##// END OF EJS Templates
waveform picker registers updated to be compliant with the new VHDL design
paul -
r52:e2d761f8e287 nov2013
parent child
Show More
1 NO CONTENT: modified file, binary diff hidden
NO CONTENT: modified file, binary diff hidden
@@ -1,81 +1,80
1 #ifndef WF_HANDLER_H_INCLUDED
1 #ifndef WF_HANDLER_H_INCLUDED
2 #define WF_HANDLER_H_INCLUDED
2 #define WF_HANDLER_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <grspw.h>
5 #include <grspw.h>
6 #include <stdio.h>
6 #include <stdio.h>
7 #include <math.h>
7 #include <math.h>
8
8
9 #include "fsw_params.h"
9 #include "fsw_params.h"
10
10
11 #define pi 3.1415
11 #define pi 3.1415
12
12
13 extern int fdSPW;
13 extern int fdSPW;
14 extern volatile int wf_snap_f0[ ];
14 extern volatile int wf_snap_f0[ ];
15 //
15 //
16 extern volatile int wf_snap_f1[ ];
16 extern volatile int wf_snap_f1[ ];
17 extern volatile int wf_snap_f1_bis[ ];
17 extern volatile int wf_snap_f1_bis[ ];
18 extern volatile int wf_snap_f1_norm[ ];
18 extern volatile int wf_snap_f1_norm[ ];
19 //
19 //
20 extern volatile int wf_snap_f2[ ];
20 extern volatile int wf_snap_f2[ ];
21 extern volatile int wf_snap_f2_bis[ ];
21 extern volatile int wf_snap_f2_bis[ ];
22 extern volatile int wf_snap_f2_norm[ ];
22 extern volatile int wf_snap_f2_norm[ ];
23 //
23 //
24 extern volatile int wf_cont_f3[ ];
24 extern volatile int wf_cont_f3[ ];
25 extern volatile int wf_cont_f3_bis[ ];
25 extern volatile int wf_cont_f3_bis[ ];
26 extern char wf_cont_f3_light[ ];
26 extern char wf_cont_f3_light[ ];
27 extern waveform_picker_regs_t *waveform_picker_regs;
27 extern new_waveform_picker_regs_t *new_waveform_picker_regs;
28 extern waveform_picker_regs_t_alt *waveform_picker_regs_alt;
29 extern time_management_regs_t *time_management_regs;
28 extern time_management_regs_t *time_management_regs;
30 extern Packet_TM_LFR_HK_t housekeeping_packet;
29 extern Packet_TM_LFR_HK_t housekeeping_packet;
31 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
30 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
32 extern struct param_local_str param_local;
31 extern struct param_local_str param_local;
33
32
34 extern rtems_name misc_name[5];
33 extern rtems_name misc_name[5];
35 extern rtems_name Task_name[20]; /* array of task ids */
34 extern rtems_name Task_name[20]; /* array of task ids */
36 extern rtems_id Task_id[20]; /* array of task ids */
35 extern rtems_id Task_id[20]; /* array of task ids */
37
36
38 extern unsigned char lfrCurrentMode;
37 extern unsigned char lfrCurrentMode;
39
38
40 rtems_isr waveforms_isr( rtems_vector_number vector );
39 rtems_isr waveforms_isr( rtems_vector_number vector );
41 rtems_isr waveforms_simulator_isr( rtems_vector_number vector );
40 rtems_isr waveforms_simulator_isr( rtems_vector_number vector );
42 rtems_task wfrm_task( rtems_task_argument argument );
41 rtems_task wfrm_task( rtems_task_argument argument );
43 rtems_task cwf3_task( rtems_task_argument argument );
42 rtems_task cwf3_task( rtems_task_argument argument );
44 rtems_task cwf2_task( rtems_task_argument argument );
43 rtems_task cwf2_task( rtems_task_argument argument );
45 rtems_task cwf1_task( rtems_task_argument argument );
44 rtems_task cwf1_task( rtems_task_argument argument );
46
45
47 //******************
46 //******************
48 // general functions
47 // general functions
49 void init_waveforms( void );
48 void init_waveforms( void );
50 //
49 //
51 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
50 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF );
52 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
51 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
53 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
52 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF );
54 //
53 //
55 void reset_waveforms( void );
54 void reset_waveforms( void );
56 //
55 //
57 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
56 int send_waveform_SWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id );
58 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
57 int send_waveform_CWF( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
59 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
58 int send_waveform_CWF3( volatile int *waveform, unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
60 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
59 int send_waveform_CWF3_light( volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id );
61 //
60 //
62 rtems_id get_pkts_queue_id( void );
61 rtems_id get_pkts_queue_id( void );
63
62
64 //**************
63 //**************
65 // wfp registers
64 // wfp registers
66 void set_wfp_data_shaping();
65 void set_wfp_data_shaping();
67 char set_wfp_delta_snapshot();
66 char set_wfp_delta_snapshot();
68 void set_wfp_burst_enable_register( unsigned char mode);
67 void set_wfp_burst_enable_register( unsigned char mode);
69 void reset_wfp_burst_enable();
68 void reset_wfp_burst_enable();
70 void reset_wfp_status();
69 void reset_wfp_status();
71 void reset_waveform_picker_regs();
70 void reset_new_waveform_picker_regs();
72
71
73 //*****************
72 //*****************
74 // local parameters
73 // local parameters
75 void set_local_sbm1_nb_cwf_max();
74 void set_local_sbm1_nb_cwf_max();
76 void set_local_sbm2_nb_cwf_max();
75 void set_local_sbm2_nb_cwf_max();
77 void set_local_nb_interrupt_f0_MAX();
76 void set_local_nb_interrupt_f0_MAX();
78 void reset_local_sbm1_nb_cwf_sent();
77 void reset_local_sbm1_nb_cwf_sent();
79 void reset_local_sbm2_nb_cwf_sent();
78 void reset_local_sbm2_nb_cwf_sent();
80
79
81 #endif // WF_HANDLER_H_INCLUDED
80 #endif // WF_HANDLER_H_INCLUDED
@@ -1,90 +1,89
1 /** Global variables of the LFR flight software.
1 /** Global variables of the LFR flight software.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * Among global variables, there are:
6 * Among global variables, there are:
7 * - RTEMS names and id.
7 * - RTEMS names and id.
8 * - APB configuration registers.
8 * - APB configuration registers.
9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 * - spectral matrices buffesr, used by the hardware module to store data.
10 * - spectral matrices buffesr, used by the hardware module to store data.
11 * - variable related to LFR modes parameters.
11 * - variable related to LFR modes parameters.
12 * - the global HK packet buffer.
12 * - the global HK packet buffer.
13 * - the global dump parameter buffer.
13 * - the global dump parameter buffer.
