##// END OF EJS Templates
union usage removed from the sources (897 Don_ArtVariables)...
paul -
r324:dc3755493cce R3_plus draft
parent child
Show More
@@ -1,2 +1,2
1 1 3081d1f9bb20b2b64a192585337a292a9804e0c5 LFR_basic-parameters
2 d4a9a4d748d56d86427bfe03a6777fae4cfe3ae1 header/lfr_common_headers
2 7c46de6059673d3239fcc7103e16510727f35923 header/lfr_common_headers
@@ -1,231 +1,233
1 1 #ifndef GRLIB_REGS_H_INCLUDED
2 2 #define GRLIB_REGS_H_INCLUDED
3 3
4 4 #define NB_GPTIMER 3
5 5
6 6 struct apbuart_regs_str{
7 7 volatile unsigned int data;
8 8 volatile unsigned int status;
9 9 volatile unsigned int ctrl;
10 10 volatile unsigned int scaler;
11 11 volatile unsigned int fifoDebug;
12 12 };
13 13
14 14 struct grgpio_regs_str{
15 15 volatile int io_port_data_register;
16 16 int io_port_output_register;
17 17 int io_port_direction_register;
18 18 int interrupt_mak_register;
19 19 int interrupt_polarity_register;
20 20 int interrupt_edge_register;
21 21 int bypass_register;
22 22 int reserved;
23 23 // 0x20-0x3c interrupt map register(s)
24 24 };
25 25
26 26 typedef struct {
27 27 volatile unsigned int counter;
28 28 volatile unsigned int reload;
29 29 volatile unsigned int ctrl;
30 30 volatile unsigned int unused;
31 31 } timer_regs_t;
32 32
33 33 //*************
34 34 //*************
35 35 // GPTIMER_REGS
36 36
37 37 #define GPTIMER_CLEAR_IRQ 0x00000010 // clear pending IRQ if any
38 38 #define GPTIMER_LD 0x00000004 // LD load value from the reload register
39 39 #define GPTIMER_EN 0x00000001 // EN enable the timer
40 40 #define GPTIMER_EN_MASK 0xfffffffe // EN enable the timer
41 41 #define GPTIMER_RS 0x00000002 // RS restart
42 42 #define GPTIMER_IE 0x00000008 // IE interrupt enable
43 43 #define GPTIMER_IE_MASK 0xffffffef // IE interrupt enable
44 44
45 45 typedef struct {
46 46 volatile unsigned int scaler_value;
47 47 volatile unsigned int scaler_reload;
48 48 volatile unsigned int conf;
49 49 volatile unsigned int unused0;
50 50 timer_regs_t timer[NB_GPTIMER];
51 51 } gptimer_regs_t;
52 52
53 53 //*********************
54 54 //*********************
55 55 // TIME_MANAGEMENT_REGS
56 56
57 57 #define VAL_SOFTWARE_RESET 0x02 // [0010] software reset
58 58 #define VAL_LFR_SYNCHRONIZED 0x80000000
59 59 #define BIT_SYNCHRONIZATION 31
60 60 #define COARSE_TIME_MASK 0x7fffffff
61 61 #define SYNC_BIT_MASK 0x7f
62 62 #define SYNC_BIT 0x80
63 63 #define BIT_CAL_RELOAD 0x00000010
64 64 #define MASK_CAL_RELOAD 0xffffffef // [1110 1111]
65 65 #define BIT_CAL_ENABLE 0x00000040
66 66 #define MASK_CAL_ENABLE 0xffffffbf // [1011 1111]
67 67 #define BIT_SET_INTERLEAVED 0x00000020 // [0010 0000]
68 68 #define MASK_SET_INTERLEAVED 0xffffffdf // [1101 1111]
69 69 #define BIT_SOFT_RESET 0x00000004 // [0100]
70 70 #define MASK_SOFT_RESET 0xfffffffb // [1011]
71 71
72 72 typedef struct {
73 73 volatile int ctrl; // bit 0 forces the load of the coarse_time_load value and resets the fine_time
74 74 // bit 1 is the soft reset for the time management module
75 75 // bit 2 is the soft reset for the waveform picker and the spectral matrix modules, set to 1 after HW reset
76 76 volatile int coarse_time_load;
77 77 volatile int coarse_time;
78 78 volatile int fine_time;
79 79 // TEMPERATURES
80 80 volatile int temp_pcb; // SEL1 = 0 SEL0 = 0
81 81 volatile int temp_fpga; // SEL1 = 0 SEL0 = 1
82 82 volatile int temp_scm; // SEL1 = 1 SEL0 = 0
83 83 // CALIBRATION
84 84 volatile unsigned int calDACCtrl;
85 85 volatile unsigned int calPrescaler;
86 86 volatile unsigned int calDivisor;
87 87 volatile unsigned int calDataPtr;
88 88 volatile unsigned int calData;
89 89 } time_management_regs_t;
90 90
91 91 //*********************
92 92 //*********************
93 93 // WAVEFORM_PICKER_REGS
94 94
95 95 #define BITS_WFP_STATUS_F3 0xc0 // [1100 0000] check the f3 full bits
96 96 #define BIT_WFP_BUF_F3_0 0x40 // [0100 0000] f3 buffer 0 is full
97 97 #define BIT_WFP_BUF_F3_1 0x80 // [1000 0000] f3 buffer 1 is full
98 98 #define RST_WFP_F3_0 0x00008840 // [1000 1000 0100 0000]
99 99 #define RST_WFP_F3_1 0x00008880 // [1000 1000 1000 0000]
100 100
101 101 #define BITS_WFP_STATUS_F2 0x30 // [0011 0000] get the status bits for f2
102 102 #define SHIFT_WFP_STATUS_F2 4
103 103 #define BIT_WFP_BUF_F2_0 0x10 // [0001 0000] f2 buffer 0 is full
104 104 #define BIT_WFP_BUF_F2_1 0x20 // [0010 0000] f2 buffer 1 is full
105 105 #define RST_WFP_F2_0 0x00004410 // [0100 0100 0001 0000]
106 106 #define RST_WFP_F2_1 0x00004420 // [0100 0100 0010 0000]
107 107
108 108 #define BITS_WFP_STATUS_F1 0x0c // [0000 1100] check the f1 full bits
109 109 #define BIT_WFP_BUF_F1_0 0x04 // [0000 0100] f1 buffer 0 is full
110 110 #define BIT_WFP_BUF_F1_1 0x08 // [0000 1000] f1 buffer 1 is full
111 111 #define RST_WFP_F1_0 0x00002204 // [0010 0010 0000 0100] f1 bits = 0
112 112 #define RST_WFP_F1_1 0x00002208 // [0010 0010 0000 1000] f1 bits = 0
113 113
114 114 #define BITS_WFP_STATUS_F0 0x03 // [0000 0011] check the f0 full bits
115 115 #define RST_WFP_F0_0 0x00001101 // [0001 0001 0000 0001]
116 116 #define RST_WFP_F0_1 0x00001102 // [0001 0001 0000 0010]
117 117
118 118 #define BIT_WFP_BUFFER_0 0x01
119 119 #define BIT_WFP_BUFFER_1 0x02
120 120
121 121 #define RST_BITS_RUN_BURST_EN 0x80 // [1000 0000] burst f2, f1, f0 enable f3, f2, f1, f0
122 #define BITS_WFP_ENABLE_ALL 0x0f // [0000 1111] enable f3, f2, f1, f0
123 #define BITS_WFP_ENABLE_BURST 0x0c // [0000 1100] enable f3, f2
122 124 #define RUN_BURST_ENABLE_SBM2 0x60 // [0110 0000] enable f2 and f1 burst
123 125 #define RUN_BURST_ENABLE_BURST 0x40 // [0100 0000] f2 burst enabled
124 126
125 127 #define DFLT_WFP_NB_DATA_BY_BUFFER 0xa7f // 0x30 *** 2688 - 1 => nb samples -1
126 128 #define DFLT_WFP_SNAPSHOT_PARAM 0xa80 // 0x34 *** 2688 => nb samples
127 129 #define DFLT_WFP_BUFFER_LENGTH 0x1f8 // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
128 130 #define DFLT_WFP_DELTA_F0_2 0x30 // 48 = 11 0000, max 7 bits
129 131
130 132 // PDB >= 0.1.28, 0x80000f54
131 133 typedef struct{
132 134 int data_shaping; // 0x00 00 *** R2 R1 R0 SP1 SP0 BW
133 135 int run_burst_enable; // 0x04 01 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
134 136 int addr_data_f0_0; // 0x08
135 137 int addr_data_f0_1; // 0x0c
136 138 int addr_data_f1_0; // 0x10
137 139 int addr_data_f1_1; // 0x14
138 140 int addr_data_f2_0; // 0x18
139 141 int addr_data_f2_1; // 0x1c
140 142 int addr_data_f3_0; // 0x20
141 143 int addr_data_f3_1; // 0x24
142 144 volatile int status; // 0x28
143 145 volatile int delta_snapshot; // 0x2c
144 146 int delta_f0; // 0x30
145 147 int delta_f0_2; // 0x34
146 148 int delta_f1; // 0x38
147 149 int delta_f2; // 0x3c
148 150 int nb_data_by_buffer; // 0x40 number of samples in a buffer = 2688
149 151 int snapshot_param; // 0x44
150 152 int start_date; // 0x48
151 153 //
152 154 volatile unsigned int f0_0_coarse_time; // 0x4c
153 155 volatile unsigned int f0_0_fine_time; // 0x50
154 156 volatile unsigned int f0_1_coarse_time; // 0x54
155 157 volatile unsigned int f0_1_fine_time; // 0x58
156 158 //
157 159 volatile unsigned int f1_0_coarse_time; // 0x5c
158 160 volatile unsigned int f1_0_fine_time; // 0x60
159 161 volatile unsigned int f1_1_coarse_time; // 0x64
160 162 volatile unsigned int f1_1_fine_time; // 0x68
161 163 //
162 164 volatile unsigned int f2_0_coarse_time; // 0x6c
163 165 volatile unsigned int f2_0_fine_time; // 0x70
164 166 volatile unsigned int f2_1_coarse_time; // 0x74
165 167 volatile unsigned int f2_1_fine_time; // 0x78
166 168 //
167 169 volatile unsigned int f3_0_coarse_time; // 0x7c => 0x7c + 0xf54 = 0xd0
168 170 volatile unsigned int f3_0_fine_time; // 0x80
169 171 volatile unsigned int f3_1_coarse_time; // 0x84
170 172 volatile unsigned int f3_1_fine_time; // 0x88
171 173 //
172 174 unsigned int buffer_length; // 0x8c = buffer length in burst 2688 / 16 = 168
173 175 //
174 176 volatile unsigned int v; // 0x90
175 177 volatile unsigned int e1; // 0x94
176 178 volatile unsigned int e2; // 0x98
177 179 } waveform_picker_regs_0_1_18_t;
178 180
179 181 //*********************
180 182 //*********************
181 183 // SPECTRAL_MATRIX_REGS
182 184
183 185 #define BITS_STATUS_F0 0x03 // [0011]
184 186 #define BITS_STATUS_F1 0x0c // [1100]
185 187 #define BITS_STATUS_F2 0x30 // [0011 0000]
186 188 #define BITS_HK_AA_SM 0x780 // [0111 1000 0000]
187 189 #define BITS_SM_ERR 0x7c0 // [0111 1100 0000]
188 190 #define BITS_STATUS_REG 0x7ff // [0111 1111 1111]
189 191 #define BIT_READY_0 0x1 // [01]
190 192 #define BIT_READY_1 0x2 // [10]
191 193 #define BIT_READY_0_1 0x3 // [11]
192 194 #define BIT_STATUS_F1_0 0x04 // [0100]
193 195 #define BIT_STATUS_F1_1 0x08 // [1000]
194 196 #define BIT_STATUS_F2_0 0x10 // [0001 0000]
195 197 #define BIT_STATUS_F2_1 0x20 // [0010 0000]
196 198 #define DEFAULT_MATRIX_LENGTH 0xc8 // 25 * 128 / 16 = 200 = 0xc8
197 199 #define BIT_IRQ_ON_NEW_MATRIX 0x01
198 200 #define MASK_IRQ_ON_NEW_MATRIX 0xfffffffe
199 201 #define BIT_IRQ_ON_ERROR 0x02
200 202 #define MASK_IRQ_ON_ERROR 0xfffffffd
201 203
202 204 typedef struct {
203 205 volatile int config; // 0x00
204 206 volatile int status; // 0x04
205 207 volatile int f0_0_address; // 0x08
206 208 volatile int f0_1_address; // 0x0C
207 209 //
208 210 volatile int f1_0_address; // 0x10
209 211 volatile int f1_1_address; // 0x14
210 212 volatile int f2_0_address; // 0x18
211 213 volatile int f2_1_address; // 0x1C
212 214 //
213 215 volatile unsigned int f0_0_coarse_time; // 0x20
214 216 volatile unsigned int f0_0_fine_time; // 0x24
215 217 volatile unsigned int f0_1_coarse_time; // 0x28
216 218 volatile unsigned int f0_1_fine_time; // 0x2C
217 219 //
218 220 volatile unsigned int f1_0_coarse_time; // 0x30
219 221 volatile unsigned int f1_0_fine_time; // 0x34
220 222 volatile unsigned int f1_1_coarse_time; // 0x38
221 223 volatile unsigned int f1_1_fine_time; // 0x3C
222 224 //
223 225 volatile unsigned int f2_0_coarse_time; // 0x40
224 226 volatile unsigned int f2_0_fine_time; // 0x44
225 227 volatile unsigned int f2_1_coarse_time; // 0x48
226 228 volatile unsigned int f2_1_fine_time; // 0x4C
227 229 //
228 230 unsigned int matrix_length; // 0x50, length of a spectral matrix in burst 3200 / 16 = 200 = 0xc8
229 231 } spectral_matrix_regs_t;
230 232
231 233 #endif // GRLIB_REGS_H_INCLUDED
@@ -1,371 +1,380
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h>
9 9 #include <math.h>
10 10 #include <grlib_regs.h>
11 11
12 12 #include "fsw_params.h"
13 13
14 14 #define SBM_COEFF_PER_NORM_COEFF 2
15 15 #define MAX_SRC_DATA 780 // MAX size is 26 bins * 30 Bytes [TM_LFR_SCIENCE_BURST_BP2_F1]
16 16 #define MAX_SRC_DATA_WITH_SPARE 143 // 13 bins * 11 Bytes
17 17
18 #define NODE_0 0
19 #define NODE_1 1
20 #define NODE_2 2
21 #define NODE_3 3
22 #define NODE_4 4
23 #define NODE_5 5
24 #define NODE_6 6
25 #define NODE_7 7
26
18 27 typedef struct ring_node_asm
19 28 {
20 29 struct ring_node_asm *next;
21 30 float matrix[ TOTAL_SIZE_SM ];
22 31 unsigned int status;
23 32 } ring_node_asm;
24 33
25 34 typedef struct
26 35 {
27 36 unsigned char targetLogicalAddress;
28 37 unsigned char protocolIdentifier;
29 38 unsigned char reserved;
30 39 unsigned char userApplication;
31 40 unsigned char packetID[BYTES_PER_PACKETID];
32 41 unsigned char packetSequenceControl[BYTES_PER_SEQ_CTRL];
33 42 unsigned char packetLength[BYTES_PER_PKT_LEN];
34 43 // DATA FIELD HEADER
35 44 unsigned char spare1_pusVersion_spare2;
36 45 unsigned char serviceType;
37 46 unsigned char serviceSubType;
38 47 unsigned char destinationID;
39 48 unsigned char time[BYTES_PER_TIME];
40 49 // AUXILIARY HEADER
41 50 unsigned char sid;
42 51 unsigned char pa_bia_status_info;
43 52 unsigned char sy_lfr_common_parameters_spare;
44 53 unsigned char sy_lfr_common_parameters;
45 54 unsigned char acquisitionTime[BYTES_PER_TIME];
46 55 unsigned char pa_lfr_bp_blk_nr[BYTES_PER_BLKNR];
47 56 // SOURCE DATA
48 57 unsigned char data[ MAX_SRC_DATA ]; // MAX size is 26 bins * 30 Bytes [TM_LFR_SCIENCE_BURST_BP2_F1]
49 58 } bp_packet;
50 59
51 60 typedef struct
52 61 {
53 62 unsigned char targetLogicalAddress;
54 63 unsigned char protocolIdentifier;
55 64 unsigned char reserved;
56 65 unsigned char userApplication;
57 66 unsigned char packetID[BYTES_PER_PACKETID];
58 67 unsigned char packetSequenceControl[BYTES_PER_SEQ_CTRL];
59 68 unsigned char packetLength[BYTES_PER_PKT_LEN];
60 69 // DATA FIELD HEADER
61 70 unsigned char spare1_pusVersion_spare2;
62 71 unsigned char serviceType;
63 72 unsigned char serviceSubType;
64 73 unsigned char destinationID;
65 74 unsigned char time[BYTES_PER_TIME];
66 75 // AUXILIARY HEADER
67 76 unsigned char sid;
68 77 unsigned char pa_bia_status_info;
69 78 unsigned char sy_lfr_common_parameters_spare;
70 79 unsigned char sy_lfr_common_parameters;
71 80 unsigned char acquisitionTime[BYTES_PER_TIME];
72 81 unsigned char source_data_spare;
73 82 unsigned char pa_lfr_bp_blk_nr[BYTES_PER_BLKNR];
74 83 // SOURCE DATA
75 84 unsigned char data[ MAX_SRC_DATA_WITH_SPARE ]; // 13 bins * 11 Bytes
76 85 } bp_packet_with_spare; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
77 86
78 87 typedef struct asm_msg
79 88 {
80 89 ring_node_asm *norm;
81 90 ring_node_asm *burst_sbm;
82 91 rtems_event_set event;
83 92 unsigned int coarseTimeNORM;
84 93 unsigned int fineTimeNORM;
85 94 unsigned int coarseTimeSBM;
86 95 unsigned int fineTimeSBM;
87 96 unsigned int numberOfSMInASMNORM;
88 97 unsigned int numberOfSMInASMSBM;
89 98 } asm_msg;
90 99
91 100 extern unsigned char thisIsAnASMRestart;
92 101
93 102 extern volatile int sm_f0[ ];
94 103 extern volatile int sm_f1[ ];
95 104 extern volatile int sm_f2[ ];
96 105 extern unsigned int acquisitionDurations[];
97 106
98 107 // parameters
99 108 extern struct param_local_str param_local;
100 109 extern Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
101 110
102 111 // registers
103 112 extern time_management_regs_t *time_management_regs;
104 113 extern volatile spectral_matrix_regs_t *spectral_matrix_regs;
105 114
106 115 extern rtems_name misc_name[];
107 116 extern rtems_id Task_id[]; /* array of task ids */
108 117
109 118 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel);
110 119 // ISR
111 120 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
112 121
113 122 //******************
114 123 // Spectral Matrices
115 124 void reset_nb_sm( void );
116 125 // SM
117 126 void SM_init_rings( void );
118 127 void SM_reset_current_ring_nodes( void );
119 128 // ASM
120 129 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
121 130
122 131 //*****************
123 132 // Basic Parameters
124 133
125 134 void BP_reset_current_ring_nodes( void );
126 135 void BP_init_header(bp_packet *packet,
127 136 unsigned int apid, unsigned char sid,
128 137 unsigned int packetLength , unsigned char blkNr);
129 138 void BP_init_header_with_spare(bp_packet_with_spare *packet,
130 139 unsigned int apid, unsigned char sid,
131 140 unsigned int packetLength, unsigned char blkNr );
132 141 void BP_send( char *data,
133 142 rtems_id queue_id,
134 143 unsigned int nbBytesToSend , unsigned int sid );
135 144 void BP_send_s1_s2(char *data,
136 145 rtems_id queue_id,
137 146 unsigned int nbBytesToSend, unsigned int sid );
138 147
139 148 //******************
140 149 // general functions
141 150 void reset_sm_status( void );
142 151 void reset_spectral_matrix_regs( void );
143 152 void set_time(unsigned char *time, unsigned char *timeInBuffer );
144 153 unsigned long long int get_acquisition_time( unsigned char *timePtr );
145 154 unsigned char getSID( rtems_event_set event );
146 155
147 156 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
148 157 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
149 158
150 159 //***************************************
151 160 // DEFINITIONS OF STATIC INLINE FUNCTIONS
152 161 static inline void SM_average(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
153 162 ring_node *ring_node_tab[],
154 163 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
155 164 asm_msg *msgForMATR , unsigned char channel);
156 165
157 166 void ASM_patch( float *inputASM, float *outputASM );
158 167
159 168 void extractReImVectors(float *inputASM, float *outputASM, unsigned int asmComponent );
160 169
161 170 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
162 171 float divider );
163 172
164 173 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
165 174 float divider,
166 175 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
167 176
168 177 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
169 178
170 179 unsigned char acquisitionTimeIsValid(unsigned int coarseTime, unsigned int fineTime, unsigned char channel);
171 180
172 181 void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
173 182 ring_node *ring_node_tab[],
174 183 unsigned int nbAverageNORM, unsigned int nbAverageSBM,
175 184 asm_msg *msgForMATR, unsigned char channel )
176 185 {
177 186 float sum;
178 187 unsigned int i;
179 188 unsigned int k;
180 189 unsigned char incomingSMIsValid[NB_SM_BEFORE_AVF0_F1];
181 190 unsigned int numberOfValidSM;
182 191 unsigned char isValid;
183 192
184 193 //**************
185 194 // PAS FILTERING
186 195 // check acquisitionTime of the incoming data
187 196 numberOfValidSM = 0;
188 197 for (k=0; k<NB_SM_BEFORE_AVF0_F1; k++)
189 198 {
190 199 isValid = acquisitionTimeIsValid( ring_node_tab[k]->coarseTime, ring_node_tab[k]->fineTime, channel );
191 200 incomingSMIsValid[k] = isValid;
192 201 numberOfValidSM = numberOfValidSM + isValid;
193 202 }
194 203
195 204 //************************
196 205 // AVERAGE SPECTRAL MATRIX
197 206 for(i=0; i<TOTAL_SIZE_SM; i++)
198 207 {
199 208 // sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
200 209 // + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
201 210 // + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
202 211 // + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
203 212 // + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
204 213 // + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
205 214 // + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
206 215 // + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
207 216
208 sum = ( incomingSMIsValid[0] * ((int *)(ring_node_tab[0]->buffer_address) )[ i ] )
209 + ( incomingSMIsValid[1] * ((int *)(ring_node_tab[1]->buffer_address) )[ i ] )
210 + ( incomingSMIsValid[2] * ((int *)(ring_node_tab[2]->buffer_address) )[ i ] )
211 + ( incomingSMIsValid[3] * ((int *)(ring_node_tab[3]->buffer_address) )[ i ] )
212 + ( incomingSMIsValid[4] * ((int *)(ring_node_tab[4]->buffer_address) )[ i ] )
213 + ( incomingSMIsValid[5] * ((int *)(ring_node_tab[5]->buffer_address) )[ i ] )
214 + ( incomingSMIsValid[6] * ((int *)(ring_node_tab[6]->buffer_address) )[ i ] )
215 + ( incomingSMIsValid[7] * ((int *)(ring_node_tab[7]->buffer_address) )[ i ] );
217 sum = ( incomingSMIsValid[BYTE_0] * ((int *)(ring_node_tab[NODE_0]->buffer_address) )[ i ] )
218 + ( incomingSMIsValid[BYTE_1] * ((int *)(ring_node_tab[NODE_1]->buffer_address) )[ i ] )
219 + ( incomingSMIsValid[BYTE_2] * ((int *)(ring_node_tab[NODE_2]->buffer_address) )[ i ] )
220 + ( incomingSMIsValid[BYTE_3] * ((int *)(ring_node_tab[NODE_3]->buffer_address) )[ i ] )
221 + ( incomingSMIsValid[BYTE_4] * ((int *)(ring_node_tab[NODE_4]->buffer_address) )[ i ] )
222 + ( incomingSMIsValid[BYTE_5] * ((int *)(ring_node_tab[NODE_5]->buffer_address) )[ i ] )
223 + ( incomingSMIsValid[BYTE_6] * ((int *)(ring_node_tab[NODE_6]->buffer_address) )[ i ] )
224 + ( incomingSMIsValid[BYTE_7] * ((int *)(ring_node_tab[NODE_7]->buffer_address) )[ i ] );
216 225
217 226 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
218 227 {
219 228 averaged_spec_mat_NORM[ i ] = sum;
220 229 averaged_spec_mat_SBM[ i ] = sum;
221 230 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
222 231 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
223 232 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
224 233 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
225 234 }
226 235 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
227 236 {
228 237 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
229 238 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
230 239 }
231 240 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
232 241 {
233 242 averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
234 243 averaged_spec_mat_SBM[ i ] = sum;
235 244 msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
236 245 msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
237 246 }
238 247 else
239 248 {
240 249 averaged_spec_mat_NORM[ i ] = sum;
241 250 averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
242 251 msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
243 252 msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
244 253 // PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
245 254 }
246 255 }
247 256
248 257 //*******************
249 258 // UPDATE SM COUNTERS
250 259 if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
251 260 {
252 261 msgForMATR->numberOfSMInASMNORM = numberOfValidSM;
253 262 msgForMATR->numberOfSMInASMSBM = numberOfValidSM;
254 263 }
255 264 else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
256 265 {
257 266 msgForMATR->numberOfSMInASMNORM = msgForMATR->numberOfSMInASMNORM + numberOfValidSM;
258 267 msgForMATR->numberOfSMInASMSBM = msgForMATR->numberOfSMInASMSBM + numberOfValidSM;
259 268 }
260 269 else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
261 270 {
262 271 msgForMATR->numberOfSMInASMNORM = msgForMATR->numberOfSMInASMNORM + numberOfValidSM;
263 272 msgForMATR->numberOfSMInASMSBM = numberOfValidSM;
264 273 }
265 274 else
266 275 {
267 276 msgForMATR->numberOfSMInASMNORM = numberOfValidSM;
268 277 msgForMATR->numberOfSMInASMSBM = msgForMATR->numberOfSMInASMSBM + numberOfValidSM;
269 278 }
270 279 }
271 280
272 281 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
273 282 {
274 283 int frequencyBin;
275 284 int asmComponent;
276 285 unsigned int offsetASM;
277 286 unsigned int offsetASMReorganized;
278 287
279 288 // BUILD DATA
280 289 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
281 290 {
282 291 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
283 292 {
284 293 offsetASMReorganized =
285 294 (frequencyBin * NB_VALUES_PER_SM)
286 295 + asmComponent;
287 296 offsetASM =
288 297 (asmComponent * NB_BINS_PER_SM)
289 298 + frequencyBin;
290 299 if ( divider != INIT_FLOAT )
291 300 {
292 301 averaged_spec_mat_reorganized[offsetASMReorganized ] = averaged_spec_mat[ offsetASM ] / divider;
293 302 }
294 303 else
295 304 {
296 305 averaged_spec_mat_reorganized[offsetASMReorganized ] = INIT_FLOAT;
297 306 }
298 307 }
299 308 }
300 309 }
301 310
302 311 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
303 312 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
304 313 {
305 314 int frequencyBin;
306 315 int asmComponent;
307 316 int offsetASM;
308 317 int offsetCompressed;
309 318 int k;
310 319
311 320 // BUILD DATA
312 321 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
313 322 {
314 323 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
315 324 {
316 325 offsetCompressed = // NO TIME OFFSET
317 326 (frequencyBin * NB_VALUES_PER_SM)
318 327 + asmComponent;
319 328 offsetASM = // NO TIME OFFSET
320 329 (asmComponent * NB_BINS_PER_SM)
321 330 + ASMIndexStart
322 331 + (frequencyBin * nbBinsToAverage);
323 332 compressed_spec_mat[ offsetCompressed ] = 0;
324 333 for ( k = 0; k < nbBinsToAverage; k++ )
325 334 {
326 335 compressed_spec_mat[offsetCompressed ] =
327 336 ( compressed_spec_mat[ offsetCompressed ]
328 337 + averaged_spec_mat[ offsetASM + k ] );
329 338 }
330 339 compressed_spec_mat[ offsetCompressed ] =
331 340 compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
332 341 }
333 342 }
334 343 }
335 344
336 345 void ASM_convert( volatile float *input_matrix, char *output_matrix)
337 346 {
338 347 unsigned int frequencyBin;
339 348 unsigned int asmComponent;
340 349 char * pt_char_input;
341 350 char * pt_char_output;
342 351 unsigned int offsetInput;
343 352 unsigned int offsetOutput;
344 353
345 354 pt_char_input = (char*) &input_matrix;
346 355 pt_char_output = (char*) &output_matrix;
347 356
348 357 // convert all other data
349 358 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
350 359 {
351 360 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
352 361 {
353 362 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
354 363 offsetOutput = SM_BYTES_PER_VAL * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
355 364 pt_char_input = (char*) &input_matrix [ offsetInput ];
356 365 pt_char_output = (char*) &output_matrix[ offsetOutput ];
357 366 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
358 367 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
359 368 }
360 369 }
361 370 }
362 371
363 372 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat,
364 373 float divider,
365 374 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart, unsigned char channel);
366 375
367 376 int getFBinMask(int k, unsigned char channel);
368 377
369 378 void init_kcoeff_sbm_from_kcoeff_norm( float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm);
370 379
371 380 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,106 +1,106
1 1 /** Global variables of the LFR flight software.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * Among global variables, there are:
7 7 * - RTEMS names and id.
