##// END OF EJS Templates
Fixed again CPU usage measurement...
jeandet -
r381:a9b894b0ab6a 3.2.0.19 No PWD scrub with... draft
parent child
Show More
@@ -1,36 +1,38
1 #ifndef LFR_CPU_USAGE_REPORT_H
1 #ifndef LFR_CPU_USAGE_REPORT_H
2 #define LFR_CPU_USAGE_REPORT_H
2 #define LFR_CPU_USAGE_REPORT_H
3
3
4 #ifdef HAVE_CONFIG_H
4 #ifdef HAVE_CONFIG_H
5 #include "config.h"
5 #include "config.h"
6 #endif
6 #endif
7
7
8 #include <rtems.h>
8 #include <rtems.h>
9
9
10 #include <assert.h>
10 #include <assert.h>
11 #include <string.h>
11 #include <string.h>
12 #include <stdlib.h>
12 #include <stdlib.h>
13 #include <stdio.h>
13 #include <stdio.h>
14 #include <ctype.h>
14 #include <ctype.h>
15 #include <inttypes.h>
15 #include <inttypes.h>
16
16
17 #include <rtems/cpuuse.h>
17 #include <rtems/cpuuse.h>
18 #include <rtems/bspIo.h>
18 #include <rtems/bspIo.h>
19
19
20 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
20 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
21 #include <rtems/score/timestamp.h>
21 #include <rtems/score/timestamp.h>
22 #endif
22 #endif
23
23
24 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
24 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
25 extern Timestamp_Control CPU_usage_Uptime_at_last_reset;
25 extern Timestamp_Control CPU_usage_Uptime_at_last_reset;
26 #else
26 #else
27 extern uint32_t CPU_usage_Ticks_at_last_reset;
27 extern uint32_t CPU_usage_Ticks_at_last_reset;
28 #endif
28 #endif
29
29
30 unsigned char lfr_rtems_cpu_usage_report( void );
30 unsigned char lfr_rtems_cpu_usage_report( void );
31
31
32 #define CONST_10 10
32 #define CONST_100 100
33 #define CONST_100 100
34 #define CONST_255 255
33 #define CONST_1000 1000
35 #define CONST_1000 1000
34 #define CONST_100000 100000
36 #define CONST_100000 100000
35
37
36 #endif // LFR_CPU_USAGE_REPORT_H
38 #endif // LFR_CPU_USAGE_REPORT_H
@@ -1,117 +1,117
1 cmake_minimum_required (VERSION 2.6)
1 cmake_minimum_required (VERSION 2.6)
2 project (fsw)
2 project (fsw)
3
3
4 include(sparc-rtems)
4 include(sparc-rtems)
5 include(cppcheck)
5 include(cppcheck)
6
6
7 include_directories("../header"
7 include_directories("../header"
8 "../header/lfr_common_headers"
8 "../header/lfr_common_headers"
9 "../header/processing"
9 "../header/processing"
10 "../LFR_basic-parameters"
10 "../LFR_basic-parameters"
11 "../src")
11 "../src")
12
12
13 set(SOURCES wf_handler.c
13 set(SOURCES wf_handler.c
14 tc_handler.c
14 tc_handler.c
15 fsw_misc.c
15 fsw_misc.c
16 fsw_init.c
16 fsw_init.c
17 fsw_globals.c
17 fsw_globals.c
18 fsw_spacewire.c
18 fsw_spacewire.c
19 tc_load_dump_parameters.c
19 tc_load_dump_parameters.c
20 tm_lfr_tc_exe.c
20 tm_lfr_tc_exe.c
21 tc_acceptance.c
21 tc_acceptance.c
22 processing/fsw_processing.c
22 processing/fsw_processing.c
23 processing/avf0_prc0.c
23 processing/avf0_prc0.c
24 processing/avf1_prc1.c
24 processing/avf1_prc1.c
25 processing/avf2_prc2.c
25 processing/avf2_prc2.c
26 lfr_cpu_usage_report.c
26 lfr_cpu_usage_report.c
27 ${LFR_BP_SRC}
27 ${LFR_BP_SRC}
28 ../header/wf_handler.h
28 ../header/wf_handler.h
29 ../header/tc_handler.h
29 ../header/tc_handler.h
30 ../header/grlib_regs.h
30 ../header/grlib_regs.h
31 ../header/fsw_misc.h
31 ../header/fsw_misc.h
32 ../header/fsw_init.h
32 ../header/fsw_init.h
33 ../header/fsw_spacewire.h
33 ../header/fsw_spacewire.h
34 ../header/tc_load_dump_parameters.h
34 ../header/tc_load_dump_parameters.h
35 ../header/tm_lfr_tc_exe.h
35 ../header/tm_lfr_tc_exe.h
36 ../header/tc_acceptance.h
36 ../header/tc_acceptance.h
37 ../header/processing/fsw_processing.h
37 ../header/processing/fsw_processing.h
38 ../header/processing/avf0_prc0.h
38 ../header/processing/avf0_prc0.h
39 ../header/processing/avf1_prc1.h
39 ../header/processing/avf1_prc1.h
40 ../header/processing/avf2_prc2.h
40 ../header/processing/avf2_prc2.h
41 ../header/fsw_params_wf_handler.h
41 ../header/fsw_params_wf_handler.h
42 ../header/lfr_cpu_usage_report.h
42 ../header/lfr_cpu_usage_report.h
43 ../header/lfr_common_headers/ccsds_types.h
43 ../header/lfr_common_headers/ccsds_types.h
44 ../header/lfr_common_headers/fsw_params.h
44 ../header/lfr_common_headers/fsw_params.h
45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 ../header/lfr_common_headers/fsw_params_processing.h
46 ../header/lfr_common_headers/fsw_params_processing.h
47 ../header/lfr_common_headers/tm_byte_positions.h
47 ../header/lfr_common_headers/tm_byte_positions.h
48 ../LFR_basic-parameters/basic_parameters.h
48 ../LFR_basic-parameters/basic_parameters.h
49 ../LFR_basic-parameters/basic_parameters_params.h
49 ../LFR_basic-parameters/basic_parameters_params.h
50 ../header/GscMemoryLPP.hpp
50 ../header/GscMemoryLPP.hpp
51 )
51 )
52
52
53
53
54 option(FSW_verbose "Enable verbose LFR" OFF)
54 option(FSW_verbose "Enable verbose LFR" OFF)
55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 option(FSW_stack_report "Enable LFR stack report" OFF)
58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 option(FSW_vhdl_dev "?" OFF)
59 option(FSW_vhdl_dev "?" OFF)
60 option(FSW_lpp_dpu_destid "Set to debug at LPP" OFF)
60 option(FSW_lpp_dpu_destid "Set to debug at LPP" OFF)
61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 option(FSW_debug_tch "?" OFF)
62 option(FSW_debug_tch "?" OFF)
63
63
64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "18" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "19" CACHE STRING "Choose N4 FSW Version." FORCE)
68
68
69 if(FSW_verbose)
69 if(FSW_verbose)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 endif()
71 endif()
72 if(FSW_boot_messages)
72 if(FSW_boot_messages)
73 add_definitions(-DBOOT_MESSAGES)
73 add_definitions(-DBOOT_MESSAGES)
74 endif()
74 endif()
75 if(FSW_debug_messages)
75 if(FSW_debug_messages)
76 add_definitions(-DDEBUG_MESSAGES)
76 add_definitions(-DDEBUG_MESSAGES)
77 endif()
77 endif()
78 if(FSW_cpu_usage_report)
78 if(FSW_cpu_usage_report)
79 add_definitions(-DPRINT_TASK_STATISTICS)
79 add_definitions(-DPRINT_TASK_STATISTICS)
80 endif()
80 endif()
81 if(FSW_stack_report)
81 if(FSW_stack_report)
82 add_definitions(-DPRINT_STACK_REPORT)
82 add_definitions(-DPRINT_STACK_REPORT)
83 endif()
83 endif()
84 if(FSW_vhdl_dev)
84 if(FSW_vhdl_dev)
85 add_definitions(-DVHDL_DEV)
85 add_definitions(-DVHDL_DEV)
86 endif()
86 endif()
87 if(FSW_lpp_dpu_destid)
87 if(FSW_lpp_dpu_destid)
88 add_definitions(-DLPP_DPU_DESTID)
88 add_definitions(-DLPP_DPU_DESTID)