14 *
14 *
15 */
15 */
16
16
17 #include <rtems.h>
17 #include <rtems.h>
18 #include <grspw.h>
18 #include <grspw.h>
19
19
20 #include "ccsds_types.h"
20 #include "ccsds_types.h"
21 #include "grlib_regs.h"
21 #include "grlib_regs.h"
22 #include "fsw_params.h"
22 #include "fsw_params.h"
23
23
24 // RTEMS GLOBAL VARIABLES
24 // RTEMS GLOBAL VARIABLES
25 rtems_name misc_name[5];
25 rtems_name misc_name[5];
26 rtems_id misc_id[5];
26 rtems_id misc_id[5];
27 rtems_name Task_name[20]; /* array of task names */
27 rtems_name Task_name[20]; /* array of task names */
28 rtems_id Task_id[20]; /* array of task ids */
28 rtems_id Task_id[20]; /* array of task ids */
29 unsigned int maxCount;
29 unsigned int maxCount;
30 int fdSPW = 0;
30 int fdSPW = 0;
31 int fdUART = 0;
31 int fdUART = 0;
32 unsigned char lfrCurrentMode;
32 unsigned char lfrCurrentMode;
33
33
34 // APB CONFIGURATION REGISTERS
34 // APB CONFIGURATION REGISTERS
35 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
35 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
36 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
36 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
37 #ifdef GSA
37 #ifdef GSA
38 #else
38 #else
39 waveform_picker_regs_t *waveform_picker_regs = (waveform_picker_regs_t*) REGS_ADDR_WAVEFORM_PICKER;
39 new_waveform_picker_regs_t *new_waveform_picker_regs = (new_waveform_picker_regs_t*) REGS_ADDR_WAVEFORM_PICKER;
40 waveform_picker_regs_t_alt *waveform_picker_regs_alt = (waveform_picker_regs_t_alt*) REGS_ADDR_WAVEFORM_PICKER;
41 #endif
40 #endif
42 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
41 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
43
42
44 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes
43 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes
45 volatile int wf_snap_f0[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
44 volatile int wf_snap_f0[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
46 //
45 //
47 volatile int wf_snap_f1[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
46 volatile int wf_snap_f1[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
48 volatile int wf_snap_f1_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
47 volatile int wf_snap_f1_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
49 volatile int wf_snap_f1_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
48 volatile int wf_snap_f1_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
50 //
49 //
51 volatile int wf_snap_f2[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
50 volatile int wf_snap_f2[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
52 volatile int wf_snap_f2_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
51 volatile int wf_snap_f2_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
53 volatile int wf_snap_f2_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
52 volatile int wf_snap_f2_norm[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
54 //
53 //
55 volatile int wf_cont_f3[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
54 volatile int wf_cont_f3[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
56 volatile int wf_cont_f3_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
55 volatile int wf_cont_f3_bis[ NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK + TIME_OFFSET ];
57 char wf_cont_f3_light[ NB_SAMPLES_PER_SNAPSHOT * NB_BYTES_CWF3_LIGHT_BLK ];
56 char wf_cont_f3_light[ NB_SAMPLES_PER_SNAPSHOT * NB_BYTES_CWF3_LIGHT_BLK ];
58
57
59 // SPECTRAL MATRICES GLOBAL VARIABLES
58 // SPECTRAL MATRICES GLOBAL VARIABLES
60 volatile int spec_mat_f0_0[ SM_HEADER + TOTAL_SIZE_SM ];
59 volatile int spec_mat_f0_0[ SM_HEADER + TOTAL_SIZE_SM ];
61 volatile int spec_mat_f0_1[ SM_HEADER + TOTAL_SIZE_SM ];
60 volatile int spec_mat_f0_1[ SM_HEADER + TOTAL_SIZE_SM ];
62 volatile int spec_mat_f0_a[ SM_HEADER + TOTAL_SIZE_SM ];
61 volatile int spec_mat_f0_a[ SM_HEADER + TOTAL_SIZE_SM ];
63 volatile int spec_mat_f0_b[ SM_HEADER + TOTAL_SIZE_SM ];
62 volatile int spec_mat_f0_b[ SM_HEADER + TOTAL_SIZE_SM ];
64 volatile int spec_mat_f0_c[ SM_HEADER + TOTAL_SIZE_SM ];
63 volatile int spec_mat_f0_c[ SM_HEADER + TOTAL_SIZE_SM ];
65 volatile int spec_mat_f0_d[ SM_HEADER + TOTAL_SIZE_SM ];
64 volatile int spec_mat_f0_d[ SM_HEADER + TOTAL_SIZE_SM ];
66 volatile int spec_mat_f0_e[ SM_HEADER + TOTAL_SIZE_SM ];
65 volatile int spec_mat_f0_e[ SM_HEADER + TOTAL_SIZE_SM ];
67 volatile int spec_mat_f0_f[ SM_HEADER + TOTAL_SIZE_SM ];
66 volatile int spec_mat_f0_f[ SM_HEADER + TOTAL_SIZE_SM ];
68 volatile int spec_mat_f0_g[ SM_HEADER + TOTAL_SIZE_SM ];
67 volatile int spec_mat_f0_g[ SM_HEADER + TOTAL_SIZE_SM ];
69 volatile int spec_mat_f0_h[ SM_HEADER + TOTAL_SIZE_SM ];
68 volatile int spec_mat_f0_h[ SM_HEADER + TOTAL_SIZE_SM ];
70 volatile int spec_mat_f0_0_bis[ SM_HEADER + TOTAL_SIZE_SM ];
69 volatile int spec_mat_f0_0_bis[ SM_HEADER + TOTAL_SIZE_SM ];
71 volatile int spec_mat_f0_1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
70 volatile int spec_mat_f0_1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
72 //
71 //
73 volatile int spec_mat_f1[ SM_HEADER + TOTAL_SIZE_SM ];
72 volatile int spec_mat_f1[ SM_HEADER + TOTAL_SIZE_SM ];
74 volatile int spec_mat_f1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
73 volatile int spec_mat_f1_bis[ SM_HEADER + TOTAL_SIZE_SM ];
75 //
74 //
76 volatile int spec_mat_f2[ SM_HEADER + TOTAL_SIZE_SM ];
75 volatile int spec_mat_f2[ SM_HEADER + TOTAL_SIZE_SM ];
77 volatile int spec_mat_f2_bis[ SM_HEADER + TOTAL_SIZE_SM ];
76 volatile int spec_mat_f2_bis[ SM_HEADER + TOTAL_SIZE_SM ];
78
77
79 // MODE PARAMETERS
78 // MODE PARAMETERS
80 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
79 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
81 struct param_local_str param_local;
80 struct param_local_str param_local;
82
81
83 // HK PACKETS
82 // HK PACKETS
84 Packet_TM_LFR_HK_t housekeeping_packet;
83 Packet_TM_LFR_HK_t housekeeping_packet;
85 // sequence counters are incremented by APID (PID + CAT) and destination ID
84 // sequence counters are incremented by APID (PID + CAT) and destination ID
86 unsigned short sequenceCounters[SEQ_CNT_NB_PID][SEQ_CNT_NB_CAT][SEQ_CNT_NB_DEST_ID];
85 unsigned short sequenceCounters[SEQ_CNT_NB_PID][SEQ_CNT_NB_CAT][SEQ_CNT_NB_DEST_ID];
87 spw_stats spacewire_stats;
86 spw_stats spacewire_stats;
88 spw_stats spacewire_stats_backup;
87 spw_stats spacewire_stats_backup;
89
88
90
89
@@ -1,1191 +1,1152
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 // SWF
12 // SWF
13 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
13 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
14 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
14 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
16 // CWF
16 // CWF
17 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
17 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[7];
18 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
18 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[7];
19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[7];
20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[7];
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[7];
22
22
23 unsigned char doubleSendCWF1 = 0;
23 unsigned char doubleSendCWF1 = 0;
24 unsigned char doubleSendCWF2 = 0;
24 unsigned char doubleSendCWF2 = 0;
25
25
26 rtems_isr waveforms_isr( rtems_vector_number vector )
26 rtems_isr waveforms_isr( rtems_vector_number vector )
27 {
27 {
28 /** This is the interrupt sub routine called by the waveform picker core.
28 /** This is the interrupt sub routine called by the waveform picker core.
29 *
29 *
30 * This ISR launch different actions depending mainly on two pieces of information:
30 * This ISR launch different actions depending mainly on two pieces of information:
31 * 1. the values read in the registers of the waveform picker.
31 * 1. the values read in the registers of the waveform picker.
32 * 2. the current LFR mode.
32 * 2. the current LFR mode.
33 *
33 *
34 */
34 */
35
35
36 #ifdef GSA
36 #ifdef GSA
37 #else
37 #else
38 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
38 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
39 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
39 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
40 { // in modes other than STANDBY and BURST, send the CWF_F3 data
40 { // in modes other than STANDBY and BURST, send the CWF_F3 data
41 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
41 if ((new_waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
42 // (1) change the receiving buffer for the waveform picker
42 // (1) change the receiving buffer for the waveform picker
43 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
43 if (new_waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
44 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_bis);
44 new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_bis);
45 }
45 }
46 else {
46 else {
47 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3);
47 new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3);
48 }
48 }
49 // (2) send an event for the waveforms transmission
49 // (2) send an event for the waveforms transmission
50 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
50 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
51 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
51 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
52 }
52 }
53 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
53 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
54 }
54 }
55 }
55 }
56 #endif
56 #endif
57
57
58 switch(lfrCurrentMode)
58 switch(lfrCurrentMode)
59 {
59 {
60 //********
60 //********
61 // STANDBY
61 // STANDBY
62 case(LFR_MODE_STANDBY):
62 case(LFR_MODE_STANDBY):
63 break;
63 break;
64
64
65 //******
65 //******
66 // NORMAL
66 // NORMAL
67 case(LFR_MODE_NORMAL):
67 case(LFR_MODE_NORMAL):
68 #ifdef GSA
68 #ifdef GSA
69 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
69 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
70 #else
70 #else
71 if ( (waveform_picker_regs->burst_enable & 0x7) == 0x0 ){ // if no channel is enable
71 if ( (new_waveform_picker_regs->run_burst_enable & 0x7) == 0x0 ){ // if no channel is enable
72 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
72 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
73 }
73 }
74 else {
74 else {
75 if ( (waveform_picker_regs->status & 0x7) == 0x7 ){ // f2 f1 and f0 are full
75 if ( (new_waveform_picker_regs->status & 0x7) == 0x7 ){ // f2 f1 and f0 are full
76 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable & 0x08;
76 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable & 0x08;
77 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
77 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
78 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
78 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
79 }
79 }
80 // waveform_picker_regs->status = waveform_picker_regs->status & 0x00;
80 // new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0x00;
81 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888;
81 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffff888;
82 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x07; // [0111] enable f2 f1 f0
82 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x07; // [0111] enable f2 f1 f0
83 }
83 }
84 }
84 }
85 #endif
85 #endif
86 break;
86 break;
87
87
88 //******
88 //******
89 // BURST
89 // BURST
90 case(LFR_MODE_BURST):
90 case(LFR_MODE_BURST):
91 #ifdef GSA
91 #ifdef GSA
92 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
92 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
93 #else
93 #else
94 if ((waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
94 if ((new_waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
95 // (1) change the receiving buffer for the waveform picker
95 // (1) change the receiving buffer for the waveform picker
96 if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
96 if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
97 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
97 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
98 }
98 }
99 else {
99 else {
100 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
100 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
101 }
101 }
102 // (2) send an event for the waveforms transmission
102 // (2) send an event for the waveforms transmission
103 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
103 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
104 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
104 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
105 }
105 }
106 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
106 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
107 }
107 }
108 #endif
108 #endif
109 break;
109 break;
110
110
111 //*****
111 //*****
112 // SBM1
112 // SBM1
113 case(LFR_MODE_SBM1):
113 case(LFR_MODE_SBM1):
114 #ifdef GSA
114 #ifdef GSA
115 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
115 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
116 #else
116 #else
