##// END OF EJS Templates
Now uses FPU in scrubbing task to increase power consumption.
jeandet -
r373:a5fd85da05a7 No PWD scrub with... draft
parent child
Show More
@@ -1,991 +1,991
1 /** This is the RTEMS initialization module.
1 /** This is the RTEMS initialization module.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * This module contains two very different information:
6 * This module contains two very different information:
7 * - specific instructions to configure the compilation of the RTEMS executive
7 * - specific instructions to configure the compilation of the RTEMS executive
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 *
9 *
10 */
10 */
11
11
12 //*************************
12 //*************************
13 // GPL reminder to be added
13 // GPL reminder to be added
14 //*************************
14 //*************************
15
15
16 #include <rtems.h>
16 #include <rtems.h>
17
17
18
18
19 /* configuration information */
19 /* configuration information */
20
20
21 #define CONFIGURE_INIT
21 #define CONFIGURE_INIT
22
22
23 #include <bsp.h> /* for device driver prototypes */
23 #include <bsp.h> /* for device driver prototypes */
24
24
25 /* configuration information */
25 /* configuration information */
26
26
27 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
28 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
29
29
30 #define CONFIGURE_MAXIMUM_TASKS 22 // number of tasks concurrently active including INIT
30 #define CONFIGURE_MAXIMUM_TASKS 22 // number of tasks concurrently active including INIT
31 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
32 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
33 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
34 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
35 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
36 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
36 #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT)
37 #define CONFIGURE_MAXIMUM_DRIVERS 16
37 #define CONFIGURE_MAXIMUM_DRIVERS 16
38 #define CONFIGURE_MAXIMUM_PERIODS 6 // [hous] [load] [avgv]
38 #define CONFIGURE_MAXIMUM_PERIODS 6 // [hous] [load] [avgv]
39 #define CONFIGURE_MAXIMUM_TIMERS 6 // [spiq] [link] [spacewire_reset_link]
39 #define CONFIGURE_MAXIMUM_TIMERS 6 // [spiq] [link] [spacewire_reset_link]
40 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
40 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5
41 #ifdef PRINT_STACK_REPORT
41 #ifdef PRINT_STACK_REPORT
42 #define CONFIGURE_STACK_CHECKER_ENABLED
42 #define CONFIGURE_STACK_CHECKER_ENABLED
43 #endif
43 #endif
44
44
45 #include <rtems/confdefs.h>
45 #include <rtems/confdefs.h>
46
46
47 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
47 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
48 #ifdef RTEMS_DRVMGR_STARTUP
48 #ifdef RTEMS_DRVMGR_STARTUP
49 #ifdef LEON3
49 #ifdef LEON3
50 /* Add Timer and UART Driver */
50 /* Add Timer and UART Driver */
51
51
52 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
52 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
54 #endif
54 #endif
55
55
56 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
56 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
57 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
58 #endif
58 #endif
59
59
60 #endif
60 #endif
61 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
61 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
62
62
63 #include <drvmgr/drvmgr_confdefs.h>
63 #include <drvmgr/drvmgr_confdefs.h>
64 #endif
64 #endif
65
65
66 #include "fsw_init.h"
66 #include "fsw_init.h"
67 #include "fsw_config.c"
67 #include "fsw_config.c"
68 #include "GscMemoryLPP.hpp"
68 #include "GscMemoryLPP.hpp"
69
69
70 void initCache()
70 void initCache()
71 {
71 {
72 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
72 // ASI 2 contains a few control registers that have not been assigned as ancillary state registers.
73 // These should only be read and written using 32-bit LDA/STA instructions.
73 // These should only be read and written using 32-bit LDA/STA instructions.
74 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
74 // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2.