89 endif()
89 endif()
90 if(FSW_debug_watchdog)
90 if(FSW_debug_watchdog)
91 add_definitions(-DDEBUG_WATCHDOG)
91 add_definitions(-DDEBUG_WATCHDOG)
92 endif()
92 endif()
93 if(FSW_debug_tch)
93 if(FSW_debug_tch)
94 add_definitions(-DDEBUG_TCH)
94 add_definitions(-DDEBUG_TCH)
95 endif()
95 endif()
96
96
97 add_definitions(-DMSB_FIRST_TCH)
97 add_definitions(-DMSB_FIRST_TCH)
98
98
99 add_definitions(-DSWVERSION=-1-0)
99 add_definitions(-DSWVERSION=-1-0)
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104
104
105 add_executable(fsw ${SOURCES})
105 add_executable(fsw ${SOURCES})
106
106
107 if(fix-b2bst)
107 if(fix-b2bst)
108 check_b2bst(fsw ${CMAKE_CURRENT_BINARY_DIR})
108 check_b2bst(fsw ${CMAKE_CURRENT_BINARY_DIR})
109 endif()
109 endif()
110
110
111 if(NOT FSW_lpp_dpu_destid)
111 if(NOT FSW_lpp_dpu_destid)
112 build_srec(fsw ${CMAKE_CURRENT_BINARY_DIR} "${SW_VERSION_N1}-${SW_VERSION_N2}-${SW_VERSION_N3}-${SW_VERSION_N4}")
112 build_srec(fsw ${CMAKE_CURRENT_BINARY_DIR} "${SW_VERSION_N1}-${SW_VERSION_N2}-${SW_VERSION_N3}-${SW_VERSION_N4}")
113 endif()
113 endif()
114
114
115
115
116 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
116 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
117
117
@@ -1,1103 +1,1103
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13
13
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 {
16 {
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 *
18 *
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 * @param interrupt_level is the interrupt level that the timer drives.
22 * @param interrupt_level is the interrupt level that the timer drives.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 *
24 *
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 *
26 *
27 */
27 */
28
28
29 rtems_status_code status;
29 rtems_status_code status;
30 rtems_isr_entry old_isr_handler;
30 rtems_isr_entry old_isr_handler;
31
31
32 old_isr_handler = NULL;
32 old_isr_handler = NULL;
33
33
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35
35
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 if (status!=RTEMS_SUCCESSFUL)
37 if (status!=RTEMS_SUCCESSFUL)
38 {
38 {
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 }
40 }
41
41
42 timer_set_clock_divider( timer, clock_divider);
42 timer_set_clock_divider( timer, clock_divider);
43 }
43 }
44
44
45 void timer_start(unsigned char timer)
45 void timer_start(unsigned char timer)
46 {
46 {
47 /** This function starts a GPTIMER timer.
47 /** This function starts a GPTIMER timer.
48 *
48 *
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 *
51 *
52 */
52 */
53
53
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 }
59 }
60
60
61 void timer_stop(unsigned char timer)
61 void timer_stop(unsigned char timer)
62 {
62 {
63 /** This function stops a GPTIMER timer.
63 /** This function stops a GPTIMER timer.
64 *
64 *
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 *
67 *
68 */
68 */
69
69
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 }
73 }
74
74
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 {
76 {
77 /** This function sets the clock divider of a GPTIMER timer.
77 /** This function sets the clock divider of a GPTIMER timer.
78 *
78 *
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 *
82 *
83 */
83 */
84
84
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 }
86 }
87
87
88 // WATCHDOG
88 // WATCHDOG
89
89
90 rtems_isr watchdog_isr( rtems_vector_number vector )
90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 {
91 {
92 rtems_status_code status_code;
92 rtems_status_code status_code;
93
93
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95
95
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97
97
98 exit(0);
98 exit(0);
99 }
99 }
100
100
101 void watchdog_configure(void)
101 void watchdog_configure(void)
102 {
102 {
103 /** This function configure the watchdog.
103 /** This function configure the watchdog.
104 *
104 *
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 *
107 *
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 *
109 *
110 */
110 */
111
111
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113
113
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115
115
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 }
117 }
118
118
119 void watchdog_stop(void)
119 void watchdog_stop(void)
120 {
120 {
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 timer_stop( TIMER_WATCHDOG );
122 timer_stop( TIMER_WATCHDOG );
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 }
124 }
125
125
126 void watchdog_reload(void)
126 void watchdog_reload(void)
127 {
127 {
128 /** This function reloads the watchdog timer counter with the timer reload value.
128 /** This function reloads the watchdog timer counter with the timer reload value.
129 *
129 *
130 * @param void
130 * @param void
131 *
131 *
132 * @return void
132 * @return void
133 *
133 *
134 */
134 */
135
135
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 }
137 }
138
138
139 void watchdog_start(void)
139 void watchdog_start(void)
140 {
140 {
141 /** This function starts the watchdog timer.
141 /** This function starts the watchdog timer.
142 *
142 *
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 *
145 *
146 */
146 */
147
147
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149
149
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154
154
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156
156
157 }
157 }
158
158
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 {
160 {
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162
162
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164
164
165 return 0;
165 return 0;
166 }
166 }
167
167
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 {
169 {
170 /** This function sets the scaler reload register of the apbuart module
170 /** This function sets the scaler reload register of the apbuart module
171 *
171 *
172 * @param regs is the address of the apbuart registers in memory
172 * @param regs is the address of the apbuart registers in memory
173 * @param value is the value that will be stored in the scaler register
173 * @param value is the value that will be stored in the scaler register
174 *
174 *
175 * The value shall be set by the software to get data on the serial interface.
175 * The value shall be set by the software to get data on the serial interface.