117 if ((waveform_picker_regs->status & 0x02) == 0x02){ // [0010] check the f1 full bit
117 if ((new_waveform_picker_regs->status & 0x02) == 0x02){ // [0010] check the f1 full bit
118 // (1) change the receiving buffer for the waveform picker
118 // (1) change the receiving buffer for the waveform picker
119 if ( param_local.local_sbm1_nb_cwf_sent == (param_local.local_sbm1_nb_cwf_max-1) )
119 if ( param_local.local_sbm1_nb_cwf_sent == (param_local.local_sbm1_nb_cwf_max-1) )
120 {
120 {
121 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_norm);
121 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_norm);
122 }
122 }
123 else if ( waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1_norm )
123 else if ( new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1_norm )
124 {
124 {
125 doubleSendCWF1 = 1;
125 doubleSendCWF1 = 1;
126 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
126 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
127 }
127 }
128 else if ( waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1 ) {
128 else if ( new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1 ) {
129 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_bis);
129 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1_bis);
130 }
130 }
131 else {
131 else {
132 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
132 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1);
133 }
133 }
134 // (2) send an event for the waveforms transmission
134 // (2) send an event for the waveforms transmission
135 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
135 if (rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 ) != RTEMS_SUCCESSFUL) {
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 }
137 }
138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
138 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bit = 0
139 }
139 }
140 if ( ( (waveform_picker_regs->status & 0x05) == 0x05 ) ) { // [0101] check the f2 and f0 full bit
140 if ( ( (new_waveform_picker_regs->status & 0x05) == 0x05 ) ) { // [0101] check the f2 and f0 full bit
141 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
141 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
142 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
142 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
143 }
143 }
144 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
144 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2 and f0 bits = 0
145 reset_local_sbm1_nb_cwf_sent();
145 reset_local_sbm1_nb_cwf_sent();
146 }
146 }
147
147
148 #endif
148 #endif
149 break;
149 break;
150
150
151 //*****
151 //*****
152 // SBM2
152 // SBM2
153 case(LFR_MODE_SBM2):
153 case(LFR_MODE_SBM2):
154 #ifdef GSA
154 #ifdef GSA
155 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
155 PRINTF("in waveform_isr *** unexpected waveform picker interruption\n")
156 #else
156 #else
157 if ((waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
157 if ((new_waveform_picker_regs->status & 0x04) == 0x04){ // [0100] check the f2 full bit
158 // (1) change the receiving buffer for the waveform picker
158 // (1) change the receiving buffer for the waveform picker
159 if ( param_local.local_sbm2_nb_cwf_sent == (param_local.local_sbm2_nb_cwf_max-1) )
159 if ( param_local.local_sbm2_nb_cwf_sent == (param_local.local_sbm2_nb_cwf_max-1) )
160 {
160 {
161 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_norm);
161 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_norm);
162 }
162 }
163 else if ( waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2_norm ) {
163 else if ( new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2_norm ) {
164 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
164 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
165 doubleSendCWF2 = 1;
165 doubleSendCWF2 = 1;
166 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2_WFRM ) != RTEMS_SUCCESSFUL) {
166 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2_WFRM ) != RTEMS_SUCCESSFUL) {
167 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
167 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
168 }
168 }
169 reset_local_sbm2_nb_cwf_sent();
169 reset_local_sbm2_nb_cwf_sent();
170 }
170 }
171 else if ( waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2 ) {
171 else if ( new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2 ) {
172 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
172 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2_bis);
173 }
173 }
174 else {
174 else {
175 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
175 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2);
176 }
176 }
177 // (2) send an event for the waveforms transmission
177 // (2) send an event for the waveforms transmission
178 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
178 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
179 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
179 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
180 }
180 }
181 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
181 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
182 }
182 }
183 if ( ( (waveform_picker_regs->status & 0x03) == 0x03 ) ) { // [0011] f3 f2 f1 f0, f1 and f0 are full
183 if ( ( (new_waveform_picker_regs->status & 0x03) == 0x03 ) ) { // [0011] f3 f2 f1 f0, f1 and f0 are full
184 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
184 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 ) != RTEMS_SUCCESSFUL) {
185 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
185 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
186 }
186 }
187 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
187 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
188 }
188 }
189 #endif
189 #endif
190 break;
190 break;
191
191
192 //********
192 //********
193 // DEFAULT
193 // DEFAULT
194 default:
194 default:
195 break;
195 break;
196 }
196 }
197 }
197 }
198
198
199 rtems_isr waveforms_simulator_isr( rtems_vector_number vector )
199 rtems_isr waveforms_simulator_isr( rtems_vector_number vector )
200 {
200 {
201 /** This is the interrupt sub routine called by the waveform picker simulator.
201 /** This is the interrupt sub routine called by the waveform picker simulator.
202 *
202 *
203 * This ISR is for debug purpose only.
203 * This ISR is for debug purpose only.
204 *
204 *
205 */
205 */
206
206
207 unsigned char lfrMode;
207 unsigned char lfrMode;
208 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
208 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
209
209
210 switch(lfrMode) {
210 switch(lfrMode) {
211 case (LFR_MODE_STANDBY):
211 case (LFR_MODE_STANDBY):
212 break;
212 break;
213 case (LFR_MODE_NORMAL):
213 case (LFR_MODE_NORMAL):
214 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
214 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
215 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_5 );
215 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_5 );
216 }
216 }
217 break;
217 break;
218 case (LFR_MODE_BURST):
218 case (LFR_MODE_BURST):
219 break;
219 break;
220 case (LFR_MODE_SBM1):
220 case (LFR_MODE_SBM1):
221 break;
221 break;
222 case (LFR_MODE_SBM2):
222 case (LFR_MODE_SBM2):
223 break;
223 break;
224 }
224 }
225 }
225 }
226
226
227 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
227 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
228 {
228 {
229 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
229 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
230 *
230 *
231 * @param unused is the starting argument of the RTEMS task
231 * @param unused is the starting argument of the RTEMS task
232 *
232 *
233 * The following data packets are sent by this task:
233 * The following data packets are sent by this task:
234 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
234 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
235 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
235 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
236 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
236 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
237 *
237 *
238 */
238 */
239
239
240 rtems_event_set event_out;
240 rtems_event_set event_out;
241 rtems_id queue_id;
241 rtems_id queue_id;
242
242
243 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
243 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
244 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
244 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
245 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
245 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
246
246
247 init_waveforms();
247 init_waveforms();
248
248
249 queue_id = get_pkts_queue_id();
249 queue_id = get_pkts_queue_id();
250
250
251 BOOT_PRINTF("in WFRM ***\n")
251 BOOT_PRINTF("in WFRM ***\n")
252
252
253 while(1){
253 while(1){
254 // wait for an RTEMS_EVENT
254 // wait for an RTEMS_EVENT
255 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
255 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
256 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
256 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
257 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
257 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
258
258
259 if (event_out == RTEMS_EVENT_MODE_NORMAL)
259 if (event_out == RTEMS_EVENT_MODE_NORMAL)
260 {
260 {
261 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
261 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
262 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
262 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
263 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
263 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
264 #ifdef GSA
264 #ifdef GSA
265 waveform_picker_regs->status = waveform_picker_regs->status & 0xf888; // [1111 1000 1000 1000] f2, f1, f0 bits =0
265 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xf888; // [1111 1000 1000 1000] f2, f1, f0 bits =0
266 #endif
266 #endif
267 }
267 }
268 else if (event_out == RTEMS_EVENT_MODE_SBM1)
268 else if (event_out == RTEMS_EVENT_MODE_SBM1)
269 {
269 {
270 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
270 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
271 send_waveform_SWF(wf_snap_f1_norm, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
271 send_waveform_SWF(wf_snap_f1_norm, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
272 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
272 send_waveform_SWF(wf_snap_f2, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
273 #ifdef GSA
273 #ifdef GSA
274 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2, f0 bits = 0
274 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffaaa; // [1111 1010 1010 1010] f2, f0 bits = 0
275 #endif
275 #endif
276 }
276 }
277 else if (event_out == RTEMS_EVENT_MODE_SBM2)
277 else if (event_out == RTEMS_EVENT_MODE_SBM2)
278 {
278 {
279 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
279 send_waveform_SWF(wf_snap_f0, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
280 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
280 send_waveform_SWF(wf_snap_f1, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
281 #ifdef GSA
281 #ifdef GSA
282 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
282 new_waveform_picker_regs->status = new_waveform_picker_regs->status & 0xfffffccc; // [1111 1100 1100 1100] f1, f0 bits = 0
283 #endif
283 #endif
284 }
284 }
285 else if (event_out == RTEMS_EVENT_MODE_SBM2_WFRM)
285 else if (event_out == RTEMS_EVENT_MODE_SBM2_WFRM)
286 {
286 {
287 send_waveform_SWF(wf_snap_f2_norm, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
287 send_waveform_SWF(wf_snap_f2_norm, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
288 }
288 }
289 else
289 else
290 {
290 {
291 PRINTF("in WFRM *** unexpected event")
291 PRINTF("in WFRM *** unexpected event")
292 }
292 }
293
293
294
294
295 #ifdef GSA
295 #ifdef GSA
296 // irq processed, reset the related register of the timer unit
296 // irq processed, reset the related register of the timer unit
297 gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl = gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl | 0x00000010;
297 gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl = gptimer_regs->timer[TIMER_WF_SIMULATOR].ctrl | 0x00000010;
298 // clear the interruption
298 // clear the interruption
299 LEON_Unmask_interrupt( IRQ_WF );
299 LEON_Unmask_interrupt( IRQ_WF );
300 #endif
300 #endif
301 }
301 }
302 }
302 }
303
303
304 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
304 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
305 {
305 {
306 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
306 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
307 *
307 *
308 * @param unused is the starting argument of the RTEMS task
308 * @param unused is the starting argument of the RTEMS task
309 *
309 *
310 * The following data packet is sent by this task:
310 * The following data packet is sent by this task:
311 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
311 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
312 *
312 *
313 */
313 */
314
314