8 8 * - APB configuration registers.
9 9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 10 * - spectral matrices buffesr, used by the hardware module to store data.
11 11 * - variable related to LFR modes parameters.
12 12 * - the global HK packet buffer.
13 13 * - the global dump parameter buffer.
14 14 *
15 15 */
16 16
17 17 #include <rtems.h>
18 18 #include <grspw.h>
19 19
20 20 #include "ccsds_types.h"
21 21 #include "grlib_regs.h"
22 22 #include "fsw_params.h"
23 23 #include "fsw_params_wf_handler.h"
24 24
25 25 #define NB_OF_TASKS 20
26 26 #define NB_OF_MISC_NAMES 5
27 27
28 28 // RTEMS GLOBAL VARIABLES
29 29 rtems_name misc_name[NB_OF_MISC_NAMES] = {0};
30 30 rtems_name Task_name[NB_OF_TASKS] = {0}; /* array of task names */
31 31 rtems_id Task_id[NB_OF_TASKS] = {0}; /* array of task ids */
32 32 rtems_name timecode_timer_name = 0;
33 33 rtems_id timecode_timer_id = RTEMS_ID_NONE;
34 34 rtems_name name_hk_rate_monotonic = 0; // name of the HK rate monotonic
35 35 rtems_id HK_id = RTEMS_ID_NONE;// id of the HK rate monotonic period
36 36 rtems_name name_avgv_rate_monotonic = 0; // name of the AVGV rate monotonic
37 37 rtems_id AVGV_id = RTEMS_ID_NONE;// id of the AVGV rate monotonic period
38 38 int fdSPW = 0;
39 39 int fdUART = 0;
40 40 unsigned char lfrCurrentMode = 0;
41 41 unsigned char pa_bia_status_info = 0;
42 42 unsigned char thisIsAnASMRestart = 0;
43 43 unsigned char oneTcLfrUpdateTimeReceived = 0;
44 44
45 45 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
46 46 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
47 47 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
48 48 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
49 49 // F0 F1 F2 F3
50 50 volatile int wf_buffer_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
51 51 volatile int wf_buffer_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
52 52 volatile int wf_buffer_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
53 53 volatile int wf_buffer_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
54 54
55 55 //***********************************
56 56 // SPECTRAL MATRICES GLOBAL VARIABLES
57 57
58 58 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
59 59 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
60 60 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
61 61 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
62 62
63 63 // APB CONFIGURATION REGISTERS
64 64 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
65 65 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
66 66 waveform_picker_regs_0_1_18_t *waveform_picker_regs = (waveform_picker_regs_0_1_18_t*) REGS_ADDR_WAVEFORM_PICKER;
67 67 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
68 68
69 69 // MODE PARAMETERS
70 70 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet = {0};
71 71 struct param_local_str param_local = {0};
72 72 unsigned int lastValidEnterModeTime = {0};
73 73
74 74 // HK PACKETS
75 75 Packet_TM_LFR_HK_t housekeeping_packet = {0};
76 76 unsigned char cp_rpw_sc_rw_f_flags = 0;
77 77 // message queues occupancy
78 78 unsigned char hk_lfr_q_sd_fifo_size_max = 0;
79 79 unsigned char hk_lfr_q_rv_fifo_size_max = 0;
80 80 unsigned char hk_lfr_q_p0_fifo_size_max = 0;
81 81 unsigned char hk_lfr_q_p1_fifo_size_max = 0;
82 82 unsigned char hk_lfr_q_p2_fifo_size_max = 0;
83 83 // sequence counters are incremented by APID (PID + CAT) and destination ID
84 84 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST = 0;
85 85 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2 = 0;
86 86 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID] = {0};
87 87 unsigned short sequenceCounters_TM_DUMP[SEQ_CNT_NB_DEST_ID] = {0};
88 unsigned short sequenceCounterHK;
88 unsigned short sequenceCounterHK = {0};
89 89 spw_stats grspw_stats = {0};
90 90
91 91 // TC_LFR_UPDATE_INFO
92 92 float cp_rpw_sc_rw1_f1 = INIT_FLOAT;
93 93 float cp_rpw_sc_rw1_f2 = INIT_FLOAT;
94 94 float cp_rpw_sc_rw2_f1 = INIT_FLOAT;
95 95 float cp_rpw_sc_rw2_f2 = INIT_FLOAT;
96 96 float cp_rpw_sc_rw3_f1 = INIT_FLOAT;
97 97 float cp_rpw_sc_rw3_f2 = INIT_FLOAT;
98 98 float cp_rpw_sc_rw4_f1 = INIT_FLOAT;
99 99 float cp_rpw_sc_rw4_f2 = INIT_FLOAT;
100 100
101 101 // TC_LFR_LOAD_FILTER_PAR
102 102 filterPar_t filterPar = {0};
103 103
104 104 fbins_masks_t fbins_masks = {0};
105 105 unsigned int acquisitionDurations[NB_ACQUISITION_DURATION]
106 106 = {ACQUISITION_DURATION_F0, ACQUISITION_DURATION_F1, ACQUISITION_DURATION_F2};
@@ -1,995 +1,988
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void timer_configure(unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 old_isr_handler = NULL;
29 29
30 30 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
31 31
32 32 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
33 33 if (status!=RTEMS_SUCCESSFUL)
34 34 {
35 35 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
36 36 }
37 37
38 38 timer_set_clock_divider( timer, clock_divider);
39 39 }
40 40
41 41 void timer_start(unsigned char timer)
42 42 {
43 43 /** This function starts a GPTIMER timer.
44 44 *
45 45 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
46 46 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
47 47 *
48 48 */
49 49
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
53 53 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
54 54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
55 55 }
56 56
57 57 void timer_stop(unsigned char timer)
58 58 {
59 59 /** This function stops a GPTIMER timer.
60 60 *
61 61 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
62 62 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
63 63 *
64 64 */
65 65
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
67 67 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
68 68 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
69 69 }
70 70
71 71 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
72 72 {
73 73 /** This function sets the clock divider of a GPTIMER timer.
74 74 *
75 75 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
76 76 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
77 77 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
78 78 *
79 79 */
80 80
81 81 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
82 82 }
83 83
84 84 // WATCHDOG
85 85
86 86 rtems_isr watchdog_isr( rtems_vector_number vector )
87 87 {
88 88 rtems_status_code status_code;
89 89
90 90 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
91 91
92 92 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
93 93
94 94 exit(0);
95 95 }
96 96
97 97 void watchdog_configure(void)
98 98 {
99 99 /** This function configure the watchdog.
100 100 *
101 101 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
102 102 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
103 103 *
104 104 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
105 105 *
106 106 */
107 107
108 108 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
109 109
110 110 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
111 111
112 112 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
113 113 }
114 114
115 115 void watchdog_stop(void)
116 116 {
117 117 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
118 118 timer_stop( TIMER_WATCHDOG );
119 119 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
120 120 }
121 121
122 122 void watchdog_reload(void)
123 123 {
124 124 /** This function reloads the watchdog timer counter with the timer reload value.
125 125 *
126 126 * @param void
127 127 *
128 128 * @return void
129 129 *
130 130 */
131 131
132 132 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
133 133 }
134 134
135 135 void watchdog_start(void)
136 136 {
137 137 /** This function starts the watchdog timer.
138 138 *
139 139 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
140 140 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
141 141 *
142 142 */
143 143
144 144 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
145 145
146 146 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
147 147 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
148 148 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
149 149 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
150 150
151 151 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
152 152
153 153 }
154 154
155 155 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
156 156 {
157 157 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
158 158
159 159 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
160 160
161 161 return 0;
162 162 }
163 163
164 164 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
165 165 {
166 166 /** This function sets the scaler reload register of the apbuart module
167 167 *
168 168 * @param regs is the address of the apbuart registers in memory
169 169 * @param value is the value that will be stored in the scaler register
170 170 *
171 171 * The value shall be set by the software to get data on the serial interface.
172 172 *
173 173 */
174 174
175 175 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
176 176
177 177 apbuart_regs->scaler = value;
178 178
179 179 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
180 180 }
181 181
182 182 //************
183 183 // RTEMS TASKS
184 184
185 185 rtems_task load_task(rtems_task_argument argument)
186 186 {
187 187 BOOT_PRINTF("in LOAD *** \n")
188 188
189 189 rtems_status_code status;
190 190 unsigned int i;
191 191 unsigned int j;
192 192 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
193 193 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
194 194
195 195 watchdog_period_id = RTEMS_ID_NONE;
196 196
197 197 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
198 198
199 199 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
200 200 if( status != RTEMS_SUCCESSFUL ) {
201 201 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
202 202 }
203 203
204 204 i = 0;
205 205 j = 0;
206 206
207 207 watchdog_configure();
208 208
209 209 watchdog_start();
210 210
211 211 set_sy_lfr_watchdog_enabled( true );
212 212
213 213 while(1){
214 214 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
215 215 watchdog_reload();
216 216 i = i + 1;
217 217 if ( i == WATCHDOG_LOOP_PRINTF )
218 218 {
219 219 i = 0;
220 220 j = j + 1;
221 221 PRINTF1("%d\n", j)
222 222 }
223 223 #ifdef DEBUG_WATCHDOG
224 224 if (j == WATCHDOG_LOOP_DEBUG )
225 225 {
226 226 status = rtems_task_delete(RTEMS_SELF);
227 227 }
228 228 #endif
229 229 }
230 230 }
231 231
232 232 rtems_task hous_task(rtems_task_argument argument)
233 233 {
234 234 rtems_status_code status;
235 235 rtems_status_code spare_status;
236 236 rtems_id queue_id;
237 237 rtems_rate_monotonic_period_status period_status;
238 238 bool isSynchronized;
239 239
240 240 queue_id = RTEMS_ID_NONE;
241 241 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
242 242 isSynchronized = false;
243 243
244 244 status = get_message_queue_id_send( &queue_id );
245 245 if (status != RTEMS_SUCCESSFUL)
246 246 {
247 247 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
248 248 }
249 249
250 250 BOOT_PRINTF("in HOUS ***\n");
251 251
252 252 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
253 253 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
254 254 if( status != RTEMS_SUCCESSFUL ) {
255 255 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
256 256 }
257 257 }
258 258
259 259 status = rtems_rate_monotonic_cancel(HK_id);
260 260 if( status != RTEMS_SUCCESSFUL ) {
261 261 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
262 262 }
263 263 else {
264 264 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
265 265 }
266 266
267 267 // startup phase
268 268 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
269 269 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
270 270 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
271 271 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
272 272 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
273 273 {
274 274 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
275 275 {
276 276 isSynchronized = true;
277 277 }
278 278 else
279 279 {
280 280 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
281 281
282 282 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
283 283 }
284 284 }
285 285 status = rtems_rate_monotonic_cancel(HK_id);
286 286 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
287 287
288 288 set_hk_lfr_reset_cause( POWER_ON );
289 289
290 290 while(1){ // launch the rate monotonic task
291 291 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
292 292 if ( status != RTEMS_SUCCESSFUL ) {
293 293 PRINTF1( "in HOUS *** ERR period: %d\n", status);
294 294 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
295 295 }
296 296 else {
297 297 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
298 298 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
299 299 increment_seq_counter( &sequenceCounterHK );
300 300
301 301 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
302 302 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
303 303 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
304 304 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
305 305 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
306 306 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
307 307
308 308 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
309 309
310 310 spacewire_read_statistics();
311 311
312 312 update_hk_with_grspw_stats();
313 313
314 314 set_hk_lfr_time_not_synchro();
315 315
316 316 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
317 317 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
318 318 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
319 319 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
320 320 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
321 321
322 322 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
323 323 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
324 324 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
325 325 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
326 326 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
327 327
328 328 hk_lfr_le_me_he_update();
329 329
330 330 housekeeping_packet.hk_lfr_sc_rw_f_flags = cp_rpw_sc_rw_f_flags;
331 331
332 332 // SEND PACKET
333 333 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
334 334 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
335 335 if (status != RTEMS_SUCCESSFUL) {
336 336 PRINTF1("in HOUS *** ERR send: %d\n", status)
337 337 }
338 338 }
339 339 }
340 340
341 341 PRINTF("in HOUS *** deleting task\n")
342 342
343 343 status = rtems_task_delete( RTEMS_SELF ); // should not return
344 344
345 345 return;
346 346 }
347 347
348 348 rtems_task avgv_task(rtems_task_argument argument)
349 349 {
350 350 #define MOVING_AVERAGE 16
351 351 rtems_status_code status;
352 unsigned int v[MOVING_AVERAGE];
353 unsigned int e1[MOVING_AVERAGE];
354 unsigned int e2[MOVING_AVERAGE];
352 static unsigned int v[MOVING_AVERAGE] = {0};
353 static unsigned int e1[MOVING_AVERAGE] = {0};
354 static unsigned int e2[MOVING_AVERAGE] = {0};
355 355 float average_v;
356 356 float average_e1;
357 357 float average_e2;
358 358 unsigned char k;
359 359 unsigned char indexOfOldValue;
360 360
361 361 BOOT_PRINTF("in AVGV ***\n");
362 362
363 363 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
364 364 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
365 365 if( status != RTEMS_SUCCESSFUL ) {
366 366 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
367 367 }
368 368 }
369 369
370 370 status = rtems_rate_monotonic_cancel(AVGV_id);
371 371 if( status != RTEMS_SUCCESSFUL ) {
372 372 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
373 373 }
374 374 else {
375 375 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
376 376 }
377 377
378 378 // initialize values
379 k = 0;
380 379 indexOfOldValue = MOVING_AVERAGE - 1;
381 for (k = 0; k < MOVING_AVERAGE; k++)
382 {
383 v[k] = 0;
384 e1[k] = 0;
385 e2[k] = 0;
386 average_v = 0.;
387 average_e1 = 0.;
388 average_e2 = 0.;
389 }
380 average_v = 0.;
381 average_e1 = 0.;
382 average_e2 = 0.;
390 383
391 384 k = 0;
392 385
393 386 while(1){ // launch the rate monotonic task
394 387 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
395 388 if ( status != RTEMS_SUCCESSFUL ) {
396 389 PRINTF1( "in AVGV *** ERR period: %d\n", status);
397 390 }
398 391 else {
399 392 // store new value in buffer
400 393 v[k] = waveform_picker_regs->v;
401 394 e1[k] = waveform_picker_regs->e1;
402 395 e2[k] = waveform_picker_regs->e2;
403 396 if (k == (MOVING_AVERAGE - 1))
404 397 {
405 398 indexOfOldValue = 0;
406 399 }
407 400 else
408 401 {
409 402 indexOfOldValue = k + 1;
410 403 }
411 404 average_v = average_v + v[k] - v[indexOfOldValue];
412 405 average_e1 = average_e1 + e1[k] - e1[indexOfOldValue];
413 406 average_e2 = average_e2 + e2[k] - e2[indexOfOldValue];
414 407 }
415 408 if (k == (MOVING_AVERAGE-1))
416 409 {
417 410 k = 0;
418 411 printf("tick\n");
419 412 }
420 413 else
421 414 {
422 415 k++;
423 416 }
424 417 }
425 418
426 419 PRINTF("in AVGV *** deleting task\n")
427 420
428 421 status = rtems_task_delete( RTEMS_SELF ); // should not return
429 422
430 423 return;
431 424 }
432 425
433 426 rtems_task dumb_task( rtems_task_argument unused )
434 427 {
435 428 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
436 429 *
437 430 * @param unused is the starting argument of the RTEMS task
438 431 *
439 432 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
440 433 *
441 434 */
442 435
443 436 unsigned int i;
444 437 unsigned int intEventOut;
445 438 unsigned int coarse_time = 0;
446 439 unsigned int fine_time = 0;
447 440 rtems_event_set event_out;
448 441
449 442 event_out = EVENT_SETS_NONE_PENDING;
450 443
451 444 BOOT_PRINTF("in DUMB *** \n")
452 445
453 446 while(1){
454 447 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
455 448 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
456 449 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
457 450 | RTEMS_EVENT_14,
458 451 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
459 452 intEventOut = (unsigned int) event_out;
460 453 for ( i=0; i<NB_RTEMS_EVENTS; i++)
461 454 {
462 455 if ( ((intEventOut >> i) & 1) != 0)
463 456 {
464 457 coarse_time = time_management_regs->coarse_time;
465 458 fine_time = time_management_regs->fine_time;
466 459 if (i==EVENT_12)
467 460 {
468 461 PRINTF1("%s\n", DUMB_MESSAGE_12)
469 462 }
470 463 if (i==EVENT_13)
471 464 {
472 465 PRINTF1("%s\n", DUMB_MESSAGE_13)
473 466 }
474 467 if (i==EVENT_14)
475 468 {
476 469 PRINTF1("%s\n", DUMB_MESSAGE_1)
477 470 }
478 471 }
479 472 }
480 473 }
481 474 }
482 475
483 476 //*****************************
484 477 // init housekeeping parameters
485 478
486 479 void init_housekeeping_parameters( void )
487 480 {
488 481 /** This function initialize the housekeeping_packet global variable with default values.
489 482 *
490 483 */
491 484
492 485 unsigned int i = 0;
493 486 unsigned char *parameters;
494 487 unsigned char sizeOfHK;
495 488
496 489 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
497 490
498 491 parameters = (unsigned char*) &housekeeping_packet;
499 492
500 493 for(i = 0; i< sizeOfHK; i++)
501 494 {
502 495 parameters[i] = INIT_CHAR;
503 496 }
504 497
505 498 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
506 499 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
507 500 housekeeping_packet.reserved = DEFAULT_RESERVED;
508 501 housekeeping_packet.userApplication = CCSDS_USER_APP;
509 502 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
510 503 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
511 504 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
512 505 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
513 506 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
514 507 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
515 508 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
516 509 housekeeping_packet.serviceType = TM_TYPE_HK;
517 510 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
518 511 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
519 512 housekeeping_packet.sid = SID_HK;
520 513
521 514 // init status word
522 515 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
523 516 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
524 517 // init software version
525 518 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
526 519 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
527 520 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
528 521 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
529 522 // init fpga version
530 523 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
531 524 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
532 525 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
533 526 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
534 527
535 528 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
536 529 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
537 530 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
538 531 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
539 532 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
540 533 }
541 534
542 535 void increment_seq_counter( unsigned short *packetSequenceControl )
543 536 {
544 537 /** This function increment the sequence counter passes in argument.
545 538 *
546 539 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
547 540 *
548 541 */
549 542
550 543 unsigned short segmentation_grouping_flag;
551 544 unsigned short sequence_cnt;
552 545
553 546 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
554 547 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
555 548
556 549 if ( sequence_cnt < SEQ_CNT_MAX)
557 550 {
558 551 sequence_cnt = sequence_cnt + 1;
559 552 }
560 553 else
561 554 {
562 555 sequence_cnt = 0;
563 556 }
564 557
565 558 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
566 559 }
567 560
568 561 void getTime( unsigned char *time)
569 562 {
570 563 /** This function write the current local time in the time buffer passed in argument.
571 564 *
572 565 */
573 566
574 567 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
575 568 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
576 569 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
577 570 time[3] = (unsigned char) (time_management_regs->coarse_time);
578 571 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
579 572 time[5] = (unsigned char) (time_management_regs->fine_time);
580 573 }
581 574
582 575 unsigned long long int getTimeAsUnsignedLongLongInt( )
583 576 {
584 577 /** This function write the current local time in the time buffer passed in argument.