176 *
176 *
177 */
177 */
178
178
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180
180
181 apbuart_regs->scaler = value;
181 apbuart_regs->scaler = value;
182
182
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 }
184 }
185
185
186 //************
186 //************
187 // RTEMS TASKS
187 // RTEMS TASKS
188
188
189 rtems_task load_task(rtems_task_argument argument)
189 rtems_task load_task(rtems_task_argument argument)
190 {
190 {
191 BOOT_PRINTF("in LOAD *** \n")
191 BOOT_PRINTF("in LOAD *** \n")
192
192
193 rtems_status_code status;
193 rtems_status_code status;
194 unsigned int i;
194 unsigned int i;
195 unsigned int j;
195 unsigned int j;
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198
198
199 watchdog_period_id = RTEMS_ID_NONE;
199 watchdog_period_id = RTEMS_ID_NONE;
200
200
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202
202
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 if( status != RTEMS_SUCCESSFUL ) {
204 if( status != RTEMS_SUCCESSFUL ) {
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 }
206 }
207
207
208 i = 0;
208 i = 0;
209 j = 0;
209 j = 0;
210
210
211 watchdog_configure();
211 watchdog_configure();
212
212
213 watchdog_start();
213 watchdog_start();
214
214
215 set_sy_lfr_watchdog_enabled( true );
215 set_sy_lfr_watchdog_enabled( true );
216
216
217 while(1){
217 while(1){
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 watchdog_reload();
219 watchdog_reload();
220 i = i + 1;
220 i = i + 1;
221 if ( i == WATCHDOG_LOOP_PRINTF )
221 if ( i == WATCHDOG_LOOP_PRINTF )
222 {
222 {
223 i = 0;
223 i = 0;
224 j = j + 1;
224 j = j + 1;
225 PRINTF1("%d\n", j)
225 PRINTF1("%d\n", j)
226 }
226 }
227 #ifdef DEBUG_WATCHDOG
227 #ifdef DEBUG_WATCHDOG
228 if (j == WATCHDOG_LOOP_DEBUG )
228 if (j == WATCHDOG_LOOP_DEBUG )
229 {
229 {
230 status = rtems_task_delete(RTEMS_SELF);
230 status = rtems_task_delete(RTEMS_SELF);
231 }
231 }
232 #endif
232 #endif
233 }
233 }
234 }
234 }
235
235
236 rtems_task hous_task(rtems_task_argument argument)
236 rtems_task hous_task(rtems_task_argument argument)
237 {
237 {
238 rtems_status_code status;
238 rtems_status_code status;
239 rtems_status_code spare_status;
239 rtems_status_code spare_status;
240 rtems_id queue_id;
240 rtems_id queue_id;
241 rtems_rate_monotonic_period_status period_status;
241 rtems_rate_monotonic_period_status period_status;
242 bool isSynchronized;
242 bool isSynchronized;
243
243
244 queue_id = RTEMS_ID_NONE;
244 queue_id = RTEMS_ID_NONE;
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 isSynchronized = false;
246 isSynchronized = false;
247
247
248 status = get_message_queue_id_send( &queue_id );
248 status = get_message_queue_id_send( &queue_id );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253
253
254 BOOT_PRINTF("in HOUS ***\n");
254 BOOT_PRINTF("in HOUS ***\n");
255
255
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 if( status != RTEMS_SUCCESSFUL ) {
258 if( status != RTEMS_SUCCESSFUL ) {
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 }
260 }
261 }
261 }
262
262
263 status = rtems_rate_monotonic_cancel(HK_id);
263 status = rtems_rate_monotonic_cancel(HK_id);
264 if( status != RTEMS_SUCCESSFUL ) {
264 if( status != RTEMS_SUCCESSFUL ) {
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 }
266 }
267 else {
267 else {
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 }
269 }
270
270
271 // startup phase
271 // startup phase
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 {
277 {
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 {
279 {
280 isSynchronized = true;
280 isSynchronized = true;
281 }
281 }
282 else
282 else
283 {
283 {
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285
285
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 }
287 }
288 }
288 }
289 status = rtems_rate_monotonic_cancel(HK_id);
289 status = rtems_rate_monotonic_cancel(HK_id);
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291
291
292 set_hk_lfr_reset_cause( POWER_ON );
292 set_hk_lfr_reset_cause( POWER_ON );
293
293
294 while(1){ // launch the rate monotonic task
294 while(1){ // launch the rate monotonic task
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 if ( status != RTEMS_SUCCESSFUL ) {
296 if ( status != RTEMS_SUCCESSFUL ) {
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 }
299 }
300 else {
300 else {
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
304
304
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311
311
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313
313
314 spacewire_read_statistics();
314 spacewire_read_statistics();
315
315
316 update_hk_with_grspw_stats();
316 update_hk_with_grspw_stats();
317
317
318 set_hk_lfr_time_not_synchro();
318 set_hk_lfr_time_not_synchro();
319
319
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325
325
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331
331
332 hk_lfr_le_me_he_update();
332 hk_lfr_le_me_he_update();
333
333
334 // SEND PACKET
334 // SEND PACKET
335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
337 if (status != RTEMS_SUCCESSFUL) {
337 if (status != RTEMS_SUCCESSFUL) {
338 PRINTF1("in HOUS *** ERR send: %d\n", status)
338 PRINTF1("in HOUS *** ERR send: %d\n", status)
339 }
339 }
340 }
340 }
341 }
341 }
342
342
343 PRINTF("in HOUS *** deleting task\n")
343 PRINTF("in HOUS *** deleting task\n")
344
344
345 status = rtems_task_delete( RTEMS_SELF ); // should not return
345 status = rtems_task_delete( RTEMS_SELF ); // should not return
346
346
347 return;
347 return;
348 }
348 }
349
349
350 int filter( int x, filter_ctx* ctx )
350 int filter( int x, filter_ctx* ctx )
351 {
351 {
352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
354 static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
354 static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
355 static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
355 static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
356
356
357 int_fast32_t W;
357 int_fast32_t W;
358 int i;
358 int i;
359
359
360 W = INIT_INT;
360 W = INIT_INT;
361 i = INIT_INT;
361 i = INIT_INT;
362
362
363 //Direct-Form-II
363 //Direct-Form-II
364 for ( i = 0; i < NB_COEFFS; i++ )
364 for ( i = 0; i < NB_COEFFS; i++ )
365 {
365 {
366 x = x << a_gain[i];
366 x = x << a_gain[i];
367 W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
367 W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
368 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
368 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
369 x = ( b[i][COEFF0] * W )
369 x = ( b[i][COEFF0] * W )
370 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
370 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
371 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
371 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
372 x = x >> b_gain[i];
372 x = x >> b_gain[i];
373 ctx->W[i][1] = ctx->W[i][0];
373 ctx->W[i][1] = ctx->W[i][0];
374 ctx->W[i][0] = W;
374 ctx->W[i][0] = W;
375 }
375 }
376 return x;
376 return x;
377 }
377 }
378
378
379 rtems_task avgv_task(rtems_task_argument argument)
379 rtems_task avgv_task(rtems_task_argument argument)
380 {
380 {
381 #define MOVING_AVERAGE 16
381 #define MOVING_AVERAGE 16
382 rtems_status_code status;
382 rtems_status_code status;
383 static int32_t v[MOVING_AVERAGE] = {0};
383 static int32_t v[MOVING_AVERAGE] = {0};
384 static int32_t e1[MOVING_AVERAGE] = {0};
384 static int32_t e1[MOVING_AVERAGE] = {0};
385 static int32_t e2[MOVING_AVERAGE] = {0};
385 static int32_t e2[MOVING_AVERAGE] = {0};
386 static int old_v = 0;
386 static int old_v = 0;
387 static int old_e1 = 0;
387 static int old_e1 = 0;
388 static int old_e2 = 0;
388 static int old_e2 = 0;
389 int32_t current_v;
389 int32_t current_v;
390 int32_t current_e1;
390 int32_t current_e1;
391 int32_t current_e2;
391 int32_t current_e2;
392 int32_t average_v;
392 int32_t average_v;
393 int32_t average_e1;
393 int32_t average_e1;
394 int32_t average_e2;
394 int32_t average_e2;