315 rtems_event_set event_out;
315 rtems_event_set event_out;
316 rtems_id queue_id;
316 rtems_id queue_id;
317
317
318 init_header_continuous_wf_table( SID_NORM_CWF_F3, headerCWF_F3 );
318 init_header_continuous_wf_table( SID_NORM_CWF_F3, headerCWF_F3 );
319 init_header_continuous_wf3_light_table( headerCWF_F3_light );
319 init_header_continuous_wf3_light_table( headerCWF_F3_light );
320
320
321 queue_id = get_pkts_queue_id();
321 queue_id = get_pkts_queue_id();
322
322
323 BOOT_PRINTF("in CWF3 ***\n")
323 BOOT_PRINTF("in CWF3 ***\n")
324
324
325 while(1){
325 while(1){
326 // wait for an RTEMS_EVENT
326 // wait for an RTEMS_EVENT
327 rtems_event_receive( RTEMS_EVENT_0,
327 rtems_event_receive( RTEMS_EVENT_0,
328 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
328 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
329 PRINTF("send CWF F3 \n")
329 PRINTF("send CWF F3 \n")
330 #ifdef GSA
330 #ifdef GSA
331 #else
331 #else
332 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
332 if (new_waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3) {
333 send_waveform_CWF3_light( wf_cont_f3_bis, headerCWF_F3_light, queue_id );
333 send_waveform_CWF3_light( wf_cont_f3_bis, headerCWF_F3_light, queue_id );
334 }
334 }
335 else {
335 else {
336 send_waveform_CWF3_light( wf_cont_f3, headerCWF_F3_light, queue_id );
336 send_waveform_CWF3_light( wf_cont_f3, headerCWF_F3_light, queue_id );
337 }
337 }
338 #endif
338 #endif
339 }
339 }
340 }
340 }
341
341
342 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
342 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
343 {
343 {
344 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
344 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
345 *
345 *
346 * @param unused is the starting argument of the RTEMS task
346 * @param unused is the starting argument of the RTEMS task
347 *
347 *
348 * The following data packet is sent by this function:
348 * The following data packet is sent by this function:
349 * - TM_LFR_SCIENCE_BURST_CWF_F2
349 * - TM_LFR_SCIENCE_BURST_CWF_F2
350 * - TM_LFR_SCIENCE_SBM2_CWF_F2
350 * - TM_LFR_SCIENCE_SBM2_CWF_F2
351 *
351 *
352 */
352 */
353
353
354 rtems_event_set event_out;
354 rtems_event_set event_out;
355 rtems_id queue_id;
355 rtems_id queue_id;
356
356
357 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
357 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
358 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
358 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
359
359
360 queue_id = get_pkts_queue_id();
360 queue_id = get_pkts_queue_id();
361
361
362 BOOT_PRINTF("in CWF2 ***\n")
362 BOOT_PRINTF("in CWF2 ***\n")
363
363
364 while(1){
364 while(1){
365 // wait for an RTEMS_EVENT
365 // wait for an RTEMS_EVENT
366 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
366 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
367 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
367 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
368
368
369 if (event_out == RTEMS_EVENT_MODE_BURST)
369 if (event_out == RTEMS_EVENT_MODE_BURST)
370 {
370 {
371 // F2
371 // F2
372 #ifdef GSA
372 #ifdef GSA
373 #else
373 #else
374 if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
374 if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
375 send_waveform_CWF( wf_snap_f2_bis, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
375 send_waveform_CWF( wf_snap_f2_bis, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
376 }
376 }
377 else {
377 else {
378 send_waveform_CWF( wf_snap_f2, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
378 send_waveform_CWF( wf_snap_f2, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
379 }
379 }
380 #endif
380 #endif
381 }
381 }
382
382
383 else if (event_out == RTEMS_EVENT_MODE_SBM2)
383 else if (event_out == RTEMS_EVENT_MODE_SBM2)
384 {
384 {
385 #ifdef GSA
385 #ifdef GSA
386 #else
386 #else
387 if (doubleSendCWF2 == 1)
387 if (doubleSendCWF2 == 1)
388 {
388 {
389 doubleSendCWF2 = 0;
389 doubleSendCWF2 = 0;
390 send_waveform_CWF( wf_snap_f2_norm, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
390 send_waveform_CWF( wf_snap_f2_norm, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
391 }
391 }
392 else if (waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
392 else if (new_waveform_picker_regs->addr_data_f2 == (int) wf_snap_f2) {
393 send_waveform_CWF( wf_snap_f2_bis, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
393 send_waveform_CWF( wf_snap_f2_bis, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
394 }
394 }
395 else {
395 else {
396 send_waveform_CWF( wf_snap_f2, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
396 send_waveform_CWF( wf_snap_f2, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
397 }
397 }
398 param_local.local_sbm2_nb_cwf_sent ++;
398 param_local.local_sbm2_nb_cwf_sent ++;
399 #endif
399 #endif
400 }
400 }
401 else
401 else
402 {
402 {
403 PRINTF1("in CWF2 *** ERR mode = %d\n", lfrCurrentMode)
403 PRINTF1("in CWF2 *** ERR mode = %d\n", lfrCurrentMode)
404 }
404 }
405 }
405 }
406 }
406 }
407
407
408 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
408 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
409 {
409 {
410 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
410 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
411 *
411 *
412 * @param unused is the starting argument of the RTEMS task
412 * @param unused is the starting argument of the RTEMS task
413 *
413 *
414 * The following data packet is sent by this function:
414 * The following data packet is sent by this function:
415 * - TM_LFR_SCIENCE_SBM1_CWF_F1
415 * - TM_LFR_SCIENCE_SBM1_CWF_F1
416 *
416 *
417 */
417 */
418
418
419 rtems_event_set event_out;
419 rtems_event_set event_out;
420 rtems_id queue_id;
420 rtems_id queue_id;
421
421
422 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
422 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
423
423
424 queue_id = get_pkts_queue_id();
424 queue_id = get_pkts_queue_id();
425
425
426 BOOT_PRINTF("in CWF1 ***\n")
426 BOOT_PRINTF("in CWF1 ***\n")
427
427
428 while(1){
428 while(1){
429 // wait for an RTEMS_EVENT
429 // wait for an RTEMS_EVENT
430 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
430 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
431 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
431 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
432 if (event_out == RTEMS_EVENT_MODE_SBM1)
432 if (event_out == RTEMS_EVENT_MODE_SBM1)
433 {
433 {
434 #ifdef GSA
434 #ifdef GSA
435 #else
435 #else
436 if (doubleSendCWF1 == 1)
436 if (doubleSendCWF1 == 1)
437 {
437 {
438 doubleSendCWF1 = 0;
438 doubleSendCWF1 = 0;
439 send_waveform_CWF( wf_snap_f1_norm, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
439 send_waveform_CWF( wf_snap_f1_norm, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
440 }
440 }
441 else if (waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1) {
441 else if (new_waveform_picker_regs->addr_data_f1 == (int) wf_snap_f1) {
442 send_waveform_CWF( wf_snap_f1_bis, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
442 send_waveform_CWF( wf_snap_f1_bis, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
443 }
443 }
444 else {
444 else {
445 send_waveform_CWF( wf_snap_f1, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
445 send_waveform_CWF( wf_snap_f1, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
446 }
446 }
447 param_local.local_sbm1_nb_cwf_sent ++;
447 param_local.local_sbm1_nb_cwf_sent ++;
448 #endif
448 #endif
449 }
449 }
450 else
450 else
451 {
451 {
452 PRINTF1("in CWF1 *** ERR mode = %d\n", lfrCurrentMode)
452 PRINTF1("in CWF1 *** ERR mode = %d\n", lfrCurrentMode)
453 }
453 }
454 }
454 }
455 }
455 }
456
456
457 //******************
457 //******************
458 // general functions
458 // general functions
459 void init_waveforms( void )
459 void init_waveforms( void )
460 {
460 {
461 int i = 0;
461 int i = 0;
462
462
463 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
463 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
464 {
464 {
465 //***
465 //***
466 // F0
466 // F0
467 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
467 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
468 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
468 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
469 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
469 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
470
470
471 //***
471 //***
472 // F1
472 // F1
473 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
473 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
474 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
474 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
475 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
475 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
476
476
477 //***
477 //***
478 // F2
478 // F2
479 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
479 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
480 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
480 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
481 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
481 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
482
482
483 //***
483 //***
484 // F3
484 // F3
485 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
485 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
486 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
486 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
487 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
487 //wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
488 }
488 }
489 }
489 }
490
490
491 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
491 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
492 {
492 {
493 unsigned char i;
493 unsigned char i;
494
494
495 for (i=0; i<7; i++)
495 for (i=0; i<7; i++)
496 {
496 {
497 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
497 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
498 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
498 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
499 headerSWF[ i ].reserved = DEFAULT_RESERVED;
499 headerSWF[ i ].reserved = DEFAULT_RESERVED;
500 headerSWF[ i ].userApplication = CCSDS_USER_APP;
500 headerSWF[ i ].userApplication = CCSDS_USER_APP;
501 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
501 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
502 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
502 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
503 if (i == 0)
503 if (i == 0)
504 {
504 {
505 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
505 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
506 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
506 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
507 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
507 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
508 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
508 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
509 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
509 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
510 }
510 }
511 else if (i == 6)
511 else if (i == 6)
512 {
512 {
513 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
513 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
514 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_8 >> 8);
514 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_8 >> 8);
515 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_8 );
515 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_8 );
516 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
516 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
517 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
517 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
518 }
518 }
519 else
519 else
520 {
520 {
521 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
521 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
522 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
522 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_340 >> 8);
523 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
523 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_340 );
524 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
524 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
525 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
525 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
526 }
526 }
527 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
527 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
528 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
528 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
529 headerSWF[ i ].pktNr = i+1; // PKT_NR
529 headerSWF[ i ].pktNr = i+1; // PKT_NR
530 // DATA FIELD HEADER
530 // DATA FIELD HEADER
531 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
531 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
532 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
532 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