585 578 *
586 579 */
587 580 unsigned long long int time;
588 581
589 582 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
590 583 + time_management_regs->fine_time;
591 584
592 585 return time;
593 586 }
594 587
595 588 void send_dumb_hk( void )
596 589 {
597 590 Packet_TM_LFR_HK_t dummy_hk_packet;
598 591 unsigned char *parameters;
599 592 unsigned int i;
600 593 rtems_id queue_id;
601 594
602 595 queue_id = RTEMS_ID_NONE;
603 596
604 597 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
605 598 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
606 599 dummy_hk_packet.reserved = DEFAULT_RESERVED;
607 600 dummy_hk_packet.userApplication = CCSDS_USER_APP;
608 601 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
609 602 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
610 603 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
611 604 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
612 605 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
613 606 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
614 607 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
615 608 dummy_hk_packet.serviceType = TM_TYPE_HK;
616 609 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
617 610 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
618 611 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
619 612 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
620 613 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
621 614 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
622 615 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
623 616 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
624 617 dummy_hk_packet.sid = SID_HK;
625 618
626 619 // init status word
627 620 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
628 621 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
629 622 // init software version
630 623 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
631 624 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
632 625 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
633 626 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
634 627 // init fpga version
635 628 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
636 629 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
637 630 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
638 631 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
639 632
640 633 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
641 634
642 635 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
643 636 {
644 637 parameters[i] = INT8_ALL_F;
645 638 }
646 639
647 640 get_message_queue_id_send( &queue_id );
648 641
649 642 rtems_message_queue_send( queue_id, &dummy_hk_packet,
650 643 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
651 644 }
652 645
653 646 void get_temperatures( unsigned char *temperatures )
654 647 {
655 648 unsigned char* temp_scm_ptr;
656 649 unsigned char* temp_pcb_ptr;
657 650 unsigned char* temp_fpga_ptr;
658 651
659 652 // SEL1 SEL0
660 653 // 0 0 => PCB
661 654 // 0 1 => FPGA
662 655 // 1 0 => SCM
663 656
664 657 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
665 658 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
666 659 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
667 660
668 661 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
669 662 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
670 663 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
671 664 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
672 665 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
673 666 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
674 667 }
675 668
676 669 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
677 670 {
678 671 unsigned char* v_ptr;
679 672 unsigned char* e1_ptr;
680 673 unsigned char* e2_ptr;
681 674
682 675 v_ptr = (unsigned char *) &waveform_picker_regs->v;
683 676 e1_ptr = (unsigned char *) &waveform_picker_regs->e1;
684 677 e2_ptr = (unsigned char *) &waveform_picker_regs->e2;
685 678
686 679 spacecraft_potential[ BYTE_0 ] = v_ptr[ BYTE_2 ];
687 680 spacecraft_potential[ BYTE_1 ] = v_ptr[ BYTE_3 ];
688 681 spacecraft_potential[ BYTE_2 ] = e1_ptr[ BYTE_2 ];
689 682 spacecraft_potential[ BYTE_3 ] = e1_ptr[ BYTE_3 ];
690 683 spacecraft_potential[ BYTE_4 ] = e2_ptr[ BYTE_2 ];
691 684 spacecraft_potential[ BYTE_5 ] = e2_ptr[ BYTE_3 ];
692 685 }
693 686
694 687 void get_cpu_load( unsigned char *resource_statistics )
695 688 {
696 689 unsigned char cpu_load;
697 690
698 691 cpu_load = lfr_rtems_cpu_usage_report();
699 692
700 693 // HK_LFR_CPU_LOAD
701 694 resource_statistics[0] = cpu_load;
702 695
703 696 // HK_LFR_CPU_LOAD_MAX
704 697 if (cpu_load > resource_statistics[1])
705 698 {
706 699 resource_statistics[1] = cpu_load;
707 700 }
708 701
709 702 // CPU_LOAD_AVE
710 703 resource_statistics[BYTE_2] = 0;
711 704
712 705 #ifndef PRINT_TASK_STATISTICS
713 706 rtems_cpu_usage_reset();
714 707 #endif
715 708
716 709 }
717 710
718 711 void set_hk_lfr_sc_potential_flag( bool state )
719 712 {
720 713 if (state == true)
721 714 {
722 715 housekeeping_packet.lfr_status_word[1] =
723 716 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
724 717 }
725 718 else
726 719 {
727 720 housekeeping_packet.lfr_status_word[1] =
728 721 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
729 722 }
730 723 }
731 724
732 725 void set_sy_lfr_pas_filter_enabled( bool state )
733 726 {
734 727 if (state == true)
735 728 {
736 729 housekeeping_packet.lfr_status_word[1] =
737 730 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0010 0000]
738 731 }
739 732 else
740 733 {
741 734 housekeeping_packet.lfr_status_word[1] =
742 735 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1101 1111]
743 736 }
744 737 }
745 738
746 739 void set_sy_lfr_watchdog_enabled( bool state )
747 740 {
748 741 if (state == true)
749 742 {
750 743 housekeeping_packet.lfr_status_word[1] =
751 744 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
752 745 }
753 746 else
754 747 {
755 748 housekeeping_packet.lfr_status_word[1] =
756 749 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
757 750 }
758 751 }
759 752
760 753 void set_hk_lfr_calib_enable( bool state )
761 754 {
762 755 if (state == true)
763 756 {
764 757 housekeeping_packet.lfr_status_word[1] =
765 758 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
766 759 }
767 760 else
768 761 {
769 762 housekeeping_packet.lfr_status_word[1] =
770 763 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
771 764 }
772 765 }
773 766
774 767 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
775 768 {
776 769 housekeeping_packet.lfr_status_word[1] =
777 770 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
778 771
779 772 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
780 773 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
781 774
782 775 }
783 776
784 777 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
785 778 {
786 779 int delta;
787 780
788 781 delta = 0;
789 782
790 783 if (newValue >= oldValue)
791 784 {
792 785 delta = newValue - oldValue;
793 786 }
794 787 else
795 788 {
796 delta = 255 - oldValue + newValue;
789 delta = (255 - oldValue) + newValue;
797 790 }
798 791
799 792 *counter = *counter + delta;
800 793 }
801 794
802 795 void hk_lfr_le_update( void )
803 796 {
804 797 static hk_lfr_le_t old_hk_lfr_le = {0};
805 798 hk_lfr_le_t new_hk_lfr_le;
806 799 unsigned int counter;
807 800
808 801 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
809 802
810 803 // DPU
811 804 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
812 805 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
813 806 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
814 807 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
815 808 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
816 809 // TIMECODE
817 810 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
818 811 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
819 812 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
820 813 // TIME
821 814 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
822 815 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
823 816 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
824 817 //AHB
825 818 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
826 819 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
827 820 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
828 821
829 822 // update the le counter
830 823 // DPU
831 824 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
832 825 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
833 826 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
834 827 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
835 828 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
836 829 // TIMECODE
837 830 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
838 831 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
839 832 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
840 833 // TIME
841 834 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
842 835 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
843 836 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
844 837 // AHB
845 838 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
846 839
847 840 // DPU
848 841 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
849 842 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
850 843 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
851 844 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
852 845 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
853 846 // TIMECODE
854 847 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
855 848 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
856 849 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
857 850 // TIME
858 851 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
859 852 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
860 853 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
861 854 //AHB
862 855 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
863 856 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
864 857 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
865 858
866 859 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
867 860 // LE
868 861 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
869 862 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
870 863 }
871 864
872 865 void hk_lfr_me_update( void )
873 866 {
874 867 static hk_lfr_me_t old_hk_lfr_me = {0};
875 868 hk_lfr_me_t new_hk_lfr_me;
876 869 unsigned int counter;
877 870
878 871 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
879 872
880 873 // get the current values
881 874 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
882 875 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
883 876 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
884 877 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
885 878
886 879 // update the me counter
887 880 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
888 881 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
889 882 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
890 883 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
891 884
892 885 // store the counters for the next time
893 886 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
894 887 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
895 888 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
896 889 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
897 890
898 891 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
899 892 // ME
900 893 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
901 894 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
902 895 }
903 896
904 897 void hk_lfr_le_me_he_update()
905 898 {
906 899
907 900 unsigned int hk_lfr_he_cnt;
908 901
909 hk_lfr_he_cnt = ((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256 + housekeeping_packet.hk_lfr_he_cnt[1];
902 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
910 903
911 904 //update the low severity error counter
912 905 hk_lfr_le_update( );
913 906
914 907 //update the medium severity error counter
915 908 hk_lfr_me_update();
916 909
917 910 //update the high severity error counter
918 911 hk_lfr_he_cnt = 0;
919 912
920 913 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
921 914 // HE
922 915 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
923 916 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
924 917
925 918 }
926 919
927 920 void set_hk_lfr_time_not_synchro()
928 921 {
929 922 static unsigned char synchroLost = 1;
930 923 int synchronizationBit;
931 924
932 925 // get the synchronization bit
933 926 synchronizationBit =
934 927 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
935 928
936 929 switch (synchronizationBit)
937 930 {
938 931 case 0:
939 932 if (synchroLost == 1)
940 933 {
941 934 synchroLost = 0;
942 935 }
943 936 break;
944 937 case 1:
945 938 if (synchroLost == 0 )
946 939 {
947 940 synchroLost = 1;
948 941 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
949 942 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
950 943 }
951 944 break;
952 945 default:
953 946 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
954 947 break;
955 948 }
956 949
957 950 }
958 951
959 952 void set_hk_lfr_ahb_correctable() // CRITICITY L
960 953 {
961 954 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
962 955 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
963 956 * detected errors in the cache, in the integer unit and in the floating point unit.
964 957 *
965 958 * @param void
966 959 *
967 960 * @return void
968 961 *
969 962 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
970 963 *
971 964 */
972 965
973 966 unsigned int ahb_correctable;
974 967 unsigned int instructionErrorCounter;
975 968 unsigned int dataErrorCounter;
976 969 unsigned int fprfErrorCounter;
977 970 unsigned int iurfErrorCounter;
978 971
979 972 instructionErrorCounter = 0;
980 973 dataErrorCounter = 0;
981 974 fprfErrorCounter = 0;
982 975 iurfErrorCounter = 0;
983 976
984 977 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
985 978 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
986 979
987 980 ahb_correctable = instructionErrorCounter
988 981 + dataErrorCounter
989 982 + fprfErrorCounter
990 983 + iurfErrorCounter
991 984 + housekeeping_packet.hk_lfr_ahb_correctable;
992 985
993 986 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
994 987
995 988 }
@@ -1,46 +1,48
1 1 /** Global variables used by the processing functions.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 // TOTAL = 32 coefficients * 4 = 128 octets * 3 * 12 = 4608 octets
9 9 // SX 12 coefficients
10 10 float K14_sx_re = 1;
11 11 float K14_sx_im = 1;
12 12 float K15_sx_re = 1;
13 13 float K15_sx_im = 1;
14 14 float K24_sx_re = 1;
15 15 float K24_sx_im = 1;
16 16 float K25_sx_re = 1;
17 17 float K25_sx_im = 1;
18 18 float K34_sx_re = 1;
19 19 float K34_sx_im = 1;
20 20 float K35_sx_re = 1;
21 21 float K35_sx_im = 1;
22 22 // NY 8 coefficients
23 23 float K24_ny_re = 1;
24 24 float K24_ny_im = 1;
25 25 float K25_ny_re = 1;
26 26 float K25_ny_im = 1;
27 27 float K34_ny_re = 1;
28 28 float K34_ny_im = 1;
29 29 float K35_ny_re = 1;
30 30 float K35_ny_im = 1;
31 31 // NZ 8 coefficients
32 32 float K24_nz_re = 1;
33 33 float K24_nz_im = 1;
34 34 float K25_nz_re = 1;
35 35 float K25_nz_im = 1;
36 36 float K34_nz_re = 1;
37 37 float K34_nz_im = 1;
38 38 float K35_nz_re = 1;
39 39 float K35_nz_im = 1;
40 40 // PE 4 coefficients
41 41 float K44_pe = 1;
42 42 float K55_pe = 1;
43 43 float K45_pe_re = 1;
44 44 float K45_pe_im = 1;
45 45
46 float Alpha_M = M_PI/4;
46 #define ALPHA_M (M_PI / 4)
47
48 float Alpha_M = ALPHA_M;
@@ -1,1631 +1,1633
1 1 /** Functions related to the SpaceWire interface.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle SpaceWire transmissions:
7 7 * - configuration of the SpaceWire link
8 8 * - SpaceWire related interruption requests processing
9 9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 10 * - reception of TeleCommands by a dedicated RTEMS task
11 11 *
12 12 */
13 13
14 14 #include "fsw_spacewire.h"
15 15
16 16 rtems_name semq_name = 0;
17 17 rtems_id semq_id = RTEMS_ID_NONE;
18 18
19 19 //*****************
20 20 // waveform headers
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF = {0};
22 22 Header_TM_LFR_SCIENCE_SWF_t headerSWF = {0};
23 23 Header_TM_LFR_SCIENCE_ASM_t headerASM = {0};
24 24
25 25 unsigned char previousTimecodeCtr = 0;
26 26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27 27
28 28 //***********
29 29 // RTEMS TASK
30 30 rtems_task spiq_task(rtems_task_argument unused)
31 31 {
32 32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 33 *
34 34 * @param unused is the starting argument of the RTEMS task
35 35 *
36 36 */
37 37
38 38 rtems_event_set event_out;
39 39 rtems_status_code status;
40 40 int linkStatus;
41 41
42 42 event_out = EVENT_SETS_NONE_PENDING;
43 43 linkStatus = 0;
44 44
45 45 BOOT_PRINTF("in SPIQ *** \n")
46 46
47 47 while(true){
48 48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
49 49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
50 50
51 51 // [0] SUSPEND RECV AND SEND TASKS
52 52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
53 53 if ( status != RTEMS_SUCCESSFUL ) {
54 54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
55 55 }
56 56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
57 57 if ( status != RTEMS_SUCCESSFUL ) {
58 58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
59 59 }
60 60
61 61 // [1] CHECK THE LINK
62 62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
63 63 if ( linkStatus != SPW_LINK_OK) {
64 64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
65 65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
66 66 }
67 67
68 68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
69 69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
70 70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
71 71 {
72 72 spacewire_read_statistics();
73 73 status = spacewire_several_connect_attemps( );
74 74 }
75 75 else // [2.b] in run state, start the link
76 76 {
77 77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
78 78 if ( status != RTEMS_SUCCESSFUL)
79 79 {
80 80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
81 81 }
82 82 }
83 83
84 84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
85 85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
86 86 {
87 87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
88 88 if ( status != RTEMS_SUCCESSFUL ) {
89 89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
90 90 }
91 91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
92 92 if ( status != RTEMS_SUCCESSFUL ) {
93 93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
94 94 }
95 95 }
96 96 else // [3.b] the link is not in run state, go in STANDBY mode
97 97 {
98 98 status = enter_mode_standby();
99 99 if ( status != RTEMS_SUCCESSFUL )
100 100 {
101 101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
102 102 }
103 103 {
104 104 updateLFRCurrentMode( LFR_MODE_STANDBY );
105 105 }
106 106 // wake the LINK task up to wait for the link recovery
107 107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
108 108 status = rtems_task_suspend( RTEMS_SELF );
109 109 }
110 110 }
111 111 }
112 112
113 113 rtems_task recv_task( rtems_task_argument unused )
114 114 {
115 115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
116 116 *
117 117 * @param unused is the starting argument of the RTEMS task
118 118 *
119 119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
120 120 * 1. It reads the incoming data.
121 121 * 2. Launches the acceptance procedure.
122 122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
123 123 *
124 124 */
125 125
126 126 int len;
127 127 ccsdsTelecommandPacket_t currentTC;
128 128 unsigned char computed_CRC[ BYTES_PER_CRC ];
129 129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
130 130 unsigned char destinationID;
131 131 unsigned int estimatedPacketLength;
132 132 unsigned int parserCode;
133 133 rtems_status_code status;
134 134 rtems_id queue_recv_id;
135 135 rtems_id queue_send_id;
136 136
137 137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
138 138 destinationID = 0;
139 139 queue_recv_id = RTEMS_ID_NONE;
140 140 queue_send_id = RTEMS_ID_NONE;
141 141
142 142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
143 143
144 144 status = get_message_queue_id_recv( &queue_recv_id );
145 145 if (status != RTEMS_SUCCESSFUL)
146 146 {
147 147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
148 148 }
149 149
150 150 status = get_message_queue_id_send( &queue_send_id );
151 151 if (status != RTEMS_SUCCESSFUL)
152 152 {
153 153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
154 154 }
155 155
156 156 BOOT_PRINTF("in RECV *** \n")
157 157
158 158 while(1)
159 159 {
160 160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
161 161 if (len == -1){ // error during the read call
162 162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
163 163 }
164 164 else {
165 165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
166 166 PRINTF("in RECV *** packet lenght too short\n")
167 167 }
168 168 else {
169 169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
170 170 //PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
171 171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
172 172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
173 173 // CHECK THE TC
174 174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
175 175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
176 176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
177 177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
178 178 || (parserCode == WRONG_SRC_ID) )
179 179 { // send TM_LFR_TC_EXE_CORRUPTED
180 180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
181 181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
182 182 &&
183 183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
184 184 )
185 185 {
186 186 if ( parserCode == WRONG_SRC_ID )
187 187 {
188 188 destinationID = SID_TC_GROUND;
189 189 }
190 190 else
191 191 {
192 192 destinationID = currentTC.sourceID;
193 193 }
194 194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
195 195 computed_CRC, currentTC_LEN_RCV,
196 196 destinationID );
197 197 }
198 198 }
199 199 else
200 200 { // send valid TC to the action launcher
201 201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
202 202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
203 203 }
204 204 }
205 205 }
206 206
207 207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
208 208
209 209 }
210 210 }
211 211
212 212 rtems_task send_task( rtems_task_argument argument)
213 213 {
214 214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
215 215 *
216 216 * @param unused is the starting argument of the RTEMS task
217 217 *
218 218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
219 219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
220 220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
221 221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
222 222 * data it contains.
223 223 *
224 224 */
225 225
226 226 rtems_status_code status; // RTEMS status code
227 227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
228 228 ring_node *incomingRingNodePtr;
229 229 int ring_node_address;
230 230 char *charPtr;
231 231 spw_ioctl_pkt_send *spw_ioctl_send;
232 232 size_t size; // size of the incoming TC packet
233 233 rtems_id queue_send_id;
234 234 unsigned int sid;
235 235 unsigned char sidAsUnsignedChar;
236 236 unsigned char type;
237 237
238 238 incomingRingNodePtr = NULL;
239 239 ring_node_address = 0;
240 240 charPtr = (char *) &ring_node_address;
241 241 size = 0;
242 242 queue_send_id = RTEMS_ID_NONE;
243 243 sid = 0;
244 244 sidAsUnsignedChar = 0;
245 245
246 246 init_header_cwf( &headerCWF );
247 247 init_header_swf( &headerSWF );
248 248 init_header_asm( &headerASM );
249 249
250 250 status = get_message_queue_id_send( &queue_send_id );
251 251 if (status != RTEMS_SUCCESSFUL)
252 252 {
253 253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
254 254 }
255 255
256 256 BOOT_PRINTF("in SEND *** \n")
257 257
258 258 while(1)
259 259 {
260 260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
261 261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
262 262
263 263 if (status!=RTEMS_SUCCESSFUL)
264 264 {
265 265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
266 266 }
267 267 else
268 268 {
269 269 if ( size == sizeof(ring_node*) )
270 270 {
271 271 charPtr[0] = incomingData[0];
272 272 charPtr[1] = incomingData[1];
273 273 charPtr[BYTE_2] = incomingData[BYTE_2];
274 274 charPtr[BYTE_3] = incomingData[BYTE_3];
275 275 incomingRingNodePtr = (ring_node*) ring_node_address;
276 276 sid = incomingRingNodePtr->sid;
277 277 if ( (sid==SID_NORM_CWF_LONG_F3)
278 278 || (sid==SID_BURST_CWF_F2 )
279 279 || (sid==SID_SBM1_CWF_F1 )
280 280 || (sid==SID_SBM2_CWF_F2 ))
281 281 {
282 282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
283 283 }
284 284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
285 285 {
286 286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
287 287 }
288 288 else if ( (sid==SID_NORM_CWF_F3) )
289 289 {
290 290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
291 291 }
292 292 else if (sid==SID_NORM_ASM_F0)
293 293 {
294 294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
295 295 }
296 296 else if (sid==SID_NORM_ASM_F1)
297 297 {
298 298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
299 299 }
300 300 else if (sid==SID_NORM_ASM_F2)
301 301 {
302 302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
303 303 }
304 304 else if ( sid==TM_CODE_K_DUMP )
305 305 {
306 306 spw_send_k_dump( incomingRingNodePtr );
307 307 }
308 308 else
309 309 {
310 310 PRINTF1("unexpected sid = %d\n", sid);
311 311 }
312 312 }
313 313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
314 314 {
315 315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
316 316 sid = sidAsUnsignedChar;
317 317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
318 318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
319 319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
320 320 {
321 321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
322 322 }
323 323
324 324 status = write( fdSPW, incomingData, size );
325 325 if (status == -1){
326 326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
327 327 }
328 328 }
329 329 else // the incoming message is a spw_ioctl_pkt_send structure
330 330 {
331 331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
332 332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
333 333 if (status == -1){
334 334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
335 335 }
336 336 }
337 337 }
338 338
339 339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
340 340
341 341 }
342 342 }
343 343
344 344 rtems_task link_task( rtems_task_argument argument )
345 345 {
346 346 rtems_event_set event_out;
347 347 rtems_status_code status;
348 348 int linkStatus;
349 349
350 350 event_out = EVENT_SETS_NONE_PENDING;
351 351 linkStatus = 0;
352 352
353 353 BOOT_PRINTF("in LINK ***\n")
354 354
355 355 while(1)
356 356 {
357 357 // wait for an RTEMS_EVENT
358 358 rtems_event_receive( RTEMS_EVENT_0,
359 359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
360 360 PRINTF("in LINK *** wait for the link\n")
361 361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
362 362 while( linkStatus != SPW_LINK_OK) // wait for the link
363 363 {
364 364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
365 365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
366 366 watchdog_reload();
367 367 }
368 368
369 369 spacewire_read_statistics();
370 370 status = spacewire_stop_and_start_link( fdSPW );
371 371
372 372 if (status != RTEMS_SUCCESSFUL)
373 373 {
374 374 PRINTF1("in LINK *** ERR link not started %d\n", status)
375 375 }
376 376 else
377 377 {
378 378 PRINTF("in LINK *** OK link started\n")
379 379 }
380 380
381 381 // restart the SPIQ task
382 382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
383 383 if ( status != RTEMS_SUCCESSFUL ) {
384 384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
385 385 }
386 386
387 387 // restart RECV and SEND
388 388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
389 389 if ( status != RTEMS_SUCCESSFUL ) {
390 390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
391 391 }
392 392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
393 393 if ( status != RTEMS_SUCCESSFUL ) {
394 394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
395 395 }
396 396 }
397 397 }
398 398
399 399 //****************
400 400 // OTHER FUNCTIONS
401 401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
402 402 {
403 403 /** This function opens the SpaceWire link.
404 404 *
405 405 * @return a valid file descriptor in case of success, -1 in case of a failure
406 406 *
407 407 */
408 408 rtems_status_code status;
409 409
410 410 status = RTEMS_SUCCESSFUL;
411 411
412 412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
413 413 if ( fdSPW < 0 ) {
414 414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
415 415 }
416 416 else
417 417 {
418 418 status = RTEMS_SUCCESSFUL;
419 419 }
420 420
421 421 return status;
422 422 }
423 423
424 424 int spacewire_start_link( int fd )
425 425 {
426 426 rtems_status_code status;
427 427
428 428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
429 429 // -1 default hardcoded driver timeout
430 430
431 431 return status;
432 432 }
433 433
434 434 int spacewire_stop_and_start_link( int fd )
435 435 {
436 436 rtems_status_code status;
437 437
438 438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
439 439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
440 440 // -1 default hardcoded driver timeout
441 441
442 442 return status;
443 443 }
444 444
445 445 int spacewire_configure_link( int fd )
446 446 {
447 447 /** This function configures the SpaceWire link.
448 448 *
449 449 * @return GR-RTEMS-DRIVER directive status codes:
450 450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
451 451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
452 452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
453 453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
454 454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
455 455 * - 5 EIO - Error when writing to grswp hardware registers.
456 456 * - 2 ENOENT - No such file or directory
457 457 */
458 458
459 459 rtems_status_code status;
460 460
461 461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
462 462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
463 463 spw_ioctl_packetsize packetsize;
464 464
465 465 packetsize.rxsize = SPW_RXSIZE;
466 466 packetsize.txdsize = SPW_TXDSIZE;
467 467 packetsize.txhsize = SPW_TXHSIZE;
468 468
469 469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
470 470 if (status!=RTEMS_SUCCESSFUL) {
471 471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
472 472 }
473 473 //
474 474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
475 475 if (status!=RTEMS_SUCCESSFUL) {
476 476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
477 477 }
478 478 //
479 479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
480 480 if (status!=RTEMS_SUCCESSFUL) {
481 481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
482 482 }
483 483 //
484 484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
485 485 if (status!=RTEMS_SUCCESSFUL) {
486 486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
487 487 }
488 488 //
489 489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
490 490 if (status!=RTEMS_SUCCESSFUL) {
491 491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
492 492 }
493 493 //
494 494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
495 495 if (status!=RTEMS_SUCCESSFUL) {
496 496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
497 497 }
498 498 //
499 499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
500 500 if (status!=RTEMS_SUCCESSFUL) {
501 501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
502 502 }
503 503 //
504 504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
505 505 if (status!=RTEMS_SUCCESSFUL) {
506 506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
507 507 }
508 508
509 509 return status;
510 510 }
511 511
512 512 int spacewire_several_connect_attemps( void )
513 513 {
514 514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
515 515 *
516 516 * @return RTEMS directive status code:
517 517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
518 518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
519 519 *
520 520 */
521 521
522 522 rtems_status_code status_spw;
523 523 rtems_status_code status;
524 524 int i;
525 525
526 526 status_spw = RTEMS_SUCCESSFUL;
527 527
528 528 i = 0;
529 529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
530 530 {
531 531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
532 532
533 533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
534 534
535 535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
536 536
537 537 status_spw = spacewire_stop_and_start_link( fdSPW );
538 538
539 539 if ( status_spw != RTEMS_SUCCESSFUL )
540 540 {
541 541 i = i + 1;
542 542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
543 543 }
544 544 else
545 545 {
546 546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
547 547 }
548 548 }
549 549
550 550 return status_spw;
551 551 }
552 552
553 553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
554 554 {
555 555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
556 556 *
557 557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
558 558 * @param regAddr is the address of the GRSPW control register.
559 559 *
560 560 * NP is the bit 20 of the GRSPW control register.
561 561 *
562 562 */
563 563
564 564 unsigned int *spwptr = (unsigned int*) regAddr;
565 565
566 566 if (val == 1) {
567 567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
568 568 }
569 569 if (val== 0) {
570 570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
571 571 }
572 572 }
573 573
574 574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
575 575 {
576 576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
577 577 *
578 578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
579 579 * @param regAddr is the address of the GRSPW control register.
580 580 *
581 581 * RE is the bit 16 of the GRSPW control register.
582 582 *
583 583 */
584 584
585 585 unsigned int *spwptr = (unsigned int*) regAddr;
586 586
587 587 if (val == 1)
588 588 {
589 589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
590 590 }
591 591 if (val== 0)
592 592 {
593 593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
594 594 }
595 595 }
596 596
597 597 void spacewire_read_statistics( void )
598 598 {
599 599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
600 600 *
601 601 * @param void
602 602 *
603 603 * @return void
604 604 *
605 605 * Once they are read, the counters are stored in a global variable used during the building of the
606 606 * HK packets.