395 int32_t newValue_v;
395 int32_t newValue_v;
396 int32_t newValue_e1;
396 int32_t newValue_e1;
397 int32_t newValue_e2;
397 int32_t newValue_e2;
398 unsigned char k;
398 unsigned char k;
399 unsigned char indexOfOldValue;
399 unsigned char indexOfOldValue;
400
400
401 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
401 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
404
404
405 BOOT_PRINTF("in AVGV ***\n");
405 BOOT_PRINTF("in AVGV ***\n");
406
406
407 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
407 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
408 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
408 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
409 if( status != RTEMS_SUCCESSFUL ) {
409 if( status != RTEMS_SUCCESSFUL ) {
410 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
410 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
411 }
411 }
412 }
412 }
413
413
414 status = rtems_rate_monotonic_cancel(AVGV_id);
414 status = rtems_rate_monotonic_cancel(AVGV_id);
415 if( status != RTEMS_SUCCESSFUL ) {
415 if( status != RTEMS_SUCCESSFUL ) {
416 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
416 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
417 }
417 }
418 else {
418 else {
419 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
419 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
420 }
420 }
421
421
422 // initialize values
422 // initialize values
423 indexOfOldValue = MOVING_AVERAGE - 1;
423 indexOfOldValue = MOVING_AVERAGE - 1;
424 current_v = 0;
424 current_v = 0;
425 current_e1 = 0;
425 current_e1 = 0;
426 current_e2 = 0;
426 current_e2 = 0;
427 average_v = 0;
427 average_v = 0;
428 average_e1 = 0;
428 average_e1 = 0;
429 average_e2 = 0;
429 average_e2 = 0;
430 newValue_v = 0;
430 newValue_v = 0;
431 newValue_e1 = 0;
431 newValue_e1 = 0;
432 newValue_e2 = 0;
432 newValue_e2 = 0;
433
433
434 k = INIT_CHAR;
434 k = INIT_CHAR;
435
435
436 while(1)
436 while(1)
437 { // launch the rate monotonic task
437 { // launch the rate monotonic task
438 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
438 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
439 if ( status != RTEMS_SUCCESSFUL )
439 if ( status != RTEMS_SUCCESSFUL )
440 {
440 {
441 PRINTF1( "in AVGV *** ERR period: %d\n", status);
441 PRINTF1( "in AVGV *** ERR period: %d\n", status);
442 }
442 }
443 else
443 else
444 {
444 {
445 current_v = waveform_picker_regs->v;
445 current_v = waveform_picker_regs->v;
446 current_e1 = waveform_picker_regs->e1;
446 current_e1 = waveform_picker_regs->e1;
447 current_e2 = waveform_picker_regs->e2;
447 current_e2 = waveform_picker_regs->e2;
448 if ( (current_v != old_v)
448 if ( (current_v != old_v)
449 || (current_e1 != old_e1)
449 || (current_e1 != old_e1)
450 || (current_e2 != old_e2))
450 || (current_e2 != old_e2))
451 {
451 {
452 average_v = filter( current_v, &ctx_v );
452 average_v = filter( current_v, &ctx_v );
453 average_e1 = filter( current_e1, &ctx_e1 );
453 average_e1 = filter( current_e1, &ctx_e1 );
454 average_e2 = filter( current_e2, &ctx_e2 );
454 average_e2 = filter( current_e2, &ctx_e2 );
455
455
456 //update int16 values
456 //update int16 values
457 hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v;
457 hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v;
458 hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1;
458 hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1;
459 hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2;
459 hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2;
460 }
460 }
461 old_v = current_v;
461 old_v = current_v;
462 old_e1 = current_e1;
462 old_e1 = current_e1;
463 old_e2 = current_e2;
463 old_e2 = current_e2;
464 }
464 }
465 }
465 }
466
466
467 PRINTF("in AVGV *** deleting task\n");
467 PRINTF("in AVGV *** deleting task\n");
468
468
469 status = rtems_task_delete( RTEMS_SELF ); // should not return
469 status = rtems_task_delete( RTEMS_SELF ); // should not return
470
470
471 return;
471 return;
472 }
472 }
473
473
474 rtems_task dumb_task( rtems_task_argument unused )
474 rtems_task dumb_task( rtems_task_argument unused )
475 {
475 {
476 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
476 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
477 *
477 *
478 * @param unused is the starting argument of the RTEMS task
478 * @param unused is the starting argument of the RTEMS task
479 *
479 *
480 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
480 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
481 *
481 *
482 */
482 */
483
483
484 unsigned int i;
484 unsigned int i;
485 unsigned int intEventOut;
485 unsigned int intEventOut;
486 unsigned int coarse_time = 0;
486 unsigned int coarse_time = 0;
487 unsigned int fine_time = 0;
487 unsigned int fine_time = 0;
488 rtems_event_set event_out;
488 rtems_event_set event_out;
489
489
490 event_out = EVENT_SETS_NONE_PENDING;
490 event_out = EVENT_SETS_NONE_PENDING;
491
491
492 BOOT_PRINTF("in DUMB *** \n")
492 BOOT_PRINTF("in DUMB *** \n")
493
493
494 while(1){
494 while(1){
495 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
495 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
496 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
496 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
497 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
497 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
498 | RTEMS_EVENT_14,
498 | RTEMS_EVENT_14,
499 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
499 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
500 intEventOut = (unsigned int) event_out;
500 intEventOut = (unsigned int) event_out;
501 for ( i=0; i<NB_RTEMS_EVENTS; i++)
501 for ( i=0; i<NB_RTEMS_EVENTS; i++)
502 {
502 {
503 if ( ((intEventOut >> i) & 1) != 0)
503 if ( ((intEventOut >> i) & 1) != 0)
504 {
504 {
505 coarse_time = time_management_regs->coarse_time;
505 coarse_time = time_management_regs->coarse_time;
506 fine_time = time_management_regs->fine_time;
506 fine_time = time_management_regs->fine_time;
507 if (i==EVENT_12)
507 if (i==EVENT_12)
508 {
508 {
509 PRINTF1("%s\n", DUMB_MESSAGE_12)
509 PRINTF1("%s\n", DUMB_MESSAGE_12)
510 }
510 }
511 if (i==EVENT_13)
511 if (i==EVENT_13)
512 {
512 {
513 PRINTF1("%s\n", DUMB_MESSAGE_13)
513 PRINTF1("%s\n", DUMB_MESSAGE_13)
514 }
514 }
515 if (i==EVENT_14)
515 if (i==EVENT_14)
516 {
516 {
517 PRINTF1("%s\n", DUMB_MESSAGE_1)
517 PRINTF1("%s\n", DUMB_MESSAGE_1)
518 }
518 }
519 }
519 }
520 }
520 }
521 }
521 }
522 }
522 }
523
523
524 rtems_task scrubbing_task( rtems_task_argument unused )
524 rtems_task scrubbing_task( rtems_task_argument unused )
525 {
525 {
526 /** This RTEMS taks is used to avoid entering IDLE task and also scrub memory to increase scubbing frequency.
526 /** This RTEMS taks is used to avoid entering IDLE task and also scrub memory to increase scubbing frequency.
527 *
527 *
528 * @param unused is the starting argument of the RTEMS task
528 * @param unused is the starting argument of the RTEMS task
529 *
529 *
530 * The scrubbing reads continuously memory when no other tasks are ready.
530 * The scrubbing reads continuously memory when no other tasks are ready.
531 *
531 *
532 */
532 */
533
533
534 BOOT_PRINTF("in SCRUBBING *** \n");
534 BOOT_PRINTF("in SCRUBBING *** \n");
535 volatile int i=0;
535 volatile int i=0;
536 volatile float valuef = 1.;
536 volatile float valuef = 1.;
537 volatile uint32_t* RAM=(uint32_t*)0x40000000;
537 volatile uint32_t* RAM=(uint32_t*)0x40000000;
538 volatile uint32_t value;
538 volatile uint32_t value;
539 while(1){
539 while(1){
540 i=(i+1)%(1024*1024);
540 i=(i+1)%(1024*1024);
541 valuef += 10.f*(float)RAM[i];
541 valuef += 10.f*(float)RAM[i];
542 }
542 }
543 }
543 }
544
544
545 rtems_task calibration_sweep_task( rtems_task_argument unused )
545 rtems_task calibration_sweep_task( rtems_task_argument unused )
546 {
546 {
547 /** This RTEMS taks is used to change calibration signal smapling frequency between snapshots.