533 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
533 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
534 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
534 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
535 // AUXILIARY DATA HEADER
535 // AUXILIARY DATA HEADER
536 headerSWF[ i ].sid = sid;
536 headerSWF[ i ].sid = sid;
537 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
537 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
538 headerSWF[ i ].time[0] = 0x00;
538 headerSWF[ i ].time[0] = 0x00;
539 headerSWF[ i ].time[0] = 0x00;
539 headerSWF[ i ].time[0] = 0x00;
540 headerSWF[ i ].time[0] = 0x00;
540 headerSWF[ i ].time[0] = 0x00;
541 headerSWF[ i ].time[0] = 0x00;
541 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].time[0] = 0x00;
543 headerSWF[ i ].time[0] = 0x00;
543 headerSWF[ i ].time[0] = 0x00;
544 }
544 }
545 return LFR_SUCCESSFUL;
545 return LFR_SUCCESSFUL;
546 }
546 }
547
547
548 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
548 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
549 {
549 {
550 unsigned int i;
550 unsigned int i;
551
551
552 for (i=0; i<7; i++)
552 for (i=0; i<7; i++)
553 {
553 {
554 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
554 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
555 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
555 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
556 headerCWF[ i ].reserved = DEFAULT_RESERVED;
556 headerCWF[ i ].reserved = DEFAULT_RESERVED;
557 headerCWF[ i ].userApplication = CCSDS_USER_APP;
557 headerCWF[ i ].userApplication = CCSDS_USER_APP;
558 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
558 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
559 {
559 {
560 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
560 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
561 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
561 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
562 }
562 }
563 else
563 else
564 {
564 {
565 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
565 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
566 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
566 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
567 }
567 }
568 if (i == 0)
568 if (i == 0)
569 {
569 {
570 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
570 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
571 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
571 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
572 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
572 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
573 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
573 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
574 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
574 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
575 }
575 }
576 else if (i == 6)
576 else if (i == 6)
577 {
577 {
578 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
578 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
579 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_8 >> 8);
579 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_8 >> 8);
580 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_8 );
580 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_8 );
581 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
581 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
582 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
582 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
583 }
583 }
584 else
584 else
585 {
585 {
586 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
586 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
587 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
587 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_340 >> 8);
588 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
588 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_340 );
589 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
589 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
590 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
590 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
591 }
591 }
592 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
592 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
593 // PKT_CNT
593 // PKT_CNT
594 // PKT_NR
594 // PKT_NR
595 // DATA FIELD HEADER
595 // DATA FIELD HEADER
596 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
596 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
597 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
597 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
598 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
598 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
599 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
599 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
600 // AUXILIARY DATA HEADER
600 // AUXILIARY DATA HEADER
601 headerCWF[ i ].sid = sid;
601 headerCWF[ i ].sid = sid;
602 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
602 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
603 headerCWF[ i ].time[0] = 0x00;
603 headerCWF[ i ].time[0] = 0x00;
604 headerCWF[ i ].time[0] = 0x00;
604 headerCWF[ i ].time[0] = 0x00;
605 headerCWF[ i ].time[0] = 0x00;
605 headerCWF[ i ].time[0] = 0x00;
606 headerCWF[ i ].time[0] = 0x00;
606 headerCWF[ i ].time[0] = 0x00;
607 headerCWF[ i ].time[0] = 0x00;
607 headerCWF[ i ].time[0] = 0x00;
608 headerCWF[ i ].time[0] = 0x00;
608 headerCWF[ i ].time[0] = 0x00;
609 }
609 }
610 return LFR_SUCCESSFUL;
610 return LFR_SUCCESSFUL;
611 }
611 }
612
612
613 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
613 int init_header_continuous_wf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
614 {
614 {
615 unsigned int i;
615 unsigned int i;
616
616
617 for (i=0; i<7; i++)
617 for (i=0; i<7; i++)
618 {
618 {
619 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
619 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
620 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
620 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
621 headerCWF[ i ].reserved = DEFAULT_RESERVED;
621 headerCWF[ i ].reserved = DEFAULT_RESERVED;
622 headerCWF[ i ].userApplication = CCSDS_USER_APP;
622 headerCWF[ i ].userApplication = CCSDS_USER_APP;
623
623
624 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
624 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
625 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
625 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
626 if (i == 0)
626 if (i == 0)
627 {
627 {
628 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
628 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_FIRST;
629 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
629 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
630 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
630 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
631 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
631 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
632 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
632 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
633 }
633 }
634 else if (i == 6)
634 else if (i == 6)
635 {
635 {
636 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
636 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_LAST;
637 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 >> 8);
637 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 >> 8);
638 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 );
638 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_8 );
639 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
639 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_8 >> 8);
640 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
640 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_8 );
641 }
641 }
642 else
642 else
643 {
643 {
644 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
644 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_CONTINUATION;
645 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
645 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 >> 8);
646 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
646 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF3_LIGHT_340 );
647 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
647 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_340 >> 8);
648 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
648 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_340 );
649 }
649 }
650 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
650 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
651 // DATA FIELD HEADER
651 // DATA FIELD HEADER
652 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
652 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
653 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
653 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
654 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
654 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
655 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
655 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
656 // AUXILIARY DATA HEADER
656 // AUXILIARY DATA HEADER
657 headerCWF[ i ].sid = SID_NORM_CWF_F3;
657 headerCWF[ i ].sid = SID_NORM_CWF_F3;
658 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
658 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
659 headerCWF[ i ].time[0] = 0x00;
659 headerCWF[ i ].time[0] = 0x00;
660 headerCWF[ i ].time[0] = 0x00;
660 headerCWF[ i ].time[0] = 0x00;
661 headerCWF[ i ].time[0] = 0x00;
661 headerCWF[ i ].time[0] = 0x00;
662 headerCWF[ i ].time[0] = 0x00;
662 headerCWF[ i ].time[0] = 0x00;
663 headerCWF[ i ].time[0] = 0x00;
663 headerCWF[ i ].time[0] = 0x00;
664 headerCWF[ i ].time[0] = 0x00;
664 headerCWF[ i ].time[0] = 0x00;
665 }
665 }
666 return LFR_SUCCESSFUL;
666 return LFR_SUCCESSFUL;
667 }
667 }
668
668
669 void reset_waveforms( void )
669 void reset_waveforms( void )
670 {
670 {
671 int i = 0;
671 int i = 0;
672
672
673 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
673 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
674 {
674 {
675 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x10002000;
675 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x10002000;
676 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
676 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
677 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
677 wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
678
678
679 //***
679 //***
680 // F1
680 // F1
681 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x1000f000;
681 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x1000f000;
682 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0xf0001000;
682 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0xf0001000;
683 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
683 wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x40008000;
684
684
685 //***
685 //***
686 // F2
686 // F2
687 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x40008000;
687 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET] = 0x40008000;
688 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
688 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET] = 0x20001000;
689 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x10002000;
689 wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET] = 0x10002000;
690
690
691 //***
691 //***
692 // F3
692 // F3
693 /*wf_cont_f3[ i* NB_WORDS_SWF_BLK + 0 ] = build_value( i, i ); // v and 1
693 /*wf_cont_f3[ i* NB_WORDS_SWF_BLK + 0 ] = build_value( i, i ); // v and 1
694 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 1 ] = build_value( i, i ); // e2 and b1
694 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 1 ] = build_value( i, i ); // e2 and b1
695 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 2 ] = build_value( i, i ); // b2 and b3*/
695 wf_cont_f3[ i* NB_WORDS_SWF_BLK + 2 ] = build_value( i, i ); // b2 and b3*/
696 }
696 }
697 }
697 }
698
698
699 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
699 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
700 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
700 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
701 {
701 {
702 /** This function sends SWF CCSDS packets (F2, F1 or F0).
702 /** This function sends SWF CCSDS packets (F2, F1 or F0).
703 *
703 *
704 * @param waveform points to the buffer containing the data that will be send.
704 * @param waveform points to the buffer containing the data that will be send.
705 * @param sid is the source identifier of the data that will be sent.
705 * @param sid is the source identifier of the data that will be sent.
706 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
706 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
707 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
707 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
708 * contain information to setup the transmission of the data packets.
708 * contain information to setup the transmission of the data packets.
