
1049 {
991 nbSamplesPart1_asLong = 0;
1050 nbSamplesPart1_asLong = 0;
992 }
1051 }
993 // copy the part 1 of the snapshot in the extracted buffer
1052 // copy the part 1 of the snapshot in the extracted buffer
994 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1053 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
995 {
1054 {
996 wf_snap_extracted[i] =
1055 wf_snap_extracted[i] =
997 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
1056 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
998 }
1057 }
999 // copy the part 2 of the snapshot in the extracted buffer
1058 // copy the part 2 of the snapshot in the extracted buffer
1000 ring_node_to_send = ring_node_to_send->next;
1059 ring_node_to_send = ring_node_to_send->next;
1001 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1060 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1002 {
1061 {
1003 wf_snap_extracted[i] =
1062 wf_snap_extracted[i] =
1004 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
1063 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
1005 }
1064 }
1006 }
1065 }
1007
1066
1008 void snapshot_resynchronization( unsigned char *timePtr )
1067 void snapshot_resynchronization( unsigned char *timePtr )
1009 {
1068 {
1010 unsigned long long int acquisitionTime;
1069 unsigned long long int acquisitionTime;
1011 unsigned long long int centerTime;
1070 unsigned long long int centerTime;
1012 unsigned long long int previousTick;
1071 unsigned long long int previousTick;
1013 unsigned long long int nextTick;
1072 unsigned long long int nextTick;
1014 unsigned long long int deltaPreviousTick;
1073 unsigned long long int deltaPreviousTick;
1015 unsigned long long int deltaNextTick;
1074 unsigned long long int deltaNextTick;
1016 unsigned int deltaTickInF2;
1075 unsigned int deltaTickInF2;
1017 double deltaPrevious;
1076 double deltaPrevious;
1018 double deltaNext;
1077 double deltaNext;
1019
1078
1020 acquisitionTime = get_acquisition_time( timePtr );
1079 acquisitionTime = get_acquisition_time( timePtr );
1021
1080
1022 // compute center time
1081 // compute center time
1023 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1082 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1024 previousTick = centerTime - (centerTime & 0xffff);
1083 previousTick = centerTime - (centerTime & 0xffff);
1025 nextTick = previousTick + 65536;
1084 nextTick = previousTick + 65536;
1026
1085
1027 deltaPreviousTick = centerTime - previousTick;
1086 deltaPreviousTick = centerTime - previousTick;
1028 deltaNextTick = nextTick - centerTime;
1087 deltaNextTick = nextTick - centerTime;
1029
1088
1030 deltaPrevious = ((double) deltaPreviousTick) / 65536. * 1000.;
1089 deltaPrevious = ((double) deltaPreviousTick) / 65536. * 1000.;
1031 deltaNext = ((double) deltaNextTick) / 65536. * 1000.;
1090 deltaNext = ((double) deltaNextTick) / 65536. * 1000.;
1032
1091
1033 printf("delta previous = %f ms, delta next = %f ms\n", deltaPrevious, deltaNext);
1092 printf("delta previous = %f ms, delta next = %f ms\n", deltaPrevious, deltaNext);
1034 printf("delta previous = %llu, delta next = %llu\n", deltaPreviousTick, deltaNextTick);
1093 printf("delta previous = %llu, delta next = %llu\n", deltaPreviousTick, deltaNextTick);
1035
1094
1036 // which tick is the closest
1095 // which tick is the closest
1037 if (deltaPreviousTick > deltaNextTick)
1096 if (deltaPreviousTick > deltaNextTick)
1038 {
1097 {
1039 deltaTickInF2 = floor( (deltaNext * 256. / 1000.) ); // the division by 2 is important here
1098 deltaTickInF2 = floor( (deltaNext * 256. / 1000.) ); // the division by 2 is important here
1040 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + deltaTickInF2;
1099 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + deltaTickInF2;
1041 printf("correction of = + %u\n", deltaTickInF2);
1100 printf("correction of = + %u\n", deltaTickInF2);
1042 }
1101 }
1043 else
1102 else
1044 {
1103 {
1045 deltaTickInF2 = floor( (deltaPrevious * 256. / 1000.) ); // the division by 2 is important here
1104 deltaTickInF2 = floor( (deltaPrevious * 256. / 1000.) ); // the division by 2 is important here
1046 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot - deltaTickInF2;
1105 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot - deltaTickInF2;
1047 printf("correction of = - %u\n", deltaTickInF2);
1106 printf("correction of = - %u\n", deltaTickInF2);
1048 }
1107 }
1049 }
1108 }
1050
1109
1051 //**************
1110 //**************
1052 // wfp registers
1111 // wfp registers
1053 void reset_wfp_burst_enable( void )
1112 void reset_wfp_burst_enable( void )
1054 {
1113 {
1055 /** This function resets the waveform picker burst_enable register.