547 /** This RTEMS taks is used to change calibration signal smapling frequency between snapshots.
548 *
548 *
549 * @param unused is the starting argument of the RTEMS task
549 * @param unused is the starting argument of the RTEMS task
550 *
550 *
551 * If calibration is enabled, this task will divide by two the calibration signal smapling frequency between snapshots.
551 * If calibration is enabled, this task will divide by two the calibration signal smapling frequency between snapshots.
552 * When minimum sampling frequency is reach it will jump to maximum sampling frequency to loop indefinitely.
552 * When minimum sampling frequency is reach it will jump to maximum sampling frequency to loop indefinitely.
553 *
553 *
554 */
554 */
555 rtems_event_set event_out;
555 rtems_event_set event_out;
556 BOOT_PRINTF("in calibration sweep *** \n");
556 BOOT_PRINTF("in calibration sweep *** \n");
557 rtems_interval ticks_per_seconds = rtems_clock_get_ticks_per_second();
557 rtems_interval ticks_per_seconds = rtems_clock_get_ticks_per_second();
558 while(1){
558 while(1){
559 // Waiting for next F0 snapshot
559 // Waiting for next F0 snapshot
560 rtems_event_receive(RTEMS_EVENT_CAL_SWEEP_WAKE, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
560 rtems_event_receive(RTEMS_EVENT_CAL_SWEEP_WAKE, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out);
561 if(time_management_regs->calDACCtrl & BIT_CAL_ENABLE)
561 if(time_management_regs->calDACCtrl & BIT_CAL_ENABLE)
562 {
562 {
563 unsigned int delta_snapshot;
563 unsigned int delta_snapshot;
564 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
564 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
565 + parameter_dump_packet.sy_lfr_n_swf_p[1];
565 + parameter_dump_packet.sy_lfr_n_swf_p[1];
566 // We are woken almost in the center of a snapshot -> let's wait for sy_lfr_n_swf_p / 2
566 // We are woken almost in the center of a snapshot -> let's wait for sy_lfr_n_swf_p / 2
567 rtems_task_wake_after( ticks_per_seconds * delta_snapshot / 2);
567 rtems_task_wake_after( ticks_per_seconds * delta_snapshot / 2);
568 if(time_management_regs->calDivisor >= CAL_F_DIVISOR_MAX){
568 if(time_management_regs->calDivisor >= CAL_F_DIVISOR_MAX){
569 time_management_regs->calDivisor = CAL_F_DIVISOR_MIN;
569 time_management_regs->calDivisor = CAL_F_DIVISOR_MIN;
570 }
570 }
571 else{
571 else{
572 time_management_regs->calDivisor *= 2;
572 time_management_regs->calDivisor *= 2;
573 }
573 }
574 }
574 }
575
575
576
576
577
577
578 }
578 }
579
579
580 }
580 }
581
581
582
582
583 //*****************************
583 //*****************************
584 // init housekeeping parameters
584 // init housekeeping parameters
585
585
586 void init_housekeeping_parameters( void )
586 void init_housekeeping_parameters( void )
587 {
587 {
588 /** This function initialize the housekeeping_packet global variable with default values.
588 /** This function initialize the housekeeping_packet global variable with default values.
589 *
589 *
590 */
590 */
591
591
592 unsigned int i = 0;
592 unsigned int i = 0;
593 unsigned char *parameters;
593 unsigned char *parameters;
594 unsigned char sizeOfHK;
594 unsigned char sizeOfHK;
595
595
596 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
596 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
597
597
598 parameters = (unsigned char*) &housekeeping_packet;
598 parameters = (unsigned char*) &housekeeping_packet;
599
599
600 for(i = 0; i< sizeOfHK; i++)
600 for(i = 0; i< sizeOfHK; i++)
601 {
601 {
602 parameters[i] = INIT_CHAR;
602 parameters[i] = INIT_CHAR;
603 }
603 }
604
604
605 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
605 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
606 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
606 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
607 housekeeping_packet.reserved = DEFAULT_RESERVED;
607 housekeeping_packet.reserved = DEFAULT_RESERVED;
608 housekeeping_packet.userApplication = CCSDS_USER_APP;
608 housekeeping_packet.userApplication = CCSDS_USER_APP;
609 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
609 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
610 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
610 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
611 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
611 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
612 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
612 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
613 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
613 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
614 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
614 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
615 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
615 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
616 housekeeping_packet.serviceType = TM_TYPE_HK;
616 housekeeping_packet.serviceType = TM_TYPE_HK;
617 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
617 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
618 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
618 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
619 housekeeping_packet.sid = SID_HK;
619 housekeeping_packet.sid = SID_HK;
620
620
621 // init status word
621 // init status word
622 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
622 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
623 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
623 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
624 // init software version
624 // init software version
625 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
625 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
626 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
626 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
627 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
627 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
628 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
628 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
629 // init fpga version
629 // init fpga version
630 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
630 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
631 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
631 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
632 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
632 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
633 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
633 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
634
634
635 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
635 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
636 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
636 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
637 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
637 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
638 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
638 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
639 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
639 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
640 }
640 }
641
641
642 void increment_seq_counter( unsigned short *packetSequenceControl )
642 void increment_seq_counter( unsigned short *packetSequenceControl )
643 {
643 {
644 /** This function increment the sequence counter passes in argument.
644 /** This function increment the sequence counter passes in argument.
645 *
645 *
646 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
646 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
647 *
647 *
648 */
648 */
649
649
650 unsigned short segmentation_grouping_flag;
650 unsigned short segmentation_grouping_flag;
651 unsigned short sequence_cnt;
651 unsigned short sequence_cnt;
652
652
653 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
653 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
654 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
654 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
655
655
656 if ( sequence_cnt < SEQ_CNT_MAX)
656 if ( sequence_cnt < SEQ_CNT_MAX)
657 {
657 {
658 sequence_cnt = sequence_cnt + 1;
658 sequence_cnt = sequence_cnt + 1;
659 }
659 }
660 else
660 else
661 {
661 {
662 sequence_cnt = 0;
662 sequence_cnt = 0;
663 }
663 }
664
664
665 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
665 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
666 }
666 }
667
667
668 void getTime( unsigned char *time)
668 void getTime( unsigned char *time)
669 {
669 {
670 /** This function write the current local time in the time buffer passed in argument.
670 /** This function write the current local time in the time buffer passed in argument.
671 *
671 *
672 */
672 */
673
673
674 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
674 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
675 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
675 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
676 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
676 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
677 time[3] = (unsigned char) (time_management_regs->coarse_time);
677 time[3] = (unsigned char) (time_management_regs->coarse_time);
678 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
678 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
679 time[5] = (unsigned char) (time_management_regs->fine_time);
679 time[5] = (unsigned char) (time_management_regs->fine_time);
680 }
680 }
681
681
682 unsigned long long int getTimeAsUnsignedLongLongInt( )
682 unsigned long long int getTimeAsUnsignedLongLongInt( )
683 {
683 {
684 /** This function write the current local time in the time buffer passed in argument.
684 /** This function write the current local time in the time buffer passed in argument.