709 *
709 *
710 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
710 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
711 *
711 *
712 */
712 */
713
713
714 unsigned int i;
714 unsigned int i;
715 int ret;
715 int ret;
716 rtems_status_code status;
716 rtems_status_code status;
717 spw_ioctl_pkt_send spw_ioctl_send_SWF;
717 spw_ioctl_pkt_send spw_ioctl_send_SWF;
718
718
719 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
719 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
720 spw_ioctl_send_SWF.options = 0;
720 spw_ioctl_send_SWF.options = 0;
721
721
722 ret = LFR_DEFAULT;
722 ret = LFR_DEFAULT;
723
723
724 for (i=0; i<7; i++) // send waveform
724 for (i=0; i<7; i++) // send waveform
725 {
725 {
726 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
726 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
727 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
727 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
728 // BUILD THE DATA
728 // BUILD THE DATA
729 if (i==6) {
729 if (i==6) {
730 spw_ioctl_send_SWF.dlen = 8 * NB_BYTES_SWF_BLK;
730 spw_ioctl_send_SWF.dlen = 8 * NB_BYTES_SWF_BLK;
731 }
731 }
732 else {
732 else {
733 spw_ioctl_send_SWF.dlen = 340 * NB_BYTES_SWF_BLK;
733 spw_ioctl_send_SWF.dlen = 340 * NB_BYTES_SWF_BLK;
734 }
734 }
735 // SET PACKET TIME
735 // SET PACKET TIME
736 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
736 headerSWF[ i ].acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
737 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
737 headerSWF[ i ].acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
738 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
738 headerSWF[ i ].acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
739 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
739 headerSWF[ i ].acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
740 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
740 headerSWF[ i ].acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
741 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
741 headerSWF[ i ].acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
742 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
742 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
743 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
743 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
744 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
744 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
745 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
745 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
746 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
746 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
747 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
747 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
748 // SEND PACKET
748 // SEND PACKET
749 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
749 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
750 if (status != RTEMS_SUCCESSFUL) {
750 if (status != RTEMS_SUCCESSFUL) {
751 printf("%d-%d, ERR %d\n", sid, i, (int) status);
751 printf("%d-%d, ERR %d\n", sid, i, (int) status);
752 ret = LFR_DEFAULT;
752 ret = LFR_DEFAULT;
753 }
753 }
754 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
754 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
755 }
755 }
756
756
757 return ret;
757 return ret;
758 }
758 }
759
759
760 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
760 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
761 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
761 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
762 {
762 {
763 /** This function sends CWF CCSDS packets (F2, F1 or F0).
763 /** This function sends CWF CCSDS packets (F2, F1 or F0).
764 *
764 *
765 * @param waveform points to the buffer containing the data that will be send.
765 * @param waveform points to the buffer containing the data that will be send.
766 * @param sid is the source identifier of the data that will be sent.
766 * @param sid is the source identifier of the data that will be sent.
767 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
767 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
768 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
768 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
769 * contain information to setup the transmission of the data packets.
769 * contain information to setup the transmission of the data packets.
770 *
770 *
771 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
771 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
772 *
772 *
773 */
773 */
774
774
775 unsigned int i;
775 unsigned int i;
776 int ret;
776 int ret;
777 rtems_status_code status;
777 rtems_status_code status;
778 spw_ioctl_pkt_send spw_ioctl_send_CWF;
778 spw_ioctl_pkt_send spw_ioctl_send_CWF;
779
779
780 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
780 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
781 spw_ioctl_send_CWF.options = 0;
781 spw_ioctl_send_CWF.options = 0;
782
782
783 ret = LFR_DEFAULT;
783 ret = LFR_DEFAULT;
784
784
785 for (i=0; i<7; i++) // send waveform
785 for (i=0; i<7; i++) // send waveform
786 {
786 {
787 int coarseTime = 0x00;
787 int coarseTime = 0x00;
788 int fineTime = 0x00;
788 int fineTime = 0x00;
789 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
789 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * 340 * NB_WORDS_SWF_BLK) ];
790 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
790 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
791 // BUILD THE DATA
791 // BUILD THE DATA
792 if (i==6) {
792 if (i==6) {
793 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_SWF_BLK;
793 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_SWF_BLK;
794 }
794 }
795 else {
795 else {
796 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_SWF_BLK;
796 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_SWF_BLK;
797 }
797 }
798 // SET PACKET TIME
798 // SET PACKET TIME
799 coarseTime = time_management_regs->coarse_time;
799 coarseTime = time_management_regs->coarse_time;
800 fineTime = time_management_regs->fine_time;
800 fineTime = time_management_regs->fine_time;
801 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
801 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
802 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
802 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
803 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
803 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
804 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
804 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
805 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
805 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
806 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
806 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
807 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
807 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
808 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
808 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
809 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
809 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
810 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
810 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
811 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
811 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
812 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
812 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
813 // SEND PACKET
813 // SEND PACKET
814 if (sid == SID_NORM_CWF_F3)
814 if (sid == SID_NORM_CWF_F3)
815 {
815 {
816 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
816 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
817 if (status != RTEMS_SUCCESSFUL) {
817 if (status != RTEMS_SUCCESSFUL) {
818 printf("%d-%d, ERR %d\n", sid, i, (int) status);
818 printf("%d-%d, ERR %d\n", sid, i, (int) status);
819 ret = LFR_DEFAULT;
819 ret = LFR_DEFAULT;
820 }
820 }
821 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
821 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
822 }
822 }
823 else
823 else
824 {
824 {
825 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
825 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
826 if (status != RTEMS_SUCCESSFUL) {
826 if (status != RTEMS_SUCCESSFUL) {
827 printf("%d-%d, ERR %d\n", sid, i, (int) status);
827 printf("%d-%d, ERR %d\n", sid, i, (int) status);
828 ret = LFR_DEFAULT;
828 ret = LFR_DEFAULT;
829 }
829 }
830 }
830 }
831 }
831 }
832
832
833 return ret;
833 return ret;
834 }
834 }
835
835
836 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
836 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
837 {
837 {
838 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
838 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
839 *
839 *
840 * @param waveform points to the buffer containing the data that will be send.
840 * @param waveform points to the buffer containing the data that will be send.
841 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
841 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
842 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
842 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
843 * contain information to setup the transmission of the data packets.
843 * contain information to setup the transmission of the data packets.
844 *
844 *
845 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
845 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
846 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
846 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
847 *
847 *
848 */
848 */
849
849
850 unsigned int i;
850 unsigned int i;
851 int ret;
851 int ret;
852 rtems_status_code status;
852 rtems_status_code status;
853 spw_ioctl_pkt_send spw_ioctl_send_CWF;
853 spw_ioctl_pkt_send spw_ioctl_send_CWF;
854 char *sample;
854 char *sample;
855
855
856 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
856 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
857 spw_ioctl_send_CWF.options = 0;
857 spw_ioctl_send_CWF.options = 0;
858
858
859 ret = LFR_DEFAULT;
859 ret = LFR_DEFAULT;
860
860
861 //**********************
861 //**********************
862 // BUILD CWF3_light DATA
862 // BUILD CWF3_light DATA
863 for ( i=0; i< 2048; i++)
863 for ( i=0; i< 2048; i++)
864 {
864 {
865 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
865 sample = (char*) &waveform[ i * NB_WORDS_SWF_BLK ];
866 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
866 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
867 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
867 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
868 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
868 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
869 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
869 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
870 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
870 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
871 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
871 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
872 }
872 }
873
873
874 //*********************
874 //*********************
875 // SEND CWF3_light DATA
875 // SEND CWF3_light DATA
876
876
877 for (i=0; i<7; i++) // send waveform
877 for (i=0; i<7; i++) // send waveform
878 {
878 {
879 int coarseTime = 0x00;
879 int coarseTime = 0x00;
880 int fineTime = 0x00;
880 int fineTime = 0x00;
881 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * 340 * NB_BYTES_CWF3_LIGHT_BLK) ];
881 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * 340 * NB_BYTES_CWF3_LIGHT_BLK) ];
882 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
882 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
883 // BUILD THE DATA
883 // BUILD THE DATA
884 if ( i == WFRM_INDEX_OF_LAST_PACKET ) {
884 if ( i == WFRM_INDEX_OF_LAST_PACKET ) {
885 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_CWF3_LIGHT_BLK;
885 spw_ioctl_send_CWF.dlen = 8 * NB_BYTES_CWF3_LIGHT_BLK;
886 }
886 }
887 else {
887 else {
888 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_CWF3_LIGHT_BLK;
888 spw_ioctl_send_CWF.dlen = 340 * NB_BYTES_CWF3_LIGHT_BLK;
889 }
889 }
890 // SET PACKET TIME
890 // SET PACKET TIME
891 coarseTime = time_management_regs->coarse_time;
891 coarseTime = time_management_regs->coarse_time;
892 fineTime = time_management_regs->fine_time;
892 fineTime = time_management_regs->fine_time;
893 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
893 headerCWF[ i ].acquisitionTime[0] = (unsigned char) (coarseTime>>24);
894 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
894 headerCWF[ i ].acquisitionTime[1] = (unsigned char) (coarseTime>>16);
895 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
895 headerCWF[ i ].acquisitionTime[2] = (unsigned char) (coarseTime>>8);
896 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
896 headerCWF[ i ].acquisitionTime[3] = (unsigned char) (coarseTime);
897 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
897 headerCWF[ i ].acquisitionTime[4] = (unsigned char) (fineTime>>8);
898 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
898 headerCWF[ i ].acquisitionTime[5] = (unsigned char) (fineTime);
899 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
899 headerCWF[ i ].time[0] = (unsigned char) (coarseTime>>24);
900 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
900 headerCWF[ i ].time[1] = (unsigned char) (coarseTime>>16);
901 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
901 headerCWF[ i ].time[2] = (unsigned char) (coarseTime>>8);
902 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
902 headerCWF[ i ].time[3] = (unsigned char) (coarseTime);
903 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
903 headerCWF[ i ].time[4] = (unsigned char) (fineTime>>8);
904 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
904 headerCWF[ i ].time[5] = (unsigned char) (fineTime);
905 // SEND PACKET
905 // SEND PACKET
906 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
906 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
907 if (status != RTEMS_SUCCESSFUL) {
907 if (status != RTEMS_SUCCESSFUL) {
908 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
908 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
909 ret = LFR_DEFAULT;
909 ret = LFR_DEFAULT;
910 }
910 }
911 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
911 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
912 }
912 }
913
913
914 return ret;
914 return ret;
915 }
915 }
916
916
917
917
918 //**************
918 //**************
919 // wfp registers
919 // wfp registers
920 void set_wfp_data_shaping()
920 void set_wfp_data_shaping()
921 {
921 {
922 /** This function sets the data_shaping register of the waveform picker module.