1114 /** This function resets the waveform picker burst_enable register.
1056 *
1115 *
1057 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1116 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1058 *
1117 *
1059 */
1118 */
1060
1119
1061 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1120 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1062 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1121 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1063 }
1122 }
1064
1123
1065 void reset_wfp_status( void )
1124 void reset_wfp_status( void )
1066 {
1125 {
1067 /** This function resets the waveform picker status register.
1126 /** This function resets the waveform picker status register.
1068 *
1127 *
1069 * All status bits are set to 0 [new_err full_err full].
1128 * All status bits are set to 0 [new_err full_err full].
1070 *
1129 *
1071 */
1130 */
1072
1131
1073 waveform_picker_regs->status = 0xffff;
1132 waveform_picker_regs->status = 0xffff;
1074 }
1133 }
1075
1134
1076 void reset_wfp_buffer_addresses( void )
1135 void reset_wfp_buffer_addresses( void )
1077 {
1136 {
1078 // F0
1137 // F0
1079 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address; // 0x08
1138 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1080 current_ring_node_f0 = current_ring_node_f0->next;
1139 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1081 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1082 // F1
1140 // F1
1083 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address; // 0x10
1141 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1084 current_ring_node_f1 = current_ring_node_f1->next;
1142 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1085 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1086 // F2
1143 // F2
1087 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address; // 0x18
1144 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1088 current_ring_node_f2 = current_ring_node_f2->next;
1145 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1089 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1090 // F3
1146 // F3
1091 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address; // 0x20
1147 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1092 current_ring_node_f3 = current_ring_node_f3->next;
1148 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1093 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1094 }
1149 }
1095
1150
1096 void reset_waveform_picker_regs( void )
1151 void reset_waveform_picker_regs( void )
1097 {
1152 {
1098 /** This function resets the waveform picker module registers.
1153 /** This function resets the waveform picker module registers.
1099 *
1154 *
1100 * The registers affected by this function are located at the following offset addresses:
1155 * The registers affected by this function are located at the following offset addresses:
1101 * - 0x00 data_shaping
1156 * - 0x00 data_shaping
1102 * - 0x04 run_burst_enable
1157 * - 0x04 run_burst_enable
1103 * - 0x08 addr_data_f0
1158 * - 0x08 addr_data_f0
1104 * - 0x0C addr_data_f1
1159 * - 0x0C addr_data_f1
1105 * - 0x10 addr_data_f2
1160 * - 0x10 addr_data_f2
1106 * - 0x14 addr_data_f3
1161 * - 0x14 addr_data_f3
1107 * - 0x18 status
1162 * - 0x18 status
1108 * - 0x1C delta_snapshot
1163 * - 0x1C delta_snapshot
1109 * - 0x20 delta_f0
1164 * - 0x20 delta_f0
1110 * - 0x24 delta_f0_2
1165 * - 0x24 delta_f0_2
1111 * - 0x28 delta_f1
1166 * - 0x28 delta_f1
1112 * - 0x2c delta_f2
1167 * - 0x2c delta_f2
1113 * - 0x30 nb_data_by_buffer
1168 * - 0x30 nb_data_by_buffer
1114 * - 0x34 nb_snapshot_param
1169 * - 0x34 nb_snapshot_param
1115 * - 0x38 start_date
1170 * - 0x38 start_date
1116 * - 0x3c nb_word_in_buffer
1171 * - 0x3c nb_word_in_buffer
1117 *
1172 *
1118 */
1173 */
1119
1174
1120 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1175 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1121
1176
1122 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1177 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1123
1178
1124 reset_wfp_buffer_addresses();
1179 reset_wfp_buffer_addresses();
1125
1180
1126 reset_wfp_status(); // 0x18
1181 reset_wfp_status(); // 0x18
1127
1182
1128 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1183 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1129
1184
1130 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1185 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1131
1186
1132 set_wfp_delta_f1(); // 0x28
1187 set_wfp_delta_f1(); // 0x28
1133
1188
1134 set_wfp_delta_f2(); // 0x2c
1189 set_wfp_delta_f2(); // 0x2c
1135
1190
1136 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1191 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1137 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1192 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1138 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1193 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1139 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1194 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1140 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1195 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1141 // 2688 = 8 * 336
1196 // 2688 = 8 * 336
1142 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1197 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1143 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1198 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1144 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1199 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1145 //
1200 //
1146 // coarse time and fine time registers are not initialized, they are volatile
1201 // coarse time and fine time registers are not initialized, they are volatile
1147 //
1202 //
1148 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1203 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1149 }
1204 }
1150
1205
1151 void set_wfp_data_shaping( void )
1206 void set_wfp_data_shaping( void )
1152 {
1207 {
1153 /** This function sets the data_shaping register of the waveform picker module.