685 *
685 *
686 */
686 */
687 unsigned long long int time;
687 unsigned long long int time;
688
688
689 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
689 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
690 + time_management_regs->fine_time;
690 + time_management_regs->fine_time;
691
691
692 return time;
692 return time;
693 }
693 }
694
694
695 void send_dumb_hk( void )
695 void send_dumb_hk( void )
696 {
696 {
697 Packet_TM_LFR_HK_t dummy_hk_packet;
697 Packet_TM_LFR_HK_t dummy_hk_packet;
698 unsigned char *parameters;
698 unsigned char *parameters;
699 unsigned int i;
699 unsigned int i;
700 rtems_id queue_id;
700 rtems_id queue_id;
701
701
702 queue_id = RTEMS_ID_NONE;
702 queue_id = RTEMS_ID_NONE;
703
703
704 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
704 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
705 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
705 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
706 dummy_hk_packet.reserved = DEFAULT_RESERVED;
706 dummy_hk_packet.reserved = DEFAULT_RESERVED;
707 dummy_hk_packet.userApplication = CCSDS_USER_APP;
707 dummy_hk_packet.userApplication = CCSDS_USER_APP;
708 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
708 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
709 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
709 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
710 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
710 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
711 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
711 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
712 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
712 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
713 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
713 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
714 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
714 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
715 dummy_hk_packet.serviceType = TM_TYPE_HK;
715 dummy_hk_packet.serviceType = TM_TYPE_HK;
716 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
716 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
717 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
717 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
718 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
718 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
719 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
719 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
720 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
720 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
721 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
721 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
722 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
722 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
723 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
723 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
724 dummy_hk_packet.sid = SID_HK;
724 dummy_hk_packet.sid = SID_HK;
725
725
726 // init status word
726 // init status word
727 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
727 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
728 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
728 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
729 // init software version
729 // init software version
730 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
730 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
731 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
731 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
732 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
732 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
733 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
733 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
734 // init fpga version
734 // init fpga version
735 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
735 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
736 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
736 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
737 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
737 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
738 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
738 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
739
739
740 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
740 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
741
741
742 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
742 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
743 {
743 {
744 parameters[i] = INT8_ALL_F;
744 parameters[i] = INT8_ALL_F;
745 }
745 }
746
746
747 get_message_queue_id_send( &queue_id );
747 get_message_queue_id_send( &queue_id );
748
748
749 rtems_message_queue_send( queue_id, &dummy_hk_packet,
749 rtems_message_queue_send( queue_id, &dummy_hk_packet,
750 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
750 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
751 }
751 }
752
752
753 void get_temperatures( unsigned char *temperatures )
753 void get_temperatures( unsigned char *temperatures )
754 {
754 {
755 unsigned char* temp_scm_ptr;
755 unsigned char* temp_scm_ptr;
756 unsigned char* temp_pcb_ptr;
756 unsigned char* temp_pcb_ptr;
757 unsigned char* temp_fpga_ptr;
757 unsigned char* temp_fpga_ptr;
758
758
759 // SEL1 SEL0
759 // SEL1 SEL0
760 // 0 0 => PCB
760 // 0 0 => PCB
761 // 0 1 => FPGA
761 // 0 1 => FPGA
762 // 1 0 => SCM
762 // 1 0 => SCM
763
763
764 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
764 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
765 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
765 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
766 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
766 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
767
767
768 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
768 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
769 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
769 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
770 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
770 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
771 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
771 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
772 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
772 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
773 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
773 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
774 }
774 }
775
775
776 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
776 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
777 {
777 {
778 unsigned char* v_ptr;
778 unsigned char* v_ptr;
779 unsigned char* e1_ptr;
779 unsigned char* e1_ptr;
780 unsigned char* e2_ptr;
780 unsigned char* e2_ptr;
781
781
782 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
782 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
783 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
783 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
784 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
784 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
785
785
786 spacecraft_potential[BYTE_0] = v_ptr[0];
786 spacecraft_potential[BYTE_0] = v_ptr[0];
787 spacecraft_potential[BYTE_1] = v_ptr[1];
787 spacecraft_potential[BYTE_1] = v_ptr[1];
788 spacecraft_potential[BYTE_2] = e1_ptr[0];
788 spacecraft_potential[BYTE_2] = e1_ptr[0];
789 spacecraft_potential[BYTE_3] = e1_ptr[1];
789 spacecraft_potential[BYTE_3] = e1_ptr[1];
790 spacecraft_potential[BYTE_4] = e2_ptr[0];
790 spacecraft_potential[BYTE_4] = e2_ptr[0];
791 spacecraft_potential[BYTE_5] = e2_ptr[1];
791 spacecraft_potential[BYTE_5] = e2_ptr[1];
792 }
792 }
793
793
794 void get_cpu_load( unsigned char *resource_statistics )
794 void get_cpu_load( unsigned char *resource_statistics )
795 {
795 {
796 #define LOAD_AVG_SIZE 60
796 #define LOAD_AVG_SIZE 60
797 static unsigned char cpu_load_hist[LOAD_AVG_SIZE]={0};
797 static unsigned char cpu_load_hist[LOAD_AVG_SIZE]={0};
798 static char old_avg_pos=0;
798 static char old_avg_pos=0;
799 static unsigned int cpu_load_avg;
799 static unsigned int cpu_load_avg;
800 unsigned char cpu_load;
800 unsigned char cpu_load;
801
801
802 cpu_load = lfr_rtems_cpu_usage_report();
802 cpu_load = lfr_rtems_cpu_usage_report();
803
803
804 // HK_LFR_CPU_LOAD
804 // HK_LFR_CPU_LOAD
805 resource_statistics[0] = cpu_load;
805 resource_statistics[0] = cpu_load;
806
806
807 // HK_LFR_CPU_LOAD_MAX
807 // HK_LFR_CPU_LOAD_MAX
808 if (cpu_load > resource_statistics[1])
808 if (cpu_load > resource_statistics[1])
809 {
809 {
810 resource_statistics[1] = cpu_load;
810 resource_statistics[1] = cpu_load;
811 }
811 }
812
812
813 cpu_load_avg = cpu_load_avg - (unsigned int)cpu_load_hist[(int)old_avg_pos] + (unsigned int)cpu_load;
813 cpu_load_avg = cpu_load_avg - (unsigned int)cpu_load_hist[(int)old_avg_pos] + (unsigned int)cpu_load;
814 cpu_load_hist[(int)old_avg_pos] = cpu_load;
814 cpu_load_hist[(int)old_avg_pos] = cpu_load;
815 old_avg_pos += 1;
815 old_avg_pos += 1;
816 old_avg_pos %= LOAD_AVG_SIZE;
816 old_avg_pos %= LOAD_AVG_SIZE;
817 // CPU_LOAD_AVE
817 // CPU_LOAD_AVE
818 resource_statistics[BYTE_2] = (unsigned char)(cpu_load_avg / LOAD_AVG_SIZE);
818 resource_statistics[BYTE_2] = (unsigned char)(cpu_load_avg / LOAD_AVG_SIZE);
819
819 // this will change the way LFR compute usage
820 #ifndef PRINT_TASK_STATISTICS
820 #ifndef PRINT_TASK_STATISTICS
821 rtems_cpu_usage_reset();
821 rtems_cpu_usage_reset();
822 #endif
822 #endif
823
823
824 }
824 }
825
825
826 void set_hk_lfr_sc_potential_flag( bool state )
826 void set_hk_lfr_sc_potential_flag( bool state )
827 {
827 {
828 if (state == true)
828 if (state == true)
829 {
829 {
830 housekeeping_packet.lfr_status_word[1] =
830 housekeeping_packet.lfr_status_word[1] =
831 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
831 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
832 }
832 }
833 else
833 else
834 {
834 {
835 housekeeping_packet.lfr_status_word[1] =
835 housekeeping_packet.lfr_status_word[1] =
836 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
836 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
837 }
837 }
838 }
838 }
839
839
840 void set_sy_lfr_pas_filter_enabled( bool state )
840 void set_sy_lfr_pas_filter_enabled( bool state )
841 {
841 {
842 if (state == true)
842 if (state == true)
843 {
843 {
844 housekeeping_packet.lfr_status_word[1] =
844 housekeeping_packet.lfr_status_word[1] =
845 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
845 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
846 }
846 }
847 else
847 else
848 {
848 {
849 housekeeping_packet.lfr_status_word[1] =
849 housekeeping_packet.lfr_status_word[1] =
850 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
850 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
851 }
851 }
852 }
852 }
853
853
854 void set_sy_lfr_watchdog_enabled( bool state )
854 void set_sy_lfr_watchdog_enabled( bool state )
855 {
855 {
856 if (state == true)
856 if (state == true)
857 {
857 {
858 housekeeping_packet.lfr_status_word[1] =
858 housekeeping_packet.lfr_status_word[1] =
859 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
859 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
860 }
860 }
861 else
861 else
862 {
862 {
863 housekeeping_packet.lfr_status_word[1] =
863 housekeeping_packet.lfr_status_word[1] =
864 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
864 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
865 }
865 }
866 }
866 }
867
867
868 void set_hk_lfr_calib_enable( bool state )
868 void set_hk_lfr_calib_enable( bool state )
869 {
869 {
870 if (state == true)
870 if (state == true)
871 {
871 {
872 housekeeping_packet.lfr_status_word[1] =
872 housekeeping_packet.lfr_status_word[1] =
873 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
873 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
874 }
874 }
875 else
875 else
876 {
876 {
877 housekeeping_packet.lfr_status_word[1] =
877 housekeeping_packet.lfr_status_word[1] =
878 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
878 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
879 }
879 }
880 }
880 }
881
881
882 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