922 /** This function sets the data_shaping register of the waveform picker module.
923 *
923 *
924 * The value is read from one field of the parameter_dump_packet structure:\n
924 * The value is read from one field of the parameter_dump_packet structure:\n
925 * bw_sp0_sp1_r0_r1
925 * bw_sp0_sp1_r0_r1
926 *
926 *
927 */
927 */
928
928
929 unsigned char data_shaping;
929 unsigned char data_shaping;
930
930
931 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
931 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
932 // waveform picker : [R1 R0 SP1 SP0 BW]
932 // waveform picker : [R1 R0 SP1 SP0 BW]
933
933
934 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
934 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
935
935
936 #ifdef GSA
936 #ifdef GSA
937 #else
937 #else
938 waveform_picker_regs->data_shaping =
938 new_waveform_picker_regs->data_shaping =
939 ( (data_shaping & 0x10) >> 4 ) // BW
939 ( (data_shaping & 0x10) >> 4 ) // BW
940 + ( (data_shaping & 0x08) >> 2 ) // SP0
940 + ( (data_shaping & 0x08) >> 2 ) // SP0
941 + ( (data_shaping & 0x04) ) // SP1
941 + ( (data_shaping & 0x04) ) // SP1
942 + ( (data_shaping & 0x02) << 2 ) // R0
942 + ( (data_shaping & 0x02) << 2 ) // R0
943 + ( (data_shaping & 0x01) << 4 ); // R1
943 + ( (data_shaping & 0x01) << 4 ); // R1
944 #endif
944 #endif
945 }
945 }
946
946
947 char set_wfp_delta_snapshot()
947 char set_wfp_delta_snapshot()
948 {
948 {
949 /** This function sets the delta_snapshot register of the waveform picker module.
949 /** This function sets the delta_snapshot register of the waveform picker module.
950 *
950 *
951 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
951 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
952 * - sy_lfr_n_swf_p[0]
952 * - sy_lfr_n_swf_p[0]
953 * - sy_lfr_n_swf_p[1]
953 * - sy_lfr_n_swf_p[1]
954 *
954 *
955 */
955 */
956
956
957 char ret;
957 char ret;
958 unsigned int delta_snapshot;
958 unsigned int delta_snapshot;
959 unsigned int aux;
959 unsigned int aux;
960
960
961 aux = 0;
961 aux = 0;
962 ret = LFR_DEFAULT;
962 ret = LFR_DEFAULT;
963
963
964 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
964 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
965 + parameter_dump_packet.sy_lfr_n_swf_p[1];
965 + parameter_dump_packet.sy_lfr_n_swf_p[1];
966
966
967 #ifdef GSA
967 #ifdef GSA
968 #else
968 #else
969 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
969 if ( delta_snapshot < MIN_DELTA_SNAPSHOT )
970 {
970 {
971 aux = MIN_DELTA_SNAPSHOT;
971 aux = MIN_DELTA_SNAPSHOT;
972 ret = LFR_DEFAULT;
972 ret = LFR_DEFAULT;
973 }
973 }
974 else
974 else
975 {
975 {
976 aux = delta_snapshot ;
976 aux = delta_snapshot ;
977 ret = LFR_SUCCESSFUL;
977 ret = LFR_SUCCESSFUL;
978 }
978 }
979 waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
979 new_waveform_picker_regs->delta_snapshot = aux - 1; // max 2 bytes
980 #endif
980 #endif
981
981
982 return ret;
982 return ret;
983 }
983 }
984
984
985 void set_wfp_burst_enable_register( unsigned char mode)
985 void set_wfp_burst_enable_register( unsigned char mode)
986 {
986 {
987 /** This function sets the waveform picker burst_enable register depending on the mode.
987 /** This function sets the waveform picker burst_enable register depending on the mode.
988 *
988 *
989 * @param mode is the LFR mode to launch.
989 * @param mode is the LFR mode to launch.
990 *
990 *
991 * The burst bits shall be before the enable bits.
991 * The burst bits shall be before the enable bits.
992 *
992 *
993 */
993 */
994
994
995 #ifdef GSA
995 #ifdef GSA
996 #else
996 #else
997 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
997 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
998 // the burst bits shall be set first, before the enable bits
998 // the burst bits shall be set first, before the enable bits
999 switch(mode) {
999 switch(mode) {
1000 case(LFR_MODE_NORMAL):
1000 case(LFR_MODE_NORMAL):
1001 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enable
1001 new_waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1002 waveform_picker_regs->burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1002 new_waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1003 break;
1003 break;
1004 case(LFR_MODE_BURST):
1004 case(LFR_MODE_BURST):
1005 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1005 new_waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1006 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x04; // [0100] enable f2
1006 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1007 break;
1007 break;
1008 case(LFR_MODE_SBM1):
1008 case(LFR_MODE_SBM1):
1009 waveform_picker_regs->burst_enable = 0x20; // [0010 0000] f1 burst enabled
1009 new_waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1010 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1010 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1011 break;
1011 break;
1012 case(LFR_MODE_SBM2):
1012 case(LFR_MODE_SBM2):
1013 waveform_picker_regs->burst_enable = 0x40; // [0100 0000] f2 burst enabled
1013 new_waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1014 waveform_picker_regs->burst_enable = waveform_picker_regs->burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1014 new_waveform_picker_regs->run_burst_enable = new_waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1015 break;
1015 break;
1016 default:
1016 default:
1017 waveform_picker_regs->burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1017 new_waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1018 break;
1018 break;
1019 }
1019 }
1020 #endif
1020 #endif
1021 }
1021 }
1022
1022
1023 void reset_wfp_burst_enable()
1023 void reset_wfp_burst_enable()
1024 {
1024 {
1025 /** This function resets the waveform picker burst_enable register.
1025 /** This function resets the waveform picker burst_enable register.
1026 *
1026 *
1027 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1027 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1028 *
1028 *
1029 */
1029 */
1030
1030
1031 #ifdef GSA
1031 #ifdef GSA
1032 #else
1032 #else
1033 waveform_picker_regs->burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1033 new_waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1034 #endif
1034 #endif
1035 }
1035 }
1036
1036
1037 void reset_wfp_status()
1037 void reset_wfp_status()
1038 {
1038 {
1039 /** This function resets the waveform picker status register.
1039 /** This function resets the waveform picker status register.
1040 *
1040 *
1041 * All status bits are set to 0 [new_err full_err full].
1041 * All status bits are set to 0 [new_err full_err full].
1042 *
1042 *
1043 */
1043 */
1044
1044
1045 #ifdef GSA
1045 #ifdef GSA
1046 #else
1046 #else
1047 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1047 new_waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1048 #endif
1048 #endif
1049 }
1049 }
1050
1050
1051 void reset_waveform_picker_regs()
1051 void reset_new_waveform_picker_regs()
1052 {
1052 {
1053 /** This function resets the waveform picker module registers.