607 607 *
608 608 */
609 609
610 610 rtems_status_code status;
611 611 spw_stats current;
612 612
613 613 memset(&current, 0, sizeof(spw_stats));
614 614
615 615 spacewire_get_last_error();
616 616
617 617 // read the current statistics
618 618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
619 619
620 620 // clear the counters
621 621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
622 622
623 623 // typedef struct {
624 624 // unsigned int tx_link_err; // NOT IN HK
625 625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
626 626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
627 627 // unsigned int rx_eep_err;
628 628 // unsigned int rx_truncated;
629 629 // unsigned int parity_err;
630 630 // unsigned int escape_err;
631 631 // unsigned int credit_err;
632 632 // unsigned int write_sync_err;
633 633 // unsigned int disconnect_err;
634 634 // unsigned int early_ep;
635 635 // unsigned int invalid_address;
636 636 // unsigned int packets_sent;
637 637 // unsigned int packets_received;
638 638 // } spw_stats;
639 639
640 640 // rx_eep_err
641 641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
642 642 // rx_truncated
643 643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
644 644 // parity_err
645 645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
646 646 // escape_err
647 647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
648 648 // credit_err
649 649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
650 650 // write_sync_err
651 651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
652 652 // disconnect_err
653 653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
654 654 // early_ep
655 655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
656 656 // invalid_address
657 657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
658 658 // packets_sent
659 659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
660 660 // packets_received
661 661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
662 662
663 663 }
664 664
665 665 void spacewire_get_last_error( void )
666 666 {
667 667 static spw_stats previous = {0};
668 668 spw_stats current;
669 669 rtems_status_code status;
670 670
671 671 unsigned int hk_lfr_last_er_rid;
672 672 unsigned char hk_lfr_last_er_code;
673 673 int coarseTime;
674 674 int fineTime;
675 675 unsigned char update_hk_lfr_last_er;
676 676
677 677 memset(&current, 0, sizeof(spw_stats));
678 update_hk_lfr_last_er = 0;
678 hk_lfr_last_er_rid = INIT_CHAR;
679 hk_lfr_last_er_code = INIT_CHAR;
680 update_hk_lfr_last_er = INIT_CHAR;
679 681
680 682 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
681 683
682 684 // get current time
683 685 coarseTime = time_management_regs->coarse_time;
684 686 fineTime = time_management_regs->fine_time;
685 687
686 688 // typedef struct {
687 689 // unsigned int tx_link_err; // NOT IN HK
688 690 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
689 691 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
690 692 // unsigned int rx_eep_err;
691 693 // unsigned int rx_truncated;
692 694 // unsigned int parity_err;
693 695 // unsigned int escape_err;
694 696 // unsigned int credit_err;
695 697 // unsigned int write_sync_err;
696 698 // unsigned int disconnect_err;
697 699 // unsigned int early_ep;
698 700 // unsigned int invalid_address;
699 701 // unsigned int packets_sent;
700 702 // unsigned int packets_received;
701 703 // } spw_stats;
702 704
703 705 // tx_link_err *** no code associated to this field
704 706 // rx_rmap_header_crc_err *** LE *** in HK
705 707 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
706 708 {
707 709 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
708 710 hk_lfr_last_er_code = CODE_HEADER_CRC;
709 711 update_hk_lfr_last_er = 1;
710 712 }
711 713 // rx_rmap_data_crc_err *** LE *** NOT IN HK
712 714 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
713 715 {
714 716 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
715 717 hk_lfr_last_er_code = CODE_DATA_CRC;
716 718 update_hk_lfr_last_er = 1;
717 719 }
718 720 // rx_eep_err
719 721 if (previous.rx_eep_err != current.rx_eep_err)
720 722 {
721 723 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
722 724 hk_lfr_last_er_code = CODE_EEP;
723 725 update_hk_lfr_last_er = 1;
724 726 }
725 727 // rx_truncated
726 728 if (previous.rx_truncated != current.rx_truncated)
727 729 {
728 730 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
729 731 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
730 732 update_hk_lfr_last_er = 1;
731 733 }
732 734 // parity_err
733 735 if (previous.parity_err != current.parity_err)
734 736 {
735 737 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
736 738 hk_lfr_last_er_code = CODE_PARITY;
737 739 update_hk_lfr_last_er = 1;
738 740 }
739 741 // escape_err
740 742 if (previous.parity_err != current.parity_err)
741 743 {
742 744 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
743 745 hk_lfr_last_er_code = CODE_ESCAPE;
744 746 update_hk_lfr_last_er = 1;
745 747 }
746 748 // credit_err
747 749 if (previous.credit_err != current.credit_err)
748 750 {
749 751 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
750 752 hk_lfr_last_er_code = CODE_CREDIT;
751 753 update_hk_lfr_last_er = 1;
752 754 }
753 755 // write_sync_err
754 756 if (previous.write_sync_err != current.write_sync_err)
755 757 {
756 758 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
757 759 hk_lfr_last_er_code = CODE_WRITE_SYNC;
758 760 update_hk_lfr_last_er = 1;
759 761 }
760 762 // disconnect_err
761 763 if (previous.disconnect_err != current.disconnect_err)
762 764 {
763 765 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
764 766 hk_lfr_last_er_code = CODE_DISCONNECT;
765 767 update_hk_lfr_last_er = 1;
766 768 }
767 769 // early_ep
768 770 if (previous.early_ep != current.early_ep)
769 771 {
770 772 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
771 773 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
772 774 update_hk_lfr_last_er = 1;
773 775 }
774 776 // invalid_address
775 777 if (previous.invalid_address != current.invalid_address)
776 778 {
777 779 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
778 780 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
779 781 update_hk_lfr_last_er = 1;
780 782 }
781 783
782 784 // if a field has changed, update the hk_last_er fields
783 785 if (update_hk_lfr_last_er == 1)
784 786 {
785 787 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
786 788 }
787 789
788 790 previous = current;
789 791 }
790 792
791 793 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
792 794 {
793 795 unsigned char *coarseTimePtr;
794 796 unsigned char *fineTimePtr;
795 797
796 798 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
797 799 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
798 800
799 801 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
800 802 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
801 803 housekeeping_packet.hk_lfr_last_er_code = code;
802 804 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
803 805 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
804 806 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
805 807 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
806 808 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
807 809 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
808 810 }
809 811
810 812 void update_hk_with_grspw_stats( void )
811 813 {
812 814 //****************************
813 815 // DPU_SPACEWIRE_IF_STATISTICS
814 816 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
815 817 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
816 818 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
817 819 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
818 820
819 821 //******************************************
820 822 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
821 823 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
822 824 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
823 825 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
824 826 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
825 827 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
826 828
827 829 //*********************************************
828 830 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
829 831 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
830 832 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
831 833 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
832 834 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
833 835 }
834 836
835 837 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
836 838 {
837 839 unsigned int *statusRegisterPtr;
838 840 unsigned char linkState;
839 841
840 842 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
841 843 linkState =
842 844 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
843 845
844 846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
845 847
846 848 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
847 849 }
848 850
849 851 void increase_unsigned_char_counter( unsigned char *counter )
850 852 {
851 853 // update the number of valid timecodes that have been received
852 854 if (*counter == UINT8_MAX)
853 855 {
854 856 *counter = 0;
855 857 }
856 858 else
857 859 {
858 860 *counter = *counter + 1;
859 861 }
860 862 }
861 863
862 864 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
863 865 {
864 866 /** This function checks the coherency between the incoming timecode and the last valid timecode.
865 867 *
866 868 * @param currentTimecodeCtr is the incoming timecode
867 869 *
868 870 * @return returned codes::
869 871 * - LFR_DEFAULT
870 872 * - LFR_SUCCESSFUL
871 873 *
872 874 */
873 875
874 876 static unsigned char firstTickout = 1;
875 877 unsigned char ret;
876 878
877 879 ret = LFR_DEFAULT;
878 880
879 881 if (firstTickout == 0)
880 882 {
881 883 if (currentTimecodeCtr == 0)
882 884 {
883 885 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
884 886 {
885 887 ret = LFR_SUCCESSFUL;
886 888 }
887 889 else
888 890 {
889 891 ret = LFR_DEFAULT;
890 892 }
891 893 }
892 894 else
893 895 {
894 896 if (currentTimecodeCtr == (previousTimecodeCtr +1))
895 897 {
896 898 ret = LFR_SUCCESSFUL;
897 899 }
898 900 else
899 901 {
900 902 ret = LFR_DEFAULT;
901 903 }
902 904 }
903 905 }
904 906 else
905 907 {
906 908 firstTickout = 0;
907 909 ret = LFR_SUCCESSFUL;
908 910 }
909 911
910 912 return ret;
911 913 }
912 914
913 915 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
914 916 {
915 917 unsigned int ret;
916 918
917 919 ret = LFR_DEFAULT;
918 920
919 921 if (timecode == internalTime)
920 922 {
921 923 ret = LFR_SUCCESSFUL;
922 924 }
923 925 else
924 926 {
925 927 ret = LFR_DEFAULT;
926 928 }
927 929
928 930 return ret;
929 931 }
930 932
931 933 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
932 934 {
933 935 // a tickout has been emitted, perform actions on the incoming timecode
934 936
935 937 unsigned char incomingTimecode;
936 938 unsigned char updateTime;
937 939 unsigned char internalTime;
938 940 rtems_status_code status;
939 941
940 942 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
941 943 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
942 944 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
943 945
944 946 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
945 947
946 948 // update the number of tickout that have been generated
947 949 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
948 950
949 951 //**************************
950 952 // HK_LFR_TIMECODE_ERRONEOUS
951 953 // MISSING and INVALID are handled by the timecode_timer_routine service routine
952 954 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
953 955 {
954 956 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
955 957 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
956 958 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
957 959 }
958 960
959 961 //************************
960 962 // HK_LFR_TIME_TIMECODE_IT
961 963 // check the coherency between the SpaceWire timecode and the Internal Time
962 964 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
963 965 {
964 966 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
965 967 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
966 968 }
967 969
968 970 //********************
969 971 // HK_LFR_TIMECODE_CTR
970 972 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
971 973 if (oneTcLfrUpdateTimeReceived == 1)
972 974 {
973 975 if ( incomingTimecode != updateTime )
974 976 {
975 977 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
976 978 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
977 979 }
978 980 }
979 981
980 982 // launch the timecode timer to detect missing or invalid timecodes
981 983 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
982 984 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
983 985 if (status != RTEMS_SUCCESSFUL)
984 986 {
985 987 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
986 988 }
987 989 }
988 990
989 991 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
990 992 {
991 993 static unsigned char initStep = 1;
992 994
993 995 unsigned char currentTimecodeCtr;
994 996
995 997 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
996 998
997 999 if (initStep == 1)
998 1000 {
999 1001 if (currentTimecodeCtr == previousTimecodeCtr)
1000 1002 {
1001 1003 //************************
1002 1004 // HK_LFR_TIMECODE_MISSING
1003 1005 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1004 1006 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1005 1007 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1006 1008 }
1007 1009 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1008 1010 {
1009 1011 // the timecode value has changed and the value is valid, this is unexpected because
1010 1012 // the timer should not have fired, the timecode_irq_handler should have been raised
1011 1013 }
1012 1014 else
1013 1015 {
1014 1016 //************************
1015 1017 // HK_LFR_TIMECODE_INVALID
1016 1018 // the timecode value has changed and the value is not valid, no tickout has been generated
1017 1019 // this is why the timer has fired
1018 1020 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1019 1021 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1020 1022 }
1021 1023 }
1022 1024 else
1023 1025 {
1024 1026 initStep = 1;
1025 1027 //************************
1026 1028 // HK_LFR_TIMECODE_MISSING
1027 1029 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1028 1030 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1029 1031 }
1030 1032
1031 1033 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1032 1034 }
1033 1035
1034 1036 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1035 1037 {
1036 1038 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1037 1039 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1038 1040 header->reserved = DEFAULT_RESERVED;
1039 1041 header->userApplication = CCSDS_USER_APP;
1040 1042 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1041 1043 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1042 1044 header->packetLength[0] = INIT_CHAR;
1043 1045 header->packetLength[1] = INIT_CHAR;
1044 1046 // DATA FIELD HEADER
1045 1047 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1046 1048 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1047 1049 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1048 1050 header->destinationID = TM_DESTINATION_ID_GROUND;
1049 1051 header->time[BYTE_0] = INIT_CHAR;
1050 1052 header->time[BYTE_1] = INIT_CHAR;
1051 1053 header->time[BYTE_2] = INIT_CHAR;
1052 1054 header->time[BYTE_3] = INIT_CHAR;
1053 1055 header->time[BYTE_4] = INIT_CHAR;
1054 1056 header->time[BYTE_5] = INIT_CHAR;
1055 1057 // AUXILIARY DATA HEADER
1056 1058 header->sid = INIT_CHAR;
1057 1059 header->pa_bia_status_info = DEFAULT_HKBIA;
1058 1060 header->blkNr[0] = INIT_CHAR;
1059 1061 header->blkNr[1] = INIT_CHAR;
1060 1062 }
1061 1063
1062 1064 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1063 1065 {
1064 1066 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1065 1067 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1066 1068 header->reserved = DEFAULT_RESERVED;
1067 1069 header->userApplication = CCSDS_USER_APP;
1068 1070 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1069 1071 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1070 1072 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1071 1073 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1072 1074 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1073 1075 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1074 1076 // DATA FIELD HEADER
1075 1077 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1076 1078 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1077 1079 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1078 1080 header->destinationID = TM_DESTINATION_ID_GROUND;
1079 1081 header->time[BYTE_0] = INIT_CHAR;
1080 1082 header->time[BYTE_1] = INIT_CHAR;
1081 1083 header->time[BYTE_2] = INIT_CHAR;
1082 1084 header->time[BYTE_3] = INIT_CHAR;
1083 1085 header->time[BYTE_4] = INIT_CHAR;
1084 1086 header->time[BYTE_5] = INIT_CHAR;
1085 1087 // AUXILIARY DATA HEADER
1086 1088 header->sid = INIT_CHAR;
1087 1089 header->pa_bia_status_info = DEFAULT_HKBIA;
1088 1090 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1089 1091 header->pktNr = INIT_CHAR;
1090 1092 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1091 1093 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1092 1094 }
1093 1095
1094 1096 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1095 1097 {
1096 1098 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1097 1099 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1098 1100 header->reserved = DEFAULT_RESERVED;
1099 1101 header->userApplication = CCSDS_USER_APP;
1100 1102 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1101 1103 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1102 1104 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1103 1105 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1104 1106 header->packetLength[0] = INIT_CHAR;
1105 1107 header->packetLength[1] = INIT_CHAR;
1106 1108 // DATA FIELD HEADER
1107 1109 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1108 1110 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1109 1111 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1110 1112 header->destinationID = TM_DESTINATION_ID_GROUND;
1111 1113 header->time[BYTE_0] = INIT_CHAR;
1112 1114 header->time[BYTE_1] = INIT_CHAR;
1113 1115 header->time[BYTE_2] = INIT_CHAR;
1114 1116 header->time[BYTE_3] = INIT_CHAR;
1115 1117 header->time[BYTE_4] = INIT_CHAR;
1116 1118 header->time[BYTE_5] = INIT_CHAR;
1117 1119 // AUXILIARY DATA HEADER
1118 1120 header->sid = INIT_CHAR;
1119 1121 header->pa_bia_status_info = INIT_CHAR;
1120 1122 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1121 1123 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1122 1124 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1123 1125 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1124 1126 }
1125 1127
1126 1128 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1127 1129 Header_TM_LFR_SCIENCE_CWF_t *header )
1128 1130 {
1129 1131 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1130 1132 *
1131 1133 * @param waveform points to the buffer containing the data that will be send.
1132 1134 * @param sid is the source identifier of the data that will be sent.
1133 1135 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1134 1136 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1135 1137 * contain information to setup the transmission of the data packets.
1136 1138 *
1137 1139 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1138 1140 *
1139 1141 */
1140 1142
1141 1143 unsigned int i;
1142 1144 int ret;
1143 1145 unsigned int coarseTime;
1144 1146 unsigned int fineTime;
1145 1147 rtems_status_code status;
1146 1148 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1147 1149 int *dataPtr;
1148 1150 unsigned char sid;
1149 1151
1150 1152 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1151 1153 spw_ioctl_send_CWF.options = 0;
1152 1154
1153 1155 ret = LFR_DEFAULT;
1154 1156 sid = (unsigned char) ring_node_to_send->sid;
1155 1157
1156 1158 coarseTime = ring_node_to_send->coarseTime;
1157 1159 fineTime = ring_node_to_send->fineTime;
1158 1160 dataPtr = (int*) ring_node_to_send->buffer_address;
1159 1161
1160 1162 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1161 1163 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1162 1164 header->pa_bia_status_info = pa_bia_status_info;
1163 1165 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1164 1166 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1165 1167 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1166 1168
1167 1169 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1168 1170 {
1169 1171 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1170 1172 spw_ioctl_send_CWF.hdr = (char*) header;
1171 1173 // BUILD THE DATA
1172 1174 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1173 1175
1174 1176 // SET PACKET SEQUENCE CONTROL
1175 1177 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1176 1178
1177 1179 // SET SID
1178 1180 header->sid = sid;
1179 1181
1180 1182 // SET PACKET TIME
1181 1183 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1182 1184 //
1183 1185 header->time[0] = header->acquisitionTime[0];
1184 1186 header->time[1] = header->acquisitionTime[1];
1185 1187 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1186 1188 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1187 1189 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1188 1190 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1189 1191
1190 1192 // SET PACKET ID
1191 1193 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1192 1194 {
1193 1195 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1194 1196 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1195 1197 }
1196 1198 else
1197 1199 {
1198 1200 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1199 1201 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1200 1202 }
1201 1203
1202 1204 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1203 1205 if (status != RTEMS_SUCCESSFUL) {
1204 1206 ret = LFR_DEFAULT;
1205 1207 }
1206 1208 }
1207 1209
1208 1210 return ret;
1209 1211 }
1210 1212
1211 1213 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1212 1214 Header_TM_LFR_SCIENCE_SWF_t *header )
1213 1215 {
1214 1216 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1215 1217 *
1216 1218 * @param waveform points to the buffer containing the data that will be send.
1217 1219 * @param sid is the source identifier of the data that will be sent.
1218 1220 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1219 1221 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1220 1222 * contain information to setup the transmission of the data packets.
1221 1223 *
1222 1224 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1223 1225 *
1224 1226 */
1225 1227
1226 1228 unsigned int i;
1227 1229 int ret;
1228 1230 unsigned int coarseTime;
1229 1231 unsigned int fineTime;
1230 1232 rtems_status_code status;
1231 1233 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1232 1234 int *dataPtr;
1233 1235 unsigned char sid;
1234 1236
1235 1237 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1236 1238 spw_ioctl_send_SWF.options = 0;
1237 1239
1238 1240 ret = LFR_DEFAULT;
1239 1241
1240 1242 coarseTime = ring_node_to_send->coarseTime;
1241 1243 fineTime = ring_node_to_send->fineTime;
1242 1244 dataPtr = (int*) ring_node_to_send->buffer_address;
1243 1245 sid = ring_node_to_send->sid;
1244 1246
1245 1247 header->pa_bia_status_info = pa_bia_status_info;
1246 1248 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1247 1249
1248 1250 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1249 1251 {
1250 1252 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1251 1253 spw_ioctl_send_SWF.hdr = (char*) header;
1252 1254
1253 1255 // SET PACKET SEQUENCE CONTROL
1254 1256 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1255 1257
1256 1258 // SET PACKET LENGTH AND BLKNR
1257 1259 if (i == (PKTCNT_SWF-1))
1258 1260 {
1259 1261 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1260 1262 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1261 1263 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1262 1264 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1263 1265 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1264 1266 }
1265 1267 else
1266 1268 {
1267 1269 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1268 1270 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1269 1271 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1270 1272 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1271 1273 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1272 1274 }
1273 1275
1274 1276 // SET PACKET TIME
1275 1277 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1276 1278 //
1277 1279 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1278 1280 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1279 1281 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1280 1282 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1281 1283 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1282 1284 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1283 1285
1284 1286 // SET SID
1285 1287 header->sid = sid;
1286 1288
1287 1289 // SET PKTNR
1288 1290 header->pktNr = i+1; // PKT_NR
1289 1291
1290 1292 // SEND PACKET
1291 1293 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1292 1294 if (status != RTEMS_SUCCESSFUL) {
1293 1295 ret = LFR_DEFAULT;
1294 1296 }
1295 1297 }
1296 1298
1297 1299 return ret;
1298 1300 }
1299 1301
1300 1302 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1301 1303 Header_TM_LFR_SCIENCE_CWF_t *header )
1302 1304 {
1303 1305 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1304 1306 *
1305 1307 * @param waveform points to the buffer containing the data that will be send.
1306 1308 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1307 1309 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1308 1310 * contain information to setup the transmission of the data packets.
1309 1311 *
1310 1312 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1311 1313 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1312 1314 *
1313 1315 */
1314 1316
1315 1317 unsigned int i;
1316 1318 int ret;
1317 1319 unsigned int coarseTime;
1318 1320 unsigned int fineTime;
1319 1321 rtems_status_code status;
1320 1322 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1321 1323 char *dataPtr;
1322 1324 unsigned char sid;
1323 1325
1324 1326 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1325 1327 spw_ioctl_send_CWF.options = 0;
1326 1328
1327 1329 ret = LFR_DEFAULT;
1328 1330 sid = ring_node_to_send->sid;
1329 1331
1330 1332 coarseTime = ring_node_to_send->coarseTime;
1331 1333 fineTime = ring_node_to_send->fineTime;
1332 1334 dataPtr = (char*) ring_node_to_send->buffer_address;
1333 1335
1334 1336 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1335 1337 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1336 1338 header->pa_bia_status_info = pa_bia_status_info;
1337 1339 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1338 1340 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1339 1341 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1340 1342
1341 1343 //*********************
1342 1344 // SEND CWF3_light DATA
1343 1345 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1344 1346 {
1345 1347 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1346 1348 spw_ioctl_send_CWF.hdr = (char*) header;
1347 1349 // BUILD THE DATA
1348 1350 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1349 1351
1350 1352 // SET PACKET SEQUENCE COUNTER
1351 1353 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1352 1354
1353 1355 // SET SID
1354 1356 header->sid = sid;
1355 1357
1356 1358 // SET PACKET TIME
1357 1359 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1358 1360 //
1359 1361 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1360 1362 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1361 1363 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1362 1364 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1363 1365 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1364 1366 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1365 1367
1366 1368 // SET PACKET ID
1367 1369 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1368 1370 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1369 1371
1370 1372 // SEND PACKET
1371 1373 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1372 1374 if (status != RTEMS_SUCCESSFUL) {
1373 1375 ret = LFR_DEFAULT;
1374 1376 }
1375 1377 }
1376 1378
1377 1379 return ret;
1378 1380 }
1379 1381
1380 1382 void spw_send_asm_f0( ring_node *ring_node_to_send,
1381 1383 Header_TM_LFR_SCIENCE_ASM_t *header )
1382 1384 {
1383 1385 unsigned int i;
1384 1386 unsigned int length = 0;
1385 1387 rtems_status_code status;
1386 1388 unsigned int sid;
1387 1389 float *spectral_matrix;
1388 1390 int coarseTime;
1389 1391 int fineTime;
1390 1392 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1391 1393
1392 1394 sid = ring_node_to_send->sid;
1393 1395 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1394 1396 coarseTime = ring_node_to_send->coarseTime;
1395 1397 fineTime = ring_node_to_send->fineTime;
1396 1398
1397 1399 header->pa_bia_status_info = pa_bia_status_info;
1398 1400 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1399 1401
1400 1402 for (i=0; i<PKTCNT_ASM; i++)
1401 1403 {
1402 1404 if ((i==0) || (i==1))
1403 1405 {
1404 1406 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1405 1407 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1406 1408 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1407 1409 ];
1408 1410 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1409 1411 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1410 1412 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1411 1413 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1412 1414 }
1413 1415 else
1414 1416 {
1415 1417 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1416 1418 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1417 1419 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1418 1420 ];
1419 1421 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1420 1422 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1421 1423 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1422 1424 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1423 1425 }
1424 1426
1425 1427 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1426 1428 spw_ioctl_send_ASM.hdr = (char *) header;
1427 1429 spw_ioctl_send_ASM.options = 0;
1428 1430
1429 1431 // (2) BUILD THE HEADER
1430 1432 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1431 1433 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1432 1434 header->packetLength[1] = (unsigned char) (length);
1433 1435 header->sid = (unsigned char) sid; // SID
1434 1436 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1435 1437 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1436 1438
1437 1439 // (3) SET PACKET TIME
1438 1440 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1439 1441 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1440 1442 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1441 1443 header->time[BYTE_3] = (unsigned char) (coarseTime);
1442 1444 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1443 1445 header->time[BYTE_5] = (unsigned char) (fineTime);
1444 1446 //
1445 1447 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1446 1448 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1447 1449 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1448 1450 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1449 1451 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1450 1452 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1451 1453
1452 1454 // (4) SEND PACKET
1453 1455 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1454 1456 if (status != RTEMS_SUCCESSFUL) {
1455 1457 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1456 1458 }
1457 1459 }
1458 1460 }
1459 1461
1460 1462 void spw_send_asm_f1( ring_node *ring_node_to_send,
1461 1463 Header_TM_LFR_SCIENCE_ASM_t *header )
1462 1464 {
1463 1465 unsigned int i;
1464 1466 unsigned int length = 0;
1465 1467 rtems_status_code status;
1466 1468 unsigned int sid;
1467 1469 float *spectral_matrix;
1468 1470 int coarseTime;
1469 1471 int fineTime;
1470 1472 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1471 1473
1472 1474 sid = ring_node_to_send->sid;
1473 1475 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1474 1476 coarseTime = ring_node_to_send->coarseTime;
1475 1477 fineTime = ring_node_to_send->fineTime;
1476 1478
1477 1479 header->pa_bia_status_info = pa_bia_status_info;
1478 1480 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1479 1481
1480 1482 for (i=0; i<PKTCNT_ASM; i++)
1481 1483 {
1482 1484 if ((i==0) || (i==1))
1483 1485 {
1484 1486 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1485 1487 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1486 1488 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1487 1489 ];
1488 1490 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1489 1491 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1490 1492 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1491 1493 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1492 1494 }
1493 1495 else
1494 1496 {
1495 1497 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1496 1498 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1497 1499 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1498 1500 ];
1499 1501 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1500 1502 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1501 1503 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1502 1504 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1503 1505 }
1504 1506