1208 /** This function sets the data_shaping register of the waveform picker module.
1154 *
1209 *
1155 * The value is read from one field of the parameter_dump_packet structure:\n
1210 * The value is read from one field of the parameter_dump_packet structure:\n
1156 * bw_sp0_sp1_r0_r1
1211 * bw_sp0_sp1_r0_r1
1157 *
1212 *
1158 */
1213 */
1159
1214
1160 unsigned char data_shaping;
1215 unsigned char data_shaping;
1161
1216
1162 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1217 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1163 // waveform picker : [R1 R0 SP1 SP0 BW]
1218 // waveform picker : [R1 R0 SP1 SP0 BW]
1164
1219
1165 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1220 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1166
1221
1167 waveform_picker_regs->data_shaping =
1222 waveform_picker_regs->data_shaping =
1168 ( (data_shaping & 0x10) >> 4 ) // BW
1223 ( (data_shaping & 0x10) >> 4 ) // BW
1169 + ( (data_shaping & 0x08) >> 2 ) // SP0
1224 + ( (data_shaping & 0x08) >> 2 ) // SP0
1170 + ( (data_shaping & 0x04) ) // SP1
1225 + ( (data_shaping & 0x04) ) // SP1
1171 + ( (data_shaping & 0x02) << 2 ) // R0
1226 + ( (data_shaping & 0x02) << 2 ) // R0
1172 + ( (data_shaping & 0x01) << 4 ); // R1
1227 + ( (data_shaping & 0x01) << 4 ); // R1
1173 }
1228 }
1174
1229
1175 void set_wfp_burst_enable_register( unsigned char mode )
1230 void set_wfp_burst_enable_register( unsigned char mode )
1176 {
1231 {
1177 /** This function sets the waveform picker burst_enable register depending on the mode.
1232 /** This function sets the waveform picker burst_enable register depending on the mode.
1178 *
1233 *
1179 * @param mode is the LFR mode to launch.
1234 * @param mode is the LFR mode to launch.
1180 *
1235 *
1181 * The burst bits shall be before the enable bits.
1236 * The burst bits shall be before the enable bits.
1182 *
1237 *
1183 */
1238 */
1184
1239
1185 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1240 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1186 // the burst bits shall be set first, before the enable bits
1241 // the burst bits shall be set first, before the enable bits
1187 switch(mode) {
1242 switch(mode) {
1188 case(LFR_MODE_NORMAL):
1243 case(LFR_MODE_NORMAL):
1189 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1244 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1190 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1245 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1191 break;
1246 break;
1192 case(LFR_MODE_BURST):
1247 case(LFR_MODE_BURST):
1193 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1248 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1194 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1249 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1195 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1250 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1196 break;
1251 break;
1197 case(LFR_MODE_SBM1):
1252 case(LFR_MODE_SBM1):
1198 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1253 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1199 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1254 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1200 break;
1255 break;
1201 case(LFR_MODE_SBM2):
1256 case(LFR_MODE_SBM2):
1202 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1257 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1203 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1258 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1204 break;
1259 break;
1205 default:
1260 default:
1206 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1261 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1207 break;
1262 break;
1208 }
1263 }
1209 }
1264 }
1210
1265
1211 void set_wfp_delta_snapshot( void )
1266 void set_wfp_delta_snapshot( void )
1212 {
1267 {
1213 /** This function sets the delta_snapshot register of the waveform picker module.
1268 /** This function sets the delta_snapshot register of the waveform picker module.