1053 new_waveform_picker_regs->data_shaping = 0x01; // 0x00 00 *** R1 R0 SP1 SP0 BW
1054 *
1054 new_waveform_picker_regs->run_burst_enable = 0x00; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1055 * The registers affected by this function are located at the following offset addresses:
1055 new_waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1056 * - 0x00 data_shaping
1056 new_waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1); // 0x0c
1057 * - 0x04 burst_enable
1057 new_waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2); // 0x10
1058 * - 0x08 addr_data_f0
1058 new_waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3); // 0x14
1059 * - 0x0C addr_data_f1
1059 new_waveform_picker_regs->status = 0x00; // 0x18
1060 * - 0x10 addr_data_f2
1060 new_waveform_picker_regs->delta_snapshot = 0x12800; // 0x1c
1061 * - 0x14 addr_data_f3
1061 new_waveform_picker_regs->delta_f0 = 0x3f5; // 0x20 *** 1013
1062 * - 0x18 status
1062 new_waveform_picker_regs->delta_f0_2 = 0x7; // 0x24 *** 7
1063 * - 0x1C delta_snapshot
1063 new_waveform_picker_regs->delta_f1 = 0x3c0; // 0x28 *** 960
1064 * - 0x20 delta_f2_f1
1064 new_waveform_picker_regs->delta_f2 = 0x12200; // 0x2c *** 74240
1065 * - 0x24 delta_f2_f0
1065 new_waveform_picker_regs->nb_data_by_buffer = 0x1802; // 0x30 *** 2048 * 3 + 2
1066 * - 0x28 nb_burst
1066 new_waveform_picker_regs->snapshot_param = 0x7ff; // 0x34 *** 2048 -1
1067 * - 0x2C nb_snapshot
1067 new_waveform_picker_regs->start_date = 0x00;
1068 *
1069 */
1070
1071 #ifdef GSA
1072 #else
1073 reset_wfp_burst_enable();
1074 reset_wfp_status();
1075 // set buffer addresses
1076 waveform_picker_regs->addr_data_f0 = (int) (wf_snap_f0); //
1077 waveform_picker_regs->addr_data_f1 = (int) (wf_snap_f1); //
1078 waveform_picker_regs->addr_data_f2 = (int) (wf_snap_f2); //
1079 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3); //
1080 // set other parameters
1081 set_wfp_data_shaping();
1082 set_wfp_delta_snapshot(); // time in seconds between two snapshots
1083 waveform_picker_regs->delta_f2_f1 = 0xffff; // 0x16800 => 92160 (max 4 bytes)
1084 waveform_picker_regs->delta_f2_f0 = 0x17c00; // 97 280 (max 5 bytes)
1085 waveform_picker_regs->nb_burst_available = 0x180; // max 3 bytes, size of the buffer in burst (1 burst = 16 x 4 octets)
1086 waveform_picker_regs->nb_snapshot_param = 0x7ff; // max 3 octets, 2048 - 1
1087 #endif
1088 }
1089
1090 void reset_waveform_picker_regs_alt()
1091 {
1092 waveform_picker_regs_alt->data_shaping = 0x01; // 0x00 00 *** R1 R0 SP1 SP0 BW
1093 waveform_picker_regs_alt->run_burst_enable = 0x00; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1094 waveform_picker_regs_alt->addr_data_f0 = (int) (wf_snap_f0); // 0x08
1095 waveform_picker_regs_alt->addr_data_f1 = (int) (wf_snap_f1); // 0x0c
1096 waveform_picker_regs_alt->addr_data_f2 = (int) (wf_snap_f2); // 0x10
1097 waveform_picker_regs_alt->addr_data_f3 = (int) (wf_cont_f3); // 0x14
1098 waveform_picker_regs_alt->status = 0x00; // 0x18
1099 waveform_picker_regs_alt->delta_snapshot = 0x12800; // 0x1c
1100 waveform_picker_regs_alt->delta_f0 = 0x3f5; // 0x20 *** 1013
1101 waveform_picker_regs_alt->delta_f0_2 = 0x7; // 0x24 *** 7
1102 waveform_picker_regs_alt->delta_f1 = 0x3c0; // 0x28 *** 960
1103 waveform_picker_regs_alt->delta_f2 = 0x12200; // 0x2c *** 74240
1104 waveform_picker_regs_alt->nb_data_by_buffer = 0x1802; // 0x30 *** 2048 * 3 + 2
1105 waveform_picker_regs_alt->snapshot_param = 0x7ff; // 0x34 *** 2048 -1
1106 waveform_picker_regs_alt->start_date = 0x00;
1107 }
1068 }
1108
1069
1109 //*****************
1070 //*****************
1110 // local parameters
1071 // local parameters
1111 void set_local_sbm1_nb_cwf_max()
1072 void set_local_sbm1_nb_cwf_max()
1112 {
1073 {
1113 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1074 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1114 *
1075 *
1115 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1076 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1116 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.\n\n
1077 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.\n\n
1117 * (2 snapshots of 2048 points per seconds) * (period of the NORM snashots) - 8 s (duration of the f2 snapshot)
1078 * (2 snapshots of 2048 points per seconds) * (period of the NORM snashots) - 8 s (duration of the f2 snapshot)
1118 *
1079 *
1119 */
1080 */
1120 param_local.local_sbm1_nb_cwf_max = 2 *
1081 param_local.local_sbm1_nb_cwf_max = 2 *
1121 (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1082 (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1122 + parameter_dump_packet.sy_lfr_n_swf_p[1]) - 8; // 16 CWF1 parts during 1 SWF2
1083 + parameter_dump_packet.sy_lfr_n_swf_p[1]) - 8; // 16 CWF1 parts during 1 SWF2
1123 }
1084 }
1124
1085
1125 void set_local_sbm2_nb_cwf_max()
1086 void set_local_sbm2_nb_cwf_max()
1126 {
1087 {
1127 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1088 /** This function sets the value of the sbm1_nb_cwf_max local parameter.
1128 *
1089 *
1129 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1090 * The sbm1_nb_cwf_max parameter counts the number of CWF_F1 records that have been sent.\n
1130 * This parameter is used to send CWF_F2 data as normal data when the SBM2 is active.\n\n
1091 * This parameter is used to send CWF_F2 data as normal data when the SBM2 is active.\n\n
1131 * (period of the NORM snashots) / (8 seconds per snapshot at f2 = 256 Hz)
1092 * (period of the NORM snashots) / (8 seconds per snapshot at f2 = 256 Hz)
1132 *
1093 *
1133 */
1094 */
1134
1095
1135 param_local.local_sbm2_nb_cwf_max = (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1096 param_local.local_sbm2_nb_cwf_max = (parameter_dump_packet.sy_lfr_n_swf_p[0] * 256
1136 + parameter_dump_packet.sy_lfr_n_swf_p[1]) / 8;
1097 + parameter_dump_packet.sy_lfr_n_swf_p[1]) / 8;
1137 }
1098 }
1138
1099
1139 void set_local_nb_interrupt_f0_MAX()
1100 void set_local_nb_interrupt_f0_MAX()
1140 {
1101 {
1141 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1102 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1142 *
1103 *
1143 * This parameter is used for the SM validation only.\n
1104 * This parameter is used for the SM validation only.\n
1144 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1105 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1145 * module before launching a basic processing.
1106 * module before launching a basic processing.
1146 *
1107 *
1147 */
1108 */
1148
1109
1149 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1110 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1150 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1111 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1151 }
1112 }
1152
1113
1153 void reset_local_sbm1_nb_cwf_sent()
1114 void reset_local_sbm1_nb_cwf_sent()
1154 {
1115 {
1155 /** This function resets the value of the sbm1_nb_cwf_sent local parameter.
1116 /** This function resets the value of the sbm1_nb_cwf_sent local parameter.
1156 *
1117 *
1157 * The sbm1_nb_cwf_sent parameter counts the number of CWF_F1 records that have been sent.\n
1118 * The sbm1_nb_cwf_sent parameter counts the number of CWF_F1 records that have been sent.\n
1158 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.
1119 * This parameter is used to send CWF_F1 data as normal data when the SBM1 is active.
1159 *
1120 *
1160 */
1121 */
1161
1122
1162 param_local.local_sbm1_nb_cwf_sent = 0;
1123 param_local.local_sbm1_nb_cwf_sent = 0;
1163 }
1124 }
1164
1125
1165 void reset_local_sbm2_nb_cwf_sent()
1126 void reset_local_sbm2_nb_cwf_sent()
1166 {
1127 {
1167 /** This function resets the value of the sbm2_nb_cwf_sent local parameter.
1128 /** This function resets the value of the sbm2_nb_cwf_sent local parameter.
1168 *
1129 *
1169 * The sbm2_nb_cwf_sent parameter counts the number of CWF_F2 records that have been sent.\n
1130 * The sbm2_nb_cwf_sent parameter counts the number of CWF_F2 records that have been sent.\n
1170 * This parameter is used to send CWF_F2 data as normal data when the SBM2 mode is active.
1131 * This parameter is used to send CWF_F2 data as normal data when the SBM2 mode is active.
1171 *
1132 *
1172 */
1133 */
1173
1134
1174 param_local.local_sbm2_nb_cwf_sent = 0;
1135 param_local.local_sbm2_nb_cwf_sent = 0;
1175 }
1136 }
1176
1137
1177 rtems_id get_pkts_queue_id( void )
1138 rtems_id get_pkts_queue_id( void )
1178 {
1139 {
1179 rtems_id queue_id;
1140 rtems_id queue_id;
1180 rtems_status_code status;
1141 rtems_status_code status;
1181 rtems_name queue_send_name;
1142 rtems_name queue_send_name;
1182
1143
1183 queue_send_name = rtems_build_name( 'Q', '_', 'S', 'D' );
1144 queue_send_name = rtems_build_name( 'Q', '_', 'S', 'D' );
1184
1145
1185 status = rtems_message_queue_ident( queue_send_name, 0, &queue_id );
1146 status = rtems_message_queue_ident( queue_send_name, 0, &queue_id );
1186 if (status != RTEMS_SUCCESSFUL)
1147 if (status != RTEMS_SUCCESSFUL)
1187 {
1148 {
1188 PRINTF1("in get_pkts_queue_id *** ERR %d\n", status)
1149 PRINTF1("in get_pkts_queue_id *** ERR %d\n", status)
1189 }
1150 }
1190 return queue_id;
1151 return queue_id;
1191 }
1152 }
General Comments 0
You need to be logged in to leave comments. Login now