1505 1507 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1506 1508 spw_ioctl_send_ASM.hdr = (char *) header;
1507 1509 spw_ioctl_send_ASM.options = 0;
1508 1510
1509 1511 // (2) BUILD THE HEADER
1510 1512 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1511 1513 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1512 1514 header->packetLength[1] = (unsigned char) (length);
1513 1515 header->sid = (unsigned char) sid; // SID
1514 1516 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1515 1517 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1516 1518
1517 1519 // (3) SET PACKET TIME
1518 1520 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1519 1521 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1520 1522 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1521 1523 header->time[BYTE_3] = (unsigned char) (coarseTime);
1522 1524 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1523 1525 header->time[BYTE_5] = (unsigned char) (fineTime);
1524 1526 //
1525 1527 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1526 1528 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1527 1529 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1528 1530 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1529 1531 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1530 1532 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1531 1533
1532 1534 // (4) SEND PACKET
1533 1535 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1534 1536 if (status != RTEMS_SUCCESSFUL) {
1535 1537 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1536 1538 }
1537 1539 }
1538 1540 }
1539 1541
1540 1542 void spw_send_asm_f2( ring_node *ring_node_to_send,
1541 1543 Header_TM_LFR_SCIENCE_ASM_t *header )
1542 1544 {
1543 1545 unsigned int i;
1544 1546 unsigned int length = 0;
1545 1547 rtems_status_code status;
1546 1548 unsigned int sid;
1547 1549 float *spectral_matrix;
1548 1550 int coarseTime;
1549 1551 int fineTime;
1550 1552 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1551 1553
1552 1554 sid = ring_node_to_send->sid;
1553 1555 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1554 1556 coarseTime = ring_node_to_send->coarseTime;
1555 1557 fineTime = ring_node_to_send->fineTime;
1556 1558
1557 1559 header->pa_bia_status_info = pa_bia_status_info;
1558 1560 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1559 1561
1560 1562 for (i=0; i<PKTCNT_ASM; i++)
1561 1563 {
1562 1564
1563 1565 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1564 1566 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1565 1567 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1566 1568 ];
1567 1569 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1568 1570 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1569 1571 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1570 1572 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1571 1573
1572 1574 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1573 1575 spw_ioctl_send_ASM.hdr = (char *) header;
1574 1576 spw_ioctl_send_ASM.options = 0;
1575 1577
1576 1578 // (2) BUILD THE HEADER
1577 1579 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1578 1580 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1579 1581 header->packetLength[1] = (unsigned char) (length);
1580 1582 header->sid = (unsigned char) sid; // SID
1581 1583 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1582 1584 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1583 1585
1584 1586 // (3) SET PACKET TIME
1585 1587 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1586 1588 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1587 1589 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1588 1590 header->time[BYTE_3] = (unsigned char) (coarseTime);
1589 1591 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1590 1592 header->time[BYTE_5] = (unsigned char) (fineTime);
1591 1593 //
1592 1594 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1593 1595 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1594 1596 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1595 1597 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1596 1598 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1597 1599 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1598 1600
1599 1601 // (4) SEND PACKET
1600 1602 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1601 1603 if (status != RTEMS_SUCCESSFUL) {
1602 1604 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1603 1605 }
1604 1606 }
1605 1607 }
1606 1608
1607 1609 void spw_send_k_dump( ring_node *ring_node_to_send )
1608 1610 {
1609 1611 rtems_status_code status;
1610 1612 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1611 1613 unsigned int packetLength;
1612 1614 unsigned int size;
1613 1615
1614 1616 PRINTF("spw_send_k_dump\n")
1615 1617
1616 1618 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1617 1619
1618 1620 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1619 1621
1620 1622 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1621 1623
1622 1624 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1623 1625
1624 1626 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1625 1627
1626 1628 if (status == -1){
1627 1629 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1628 1630 }
1629 1631
1630 1632 ring_node_to_send->status = INIT_CHAR;
1631 1633 }
@@ -1,802 +1,802
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "fsw_processing.h"
11 11 #include "fsw_processing_globals.c"
12 12 #include "fsw_init.h"
13 13
14 14 unsigned int nb_sm_f0 = 0;
15 15 unsigned int nb_sm_f0_aux_f1= 0;
16 16 unsigned int nb_sm_f1 = 0;
17 17 unsigned int nb_sm_f0_aux_f2= 0;
18 18
19 19 typedef enum restartState_t
20 20 {
21 21 WAIT_FOR_F2,
22 22 WAIT_FOR_F1,
23 23 WAIT_FOR_F0
24 24 } restartState;
25 25
26 26 //************************
27 27 // spectral matrices rings
28 28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ] = {0};
29 29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ] = {0};
30 30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ] = {0};
31 31 ring_node *current_ring_node_sm_f0 = NULL;
32 32 ring_node *current_ring_node_sm_f1 = NULL;
33 33 ring_node *current_ring_node_sm_f2 = NULL;
34 34 ring_node *ring_node_for_averaging_sm_f0= NULL;
35 35 ring_node *ring_node_for_averaging_sm_f1= NULL;
36 36 ring_node *ring_node_for_averaging_sm_f2= NULL;
37 37
38 38 //
39 39 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
40 40 {
41 41 ring_node *node;
42 42
43 43 node = NULL;
44 44 switch ( frequencyChannel ) {
45 45 case CHANNELF0:
46 46 node = ring_node_for_averaging_sm_f0;
47 47 break;
48 48 case CHANNELF1:
49 49 node = ring_node_for_averaging_sm_f1;
50 50 break;
51 51 case CHANNELF2:
52 52 node = ring_node_for_averaging_sm_f2;
53 53 break;
54 54 default:
55 55 break;
56 56 }
57 57
58 58 return node;
59 59 }
60 60
61 61 //***********************************************************
62 62 // Interrupt Service Routine for spectral matrices processing
63 63
64 64 void spectral_matrices_isr_f0( int statusReg )
65 65 {
66 66 unsigned char status;
67 67 rtems_status_code status_code;
68 68 ring_node *full_ring_node;
69 69
70 70 status = (unsigned char) (statusReg & BITS_STATUS_F0); // [0011] get the status_ready_matrix_f0_x bits
71 71
72 72 switch(status)
73 73 {
74 74 case 0:
75 75 break;
76 76 case BIT_READY_0_1:
77 77 // UNEXPECTED VALUE
78 78 spectral_matrix_regs->status = BIT_READY_0_1; // [0011]
79 79 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
80 80 break;
81 81 case BIT_READY_0:
82 82 full_ring_node = current_ring_node_sm_f0->previous;
83 83 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
84 84 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
85 85 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
86 86 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
87 87 // if there are enough ring nodes ready, wake up an AVFx task
88 88 nb_sm_f0 = nb_sm_f0 + 1;
89 89 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
90 90 {
91 91 ring_node_for_averaging_sm_f0 = full_ring_node;
92 92 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
93 93 {
94 94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
95 95 }
96 96 nb_sm_f0 = 0;
97 97 }
98 98 spectral_matrix_regs->status = BIT_READY_0; // [0000 0001]
99 99 break;
100 100 case BIT_READY_1:
101 101 full_ring_node = current_ring_node_sm_f0->previous;
102 102 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
103 103 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
104 104 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
105 105 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
106 106 // if there are enough ring nodes ready, wake up an AVFx task
107 107 nb_sm_f0 = nb_sm_f0 + 1;
108 108 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
109 109 {
110 110 ring_node_for_averaging_sm_f0 = full_ring_node;
111 111 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
112 112 {
113 113 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
114 114 }
115 115 nb_sm_f0 = 0;
116 116 }
117 117 spectral_matrix_regs->status = BIT_READY_1; // [0000 0010]
118 118 break;
119 119 default:
120 120 break;
121 121 }
122 122 }
123 123
124 124 void spectral_matrices_isr_f1( int statusReg )
125 125 {
126 126 rtems_status_code status_code;
127 127 unsigned char status;
128 128 ring_node *full_ring_node;
129 129
130 130 status = (unsigned char) ((statusReg & BITS_STATUS_F1) >> SHIFT_2_BITS); // [1100] get the status_ready_matrix_f1_x bits
131 131
132 132 switch(status)
133 133 {
134 134 case 0:
135 135 break;
136 136 case BIT_READY_0_1:
137 137 // UNEXPECTED VALUE
138 138 spectral_matrix_regs->status = BITS_STATUS_F1; // [1100]
139 139 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
140 140 break;
141 141 case BIT_READY_0:
142 142 full_ring_node = current_ring_node_sm_f1->previous;
143 143 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
144 144 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
145 145 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
146 146 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
147 147 // if there are enough ring nodes ready, wake up an AVFx task
148 148 nb_sm_f1 = nb_sm_f1 + 1;
149 149 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
150 150 {
151 151 ring_node_for_averaging_sm_f1 = full_ring_node;
152 152 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
153 153 {
154 154 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
155 155 }
156 156 nb_sm_f1 = 0;
157 157 }
158 158 spectral_matrix_regs->status = BIT_STATUS_F1_0; // [0000 0100]
159 159 break;
160 160 case BIT_READY_1:
161 161 full_ring_node = current_ring_node_sm_f1->previous;
162 162 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
163 163 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
164 164 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
165 165 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
166 166 // if there are enough ring nodes ready, wake up an AVFx task
167 167 nb_sm_f1 = nb_sm_f1 + 1;
168 168 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
169 169 {
170 170 ring_node_for_averaging_sm_f1 = full_ring_node;
171 171 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
172 172 {
173 173 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
174 174 }
175 175 nb_sm_f1 = 0;
176 176 }
177 177 spectral_matrix_regs->status = BIT_STATUS_F1_1; // [1000 0000]
178 178 break;
179 179 default:
180 180 break;
181 181 }
182 182 }
183 183
184 184 void spectral_matrices_isr_f2( int statusReg )
185 185 {
186 186 unsigned char status;
187 187 rtems_status_code status_code;
188 188
189 189 status = (unsigned char) ((statusReg & BITS_STATUS_F2) >> SHIFT_4_BITS); // [0011 0000] get the status_ready_matrix_f2_x bits
190 190
191 191 switch(status)
192 192 {
193 193 case 0:
194 194 break;
195 195 case BIT_READY_0_1:
196 196 // UNEXPECTED VALUE
197 197 spectral_matrix_regs->status = BITS_STATUS_F2; // [0011 0000]
198 198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
199 199 break;
200 200 case BIT_READY_0:
201 201 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
202 202 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
203 203 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
204 204 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
205 205 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
206 206 spectral_matrix_regs->status = BIT_STATUS_F2_0; // [0001 0000]
207 207 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 208 {
209 209 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 210 }
211 211 break;
212 212 case BIT_READY_1:
213 213 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
214 214 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
215 215 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
216 216 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
217 217 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
218 218 spectral_matrix_regs->status = BIT_STATUS_F2_1; // [0010 0000]
219 219 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
220 220 {
221 221 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
222 222 }
223 223 break;
224 224 default:
225 225 break;
226 226 }
227 227 }
228 228
229 229 void spectral_matrix_isr_error_handler( int statusReg )
230 230 {
231 231 // STATUS REGISTER
232 232 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
233 233 // 10 9 8
234 234 // buffer_full ** [bad_component_err] ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
235 235 // 7 6 5 4 3 2 1 0
236 236 // [bad_component_err] not defined in the last version of the VHDL code
237 237
238 238 rtems_status_code status_code;
239 239
240 240 //***************************************************
241 241 // the ASM status register is copied in the HK packet
242 242 housekeeping_packet.hk_lfr_vhdl_aa_sm = (unsigned char) ((statusReg & BITS_HK_AA_SM) >> SHIFT_7_BITS); // [0111 1000 0000]
243 243
244 244 if (statusReg & BITS_SM_ERR) // [0111 1100 0000]
245 245 {
246 246 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
247 247 }
248 248
249 249 spectral_matrix_regs->status = spectral_matrix_regs->status & BITS_SM_ERR;
250 250
251 251 }
252 252
253 253 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
254 254 {
255 255 // STATUS REGISTER
256 256 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
257 257 // 10 9 8
258 258 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
259 259 // 7 6 5 4 3 2 1 0
260 260
261 261 int statusReg;
262 262
263 263 static restartState state = WAIT_FOR_F2;
264 264
265 265 statusReg = spectral_matrix_regs->status;
266 266
267 267 if (thisIsAnASMRestart == 0)
268 268 { // this is not a restart sequence, process incoming matrices normally
269 269 spectral_matrices_isr_f0( statusReg );
270 270
271 271 spectral_matrices_isr_f1( statusReg );
272 272
273 273 spectral_matrices_isr_f2( statusReg );
274 274 }
275 275 else
276 276 { // a restart sequence has to be launched
277 277 switch (state) {
278 278 case WAIT_FOR_F2:
279 279 if ((statusReg & BITS_STATUS_F2) != INIT_CHAR) // [0011 0000] check the status_ready_matrix_f2_x bits
280 280 {
281 281 state = WAIT_FOR_F1;
282 282 }
283 283 break;
284 284 case WAIT_FOR_F1:
285 285 if ((statusReg & BITS_STATUS_F1) != INIT_CHAR) // [0000 1100] check the status_ready_matrix_f1_x bits
286 286 {
287 287 state = WAIT_FOR_F0;
288 288 }
289 289 break;
290 290 case WAIT_FOR_F0:
291 291 if ((statusReg & BITS_STATUS_F0) != INIT_CHAR) // [0000 0011] check the status_ready_matrix_f0_x bits
292 292 {
293 293 state = WAIT_FOR_F2;
294 294 thisIsAnASMRestart = 0;
295 295 }
296 296 break;
297 297 default:
298 298 break;
299 299 }
300 300 reset_sm_status();
301 301 }
302 302
303 303 spectral_matrix_isr_error_handler( statusReg );
304 304
305 305 }
306 306
307 307 //******************
308 308 // Spectral Matrices
309 309
310 310 void reset_nb_sm( void )
311 311 {
312 312 nb_sm_f0 = 0;
313 313 nb_sm_f0_aux_f1 = 0;
314 314 nb_sm_f0_aux_f2 = 0;
315 315
316 316 nb_sm_f1 = 0;
317 317 }
318 318
319 319 void SM_init_rings( void )
320 320 {
321 321 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
322 322 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
323 323 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
324 324
325 325 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
326 326 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
327 327 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
328 328 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
329 329 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
330 330 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
331 331 }
332 332
333 333 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
334 334 {
335 335 unsigned char i;
336 336
337 337 ring[ nbNodes - 1 ].next
338 338 = (ring_node_asm*) &ring[ 0 ];
339 339
340 340 for(i=0; i<nbNodes-1; i++)
341 341 {
342 342 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
343 343 }
344 344 }
345 345
346 346 void SM_reset_current_ring_nodes( void )
347 347 {
348 348 current_ring_node_sm_f0 = sm_ring_f0[0].next;
349 349 current_ring_node_sm_f1 = sm_ring_f1[0].next;
350 350 current_ring_node_sm_f2 = sm_ring_f2[0].next;
351 351
352 352 ring_node_for_averaging_sm_f0 = NULL;
353 353 ring_node_for_averaging_sm_f1 = NULL;
354 354 ring_node_for_averaging_sm_f2 = NULL;
355 355 }
356 356
357 357 //*****************
358 358 // Basic Parameters
359 359
360 360 void BP_init_header( bp_packet *packet,
361 361 unsigned int apid, unsigned char sid,
362 362 unsigned int packetLength, unsigned char blkNr )
363 363 {
364 364 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
365 365 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
366 366 packet->reserved = INIT_CHAR;
367 367 packet->userApplication = CCSDS_USER_APP;
368 368 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
369 369 packet->packetID[1] = (unsigned char) (apid);
370 370 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
371 371 packet->packetSequenceControl[1] = INIT_CHAR;
372 372 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
373 373 packet->packetLength[1] = (unsigned char) (packetLength);
374 374 // DATA FIELD HEADER
375 375 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
376 376 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
377 377 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
378 378 packet->destinationID = TM_DESTINATION_ID_GROUND;
379 379 packet->time[BYTE_0] = INIT_CHAR;
380 380 packet->time[BYTE_1] = INIT_CHAR;
381 381 packet->time[BYTE_2] = INIT_CHAR;
382 382 packet->time[BYTE_3] = INIT_CHAR;
383 383 packet->time[BYTE_4] = INIT_CHAR;
384 384 packet->time[BYTE_5] = INIT_CHAR;
385 385 // AUXILIARY DATA HEADER
386 386 packet->sid = sid;
387 387 packet->pa_bia_status_info = INIT_CHAR;
388 388 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
389 389 packet->sy_lfr_common_parameters = INIT_CHAR;
390 390 packet->acquisitionTime[BYTE_0] = INIT_CHAR;
391 391 packet->acquisitionTime[BYTE_1] = INIT_CHAR;
392 392 packet->acquisitionTime[BYTE_2] = INIT_CHAR;
393 393 packet->acquisitionTime[BYTE_3] = INIT_CHAR;
394 394 packet->acquisitionTime[BYTE_4] = INIT_CHAR;
395 395 packet->acquisitionTime[BYTE_5] = INIT_CHAR;
396 396 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
397 397 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
398 398 }
399 399
400 400 void BP_init_header_with_spare( bp_packet_with_spare *packet,
401 401 unsigned int apid, unsigned char sid,
402 402 unsigned int packetLength , unsigned char blkNr)
403 403 {
404 404 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
405 405 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
406 406 packet->reserved = INIT_CHAR;
407 407 packet->userApplication = CCSDS_USER_APP;
408 408 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
409 409 packet->packetID[1] = (unsigned char) (apid);
410 410 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
411 411 packet->packetSequenceControl[1] = INIT_CHAR;
412 412 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
413 413 packet->packetLength[1] = (unsigned char) (packetLength);
414 414 // DATA FIELD HEADER
415 415 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
416 416 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
417 417 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
418 418 packet->destinationID = TM_DESTINATION_ID_GROUND;
419 419 // AUXILIARY DATA HEADER
420 420 packet->sid = sid;
421 421 packet->pa_bia_status_info = INIT_CHAR;
422 422 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
423 423 packet->sy_lfr_common_parameters = INIT_CHAR;
424 424 packet->time[BYTE_0] = INIT_CHAR;
425 425 packet->time[BYTE_1] = INIT_CHAR;
426 426 packet->time[BYTE_2] = INIT_CHAR;
427 427 packet->time[BYTE_3] = INIT_CHAR;
428 428 packet->time[BYTE_4] = INIT_CHAR;
429 429 packet->time[BYTE_5] = INIT_CHAR;
430 430 packet->source_data_spare = INIT_CHAR;
431 431 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
432 432 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
433 433 }
434 434
435 435 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
436 436 {
437 437 rtems_status_code status;
438 438
439 439 // SEND PACKET
440 440 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
441 441 if (status != RTEMS_SUCCESSFUL)
442 442 {
443 443 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
444 444 }
445 445 }
446 446
447 447 void BP_send_s1_s2(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
448 448 {
449 449 /** This function is used to send the BP paquets when needed.
450 450 *
451 451 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
452 452 *
453 453 * @return void
454 454 *
455 455 * SBM1 and SBM2 paquets are sent depending on the type of the LFR mode transition.
456 456 * BURST paquets are sent everytime.
457 457 *
458 458 */
459 459
460 460 rtems_status_code status;
461 461
462 462 // SEND PACKET
463 463 // before lastValidTransitionDate, the data are drops even if they are ready
464 464 // this guarantees that no SBM packets will be received before the requested enter mode time
465 465 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
466 466 {
467 467 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
468 468 if (status != RTEMS_SUCCESSFUL)
469 469 {
470 470 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
471 471 }
472 472 }
473 473 }
474 474
475 475 //******************
476 476 // general functions
477 477
478 478 void reset_sm_status( void )
479 479 {
480 480 // error
481 481 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
482 482 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
483 483 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
484 484 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
485 485
486 486 spectral_matrix_regs->status = BITS_STATUS_REG; // [0111 1111 1111]
487 487 }
488 488
489 489 void reset_spectral_matrix_regs( void )
490 490 {
491 491 /** This function resets the spectral matrices module registers.
492 492 *
493 493 * The registers affected by this function are located at the following offset addresses:
494 494 *
495 495 * - 0x00 config
496 496 * - 0x04 status
497 497 * - 0x08 matrixF0_Address0
498 498 * - 0x10 matrixFO_Address1
499 499 * - 0x14 matrixF1_Address
500 500 * - 0x18 matrixF2_Address
501 501 *
502 502 */
503 503
504 504 set_sm_irq_onError( 0 );
505 505
506 506 set_sm_irq_onNewMatrix( 0 );
507 507
508 508 reset_sm_status();
509 509
510 510 // F1
511 511 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
512 512 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
513 513 // F2
514 514 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
515 515 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
516 516 // F3
517 517 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
518 518 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
519 519
520 520 spectral_matrix_regs->matrix_length = DEFAULT_MATRIX_LENGTH; // 25 * 128 / 16 = 200 = 0xc8
521 521 }
522 522
523 523 void set_time( unsigned char *time, unsigned char * timeInBuffer )
524 524 {
525 525 time[BYTE_0] = timeInBuffer[BYTE_0];
526 526 time[BYTE_1] = timeInBuffer[BYTE_1];
527 527 time[BYTE_2] = timeInBuffer[BYTE_2];
528 528 time[BYTE_3] = timeInBuffer[BYTE_3];
529 529 time[BYTE_4] = timeInBuffer[BYTE_6];
530 530 time[BYTE_5] = timeInBuffer[BYTE_7];
531 531 }
532 532
533 533 unsigned long long int get_acquisition_time( unsigned char *timePtr )
534 534 {
535 535 unsigned long long int acquisitionTimeAslong;
536 536 acquisitionTimeAslong = INIT_CHAR;
537 537 acquisitionTimeAslong =
538 538 ( (unsigned long long int) (timePtr[BYTE_0] & SYNC_BIT_MASK) << SHIFT_5_BYTES ) // [0111 1111] mask the synchronization bit
539 539 + ( (unsigned long long int) timePtr[BYTE_1] << SHIFT_4_BYTES )
540 540 + ( (unsigned long long int) timePtr[BYTE_2] << SHIFT_3_BYTES )
541 541 + ( (unsigned long long int) timePtr[BYTE_3] << SHIFT_2_BYTES )
542 542 + ( (unsigned long long int) timePtr[BYTE_6] << SHIFT_1_BYTE )
543 543 + ( (unsigned long long int) timePtr[BYTE_7] );
544 544 return acquisitionTimeAslong;
545 545 }
546 546
547 547 unsigned char getSID( rtems_event_set event )
548 548 {
549 549 unsigned char sid;
550 550
551 551 rtems_event_set eventSetBURST;
552 552 rtems_event_set eventSetSBM;
553 553
554 554 sid = 0;
555 555
556 556 //******
557 557 // BURST
558 558 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
559 559 | RTEMS_EVENT_BURST_BP1_F1
560 560 | RTEMS_EVENT_BURST_BP2_F0
561 561 | RTEMS_EVENT_BURST_BP2_F1;
562 562
563 563 //****
564 564 // SBM
565 565 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
566 566 | RTEMS_EVENT_SBM_BP1_F1
567 567 | RTEMS_EVENT_SBM_BP2_F0
568 568 | RTEMS_EVENT_SBM_BP2_F1;
569 569
570 570 if (event & eventSetBURST)
571 571 {
572 572 sid = SID_BURST_BP1_F0;
573 573 }
574 574 else if (event & eventSetSBM)
575 575 {
576 576 sid = SID_SBM1_BP1_F0;
577 577 }
578 578 else
579 579 {
580 580 sid = 0;
581 581 }
582 582
583 583 return sid;
584 584 }
585 585
586 586 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
587 587 {
588 588 unsigned int i;
589 589 float re;
590 590 float im;
591 591
592 592 for (i=0; i<NB_BINS_PER_SM; i++){
593 593 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) ];
594 594 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) + 1];
595 595 outputASM[ ( asmComponent *NB_BINS_PER_SM) + i] = re;
596 596 outputASM[ ((asmComponent+1)*NB_BINS_PER_SM) + i] = im;
597 597 }
598 598 }
599 599
600 600 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
601 601 {
602 602 unsigned int i;
603 603 float re;
604 604
605 605 for (i=0; i<NB_BINS_PER_SM; i++){
606 606 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
607 607 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
608 608 }
609 609 }
610 610
611 611 void ASM_patch( float *inputASM, float *outputASM )
612 612 {
613 613 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B2); // b1b2
614 614 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B3 ); // b1b3
615 615 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E1 ); // b1e1
616 616 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E2 ); // b1e2
617 617 extractReImVectors( inputASM, outputASM, ASM_COMP_B2B3 ); // b2b3
618 618 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E1 ); // b2e1
619 619 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E2 ); // b2e2
620 620 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E1 ); // b3e1
621 621 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E2 ); // b3e2
622 622 extractReImVectors( inputASM, outputASM, ASM_COMP_E1E2 ); // e1e2
623 623
624 624 copyReVectors(inputASM, outputASM, ASM_COMP_B1B1 ); // b1b1
625 625 copyReVectors(inputASM, outputASM, ASM_COMP_B2B2 ); // b2b2
626 626 copyReVectors(inputASM, outputASM, ASM_COMP_B3B3); // b3b3
627 627 copyReVectors(inputASM, outputASM, ASM_COMP_E1E1); // e1e1
628 628 copyReVectors(inputASM, outputASM, ASM_COMP_E2E2); // e2e2
629 629 }
630 630
631 631 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
632 632 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
633 633 unsigned char ASMIndexStart,
634 634 unsigned char channel )
635 635 {
636 636 //*************
637 637 // input format
638 638 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
639 639 //**************
640 640 // output format
641 641 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
642 642 //************
643 643 // compression
644 644 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
645 645 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
646 646
647 647 int frequencyBin;
648 648 int asmComponent;
649 649 int offsetASM;
650 650 int offsetCompressed;
651 651 int offsetFBin;
652 652 int fBinMask;
653 653 int k;
654 654
655 655 // BUILD DATA
656 656 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
657 657 {
658 658 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
659 659 {
660 660 offsetCompressed = // NO TIME OFFSET
661 661 (frequencyBin * NB_VALUES_PER_SM)
662 662 + asmComponent;
663 663 offsetASM = // NO TIME OFFSET
664 664 (asmComponent * NB_BINS_PER_SM)
665 665 + ASMIndexStart
666 666 + (frequencyBin * nbBinsToAverage);
667 667 offsetFBin = ASMIndexStart
668 668 + (frequencyBin * nbBinsToAverage);
669 669 compressed_spec_mat[ offsetCompressed ] = 0;
670 670 for ( k = 0; k < nbBinsToAverage; k++ )
671 671 {
672 672 fBinMask = getFBinMask( offsetFBin + k, channel );
673 673 compressed_spec_mat[offsetCompressed ] = compressed_spec_mat[ offsetCompressed ]
674 674 + (averaged_spec_mat[ offsetASM + k ] * fBinMask);
675 675 }
676 676 if (divider != 0)
677 677 {
678 678 compressed_spec_mat[ offsetCompressed ] = compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
679 679 }
680 680 else
681 681 {
682 682 compressed_spec_mat[ offsetCompressed ] = INIT_FLOAT;
683 683 }
684 684 }
685 685 }
686 686
687 687 }
688 688
689 689 int getFBinMask( int index, unsigned char channel )
690 690 {
691 691 unsigned int indexInChar;
692 692 unsigned int indexInTheChar;
693 693 int fbin;
694 694 unsigned char *sy_lfr_fbins_fx_word1;
695 695
696 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
696 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
697 697
698 698 switch(channel)
699 699 {
700 700 case CHANNELF0:
701 701 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f0;
702 702 break;
703 703 case CHANNELF1:
704 704 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f1;
705 705 break;
706 706 case CHANNELF2:
707 707 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f2;
708 708 break;
709 709 default:
710 710 PRINTF("ERR *** in getFBinMask, wrong frequency channel")
711 711 }
712 712
713 713 indexInChar = index >> SHIFT_3_BITS;
714 714 indexInTheChar = index - (indexInChar * BITS_PER_BYTE);
715 715
716 716 fbin = (int) ((sy_lfr_fbins_fx_word1[ BYTES_PER_MASK - 1 - indexInChar] >> indexInTheChar) & 1);
717 717
718 718 return fbin;
719 719 }
720 720
721 721 unsigned char acquisitionTimeIsValid( unsigned int coarseTime, unsigned int fineTime, unsigned char channel)
722 722 {
723 723 u_int64_t acquisitionTime;
724 724 u_int64_t timecodeReference;
725 725 u_int64_t offsetInFineTime;
726 726 u_int64_t shiftInFineTime;
727 727 u_int64_t tBadInFineTime;
728 728 u_int64_t acquisitionTimeRangeMin;
729 729 u_int64_t acquisitionTimeRangeMax;
730 730 unsigned char pasFilteringIsEnabled;
731 731 unsigned char ret;
732 732
733 733 pasFilteringIsEnabled = (filterPar.spare_sy_lfr_pas_filter_enabled & 1); // [0000 0001]
734 734 ret = 1;
735 735
736 736 // compute acquisition time from caoarseTime and fineTime
737 737 acquisitionTime = ( ((u_int64_t)coarseTime) << SHIFT_2_BYTES )
738 738 + (u_int64_t) fineTime;
739 739
740 740 // compute the timecode reference
741 741 timecodeReference = (u_int64_t) ( (floor( ((double) coarseTime) / ((double) filterPar.sy_lfr_pas_filter_modulus) )
742 742 * ((double) filterPar.sy_lfr_pas_filter_modulus)) * CONST_65536 );
743 743
744 744 // compute the acquitionTime range
745 745 offsetInFineTime = ((double) filterPar.sy_lfr_pas_filter_offset) * CONST_65536;
746 746 shiftInFineTime = ((double) filterPar.sy_lfr_pas_filter_shift) * CONST_65536;
747 747 tBadInFineTime = ((double) filterPar.sy_lfr_pas_filter_tbad) * CONST_65536;
748 748
749 749 acquisitionTimeRangeMin =
750 750 timecodeReference
751 751 + offsetInFineTime
752 752 + shiftInFineTime
753 753 - acquisitionDurations[channel];
754 754 acquisitionTimeRangeMax =
755 755 timecodeReference
756 756 + offsetInFineTime
757 757 + shiftInFineTime
758 758 + tBadInFineTime;
759 759
760 760 if ( (acquisitionTime >= acquisitionTimeRangeMin)
761 761 && (acquisitionTime <= acquisitionTimeRangeMax)
762 762 && (pasFilteringIsEnabled == 1) )
763 763 {
764 764 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
765 765 }
766 766 else
767 767 {
768 768 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
769 769 }
770 770
771 771 // printf("coarseTime = %x, fineTime = %x\n",
772 772 // coarseTime,
773 773 // fineTime);
774 774
775 775 // printf("[ret = %d] *** acquisitionTime = %f, Reference = %f",
776 776 // ret,
777 777 // acquisitionTime / 65536.,
778 778 // timecodeReference / 65536.);
779 779
780 780 // printf(", Min = %f, Max = %f\n",
781 781 // acquisitionTimeRangeMin / 65536.,
782 782 // acquisitionTimeRangeMax / 65536.);
783 783
784 784 return ret;
785 785 }
786 786
787 787 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
788 788 {
789 789 unsigned char bin;
790 790 unsigned char kcoeff;
791 791
792 792 for (bin=0; bin<nb_bins_norm; bin++)
793 793 {
794 794 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
795 795 {
796 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF ]
796 output_kcoeff[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF ]
797 797 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
798 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF + 1 ]
798 output_kcoeff[ ( ( (bin * NB_K_COEFF_PER_BIN ) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ) + 1 ]
799 799 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
800 800 }
801 801 }
802 802 }
@@ -1,1657 +1,1657
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 19 ring_node kcoefficient_node_1 = {0};
20 20 ring_node kcoefficient_node_2 = {0};
21 21
22 22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 23 {
24 24 /** This function updates the LFR registers with the incoming common parameters.