882 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
883 {
883 {
884 housekeeping_packet.lfr_status_word[1] =
884 housekeeping_packet.lfr_status_word[1] =
885 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
885 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
886
886
887 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
887 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
888 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
888 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
889
889
890 }
890 }
891
891
892 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
892 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
893 {
893 {
894 int delta;
894 int delta;
895
895
896 delta = 0;
896 delta = 0;
897
897
898 if (newValue >= oldValue)
898 if (newValue >= oldValue)
899 {
899 {
900 delta = newValue - oldValue;
900 delta = newValue - oldValue;
901 }
901 }
902 else
902 else
903 {
903 {
904 delta = (CONST_256 - oldValue) + newValue;
904 delta = (CONST_256 - oldValue) + newValue;
905 }
905 }
906
906
907 *counter = *counter + delta;
907 *counter = *counter + delta;
908 }
908 }
909
909
910 void hk_lfr_le_update( void )
910 void hk_lfr_le_update( void )
911 {
911 {
912 static hk_lfr_le_t old_hk_lfr_le = {0};
912 static hk_lfr_le_t old_hk_lfr_le = {0};
913 hk_lfr_le_t new_hk_lfr_le;
913 hk_lfr_le_t new_hk_lfr_le;
914 unsigned int counter;
914 unsigned int counter;
915
915
916 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
916 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
917
917
918 // DPU
918 // DPU
919 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
919 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
920 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
920 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
921 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
921 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
922 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
922 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
923 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
923 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
924 // TIMECODE
924 // TIMECODE
925 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
925 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
926 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
926 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
927 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
927 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
928 // TIME
928 // TIME
929 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
929 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
930 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
930 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
931 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
931 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
932 //AHB
932 //AHB
933 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
933 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
934 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
934 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
935 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
935 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
936
936
937 // update the le counter
937 // update the le counter
938 // DPU
938 // DPU
939 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
939 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
940 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
940 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
941 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
941 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
942 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
942 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
943 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
943 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
944 // TIMECODE
944 // TIMECODE
945 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
945 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
946 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
946 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
947 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
947 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
948 // TIME
948 // TIME
949 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
949 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
950 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
950 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
951 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
951 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
952 // AHB
952 // AHB
953 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
953 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
954
954
955 // DPU
955 // DPU
956 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
956 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
957 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
957 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
958 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
958 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
959 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
959 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
960 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
960 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
961 // TIMECODE
961 // TIMECODE
962 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
962 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
963 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
963 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
964 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
964 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
965 // TIME
965 // TIME
966 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
966 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
967 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
967 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
968 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
968 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
969 //AHB
969 //AHB
970 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
970 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
971 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
971 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
972 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
972 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
973
973
974 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
974 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
975 // LE
975 // LE
976 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
976 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
977 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
977 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
978 }
978 }
979
979
980 void hk_lfr_me_update( void )
980 void hk_lfr_me_update( void )
981 {
981 {
982 static hk_lfr_me_t old_hk_lfr_me = {0};
982 static hk_lfr_me_t old_hk_lfr_me = {0};
983 hk_lfr_me_t new_hk_lfr_me;
983 hk_lfr_me_t new_hk_lfr_me;
984 unsigned int counter;
984 unsigned int counter;
985
985
986 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
986 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
987
987
988 // get the current values
988 // get the current values
989 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
989 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
990 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
990 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
991 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
991 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
992 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
992 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
993
993
994 // update the me counter
994 // update the me counter
995 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
995 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
996 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
996 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
997 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
997 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
998 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
998 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
999
999
1000 // store the counters for the next time
1000 // store the counters for the next time
1001 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
1001 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
1002 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
1002 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
1003 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
1003 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
1004 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
1004 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
1005
1005
1006 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
1006 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
1007 // ME
1007 // ME
1008 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
1008 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
1009 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
1009 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
1010 }
1010 }
1011
1011
1012 void hk_lfr_le_me_he_update()
1012 void hk_lfr_le_me_he_update()
1013 {
1013 {
1014
1014
1015 unsigned int hk_lfr_he_cnt;
1015 unsigned int hk_lfr_he_cnt;
1016
1016
1017 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
1017 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
1018
1018
1019 //update the low severity error counter
1019 //update the low severity error counter
1020 hk_lfr_le_update( );
1020 hk_lfr_le_update( );
1021
1021
1022 //update the medium severity error counter
1022 //update the medium severity error counter
1023 hk_lfr_me_update();
1023 hk_lfr_me_update();
1024
1024
1025 //update the high severity error counter
1025 //update the high severity error counter
1026 hk_lfr_he_cnt = 0;
1026 hk_lfr_he_cnt = 0;
1027
1027
1028 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
1028 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
1029 // HE
1029 // HE
1030 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
1030 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
1031 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
1031 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
1032
1032
1033 }
1033 }
1034
1034
1035 void set_hk_lfr_time_not_synchro()
1035 void set_hk_lfr_time_not_synchro()
1036 {
1036 {
1037 static unsigned char synchroLost = 1;
1037 static unsigned char synchroLost = 1;
1038 int synchronizationBit;
1038 int synchronizationBit;
1039
1039
1040 // get the synchronization bit
1040 // get the synchronization bit
1041 synchronizationBit =
1041 synchronizationBit =
1042 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
1042 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
1043
1043
1044 switch (synchronizationBit)
1044 switch (synchronizationBit)
1045 {
1045 {
1046 case 0:
1046 case 0:
1047 if (synchroLost == 1)
1047 if (synchroLost == 1)
1048 {
1048 {
1049 synchroLost = 0;
1049 synchroLost = 0;
1050 }
1050 }
1051 break;
1051 break;
1052 case 1:
1052 case 1:
1053 if (synchroLost == 0 )
1053 if (synchroLost == 0 )
1054 {
1054 {
1055 synchroLost = 1;
1055 synchroLost = 1;
1056 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
1056 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
1057 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
1057 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
1058 }
1058 }
1059 break;
1059 break;
1060 default:
1060 default:
1061 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
1061 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
1062 break;
1062 break;
1063 }
1063 }
1064
1064
1065 }
1065 }
1066
1066
1067 void set_hk_lfr_ahb_correctable() // CRITICITY L
1067 void set_hk_lfr_ahb_correctable() // CRITICITY L
1068 {
1068 {
1069 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1069 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1070 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1070 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1071 * detected errors in the cache, in the integer unit and in the floating point unit.