1214 *
1269 *
1215 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1270 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1216 * - sy_lfr_n_swf_p[0]
1271 * - sy_lfr_n_swf_p[0]
1217 * - sy_lfr_n_swf_p[1]
1272 * - sy_lfr_n_swf_p[1]
1218 *
1273 *
1219 */
1274 */
1220
1275
1221 unsigned int delta_snapshot;
1276 unsigned int delta_snapshot;
1222 unsigned int delta_snapshot_in_T2;
1277 unsigned int delta_snapshot_in_T2;
1223
1278
1224 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1279 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1225 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1280 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1226
1281
1227 delta_snapshot_in_T2 = delta_snapshot * 256;
1282 delta_snapshot_in_T2 = delta_snapshot * 256;
1228 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1283 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1229 }
1284 }
1230
1285
1231 void set_wfp_delta_f0_f0_2( void )
1286 void set_wfp_delta_f0_f0_2( void )
1232 {
1287 {
1233 unsigned int delta_snapshot;
1288 unsigned int delta_snapshot;
1234 unsigned int nb_samples_per_snapshot;
1289 unsigned int nb_samples_per_snapshot;
1235 float delta_f0_in_float;
1290 float delta_f0_in_float;
1236
1291
1237 delta_snapshot = waveform_picker_regs->delta_snapshot;
1292 delta_snapshot = waveform_picker_regs->delta_snapshot;
1238 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1293 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1239 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1294 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1240
1295
1241 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1296 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1242 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1297 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1243 }
1298 }
1244
1299
1245 void set_wfp_delta_f1( void )
1300 void set_wfp_delta_f1( void )
1246 {
1301 {
1247 unsigned int delta_snapshot;
1302 unsigned int delta_snapshot;
1248 unsigned int nb_samples_per_snapshot;
1303 unsigned int nb_samples_per_snapshot;
1249 float delta_f1_in_float;
1304 float delta_f1_in_float;
1250
1305
1251 delta_snapshot = waveform_picker_regs->delta_snapshot;
1306 delta_snapshot = waveform_picker_regs->delta_snapshot;
1252 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1307 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1253 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1308 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1254
1309
1255 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1310 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1256 }
1311 }
1257
1312
1258 void set_wfp_delta_f2()
1313 void set_wfp_delta_f2()
1259 {
1314 {
1260 unsigned int delta_snapshot;
1315 unsigned int delta_snapshot;
1261 unsigned int nb_samples_per_snapshot;
1316 unsigned int nb_samples_per_snapshot;
1262
1317
1263 delta_snapshot = waveform_picker_regs->delta_snapshot;
1318 delta_snapshot = waveform_picker_regs->delta_snapshot;
1264 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1319 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1265
1320
1266 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1321 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1267 }
1322 }
1268
1323
1269 //*****************
1324 //*****************
1270 // local parameters
1325 // local parameters
1271
1326
1272 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1327 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1273 {
1328 {
1274 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1329 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1275 *
1330 *
1276 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1331 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1277 * @param sid is the source identifier of the packet being updated.
1332 * @param sid is the source identifier of the packet being updated.
1278 *
1333 *
1279 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1334 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1280 * The sequence counters shall wrap around from 2^14 to zero.
1335 * The sequence counters shall wrap around from 2^14 to zero.
1281 * The sequence counter shall start at zero at startup.
1336 * The sequence counter shall start at zero at startup.
1282 *
1337 *
1283 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1338 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1284 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1339 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1285 *
1340 *
1286 */
1341 */
1287
1342
1288 unsigned short *sequence_cnt;
1343 unsigned short *sequence_cnt;
1289 unsigned short segmentation_grouping_flag;
1344 unsigned short segmentation_grouping_flag;
1290 unsigned short new_packet_sequence_control;
1345 unsigned short new_packet_sequence_control;
1291 rtems_mode initial_mode_set;
1346 rtems_mode initial_mode_set;
1292 rtems_mode current_mode_set;
1347 rtems_mode current_mode_set;
1293 rtems_status_code status;
1348 rtems_status_code status;
1294
1349
1295 //******************************************
1350 //******************************************
1296 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1351 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1297 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1352 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1298
1353
1299 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1354 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1300 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1355 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1301 || (sid == SID_BURST_CWF_F2)
1356 || (sid == SID_BURST_CWF_F2)
1302 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1357 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1303 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1358 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1304 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1359 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1305 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1360 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1306 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1361 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1307 {
1362 {
1308 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1363 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1309 }
1364 }
1310 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1365 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1311 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1366 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1312 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1367 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1313 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1368 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1314 {
1369 {
1315 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1370 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1316 }
1371 }
1317 else
1372 else
1318 {
1373 {
1319 sequence_cnt = (unsigned short *) NULL;
1374 sequence_cnt = (unsigned short *) NULL;
1320 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1375 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1321 }
1376 }
1322
1377
1323 if (sequence_cnt != NULL)
1378 if (sequence_cnt != NULL)
1324 {
1379 {
1325 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1380 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1326 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1381 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1327
1382
1328 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1383 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1329
1384
1330 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1385 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1331 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1386 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1332
1387
1333 // increment the sequence counter
1388 // increment the sequence counter
1334 if ( *sequence_cnt < SEQ_CNT_MAX)
1389 if ( *sequence_cnt < SEQ_CNT_MAX)
1335 {
1390 {
1336 *sequence_cnt = *sequence_cnt + 1;
1391 *sequence_cnt = *sequence_cnt + 1;
1337 }
1392 }
1338 else
1393 else
1339 {
1394 {
1340 *sequence_cnt = 0;
1395 *sequence_cnt = 0;
1341 }
1396 }
1342 }
1397 }
1343
1398
1344 //***********************************
1399 //***********************************
1345 // RESET THE MODE OF THE CALLING TASK
1400 // RESET THE MODE OF THE CALLING TASK
1346 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1401 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1347 }
1402 }
General Comments 0
You need to be logged in to leave comments. Login now