25 25 *
26 26 * @param TC points to the TeleCommand packet that is being processed
27 27 *
28 28 *
29 29 */
30 30
31 31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 33 set_wfp_data_shaping( );
34 34 return LFR_SUCCESSFUL;
35 35 }
36 36
37 37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 38 {
39 39 /** This function updates the LFR registers with the incoming normal parameters.
40 40 *
41 41 * @param TC points to the TeleCommand packet that is being processed
42 42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 43 *
44 44 */
45 45
46 46 int result;
47 47 int flag;
48 48 rtems_status_code status;
49 49
50 50 flag = LFR_SUCCESSFUL;
51 51
52 52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 55 flag = LFR_DEFAULT;
56 56 }
57 57
58 58 // CHECK THE PARAMETERS SET CONSISTENCY
59 59 if (flag == LFR_SUCCESSFUL)
60 60 {
61 61 flag = check_normal_par_consistency( TC, queue_id );
62 62 }
63 63
64 64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 65 if (flag == LFR_SUCCESSFUL)
66 66 {
67 67 result = set_sy_lfr_n_swf_l( TC );
68 68 result = set_sy_lfr_n_swf_p( TC );
69 69 result = set_sy_lfr_n_bp_p0( TC );
70 70 result = set_sy_lfr_n_bp_p1( TC );
71 71 result = set_sy_lfr_n_asm_p( TC );
72 72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 73 }
74 74
75 75 return flag;
76 76 }
77 77
78 78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 79 {
80 80 /** This function updates the LFR registers with the incoming burst parameters.
81 81 *
82 82 * @param TC points to the TeleCommand packet that is being processed
83 83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 84 *
85 85 */
86 86
87 87 int flag;
88 88 rtems_status_code status;
89 89 unsigned char sy_lfr_b_bp_p0;
90 90 unsigned char sy_lfr_b_bp_p1;
91 91 float aux;
92 92
93 93 flag = LFR_SUCCESSFUL;
94 94
95 95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 97 flag = LFR_DEFAULT;
98 98 }
99 99
100 100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102 102
103 103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 104 if (flag == LFR_SUCCESSFUL)
105 105 {
106 106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 107 {
108 108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 109 flag = WRONG_APP_DATA;
110 110 }
111 111 }
112 112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 113 if (flag == LFR_SUCCESSFUL)
114 114 {
115 115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 116 {
117 117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 118 flag = WRONG_APP_DATA;
119 119 }
120 120 }
121 121 //****************************************************************
122 122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 123 if (flag == LFR_SUCCESSFUL)
124 124 {
125 125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 128 if (aux > FLOAT_EQUAL_ZERO)
129 129 {
130 130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 131 flag = LFR_DEFAULT;
132 132 }
133 133 }
134 134
135 135 // SET THE PARAMETERS
136 136 if (flag == LFR_SUCCESSFUL)
137 137 {
138 138 flag = set_sy_lfr_b_bp_p0( TC );
139 139 flag = set_sy_lfr_b_bp_p1( TC );
140 140 }
141 141
142 142 return flag;
143 143 }
144 144
145 145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 146 {
147 147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 148 *
149 149 * @param TC points to the TeleCommand packet that is being processed
150 150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 151 *
152 152 */
153 153
154 154 int flag;
155 155 rtems_status_code status;
156 156 unsigned char sy_lfr_s1_bp_p0;
157 157 unsigned char sy_lfr_s1_bp_p1;
158 158 float aux;
159 159
160 160 flag = LFR_SUCCESSFUL;
161 161
162 162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 164 flag = LFR_DEFAULT;
165 165 }
166 166
167 167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169 169
170 170 // sy_lfr_s1_bp_p0
171 171 if (flag == LFR_SUCCESSFUL)
172 172 {
173 173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 174 {
175 175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 176 flag = WRONG_APP_DATA;
177 177 }
178 178 }
179 179 // sy_lfr_s1_bp_p1
180 180 if (flag == LFR_SUCCESSFUL)
181 181 {
182 182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 183 {
184 184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 185 flag = WRONG_APP_DATA;
186 186 }
187 187 }
188 188 //******************************************************************
189 189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 190 if (flag == LFR_SUCCESSFUL)
191 191 {
192 192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 194 if (aux > FLOAT_EQUAL_ZERO)
195 195 {
196 196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 197 flag = LFR_DEFAULT;
198 198 }
199 199 }
200 200
201 201 // SET THE PARAMETERS
202 202 if (flag == LFR_SUCCESSFUL)
203 203 {
204 204 flag = set_sy_lfr_s1_bp_p0( TC );
205 205 flag = set_sy_lfr_s1_bp_p1( TC );
206 206 }
207 207
208 208 return flag;
209 209 }
210 210
211 211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 212 {
213 213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 214 *
215 215 * @param TC points to the TeleCommand packet that is being processed
216 216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 217 *
218 218 */
219 219
220 220 int flag;
221 221 rtems_status_code status;
222 222 unsigned char sy_lfr_s2_bp_p0;
223 223 unsigned char sy_lfr_s2_bp_p1;
224 224 float aux;
225 225
226 226 flag = LFR_SUCCESSFUL;
227 227
228 228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 230 flag = LFR_DEFAULT;
231 231 }
232 232
233 233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235 235
236 236 // sy_lfr_s2_bp_p0
237 237 if (flag == LFR_SUCCESSFUL)
238 238 {
239 239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 240 {
241 241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 242 flag = WRONG_APP_DATA;
243 243 }
244 244 }
245 245 // sy_lfr_s2_bp_p1
246 246 if (flag == LFR_SUCCESSFUL)
247 247 {
248 248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 249 {
250 250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 251 flag = WRONG_APP_DATA;
252 252 }
253 253 }
254 254 //******************************************************************
255 255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 256 if (flag == LFR_SUCCESSFUL)
257 257 {
258 258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 261 if (aux > FLOAT_EQUAL_ZERO)
262 262 {
263 263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 264 flag = LFR_DEFAULT;
265 265 }
266 266 }
267 267
268 268 // SET THE PARAMETERS
269 269 if (flag == LFR_SUCCESSFUL)
270 270 {
271 271 flag = set_sy_lfr_s2_bp_p0( TC );
272 272 flag = set_sy_lfr_s2_bp_p1( TC );
273 273 }
274 274
275 275 return flag;
276 276 }
277 277
278 278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 279 {
280 280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 281 *
282 282 * @param TC points to the TeleCommand packet that is being processed
283 283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 284 *
285 285 */
286 286
287 287 int flag;
288 288
289 289 flag = LFR_DEFAULT;
290 290
291 291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292 292
293 293 return flag;
294 294 }
295 295
296 296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 297 {
298 298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 299 *
300 300 * @param TC points to the TeleCommand packet that is being processed
301 301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 302 *
303 303 */
304 304
305 305 int flag;
306 306
307 307 flag = LFR_DEFAULT;
308 308
309 309 flag = set_sy_lfr_fbins( TC );
310 310
311 311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 312 merge_fbins_masks();
313 313
314 314 return flag;
315 315 }
316 316
317 317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 318 {
319 319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 320 *
321 321 * @param TC points to the TeleCommand packet that is being processed
322 322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 323 *
324 324 */
325 325
326 326 int flag;
327 327
328 328 flag = LFR_DEFAULT;
329 329
330 330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
331 331
332 332 if (flag == LFR_SUCCESSFUL)
333 333 {
334 334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
335 335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
336 336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
337 337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
338 338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
339 339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
340 340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
341 341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
342 342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
343 343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
344 344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
345 345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
346 346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
347 347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
348 348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
349 349
350 350 //****************************
351 351 // store PAS filter parameters
352 352 // sy_lfr_pas_filter_enabled
353 353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
354 354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
355 355 // sy_lfr_pas_filter_modulus
356 356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
357 357 // sy_lfr_pas_filter_tbad
358 358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
359 359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
360 360 // sy_lfr_pas_filter_offset
361 361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
362 362 // sy_lfr_pas_filter_shift
363 363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
364 364 parameter_dump_packet.sy_lfr_pas_filter_shift );
365 365
366 366 //****************************************************
367 367 // store the parameter sy_lfr_sc_rw_delta_f as a float
368 368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
369 369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
370 370 }
371 371
372 372 return flag;
373 373 }
374 374
375 375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
376 376 {
377 377 /** This function updates the LFR registers with the incoming sbm2 parameters.
378 378 *
379 379 * @param TC points to the TeleCommand packet that is being processed
380 380 * @param queue_id is the id of the queue which handles TM related to this execution step
381 381 *
382 382 */
383 383
384 384 unsigned int address;
385 385 rtems_status_code status;
386 386 unsigned int freq;
387 387 unsigned int bin;
388 388 unsigned int coeff;
389 389 unsigned char *kCoeffPtr;
390 390 unsigned char *kCoeffDumpPtr;
391 391
392 392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
393 393 // F0 => 11 bins
394 394 // F1 => 13 bins
395 395 // F2 => 12 bins
396 396 // 36 bins to dump in two packets (30 bins max per packet)
397 397
398 398 //*********
399 399 // PACKET 1
400 400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
401 401 kcoefficients_dump_1.destinationID = TC->sourceID;
402 402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
403 403 for( freq = 0;
404 404 freq < NB_BINS_COMPRESSED_SM_F0;
405 405 freq++ )
406 406 {
407 407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
408 408 bin = freq;
409 409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
410 410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
411 411 {
412 412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
413 413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
414 414 ]; // 2 for the kcoeff_frequency
415 415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
416 416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
417 417 }
418 418 }
419 419 for( freq = NB_BINS_COMPRESSED_SM_F0;
420 420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
421 421 freq++ )
422 422 {
423 423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
424 424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
425 425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
426 426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
427 427 {
428 428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
429 429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
430 430 ]; // 2 for the kcoeff_frequency
431 431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
432 432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
433 433 }
434 434 }
435 435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
436 436 freq < KCOEFF_BLK_NR_PKT1 ;
437 437 freq++ )
438 438 {
439 439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
440 440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
441 441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
442 442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
443 443 {
444 444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 446 ]; // 2 for the kcoeff_frequency
447 447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 449 }
450 450 }
451 451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
452 452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
453 453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
454 454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
455 455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
456 456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
457 457 // SEND DATA
458 458 kcoefficient_node_1.status = 1;
459 459 address = (unsigned int) &kcoefficient_node_1;
460 460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
461 461 if (status != RTEMS_SUCCESSFUL) {
462 462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
463 463 }
464 464
465 465 //********
466 466 // PACKET 2
467 467 // 6 F2 bins
468 468 kcoefficients_dump_2.destinationID = TC->sourceID;
469 469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
470 470 for( freq = 0;
471 471 freq < KCOEFF_BLK_NR_PKT2;
472 472 freq++ )
473 473 {
474 474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
475 475 bin = freq + KCOEFF_BLK_NR_PKT2;
476 476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
477 477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
478 478 {
479 479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
480 480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
481 481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
482 482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
483 483 }
484 484 }
485 485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
486 486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
487 487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
488 488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
489 489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
490 490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
491 491 // SEND DATA
492 492 kcoefficient_node_2.status = 1;
493 493 address = (unsigned int) &kcoefficient_node_2;
494 494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
495 495 if (status != RTEMS_SUCCESSFUL) {
496 496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
503 503 {
504 504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
505 505 *
506 506 * @param queue_id is the id of the queue which handles TM related to this execution step.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - message sent successfully
510 510 * - RTEMS_INVALID_ID - invalid queue id
511 511 * - RTEMS_INVALID_SIZE - invalid message size
512 512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
513 513 * - RTEMS_UNSATISFIED - out of message buffers
514 514 * - RTEMS_TOO_MANY - queue s limit has been reached
515 515 *
516 516 */
517 517
518 518 int status;
519 519
520 520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
521 521 parameter_dump_packet.destinationID = TC->sourceID;
522 522
523 523 // UPDATE TIME
524 524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
525 525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
526 526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
527 527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
528 528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
529 529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
530 530 // SEND DATA
531 531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
532 532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
533 533 if (status != RTEMS_SUCCESSFUL) {
534 534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
535 535 }
536 536
537 537 return status;
538 538 }
539 539
540 540 //***********************
541 541 // NORMAL MODE PARAMETERS
542 542
543 543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
544 544 {
545 545 unsigned char msb;
546 546 unsigned char lsb;
547 547 int flag;
548 548 float aux;
549 549 rtems_status_code status;
550 550
551 551 unsigned int sy_lfr_n_swf_l;
552 552 unsigned int sy_lfr_n_swf_p;
553 553 unsigned int sy_lfr_n_asm_p;
554 554 unsigned char sy_lfr_n_bp_p0;
555 555 unsigned char sy_lfr_n_bp_p1;
556 556 unsigned char sy_lfr_n_cwf_long_f3;
557 557
558 558 flag = LFR_SUCCESSFUL;
559 559
560 560 //***************
561 561 // get parameters
562 562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
563 563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
564 564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
565 565
566 566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
567 567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
568 568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
569 569
570 570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
571 571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
572 572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
573 573
574 574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
575 575
576 576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
577 577
578 578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
579 579
580 580 //******************
581 581 // check consistency
582 582 // sy_lfr_n_swf_l
583 583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
584 584 {
585 585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
586 586 flag = WRONG_APP_DATA;
587 587 }
588 588 // sy_lfr_n_swf_p
589 589 if (flag == LFR_SUCCESSFUL)
590 590 {
591 591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
592 592 {
593 593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
594 594 flag = WRONG_APP_DATA;
595 595 }
596 596 }
597 597 // sy_lfr_n_bp_p0
598 598 if (flag == LFR_SUCCESSFUL)
599 599 {
600 600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
601 601 {
602 602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
603 603 flag = WRONG_APP_DATA;
604 604 }
605 605 }
606 606 // sy_lfr_n_asm_p
607 607 if (flag == LFR_SUCCESSFUL)
608 608 {
609 609 if (sy_lfr_n_asm_p == 0)
610 610 {
611 611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
612 612 flag = WRONG_APP_DATA;
613 613 }
614 614 }
615 615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
616 616 if (flag == LFR_SUCCESSFUL)
617 617 {
618 618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
619 619 if (aux > FLOAT_EQUAL_ZERO)
620 620 {
621 621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
622 622 flag = WRONG_APP_DATA;
623 623 }
624 624 }
625 625 // sy_lfr_n_bp_p1
626 626 if (flag == LFR_SUCCESSFUL)
627 627 {
628 628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
629 629 {
630 630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
631 631 flag = WRONG_APP_DATA;
632 632 }
633 633 }
634 634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
635 635 if (flag == LFR_SUCCESSFUL)
636 636 {
637 637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
638 638 if (aux > FLOAT_EQUAL_ZERO)
639 639 {
640 640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
641 641 flag = LFR_DEFAULT;
642 642 }
643 643 }
644 644 // sy_lfr_n_cwf_long_f3
645 645
646 646 return flag;
647 647 }
648 648
649 649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
650 650 {
651 651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
652 652 *
653 653 * @param TC points to the TeleCommand packet that is being processed
654 654 * @param queue_id is the id of the queue which handles TM related to this execution step
655 655 *
656 656 */
657 657
658 658 int result;
659 659
660 660 result = LFR_SUCCESSFUL;
661 661
662 662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
663 663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
664 664
665 665 return result;
666 666 }
667 667
668 668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
669 669 {
670 670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
671 671 *
672 672 * @param TC points to the TeleCommand packet that is being processed
673 673 * @param queue_id is the id of the queue which handles TM related to this execution step
674 674 *
675 675 */
676 676
677 677 int result;
678 678
679 679 result = LFR_SUCCESSFUL;
680 680
681 681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
682 682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
683 683
684 684 return result;
685 685 }
686 686
687 687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
688 688 {
689 689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
690 690 *
691 691 * @param TC points to the TeleCommand packet that is being processed
692 692 * @param queue_id is the id of the queue which handles TM related to this execution step
693 693 *
694 694 */
695 695
696 696 int result;
697 697
698 698 result = LFR_SUCCESSFUL;
699 699
700 700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
701 701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
702 702
703 703 return result;
704 704 }
705 705
706 706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
707 707 {
708 708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
709 709 *
710 710 * @param TC points to the TeleCommand packet that is being processed
711 711 * @param queue_id is the id of the queue which handles TM related to this execution step
712 712 *
713 713 */
714 714
715 715 int status;
716 716
717 717 status = LFR_SUCCESSFUL;
718 718
719 719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
720 720
721 721 return status;
722 722 }
723 723
724 724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
725 725 {
726 726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
727 727 *
728 728 * @param TC points to the TeleCommand packet that is being processed
729 729 * @param queue_id is the id of the queue which handles TM related to this execution step
730 730 *
731 731 */
732 732
733 733 int status;
734 734
735 735 status = LFR_SUCCESSFUL;
736 736
737 737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
738 738
739 739 return status;
740 740 }
741 741
742 742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
743 743 {
744 744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
745 745 *
746 746 * @param TC points to the TeleCommand packet that is being processed
747 747 * @param queue_id is the id of the queue which handles TM related to this execution step
748 748 *
749 749 */
750 750
751 751 int status;
752 752
753 753 status = LFR_SUCCESSFUL;
754 754
755 755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
756 756
757 757 return status;
758 758 }
759 759
760 760 //**********************
761 761 // BURST MODE PARAMETERS
762 762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
763 763 {
764 764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
765 765 *
766 766 * @param TC points to the TeleCommand packet that is being processed
767 767 * @param queue_id is the id of the queue which handles TM related to this execution step
768 768 *
769 769 */
770 770
771 771 int status;
772 772
773 773 status = LFR_SUCCESSFUL;
774 774
775 775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
776 776
777 777 return status;
778 778 }
779 779
780 780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
781 781 {
782 782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
783 783 *
784 784 * @param TC points to the TeleCommand packet that is being processed
785 785 * @param queue_id is the id of the queue which handles TM related to this execution step
786 786 *
787 787 */
788 788
789 789 int status;
790 790
791 791 status = LFR_SUCCESSFUL;
792 792
793 793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
794 794
795 795 return status;
796 796 }
797 797
798 798 //*********************
799 799 // SBM1 MODE PARAMETERS
800 800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
801 801 {
802 802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
803 803 *
804 804 * @param TC points to the TeleCommand packet that is being processed
805 805 * @param queue_id is the id of the queue which handles TM related to this execution step
806 806 *
807 807 */
808 808
809 809 int status;
810 810
811 811 status = LFR_SUCCESSFUL;
812 812
813 813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
814 814
815 815 return status;
816 816 }
817 817
818 818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
819 819 {
820 820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
821 821 *
822 822 * @param TC points to the TeleCommand packet that is being processed
823 823 * @param queue_id is the id of the queue which handles TM related to this execution step
824 824 *
825 825 */
826 826
827 827 int status;
828 828
829 829 status = LFR_SUCCESSFUL;
830 830
831 831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
832 832
833 833 return status;
834 834 }
835 835
836 836 //*********************
837 837 // SBM2 MODE PARAMETERS
838 838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
839 839 {
840 840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
841 841 *
842 842 * @param TC points to the TeleCommand packet that is being processed
843 843 * @param queue_id is the id of the queue which handles TM related to this execution step
844 844 *
845 845 */
846 846
847 847 int status;
848 848
849 849 status = LFR_SUCCESSFUL;
850 850
851 851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
852 852
853 853 return status;
854 854 }
855 855
856 856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
857 857 {
858 858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
859 859 *
860 860 * @param TC points to the TeleCommand packet that is being processed
861 861 * @param queue_id is the id of the queue which handles TM related to this execution step
862 862 *
863 863 */
864 864
865 865 int status;
866 866
867 867 status = LFR_SUCCESSFUL;
868 868
869 869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
870 870
871 871 return status;
872 872 }
873 873
874 874 //*******************
875 875 // TC_LFR_UPDATE_INFO
876 876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
877 877 {
878 878 unsigned int status;
879 879
880 880 status = LFR_DEFAULT;
881 881
882 882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
883 883 || (mode == LFR_MODE_BURST)
884 884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
885 885 {
886 886 status = LFR_SUCCESSFUL;
887 887 }
888 888 else
889 889 {
890 890 status = LFR_DEFAULT;
891 891 }
892 892
893 893 return status;
894 894 }
895 895
896 896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
897 897 {
898 898 unsigned int status;
899 899
900 900 status = LFR_DEFAULT;
901 901
902 902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
903 903 || (mode == TDS_MODE_BURST)
904 904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
905 905 || (mode == TDS_MODE_LFM))
906 906 {
907 907 status = LFR_SUCCESSFUL;
908 908 }
909 909 else
910 910 {
911 911 status = LFR_DEFAULT;
912 912 }
913 913
914 914 return status;
915 915 }
916 916
917 917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
918 918 {
919 919 unsigned int status;
920 920
921 921 status = LFR_DEFAULT;
922 922
923 923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
924 924 || (mode == THR_MODE_BURST))
925 925 {
926 926 status = LFR_SUCCESSFUL;
927 927 }
928 928 else
929 929 {
930 930 status = LFR_DEFAULT;
931 931 }
932 932
933 933 return status;
934 934 }
935 935
936 936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
937 937 {
938 938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
939 939 *
940 940 * @param TC points to the TeleCommand packet that is being processed
941 941 *
942 942 */
943 943
944 944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
945 945
946 946 bytePosPtr = (unsigned char *) &TC->packetID;
947 947
948 948 // cp_rpw_sc_rw1_f1
949 949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
950 950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
951 951
952 952 // cp_rpw_sc_rw1_f2
953 953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
954 954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
955 955
956 956 // cp_rpw_sc_rw2_f1
957 957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
958 958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
959 959
960 960 // cp_rpw_sc_rw2_f2
961 961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
962 962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
963 963
964 964 // cp_rpw_sc_rw3_f1
965 965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
966 966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
967 967
968 968 // cp_rpw_sc_rw3_f2
969 969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
970 970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
971 971
972 972 // cp_rpw_sc_rw4_f1
973 973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
974 974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
975 975
976 976 // cp_rpw_sc_rw4_f2
977 977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
978 978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
979 979 }
980 980
981 981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
982 982 {
983 983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
984 984 *
985 985 * @param fbins_mask
986 986 * @param rw_f is the reaction wheel frequency to filter
987 987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
988 988 * @param flag [true] filtering enabled [false] filtering disabled
989 989 *
990 990 * @return void
991 991 *
992 992 */