1071 * detected errors in the cache, in the integer unit and in the floating point unit.
1072 *
1072 *
1073 * @param void
1073 * @param void
1074 *
1074 *
1075 * @return void
1075 * @return void
1076 *
1076 *
1077 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1077 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1078 *
1078 *
1079 */
1079 */
1080
1080
1081 unsigned int ahb_correctable;
1081 unsigned int ahb_correctable;
1082 unsigned int instructionErrorCounter;
1082 unsigned int instructionErrorCounter;
1083 unsigned int dataErrorCounter;
1083 unsigned int dataErrorCounter;
1084 unsigned int fprfErrorCounter;
1084 unsigned int fprfErrorCounter;
1085 unsigned int iurfErrorCounter;
1085 unsigned int iurfErrorCounter;
1086
1086
1087 instructionErrorCounter = 0;
1087 instructionErrorCounter = 0;
1088 dataErrorCounter = 0;
1088 dataErrorCounter = 0;
1089 fprfErrorCounter = 0;
1089 fprfErrorCounter = 0;
1090 iurfErrorCounter = 0;
1090 iurfErrorCounter = 0;
1091
1091
1092 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1092 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1093 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1093 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1094
1094
1095 ahb_correctable = instructionErrorCounter
1095 ahb_correctable = instructionErrorCounter
1096 + dataErrorCounter
1096 + dataErrorCounter
1097 + fprfErrorCounter
1097 + fprfErrorCounter
1098 + iurfErrorCounter
1098 + iurfErrorCounter
1099 + housekeeping_packet.hk_lfr_ahb_correctable;
1099 + housekeeping_packet.hk_lfr_ahb_correctable;
1100
1100
1101 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1101 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1102
1102
1103 }
1103 }
@@ -1,94 +1,69
1 /*
1 /*
2 * CPU Usage Reporter
2 * CPU Usage Reporter
3 *
3 *
4 * COPYRIGHT (c) 1989-2009
4 * COPYRIGHT (c) 1989-2009
5 * On-Line Applications Research Corporation (OAR).
5 * On-Line Applications Research Corporation (OAR).
6 *
6 *
7 * The license and distribution terms for this file may be
7 * The license and distribution terms for this file may be
8 * found in the file LICENSE in this distribution or at
8 * found in the file LICENSE in this distribution or at
9 * http://www.rtems.com/license/LICENSE.
9 * http://www.rtems.com/license/LICENSE.
10 *
10 *
11 * $Id$
11 * $Id$
12 */
12 */
13
13
14 #include "lfr_cpu_usage_report.h"
14 #include "lfr_cpu_usage_report.h"
15 #include "fsw_params.h"
15 #include "fsw_params.h"
16
16
17 extern rtems_id Task_id[];
17 extern rtems_id Task_id[];
18
18
19 unsigned char lfr_rtems_cpu_usage_report( void )
19 unsigned char lfr_rtems_cpu_usage_report( void )
20 {
20 {
21 uint32_t api_index;
21 uint32_t api_index;
22 uint32_t information_index;
22 uint32_t information_index;
23 Thread_Control *the_thread;
23 Thread_Control *the_thread;
24 Objects_Information *information;
24 Objects_Information *information;
25 uint32_t ival;
25 uint32_t ival;
26 uint32_t fval;
26 uint32_t fval;
27 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
27 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
28 Timestamp_Control uptime;
28 Timestamp_Control uptime;
29 Timestamp_Control total;
29 Timestamp_Control total;
30 Timestamp_Control ran;
30 Timestamp_Control ran;
31 Timestamp_Control abs_total;
32 Timestamp_Control abs_ran;
33
31
34 static Timestamp_Control last_total={0,0};
35 static Timestamp_Control last_ran={0,0};
36 #else
32 #else
37 #error "Can't compute CPU usage using ticks on LFR"
33 #error "Can't compute CPU usage using ticks on LFR"
38 #endif
34 #endif
39
35
40 unsigned char cpu_load;
36 unsigned char cpu_load;
41
37
42 ival = 0;
38 ival = 0;
43 cpu_load = 0;
39 cpu_load = 0;
44
40
45 _TOD_Get_uptime( &uptime );
46 _Timestamp_Subtract( &CPU_usage_Uptime_at_last_reset, &uptime, &abs_total );
47 for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ )
41 for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ )
48 {
42 {
49 if ( !_Objects_Information_table[ api_index ] ) { }
43 if ( !_Objects_Information_table[ api_index ] ) { }
50 else
44 else
51 {
45 {
52 information = _Objects_Information_table[ api_index ][ 1 ];
46 information = _Objects_Information_table[ api_index ][ 1 ];
53 if ( information != NULL )
47 if ( information != NULL )
54 {
48 {
55 for(information_index=1;information_index<=information->maximum;information_index++)
49 for(information_index=1;information_index<=information->maximum;information_index++)
56 {
50 {
57 the_thread = (Thread_Control *)information->local_table[ information_index ];
51 the_thread = (Thread_Control *)information->local_table[ information_index ];
58
52
59 if ( the_thread == NULL) { }
53 if ( the_thread == NULL) { }
60 else if(the_thread->Object.id == Task_id[TASKID_SCRB]) // Only measure scrubbing task load, CPU load is 100%-Scrubbing
54 else if(the_thread->Object.id == Task_id[TASKID_SCRB]) // Only measure scrubbing task load, CPU load is 100%-Scrubbing
61 {
55 {
62 /*
56 _TOD_Get_uptime( &uptime );
63 * If this is the currently executing thread, account for time
57 _Timestamp_Subtract( &CPU_usage_Uptime_at_last_reset, &uptime, &total );
64 * since the last context switch.
58 ran = the_thread->cpu_time_used;
65 */
66 abs_ran = the_thread->cpu_time_used;
67 if ( _Thread_Executing->Object.id == the_thread->Object.id )
68 {
69 Timestamp_Control used;
70 _Timestamp_Subtract(
71 &_Thread_Time_of_last_context_switch, &uptime, &used
72 );
73 _Timestamp_Add_to( &abs_ran, &used );
74 }
75 /*
76 * Only consider the time since last call
77 */
78 _Timespec_Subtract(&last_ran, &abs_ran, &ran);
79 _Timespec_Subtract(&last_total, &abs_total, &total);
80
81 last_ran = abs_ran;
82 last_total = abs_total;
83
84 _Timestamp_Divide( &ran, &total, &ival, &fval);
59 _Timestamp_Divide( &ran, &total, &ival, &fval);
85 cpu_load = (unsigned char)(CONST_100 - ival);
60 cpu_load = (unsigned char)(CONST_255 - ((ival*CONST_10+fval/CONST_100)*CONST_256/CONST_1000));
86 }
61 }
87 }
62 }
88 }
63 }
89 }
64 }
90 }
65 }
91 return cpu_load;
66 return cpu_load;
92 }
67 }
93
68
94
69
General Comments 0
You need to be logged in to leave comments. Login now