993 993
994 994 float f_RW_min;
995 995 float f_RW_MAX;
996 996 float fi_min;
997 997 float fi_MAX;
998 998 float fi;
999 999 float deltaBelow;
1000 1000 float deltaAbove;
1001 1001 int binBelow;
1002 1002 int binAbove;
1003 1003 int closestBin;
1004 1004 unsigned int whichByte;
1005 1005 int selectedByte;
1006 1006 int bin;
1007 1007 int binToRemove[NB_BINS_TO_REMOVE];
1008 1008 int k;
1009 1009
1010 1010 closestBin = 0;
1011 1011 whichByte = 0;
1012 1012 bin = 0;
1013 1013
1014 1014 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1015 1015 {
1016 1016 binToRemove[k] = -1;
1017 1017 }
1018 1018
1019 1019 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1020 1020 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1021 1021 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1022 1022
1023 1023 // compute the index of the frequency bin immediately below rw_f
1024 1024 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1025 1025 deltaBelow = rw_f - binBelow * deltaFreq;
1026 1026
1027 1027 // compute the index of the frequency bin immediately above rw_f
1028 1028 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1029 1029 deltaAbove = binAbove * deltaFreq - rw_f;
1030 1030
1031 1031 // search the closest bin
1032 1032 if (deltaAbove > deltaBelow)
1033 1033 {
1034 1034 closestBin = binBelow;
1035 1035 }
1036 1036 else
1037 1037 {
1038 1038 closestBin = binAbove;
1039 1039 }
1040 1040
1041 1041 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1042 1042 fi = closestBin * deltaFreq;
1043 1043 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1044 1044 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1045 1045
1046 1046 //**************************************************************************************
1047 1047 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1048 1048 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1049 1049 //**************************************************************************************
1050 1050
1051 1051 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1052 1052 // => remove f_(i), f_(i-1) and f_(i+1)
1053 1053 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1054 1054 {
1055 1055 binToRemove[0] = (closestBin - 1) - 1;
1056 1056 binToRemove[1] = (closestBin) - 1;
1057 1057 binToRemove[2] = (closestBin + 1) - 1;
1058 1058 }
1059 1059 // 2. ELSE
1060 1060 // => remove the two f_(i) which are around f_RW
1061 1061 else
1062 1062 {
1063 1063 binToRemove[0] = (binBelow) - 1;
1064 1064 binToRemove[1] = (binAbove) - 1;
1065 1065 binToRemove[2] = (-1);
1066 1066 }
1067 1067
1068 1068 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1069 1069 {
1070 1070 bin = binToRemove[k];
1071 1071 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1072 1072 {
1073 1073 if (flag == 1)
1074 1074 {
1075 1075 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1076 1076 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1077 1077 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1078 1078 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1079 1079 }
1080 1080 }
1081 1081 }
1082 1082 }
1083 1083
1084 1084 void build_sy_lfr_rw_mask( unsigned int channel )
1085 1085 {
1086 1086 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1087 1087 unsigned char *maskPtr;
1088 1088 double deltaF;
1089 1089 unsigned k;
1090 1090
1091 1091 k = 0;
1092 1092
1093 1093 maskPtr = NULL;
1094 1094 deltaF = DELTAF_F2;
1095 1095
1096 1096 switch (channel)
1097 1097 {
1098 1098 case CHANNELF0:
1099 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1099 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1100 1100 deltaF = DELTAF_F0;
1101 1101 break;
1102 1102 case CHANNELF1:
1103 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1103 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1104 1104 deltaF = DELTAF_F1;
1105 1105 break;
1106 1106 case CHANNELF2:
1107 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1107 maskPtr = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1108 1108 deltaF = DELTAF_F2;
1109 1109 break;
1110 1110 default:
1111 1111 break;
1112 1112 }
1113 1113
1114 1114 for (k = 0; k < BYTES_PER_MASK; k++)
1115 1115 {
1116 1116 local_rw_fbins_mask[k] = INT8_ALL_F;
1117 1117 }
1118 1118
1119 1119 // RW1 F1
1120 1120 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS ); // [1000 0000]
1121 1121
1122 1122 // RW1 F2
1123 1123 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS ); // [0100 0000]
1124 1124
1125 1125 // RW2 F1
1126 1126 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS ); // [0010 0000]
1127 1127
1128 1128 // RW2 F2
1129 1129 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS ); // [0001 0000]
1130 1130
1131 1131 // RW3 F1
1132 1132 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS ); // [0000 1000]
1133 1133
1134 1134 // RW3 F2
1135 1135 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS ); // [0000 0100]
1136 1136
1137 1137 // RW4 F1
1138 1138 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 ); // [0000 0010]
1139 1139
1140 1140 // RW4 F2
1141 1141 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) ); // [0000 0001]
1142 1142
1143 1143 // update the value of the fbins related to reaction wheels frequency filtering
1144 1144 if (maskPtr != NULL)
1145 1145 {
1146 1146 for (k = 0; k < BYTES_PER_MASK; k++)
1147 1147 {
1148 1148 maskPtr[k] = local_rw_fbins_mask[k];
1149 1149 }
1150 1150 }
1151 1151 }
1152 1152
1153 1153 void build_sy_lfr_rw_masks( void )
1154 1154 {
1155 1155 build_sy_lfr_rw_mask( CHANNELF0 );
1156 1156 build_sy_lfr_rw_mask( CHANNELF1 );
1157 1157 build_sy_lfr_rw_mask( CHANNELF2 );
1158 1158 }
1159 1159
1160 1160 void merge_fbins_masks( void )
1161 1161 {
1162 1162 unsigned char k;
1163 1163
1164 1164 unsigned char *fbins_f0;
1165 1165 unsigned char *fbins_f1;
1166 1166 unsigned char *fbins_f2;
1167 1167 unsigned char *rw_mask_f0;
1168 1168 unsigned char *rw_mask_f1;
1169 1169 unsigned char *rw_mask_f2;
1170 1170
1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins.fx.f1_word1;
1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins.fx.f2_word1;
1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins_f1_word1;
1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins_f2_word1;
1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask_f0_word1;
1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask_f1_word1;
1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask_f2_word1;
1177 1177
1178 1178 for( k=0; k < BYTES_PER_MASK; k++ )
1179 1179 {
1180 1180 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1181 1181 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1182 1182 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1183 1183 }
1184 1184 }
1185 1185
1186 1186 //***********
1187 1187 // FBINS MASK
1188 1188
1189 1189 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1190 1190 {
1191 1191 int status;
1192 1192 unsigned int k;
1193 1193 unsigned char *fbins_mask_dump;
1194 1194 unsigned char *fbins_mask_TC;
1195 1195
1196 1196 status = LFR_SUCCESSFUL;
1197 1197
1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins.raw;
1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins_f0_word1;
1199 1199 fbins_mask_TC = TC->dataAndCRC;
1200 1200
1201 1201 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1202 1202 {
1203 1203 fbins_mask_dump[k] = fbins_mask_TC[k];
1204 1204 }
1205 1205
1206 1206 return status;
1207 1207 }
1208 1208
1209 1209 //***************************
1210 1210 // TC_LFR_LOAD_PAS_FILTER_PAR
1211 1211
1212 1212 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1213 1213 {
1214 1214 int flag;
1215 1215 rtems_status_code status;
1216 1216
1217 1217 unsigned char sy_lfr_pas_filter_enabled;
1218 1218 unsigned char sy_lfr_pas_filter_modulus;
1219 1219 float sy_lfr_pas_filter_tbad;
1220 1220 unsigned char sy_lfr_pas_filter_offset;
1221 1221 float sy_lfr_pas_filter_shift;
1222 1222 float sy_lfr_sc_rw_delta_f;
1223 1223 char *parPtr;
1224 1224
1225 1225 flag = LFR_SUCCESSFUL;
1226 1226 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1227 1227 sy_lfr_pas_filter_shift = INIT_FLOAT;
1228 1228 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1229 1229 parPtr = NULL;
1230 1230
1231 1231 //***************
1232 1232 // get parameters
1233 1233 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1234 1234 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1235 1235 copyFloatByChar(
1236 1236 (unsigned char*) &sy_lfr_pas_filter_tbad,
1237 1237 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1238 1238 );
1239 1239 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1240 1240 copyFloatByChar(
1241 1241 (unsigned char*) &sy_lfr_pas_filter_shift,
1242 1242 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1243 1243 );
1244 1244 copyFloatByChar(
1245 1245 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1246 1246 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1247 1247 );
1248 1248
1249 1249 //******************
1250 1250 // CHECK CONSISTENCY
1251 1251
1252 1252 //**************************
1253 1253 // sy_lfr_pas_filter_enabled
1254 1254 // nothing to check, value is 0 or 1
1255 1255
1256 1256 //**************************
1257 1257 // sy_lfr_pas_filter_modulus
1258 1258 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1259 1259 {
1260 1260 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1261 1261 flag = WRONG_APP_DATA;
1262 1262 }
1263 1263
1264 1264 //***********************
1265 1265 // sy_lfr_pas_filter_tbad
1266 1266 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1267 1267 {
1268 1268 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1269 1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1270 1270 flag = WRONG_APP_DATA;
1271 1271 }
1272 1272
1273 1273 //*************************
1274 1274 // sy_lfr_pas_filter_offset
1275 1275 if (flag == LFR_SUCCESSFUL)
1276 1276 {
1277 1277 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1278 1278 {
1279 1279 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1280 1280 flag = WRONG_APP_DATA;
1281 1281 }
1282 1282 }
1283 1283
1284 1284 //************************
1285 1285 // sy_lfr_pas_filter_shift
1286 1286 if (flag == LFR_SUCCESSFUL)
1287 1287 {
1288 1288 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1289 1289 {
1290 1290 parPtr = (char*) &sy_lfr_pas_filter_shift;
1291 1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1292 1292 flag = WRONG_APP_DATA;
1293 1293 }
1294 1294 }
1295 1295
1296 1296 //*************************************
1297 1297 // check global coherency of the values
1298 1298 if (flag == LFR_SUCCESSFUL)
1299 1299 {
1300 1300 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1301 1301 {
1302 1302 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1303 1303 flag = WRONG_APP_DATA;
1304 1304 }
1305 1305 }
1306 1306
1307 1307 //*********************
1308 1308 // sy_lfr_sc_rw_delta_f
1309 1309 // nothing to check, no default value in the ICD
1310 1310
1311 1311 return flag;
1312 1312 }
1313 1313
1314 1314 //**************
1315 1315 // KCOEFFICIENTS
1316 1316 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1317 1317 {
1318 1318 unsigned int kcoeff;
1319 1319 unsigned short sy_lfr_kcoeff_frequency;
1320 1320 unsigned short bin;
1321 1321 unsigned short *freqPtr;
1322 1322 float *kcoeffPtr_norm;
1323 1323 float *kcoeffPtr_sbm;
1324 1324 int status;
1325 1325 unsigned char *kcoeffLoadPtr;
1326 1326 unsigned char *kcoeffNormPtr;
1327 1327 unsigned char *kcoeffSbmPtr_a;
1328 1328 unsigned char *kcoeffSbmPtr_b;
1329 1329
1330 1330 status = LFR_SUCCESSFUL;
1331 1331
1332 1332 kcoeffPtr_norm = NULL;
1333 1333 kcoeffPtr_sbm = NULL;
1334 1334 bin = 0;
1335 1335
1336 1336 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1337 1337 sy_lfr_kcoeff_frequency = *freqPtr;
1338 1338
1339 1339 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1340 1340 {
1341 1341 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1342 1342 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1343 1343 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1344 1344 status = LFR_DEFAULT;
1345 1345 }
1346 1346 else
1347 1347 {
1348 1348 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1349 1349 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1350 1350 {
1351 1351 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1352 1352 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1353 1353 bin = sy_lfr_kcoeff_frequency;
1354 1354 }
1355 1355 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1356 1356 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1357 1357 {
1358 1358 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1359 1359 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1360 1360 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1361 1361 }
1362 1362 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1363 1363 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1364 1364 {
1365 1365 kcoeffPtr_norm = k_coeff_intercalib_f2;
1366 1366 kcoeffPtr_sbm = NULL;
1367 1367 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1368 1368 }
1369 1369 }
1370 1370
1371 1371 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1372 1372 {
1373 1373 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1374 1374 {
1375 1375 // destination
1376 1376 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1377 1377 // source
1378 1378 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1379 1379 // copy source to destination
1380 1380 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1381 1381 }
1382 1382 }
1383 1383
1384 1384 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1385 1385 {
1386 1386 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1387 1387 {
1388 1388 // destination
1389 1389 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1390 1390 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1391 1391 // source
1392 1392 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1393 1393 // copy source to destination
1394 1394 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1395 1395 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1396 1396 }
1397 1397 }
1398 1398
1399 1399 // print_k_coeff();
1400 1400
1401 1401 return status;
1402 1402 }
1403 1403
1404 1404 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1405 1405 {
1406 1406 destination[BYTE_0] = source[BYTE_0];
1407 1407 destination[BYTE_1] = source[BYTE_1];
1408 1408 destination[BYTE_2] = source[BYTE_2];
1409 1409 destination[BYTE_3] = source[BYTE_3];
1410 1410 }
1411 1411
1412 1412 void floatToChar( float value, unsigned char* ptr)
1413 1413 {
1414 1414 unsigned char* valuePtr;
1415 1415
1416 1416 valuePtr = (unsigned char*) &value;
1417 1417 ptr[BYTE_0] = valuePtr[BYTE_0];
1418 1418 ptr[BYTE_1] = valuePtr[BYTE_1];
1419 1419 ptr[BYTE_2] = valuePtr[BYTE_2];
1420 1420 ptr[BYTE_3] = valuePtr[BYTE_3];
1421 1421 }
1422 1422
1423 1423 //**********
1424 1424 // init dump
1425 1425
1426 1426 void init_parameter_dump( void )
1427 1427 {
1428 1428 /** This function initialize the parameter_dump_packet global variable with default values.
1429 1429 *
1430 1430 */
1431 1431
1432 1432 unsigned int k;
1433 1433
1434 1434 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1435 1435 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1436 1436 parameter_dump_packet.reserved = CCSDS_RESERVED;
1437 1437 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1438 1438 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1439 1439 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1440 1440 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1441 1441 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1442 1442 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1443 1443 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1444 1444 // DATA FIELD HEADER
1445 1445 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1446 1446 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1447 1447 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1448 1448 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1449 1449 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1450 1450 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1451 1451 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1452 1452 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1453 1453 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1454 1454 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1455 1455 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1456 1456
1457 1457 //******************
1458 1458 // COMMON PARAMETERS
1459 1459 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1460 1460 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1461 1461
1462 1462 //******************
1463 1463 // NORMAL PARAMETERS
1464 1464 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1465 1465 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1466 1466 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1467 1467 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1468 1468 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1469 1469 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1470 1470 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1471 1471 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1472 1472 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1473 1473
1474 1474 //*****************
1475 1475 // BURST PARAMETERS
1476 1476 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1477 1477 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1478 1478
1479 1479 //****************
1480 1480 // SBM1 PARAMETERS
1481 1481 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1482 1482 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1483 1483
1484 1484 //****************
1485 1485 // SBM2 PARAMETERS
1486 1486 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1487 1487 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1488 1488
1489 1489 //************
1490 1490 // FBINS MASKS
1491 1491 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1492 1492 {
1493 parameter_dump_packet.sy_lfr_fbins.raw[k] = INT8_ALL_F;
1493 parameter_dump_packet.sy_lfr_fbins_f0_word1[k] = INT8_ALL_F;
1494 1494 }
1495 1495
1496 1496 // PAS FILTER PARAMETERS
1497 1497 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1498 1498 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1499 1499 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1500 1500 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1501 1501 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1502 1502 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1503 1503 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1504 1504
1505 1505 // LFR_RW_MASK
1506 1506 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1507 1507 {
1508 parameter_dump_packet.sy_lfr_rw_mask.raw[k] = INT8_ALL_F;
1508 parameter_dump_packet.sy_lfr_rw_mask_f0_word1[k] = INT8_ALL_F;
1509 1509 }
1510 1510
1511 1511 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1512 1512 merge_fbins_masks();
1513 1513 }
1514 1514
1515 1515 void init_kcoefficients_dump( void )
1516 1516 {
1517 1517 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1518 1518 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1519 1519
1520 1520 kcoefficient_node_1.previous = NULL;
1521 1521 kcoefficient_node_1.next = NULL;
1522 1522 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1523 1523 kcoefficient_node_1.coarseTime = INIT_CHAR;
1524 1524 kcoefficient_node_1.fineTime = INIT_CHAR;
1525 1525 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1526 1526 kcoefficient_node_1.status = INIT_CHAR;
1527 1527
1528 1528 kcoefficient_node_2.previous = NULL;
1529 1529 kcoefficient_node_2.next = NULL;
1530 1530 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1531 1531 kcoefficient_node_2.coarseTime = INIT_CHAR;
1532 1532 kcoefficient_node_2.fineTime = INIT_CHAR;
1533 1533 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1534 1534 kcoefficient_node_2.status = INIT_CHAR;
1535 1535 }
1536 1536
1537 1537 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1538 1538 {
1539 1539 unsigned int k;
1540 1540 unsigned int packetLength;
1541 1541
1542 1542 packetLength =
1543 1543 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1544 1544
1545 1545 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1546 1546 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1547 1547 kcoefficients_dump->reserved = CCSDS_RESERVED;
1548 1548 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1549 1549 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1550 1550 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1551 1551 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1552 1552 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1553 1553 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1554 1554 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1555 1555 // DATA FIELD HEADER
1556 1556 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1557 1557 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1558 1558 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1559 1559 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1560 1560 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1561 1561 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1562 1562 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1563 1563 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1564 1564 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1565 1565 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1566 1566 kcoefficients_dump->sid = SID_K_DUMP;
1567 1567
1568 1568 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1569 1569 kcoefficients_dump->pkt_nr = PKTNR_1;
1570 1570 kcoefficients_dump->blk_nr = blk_nr;
1571 1571
1572 1572 //******************
1573 1573 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1574 1574 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1575 1575 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1576 1576 {
1577 1577 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1578 1578 }
1579 1579 }
1580 1580
1581 1581 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1582 1582 {
1583 1583 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1584 1584 *
1585 1585 * @param packet_sequence_control points to the packet sequence control which will be incremented
1586 1586 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1587 1587 *
1588 1588 * If the destination ID is not known, a dedicated counter is incremented.
1589 1589 *
1590 1590 */
1591 1591
1592 1592 unsigned short sequence_cnt;
1593 1593 unsigned short segmentation_grouping_flag;
1594 1594 unsigned short new_packet_sequence_control;
1595 1595 unsigned char i;
1596 1596
1597 1597 switch (destination_id)
1598 1598 {
1599 1599 case SID_TC_GROUND:
1600 1600 i = GROUND;
1601 1601 break;
1602 1602 case SID_TC_MISSION_TIMELINE:
1603 1603 i = MISSION_TIMELINE;
1604 1604 break;
1605 1605 case SID_TC_TC_SEQUENCES:
1606 1606 i = TC_SEQUENCES;
1607 1607 break;
1608 1608 case SID_TC_RECOVERY_ACTION_CMD:
1609 1609 i = RECOVERY_ACTION_CMD;
1610 1610 break;
1611 1611 case SID_TC_BACKUP_MISSION_TIMELINE:
1612 1612 i = BACKUP_MISSION_TIMELINE;
1613 1613 break;
1614 1614 case SID_TC_DIRECT_CMD:
1615 1615 i = DIRECT_CMD;
1616 1616 break;
1617 1617 case SID_TC_SPARE_GRD_SRC1:
1618 1618 i = SPARE_GRD_SRC1;
1619 1619 break;
1620 1620 case SID_TC_SPARE_GRD_SRC2:
1621 1621 i = SPARE_GRD_SRC2;
1622 1622 break;
1623 1623 case SID_TC_OBCP:
1624 1624 i = OBCP;
1625 1625 break;
1626 1626 case SID_TC_SYSTEM_CONTROL:
1627 1627 i = SYSTEM_CONTROL;
1628 1628 break;
1629 1629 case SID_TC_AOCS:
1630 1630 i = AOCS;
1631 1631 break;
1632 1632 case SID_TC_RPW_INTERNAL:
1633 1633 i = RPW_INTERNAL;
1634 1634 break;
1635 1635 default:
1636 1636 i = GROUND;
1637 1637 break;
1638 1638 }
1639 1639
1640 1640 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1641 1641 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1642 1642
1643 1643 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1644 1644
1645 1645 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1646 1646 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1647 1647
1648 1648 // increment the sequence counter
1649 1649 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1650 1650 {
1651 1651 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1652 1652 }
1653 1653 else
1654 1654 {
1655 1655 sequenceCounters_TM_DUMP[ i ] = 0;
1656 1656 }
1657 1657 }
@@ -1,1343 +1,1343
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0]= {0};
16 16 ring_node *current_ring_node_f0 = NULL;
17 17 ring_node *ring_node_to_send_swf_f0 = NULL;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1] = {0};
20 20 ring_node *current_ring_node_f1 = NULL;
21 21 ring_node *ring_node_to_send_swf_f1 = NULL;
22 22 ring_node *ring_node_to_send_cwf_f1 = NULL;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2] = {0};
25 25 ring_node *current_ring_node_f2 = NULL;
26 26 ring_node *ring_node_to_send_swf_f2 = NULL;
27 27 ring_node *ring_node_to_send_cwf_f2 = NULL;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3] = {0};
30 30 ring_node *current_ring_node_f3 = NULL;
31 31 ring_node *ring_node_to_send_cwf_f3 = NULL;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ] = {0};
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
43 43 ring_node ring_node_swf1_extracted = {0};
44 44 ring_node ring_node_swf2_extracted = {0};
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case CHANNELF1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case CHANNELF2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case CHANNELF3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case CHANNELF0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case CHANNELF1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case CHANNELF2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
146 146
147 147 switch(status)
148 148 {
149 149 case BIT_WFP_BUFFER_0:
150 150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 154 current_ring_node_f2 = current_ring_node_f2->next;
155 155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 158 }
159 159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
160 160 break;
161 161 case BIT_WFP_BUFFER_1:
162 162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 166 current_ring_node_f2 = current_ring_node_f2->next;
167 167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 170 }
171 171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
172 172 break;
173 173 default:
174 174 break;
175 175 }
176 176 }
177 177
178 178 inline void waveform_isr_normal_sbm1_sbm2( void )
179 179 {
180 180 rtems_status_code status;
181 181
182 182 //***
183 183 // F0
184 184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
185 185 {
186 186 swf0_ready_flag_f1 = true;
187 187 swf0_ready_flag_f2 = true;
188 188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 189 current_ring_node_f0 = current_ring_node_f0->next;
190 190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
191 191 {
192 192
193 193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
197 197 }
198 198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
199 199 {
200 200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
204 204 }
205 205 // send an event to the WFRM task for resynchro activities
206 206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 207 }
208 208
209 209 //***
210 210 // F1
211 if ( (waveform_picker_regs->status & 0x0c) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
211 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F1) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
212 212 // (1) change the receiving buffer for the waveform picker
213 213 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 214 current_ring_node_f1 = current_ring_node_f1->next;
215 215 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
216 216 {
217 217 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 218 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 219 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 220 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
221 221 }
222 222 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
223 223 {
224 224 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 225 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 226 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 227 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
228 228 }
229 229 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 230 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 231 }
232 232
233 233 //***
234 234 // F2
235 235 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
236 236 // (1) change the receiving buffer for the waveform picker
237 237 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 238 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 239 current_ring_node_f2 = current_ring_node_f2->next;
240 240 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
241 241 {
242 242 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 243 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 244 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 245 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
246 246 }
247 247 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
248 248 {
249 249 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 250 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 251 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 252 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
253 253 }
254 254 // (2) send an event for the waveforms transmission
255 255 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 256 }
257 257 }
258 258
259 259 rtems_isr waveforms_isr( rtems_vector_number vector )
260 260 {
261 261 /** This is the interrupt sub routine called by the waveform picker core.
262 262 *
263 263 * This ISR launch different actions depending mainly on two pieces of information:
264 264 * 1. the values read in the registers of the waveform picker.
265 265 * 2. the current LFR mode.
266 266 *
267 267 */
268 268
269 269 // STATUS
270 270 // new error error buffer full
271 271 // 15 14 13 12 11 10 9 8
272 272 // f3 f2 f1 f0 f3 f2 f1 f0
273 273 //
274 274 // ready buffer
275 275 // 7 6 5 4 3 2 1 0
276 276 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277 277
278 278 rtems_status_code spare_status;
279 279
280 280 waveforms_isr_f3();
281 281
282 282 //*************************************************
283 283 // copy the status bits in the housekeeping packets
284 284 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 285 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
286 286
287 287 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
288 288 {
289 289 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 290 }
291 291
292 292 switch(lfrCurrentMode)
293 293 {
294 294 //********
295 295 // STANDBY
296 296 case LFR_MODE_STANDBY:
297 297 break;
298 298 //**************************
299 299 // LFR NORMAL, SBM1 and SBM2
300 300 case LFR_MODE_NORMAL:
301 301 case LFR_MODE_SBM1:
302 302 case LFR_MODE_SBM2:
303 303 waveform_isr_normal_sbm1_sbm2();
304 304 break;
305 305 //******
306 306 // BURST
307 307 case LFR_MODE_BURST:
308 308 waveforms_isr_burst();
309 309 break;
310 310 //********
311 311 // DEFAULT
312 312 default:
313 313 break;
314 314 }
315 315 }
316 316
317 317 //************
318 318 // RTEMS TASKS
319 319
320 320 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 321 {
322 322 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 323 *
324 324 * @param unused is the starting argument of the RTEMS task
325 325 *
326 326 * The following data packets are sent by this task:
327 327 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 330 *
331 331 */
332 332
333 333 rtems_event_set event_out;
334 334 rtems_id queue_id;
335 335 rtems_status_code status;
336 336 ring_node *ring_node_swf1_extracted_ptr;
337 337 ring_node *ring_node_swf2_extracted_ptr;
338 338
339 339 event_out = EVENT_SETS_NONE_PENDING;
340 340 queue_id = RTEMS_ID_NONE;
341 341
342 342 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
343 343 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
344 344
345 345 status = get_message_queue_id_send( &queue_id );
346 346 if (status != RTEMS_SUCCESSFUL)
347 347 {
348 348 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
349 349 }
350 350
351 351 BOOT_PRINTF("in WFRM ***\n");
352 352
353 353 while(1){
354 354 // wait for an RTEMS_EVENT
355 355 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
356 356 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
357 357
358 358 if (event_out == RTEMS_EVENT_MODE_NORMAL)
359 359 {
360 360 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
361 361 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
362 362 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
363 363 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
364 364 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
365 365 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
366 366 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
367 367 }
368 368 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
369 369 {
370 370 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
371 371 }
372 372 }
373 373 }
374 374
375 375 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
376 376 {
377 377 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
378 378 *
379 379 * @param unused is the starting argument of the RTEMS task
380 380 *
381 381 * The following data packet is sent by this task:
382 382 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
383 383 *
384 384 */
385 385
386 386 rtems_event_set event_out;
387 387 rtems_id queue_id;
388 388 rtems_status_code status;
389 389 ring_node ring_node_cwf3_light;
390 390 ring_node *ring_node_to_send_cwf;
391 391
392 392 event_out = EVENT_SETS_NONE_PENDING;
393 393 queue_id = RTEMS_ID_NONE;
394 394
395 395 status = get_message_queue_id_send( &queue_id );
396 396 if (status != RTEMS_SUCCESSFUL)
397 397 {
398 398 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
399 399 }
400 400
401 401 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
402 402
403 403 // init the ring_node_cwf3_light structure
404 404 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
405 405 ring_node_cwf3_light.coarseTime = INIT_CHAR;
406 406 ring_node_cwf3_light.fineTime = INIT_CHAR;
407 407 ring_node_cwf3_light.next = NULL;
408 408 ring_node_cwf3_light.previous = NULL;
409 409 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
410 410 ring_node_cwf3_light.status = INIT_CHAR;
411 411
412 412 BOOT_PRINTF("in CWF3 ***\n");
413 413
414 414 while(1){
415 415 // wait for an RTEMS_EVENT
416 416 rtems_event_receive( RTEMS_EVENT_0,
417 417 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
418 418 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
419 419 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
420 420 {
421 421 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
422 422 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
423 423 {
424 424 PRINTF("send CWF_LONG_F3\n");
425 425 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
426 426 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
427 427 }
428 428 else
429 429 {
430 430 PRINTF("send CWF_F3 (light)\n");
431 431 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
432 432 }
433 433
434 434 }
435 435 else
436 436 {
437 437 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
438 438 }
439 439 }
440 440 }
441 441
442 442 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
443 443 {
444 444 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
445 445 *
446 446 * @param unused is the starting argument of the RTEMS task
447 447 *
448 448 * The following data packet is sent by this function:
449 449 * - TM_LFR_SCIENCE_BURST_CWF_F2
450 450 * - TM_LFR_SCIENCE_SBM2_CWF_F2
451 451 *
452 452 */
453 453
454 454 rtems_event_set event_out;
455 455 rtems_id queue_id;
456 456 rtems_status_code status;
457 457 ring_node *ring_node_to_send;
458 458 unsigned long long int acquisitionTimeF0_asLong;
459 459
460 460 event_out = EVENT_SETS_NONE_PENDING;
461 461 queue_id = RTEMS_ID_NONE;
462 462
463 463 acquisitionTimeF0_asLong = INIT_CHAR;
464 464
465 465 status = get_message_queue_id_send( &queue_id );
466 466 if (status != RTEMS_SUCCESSFUL)
467 467 {
468 468 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
469 469 }
470 470
471 471 BOOT_PRINTF("in CWF2 ***\n");
472 472
473 473 while(1){
474 474 // wait for an RTEMS_EVENT// send the snapshot when built
475 475 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
476 476 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
477 477 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
478 478 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
479 479 if (event_out == RTEMS_EVENT_MODE_BURST)
480 480 { // data are sent whatever the transition time
481 481 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
482 482 }
483 483 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
484 484 {
485 485 if ( lfrCurrentMode == LFR_MODE_SBM2 )
486 486 {
487 487 // data are sent depending on the transition time
488 488 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
489 489 {
490 490 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
491 491 }
492 492 }
493 493 // launch snapshot extraction if needed
494 494 if (extractSWF2 == true)
495 495 {
496 496 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
497 497 // extract the snapshot
498 498 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
499 499 &ring_node_swf2_extracted, swf2_extracted );
500 500 extractSWF2 = false;
501 501 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
502 502 }
503 503 if (swf0_ready_flag_f2 == true)
504 504 {
505 505 extractSWF2 = true;
506 506 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
507 507 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
508 508 swf0_ready_flag_f2 = false;
509 509 }
510 510 }
511 511 }
512 512 }
513 513
514 514 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
515 515 {
516 516 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
517 517 *
518 518 * @param unused is the starting argument of the RTEMS task
519 519 *
520 520 * The following data packet is sent by this function:
521 521 * - TM_LFR_SCIENCE_SBM1_CWF_F1
522 522 *
523 523 */
524 524
525 525 rtems_event_set event_out;
526 526 rtems_id queue_id;
527 527 rtems_status_code status;
528 528
529 529 ring_node *ring_node_to_send_cwf;
530 530
531 531 event_out = EVENT_SETS_NONE_PENDING;
532 532 queue_id = RTEMS_ID_NONE;
533 533
534 534 status = get_message_queue_id_send( &queue_id );
535 535 if (status != RTEMS_SUCCESSFUL)
536 536 {
537 537 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
538 538 }
539 539
540 540 BOOT_PRINTF("in CWF1 ***\n");
541 541
542 542 while(1){
543 543 // wait for an RTEMS_EVENT
544 544 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
545 545 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
546 546 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
547 547 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
548 548 if (lfrCurrentMode == LFR_MODE_SBM1)
549 549 {
550 550 // data are sent depending on the transition time
551 551 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
552 552 {
553 553 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
554 554 }
555 555 }
556 556 // launch snapshot extraction if needed
557 557 if (extractSWF1 == true)
558 558 {
559 559 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
560 560 // launch the snapshot extraction
561 561 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
562 562 extractSWF1 = false;
563 563 }
564 564 if (swf0_ready_flag_f1 == true)
565 565 {
566 566 extractSWF1 = true;
567 567 swf0_ready_flag_f1 = false; // this step shall be executed only one time
568 568 }
569 569 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
570 570 {
571 571 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
572 572 swf1_ready = false;
573 573 swf2_ready = false;
574 574 }
575 575 }
576 576 }
577 577
578 578 rtems_task swbd_task(rtems_task_argument argument)
579 579 {
580 580 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
581 581 *
582 582 * @param unused is the starting argument of the RTEMS task
583 583 *
584 584 */
585 585
586 586 rtems_event_set event_out;
587 587 unsigned long long int acquisitionTimeF0_asLong;
588 588
589 589 event_out = EVENT_SETS_NONE_PENDING;
590 590 acquisitionTimeF0_asLong = INIT_CHAR;
591 591
592 592 BOOT_PRINTF("in SWBD ***\n")
593 593
594 594 while(1){
595 595 // wait for an RTEMS_EVENT
596 596 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
597 597 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
598 598 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
599 599 {
600 600 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
601 601 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
602 602 &ring_node_swf1_extracted, swf1_extracted );
603 603 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
604 604 }
605 605 else
606 606 {
607 607 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
608 608 }
609 609 }
610 610 }
611 611
612 612 //******************
613 613 // general functions
614 614
615 615 void WFP_init_rings( void )
616 616 {
617 617 // F0 RING
618 618 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
619 619 // F1 RING
620 620 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
621 621 // F2 RING
622 622 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
623 623 // F3 RING
624 624 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
625 625
626 626 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
627 627 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
628 628
629 629 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
630 630 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
631 631 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
632 632 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
633 633 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
634 634 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
635 635 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
636 636 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
637 637
638 638 }
639 639
640 640 void WFP_reset_current_ring_nodes( void )
641 641 {
642 642 current_ring_node_f0 = waveform_ring_f0[0].next;
643 643 current_ring_node_f1 = waveform_ring_f1[0].next;
644 644 current_ring_node_f2 = waveform_ring_f2[0].next;
645 645 current_ring_node_f3 = waveform_ring_f3[0].next;
646 646
647 647 ring_node_to_send_swf_f0 = waveform_ring_f0;
648 648 ring_node_to_send_swf_f1 = waveform_ring_f1;
649 649 ring_node_to_send_swf_f2 = waveform_ring_f2;
650 650
651 651 ring_node_to_send_cwf_f1 = waveform_ring_f1;
652 652 ring_node_to_send_cwf_f2 = waveform_ring_f2;
653 653 ring_node_to_send_cwf_f3 = waveform_ring_f3;
654 654 }
655 655
656 656 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
657 657 {
658 658 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
659 659 *
660 660 * @param waveform points to the buffer containing the data that will be send.
661 661 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
662 662 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
663 663 * contain information to setup the transmission of the data packets.
664 664 *
665 665 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
666 666 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
667 667 *
668 668 */
669 669
670 670 unsigned int i;
671 671 unsigned int j;
672 672 int ret;
673 673 rtems_status_code status;
674 674
675 675 char *sample;
676 676 int *dataPtr;
677 677
678 678 ret = LFR_DEFAULT;
679 679
680 680 dataPtr = (int*) ring_node_to_send->buffer_address;
681 681
682 682 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
683 683 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
684 684
685 685 //**********************
686 686 // BUILD CWF3_light DATA
687 687 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
688 688 {
689 689 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
690 690 for (j=0; j < CWF_BLK_SIZE; j++)
691 691 {
692 692 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
693 693 }
694 694 }
695 695
696 696 // SEND PACKET
697 697 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
698 698 if (status != RTEMS_SUCCESSFUL) {
699 699 ret = LFR_DEFAULT;
700 700 }
701 701
702 702 return ret;
703 703 }
704 704
705 705 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
706 706 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
707 707 {
708 708 unsigned long long int acquisitionTimeAsLong;
709 709 unsigned char localAcquisitionTime[BYTES_PER_TIME];
710 710 double deltaT;
711 711
712 712 deltaT = INIT_FLOAT;
713 713
714 714 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
715 715 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
716 716 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
717 717 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
718 718 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
719 719 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
720 720
721 721 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
722 722 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
723 723 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
724 724 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
725 725 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
726 726 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
727 727
728 728 switch( sid )
729 729 {
730 730 case SID_NORM_SWF_F0:
731 731 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
732 732 break;
733 733
734 734 case SID_NORM_SWF_F1:
735 735 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
736 736 break;
737 737
738 738 case SID_NORM_SWF_F2:
739 739 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
740 740 break;
741 741
742 742 case SID_SBM1_CWF_F1:
743 743 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
744 744 break;
745 745
746 746 case SID_SBM2_CWF_F2:
747 747 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
748 748 break;
749 749
750 750 case SID_BURST_CWF_F2:
751 751 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
752 752 break;
753 753
754 754 case SID_NORM_CWF_F3:
755 755 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
756 756 break;
757 757
758 758 case SID_NORM_CWF_LONG_F3:
759 759 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
760 760 break;
761 761
762 762 default:
763 763 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
764 764 deltaT = 0.;
765 765 break;
766 766 }
767 767
768 768 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
769 769 //
770 770 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
771 771 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
772 772 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
773 773 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
774 774 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
775 775 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
776 776
777 777 }
778 778
779 779 void build_snapshot_from_ring( ring_node *ring_node_to_send,
780 780 unsigned char frequencyChannel,
781 781 unsigned long long int acquisitionTimeF0_asLong,
782 782 ring_node *ring_node_swf_extracted,
783 783 int *swf_extracted)
784 784 {
785 785 unsigned int i;
786 786 unsigned int node;
787 787 unsigned long long int centerTime_asLong;
788 788 unsigned long long int acquisitionTime_asLong;
789 789 unsigned long long int bufferAcquisitionTime_asLong;
790 790 unsigned char *ptr1;
791 791 unsigned char *ptr2;
792 792 unsigned char *timeCharPtr;
793 793 unsigned char nb_ring_nodes;
794 794 unsigned long long int frequency_asLong;
795 795 unsigned long long int nbTicksPerSample_asLong;
796 796 unsigned long long int nbSamplesPart1_asLong;
797 797 unsigned long long int sampleOffset_asLong;
798 798
799 799 unsigned int deltaT_F0;
800 800 unsigned int deltaT_F1;
801 801 unsigned long long int deltaT_F2;
802 802
803 803 deltaT_F0 = DELTAT_F0;
804 804 deltaT_F1 = DELTAF_F1;
805 805 deltaT_F2 = DELTAF_F2;
806 806 sampleOffset_asLong = INIT_CHAR;
807 807
808 808 // (1) get the f0 acquisition time => the value is passed in argument
809 809
810 810 // (2) compute the central reference time
811 811 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
812 812 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
813 813 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
814 814 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
815 815
816 816 // (3) compute the acquisition time of the current snapshot
817 817 switch(frequencyChannel)
818 818 {
819 819 case CHANNELF1: // 1 is for F1 = 4096 Hz
820 820 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
821 821 nb_ring_nodes = NB_RING_NODES_F1;
822 822 frequency_asLong = FREQ_F1;
823 823 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
824 824 break;
825 825 case CHANNELF2: // 2 is for F2 = 256 Hz
826 826 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
827 827 nb_ring_nodes = NB_RING_NODES_F2;
828 828 frequency_asLong = FREQ_F2;
829 829 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
830 830 break;
831 831 default:
832 832 acquisitionTime_asLong = centerTime_asLong;
833 833 nb_ring_nodes = 0;
834 834 frequency_asLong = FREQ_F2;
835 835 nbTicksPerSample_asLong = TICKS_PER_T2;
836 836 break;
837 837 }
838 838
839 839 //*****************************************************************************
840 840 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
841 841 node = 0;
842 842 while ( node < nb_ring_nodes)
843 843 {
844 844 //PRINTF1("%d ... ", node);
845 845 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
846 846 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
847 847 {
848 848 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
849 849 node = nb_ring_nodes;
850 850 }
851 851 else
852 852 {
853 853 node = node + 1;
854 854 ring_node_to_send = ring_node_to_send->previous;
855 855 }
856 856 }
857 857
858 858 // (5) compute the number of samples to take in the current buffer
859 859 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
860 860 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
861 861 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
862 862
863 863 // (6) compute the final acquisition time
864 864 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
865 865 (sampleOffset_asLong * nbTicksPerSample_asLong);
866 866
867 867 // (7) copy the acquisition time at the beginning of the extrated snapshot
868 868 ptr1 = (unsigned char*) &acquisitionTime_asLong;
869 869 // fine time
870 870 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
871 871 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
872 872 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
873 873 // coarse time
874 874 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
875 875 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
876 876 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
877 877 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
878 878 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
879 879
880 880 // re set the synchronization bit
881 881 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
882 882 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
883 883
884 884 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
885 885 {
886 886 nbSamplesPart1_asLong = 0;
887 887 }
888 888 // copy the part 1 of the snapshot in the extracted buffer
889 889 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
890 890 {
891 891 swf_extracted[i] =
892 892 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
893 893 }
894 894 // copy the part 2 of the snapshot in the extracted buffer
895 895 ring_node_to_send = ring_node_to_send->next;
896 896 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
897 897 {
898 898 swf_extracted[i] =
899 899 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
900 900 }
901 901 }
902 902
903 903 double computeCorrection( unsigned char *timePtr )
904 904 {
905 905 unsigned long long int acquisitionTime;
906 906 unsigned long long int centerTime;
907 907 unsigned long long int previousTick;
908 908 unsigned long long int nextTick;
909 909 unsigned long long int deltaPreviousTick;
910 910 unsigned long long int deltaNextTick;
911 911 double deltaPrevious_ms;
912 912 double deltaNext_ms;
913 913 double correctionInF2;
914 914
915 915 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
916 916
917 917 // get acquisition time in fine time ticks
918 918 acquisitionTime = get_acquisition_time( timePtr );
919 919
920 920 // compute center time
921 921 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
922 922 previousTick = centerTime - (centerTime & INT16_ALL_F);
923 923 nextTick = previousTick + TICKS_PER_S;
924 924
925 925 deltaPreviousTick = centerTime - previousTick;
926 926 deltaNextTick = nextTick - centerTime;
927 927
928 928 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
929 929 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
930 930
931 931 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
932 932
933 933 // which tick is the closest?
934 934 if (deltaPreviousTick > deltaNextTick)
935 935 {
936 936 // the snapshot center is just before the second => increase delta_snapshot
937 937 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
938 938 }
939 939 else
940 940 {
941 941 // the snapshot center is just after the second => decrease delta_snapshot
942 942 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
943 943 }
944 944
945 945 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
946 946
947 947 return correctionInF2;
948 948 }
949 949
950 950 void applyCorrection( double correction )
951 951 {
952 952 int correctionInt;
953 953
954 954 correctionInt = 0;
955 955
956 956 if (correction >= 0.)
957 957 {
958 958 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
959 959 {
960 960 correctionInt = ONE_TICK_CORR;
961 961 }
962 962 else
963 963 {
964 964 correctionInt = CORR_MULT * floor(correction);
965 965 }
966 966 }
967 967 else
968 968 {
969 969 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
970 970 {
971 971 correctionInt = -ONE_TICK_CORR;
972 972 }
973 973 else
974 974 {
975 975 correctionInt = CORR_MULT * ceil(correction);
976 976 }
977 977 }
978 978 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
979 979 }
980 980
981 981 void snapshot_resynchronization( unsigned char *timePtr )
982 982 {
983 983 /** This function compute a correction to apply on delta_snapshot.
984 984 *
985 985 *
986 986 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
987 987 *
988 988 * @return void
989 989 *
990 990 */
991 991
992 992 static double correction = INIT_FLOAT;
993 993 static resynchro_state state = MEASURE;
994 994 static unsigned int nbSnapshots = 0;
995 995
996 996 int correctionInt;
997 997
998 998 correctionInt = 0;
999 999
1000 1000 switch (state)
1001 1001 {
1002 1002
1003 1003 case MEASURE:
1004 1004 // ********
1005 1005 PRINTF1("MEASURE === %d\n", nbSnapshots);
1006 1006 state = CORRECTION;
1007 1007 correction = computeCorrection( timePtr );
1008 1008 PRINTF1("MEASURE === correction = %.2f\n", correction );
1009 1009 applyCorrection( correction );
1010 1010 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1011 1011 //****
1012 1012 break;
1013 1013
1014 1014 case CORRECTION:
1015 1015 //************
1016 1016 PRINTF1("CORRECTION === %d\n", nbSnapshots);
1017 1017 state = MEASURE;
1018 1018 computeCorrection( timePtr );
1019 1019 set_wfp_delta_snapshot();
1020 1020 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1021 1021 //****
1022 1022 break;
1023 1023
1024 1024 default:
1025 1025 break;
1026 1026
1027 1027 }
1028 1028
1029 1029 nbSnapshots++;
1030 1030 }
1031 1031
1032 1032 //**************
1033 1033 // wfp registers
1034 1034 void reset_wfp_burst_enable( void )
1035 1035 {
1036 1036 /** This function resets the waveform picker burst_enable register.
1037 1037 *
1038 1038 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1039 1039 *
1040 1040 */
1041 1041
1042 1042 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1043 1043 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1044 1044 }
1045 1045
1046 1046 void reset_wfp_status( void )
1047 1047 {
1048 1048 /** This function resets the waveform picker status register.
1049 1049 *
1050 1050 * All status bits are set to 0 [new_err full_err full].
1051 1051 *
1052 1052 */
1053 1053
1054 1054 waveform_picker_regs->status = INT16_ALL_F;
1055 1055 }
1056 1056
1057 1057 void reset_wfp_buffer_addresses( void )
1058 1058 {
1059 1059 // F0
1060 1060 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1061 1061 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1062 1062 // F1
1063 1063 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1064 1064 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1065 1065 // F2
1066 1066 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1067 1067 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1068 1068 // F3
1069 1069 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1070 1070 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1071 1071 }
1072 1072
1073 1073 void reset_waveform_picker_regs( void )
1074 1074 {
1075 1075 /** This function resets the waveform picker module registers.
1076 1076 *
1077 1077 * The registers affected by this function are located at the following offset addresses:
1078 1078 * - 0x00 data_shaping
1079 1079 * - 0x04 run_burst_enable
1080 1080 * - 0x08 addr_data_f0
1081 1081 * - 0x0C addr_data_f1
1082 1082 * - 0x10 addr_data_f2
1083 1083 * - 0x14 addr_data_f3
1084 1084 * - 0x18 status
1085 1085 * - 0x1C delta_snapshot
1086 1086 * - 0x20 delta_f0
1087 1087 * - 0x24 delta_f0_2
1088 1088 * - 0x28 delta_f1 (obsolet parameter)
1089 1089 * - 0x2c delta_f2
1090 1090 * - 0x30 nb_data_by_buffer
1091 1091 * - 0x34 nb_snapshot_param
1092 1092 * - 0x38 start_date
1093 1093 * - 0x3c nb_word_in_buffer
1094 1094 *
1095 1095 */
1096 1096
1097 1097 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1098 1098
1099 1099 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1100 1100
1101 1101 reset_wfp_buffer_addresses();
1102 1102
1103 1103 reset_wfp_status(); // 0x18
1104 1104
1105 1105 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1106 1106
1107 1107 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1108 1108
1109 1109 //the parameter delta_f1 [0x28] is not used anymore
1110 1110
1111 1111 set_wfp_delta_f2(); // 0x2c
1112 1112
1113 1113 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1114 1114 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1115 1115 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1116 1116 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1117 1117 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1118 1118 // 2688 = 8 * 336
1119 1119 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1120 1120 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1121 1121 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1122 1122 //
1123 1123 // coarse time and fine time registers are not initialized, they are volatile
1124 1124 //
1125 1125 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1126 1126 }
1127 1127
1128 1128 void set_wfp_data_shaping( void )
1129 1129 {
1130 1130 /** This function sets the data_shaping register of the waveform picker module.
1131 1131 *
1132 1132 * The value is read from one field of the parameter_dump_packet structure:\n
1133 1133 * bw_sp0_sp1_r0_r1
1134 1134 *
1135 1135 */
1136 1136
1137 1137 unsigned char data_shaping;
1138 1138
1139 1139 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1140 1140 // waveform picker : [R1 R0 SP1 SP0 BW]
1141 1141
1142 1142 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1143 1143
1144 1144 waveform_picker_regs->data_shaping =
1145 1145 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1146 1146 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1147 1147 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1148 1148 + ( (data_shaping & BIT_2) << 1 ) // R0
1149 1149 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1150 1150 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1151 1151 }
1152 1152
1153 1153 void set_wfp_burst_enable_register( unsigned char mode )
1154 1154 {
1155 1155 /** This function sets the waveform picker burst_enable register depending on the mode.
1156 1156 *
1157 1157 * @param mode is the LFR mode to launch.
1158 1158 *
1159 1159 * The burst bits shall be before the enable bits.
1160 1160 *
1161 1161 */
1162 1162
1163 1163 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1164 1164 // the burst bits shall be set first, before the enable bits
1165 1165 switch(mode) {
1166 1166 case LFR_MODE_NORMAL:
1167 1167 case LFR_MODE_SBM1:
1168 1168 case LFR_MODE_SBM2:
1169 1169 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1170 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1170 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_ALL; // [1111] enable f3 f2 f1 f0
1171 1171 break;
1172 1172 case LFR_MODE_BURST:
1173 1173 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1174 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1174 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | BITS_WFP_ENABLE_BURST; // [1100] enable f3 and f2
1175 1175 break;
1176 1176 default:
1177 1177 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1178 1178 break;
1179 1179 }
1180 1180 }
1181 1181
1182 1182 void set_wfp_delta_snapshot( void )
1183 1183 {
1184 1184 /** This function sets the delta_snapshot register of the waveform picker module.
1185 1185 *
1186 1186 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1187 1187 * - sy_lfr_n_swf_p[0]
1188 1188 * - sy_lfr_n_swf_p[1]
1189 1189 *
1190 1190 */
1191 1191
1192 1192 unsigned int delta_snapshot;
1193 1193 unsigned int delta_snapshot_in_T2;
1194 1194
1195 1195 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1196 1196 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1197 1197
1198 1198 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1199 1199 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1200 1200 }
1201 1201
1202 1202 void set_wfp_delta_f0_f0_2( void )
1203 1203 {
1204 1204 unsigned int delta_snapshot;
1205 1205 unsigned int nb_samples_per_snapshot;
1206 1206 float delta_f0_in_float;
1207 1207
1208 1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1209 1209 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1210 1210 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1211 1211
1212 1212 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1213 1213 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2; // 48 = 11 0000, max 7 bits
1214 1214 }
1215 1215
1216 1216 void set_wfp_delta_f1( void )
1217 1217 {
1218 1218 /** Sets the value of the delta_f1 parameter
1219 1219 *
1220 1220 * @param void
1221 1221 *
1222 1222 * @return void
1223 1223 *
1224 1224 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1225 1225 *
1226 1226 */
1227 1227
1228 1228 unsigned int delta_snapshot;
1229 1229 unsigned int nb_samples_per_snapshot;
1230 1230 float delta_f1_in_float;
1231 1231
1232 1232 delta_snapshot = waveform_picker_regs->delta_snapshot;
1233 1233 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1234 1234 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1235 1235
1236 1236 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1237 1237 }
1238 1238
1239 1239 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1240 1240 {
1241 1241 /** Sets the value of the delta_f2 parameter
1242 1242 *
1243 1243 * @param void
1244 1244 *
1245 1245 * @return void
1246 1246 *
1247 1247 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1248 1248 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1249 1249 *
1250 1250 */
1251 1251
1252 1252 unsigned int delta_snapshot;
1253 1253 unsigned int nb_samples_per_snapshot;
1254 1254
1255 1255 delta_snapshot = waveform_picker_regs->delta_snapshot;
1256 1256 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1257 1257
1258 1258 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1259 1259 }
1260 1260
1261 1261 //*****************
1262 1262 // local parameters
1263 1263
1264 1264 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1265 1265 {
1266 1266 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1267 1267 *
1268 1268 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1269 1269 * @param sid is the source identifier of the packet being updated.
1270 1270 *
1271 1271 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1272 1272 * The sequence counters shall wrap around from 2^14 to zero.
1273 1273 * The sequence counter shall start at zero at startup.
1274 1274 *
1275 1275 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1276 1276 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1277 1277 *
1278 1278 */
1279 1279
1280 1280 unsigned short *sequence_cnt;
1281 1281 unsigned short segmentation_grouping_flag;
1282 1282 unsigned short new_packet_sequence_control;
1283 1283 rtems_mode initial_mode_set;
1284 1284 rtems_mode current_mode_set;
1285 1285 rtems_status_code status;
1286 1286
1287 1287 initial_mode_set = RTEMS_DEFAULT_MODES;
1288 1288 current_mode_set = RTEMS_DEFAULT_MODES;
1289 1289 sequence_cnt = NULL;
1290 1290
1291 1291 //******************************************
1292 1292 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1293 1293 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1294 1294
1295 1295 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1296 1296 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1297 1297 || (sid == SID_BURST_CWF_F2)
1298 1298 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1299 1299 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1300 1300 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1301 1301 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1302 1302 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1303 1303 {
1304 1304 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1305 1305 }
1306 1306 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1307 1307 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1308 1308 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1309 1309 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1310 1310 {
1311 1311 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1312 1312 }
1313 1313 else
1314 1314 {
1315 1315 sequence_cnt = (unsigned short *) NULL;
1316 1316 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1317 1317 }
1318 1318
1319 1319 if (sequence_cnt != NULL)
1320 1320 {
1321 1321 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1322 1322 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1323 1323
1324 1324 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1325 1325
1326 1326 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1327 1327 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1328 1328
1329 1329 // increment the sequence counter
1330 1330 if ( *sequence_cnt < SEQ_CNT_MAX)
1331 1331 {
1332 1332 *sequence_cnt = *sequence_cnt + 1;
1333 1333 }
1334 1334 else
1335 1335 {
1336 1336 *sequence_cnt = 0;
1337 1337 }
1338 1338 }
1339 1339
1340 1340 //*************************************
1341 1341 // RESTORE THE MODE OF THE CALLING TASK
1342 1342 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1343 1343 }
General Comments 0
You need to be logged in to leave comments. Login now