75 // The table below shows the register addresses:
75 // The table below shows the register addresses:
76 // 0x00 Cache control register
76 // 0x00 Cache control register
77 // 0x04 Reserved
77 // 0x04 Reserved
78 // 0x08 Instruction cache configuration register
78 // 0x08 Instruction cache configuration register
79 // 0x0C Data cache configuration register
79 // 0x0C Data cache configuration register
80
80
81 // Cache Control Register Leon3 / Leon3FT
81 // Cache Control Register Leon3 / Leon3FT
82 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
82 // 31..30 29 28 27..24 23 22 21 20..19 18 17 16
83 // RFT PS TB DS FD FI FT ST IB
83 // RFT PS TB DS FD FI FT ST IB
84 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
84 // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0
85 // IP DP ITE IDE DTE DDE DF IF DCS ICS
85 // IP DP ITE IDE DTE DDE DF IF DCS ICS
86
86
87 unsigned int cacheControlRegister;
87 unsigned int cacheControlRegister;
88
88
89 CCR_resetCacheControlRegister();
89 CCR_resetCacheControlRegister();
90 ASR16_resetRegisterProtectionControlRegister();
90 ASR16_resetRegisterProtectionControlRegister();
91
91
92 cacheControlRegister = CCR_getValue();
92 cacheControlRegister = CCR_getValue();
93 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
93 PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister);
94 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
94 PRINTF1("(0) ASR16 = %x\n", *asr16Ptr);
95
95
96 CCR_enableInstructionCache(); // ICS bits
96 CCR_enableInstructionCache(); // ICS bits
97 CCR_enableDataCache(); // DCS bits
97 CCR_enableDataCache(); // DCS bits
98 CCR_enableInstructionBurstFetch(); // IB bit
98 CCR_enableInstructionBurstFetch(); // IB bit
99
99
100 faultTolerantScheme();
100 faultTolerantScheme();
101
101
102 cacheControlRegister = CCR_getValue();
102 cacheControlRegister = CCR_getValue();
103 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
103 PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister);
104 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
104 PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr);
105
105
106 PRINTF("\n");
106 PRINTF("\n");
107 }
107 }
108
108
109 rtems_task Init( rtems_task_argument ignored )
109 rtems_task Init( rtems_task_argument ignored )
110 {
110 {
111 /** This is the RTEMS INIT taks, it is the first task launched by the system.
111 /** This is the RTEMS INIT taks, it is the first task launched by the system.
112 *
112 *
113 * @param unused is the starting argument of the RTEMS task
113 * @param unused is the starting argument of the RTEMS task
114 *
114 *
115 * The INIT task create and run all other RTEMS tasks.
115 * The INIT task create and run all other RTEMS tasks.
116 *
116 *
117 */
117 */
118
118
119 //***********
119 //***********
120 // INIT CACHE
120 // INIT CACHE
121
121
122 unsigned char *vhdlVersion;
122 unsigned char *vhdlVersion;
123
123
124 reset_lfr();
124 reset_lfr();
125
125
126 reset_local_time();
126 reset_local_time();
127
127
128 rtems_cpu_usage_reset();
128 rtems_cpu_usage_reset();
129
129
130 rtems_status_code status;
130 rtems_status_code status;
131 rtems_status_code status_spw;
131 rtems_status_code status_spw;
132 rtems_isr_entry old_isr_handler;
132 rtems_isr_entry old_isr_handler;
133
133
134 old_isr_handler = NULL;
134 old_isr_handler = NULL;
135
135
136 // UART settings
136 // UART settings
137 enable_apbuart_transmitter();
137 enable_apbuart_transmitter();
138 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
138 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
139
139
140 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
140 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
141
141
142
142
143 PRINTF("\n\n\n\n\n")
143 PRINTF("\n\n\n\n\n")
144
144
145 initCache();
145 initCache();
146
146
147 PRINTF("*************************\n")
147 PRINTF("*************************\n")
148 PRINTF("** LFR Flight Software **\n")
148 PRINTF("** LFR Flight Software **\n")
149
149
150 PRINTF1("** %d-", SW_VERSION_N1)
150 PRINTF1("** %d-", SW_VERSION_N1)
151 PRINTF1("%d-" , SW_VERSION_N2)
151 PRINTF1("%d-" , SW_VERSION_N2)
152 PRINTF1("%d-" , SW_VERSION_N3)
152 PRINTF1("%d-" , SW_VERSION_N3)
153 PRINTF1("%d **\n", SW_VERSION_N4)
153 PRINTF1("%d **\n", SW_VERSION_N4)
154
154
155 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
155 vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
156 PRINTF("** VHDL **\n")
156 PRINTF("** VHDL **\n")
157 PRINTF1("** %d-", vhdlVersion[1])
157 PRINTF1("** %d-", vhdlVersion[1])
158 PRINTF1("%d-" , vhdlVersion[2])
158 PRINTF1("%d-" , vhdlVersion[2])
159 PRINTF1("%d **\n", vhdlVersion[3])
159 PRINTF1("%d **\n", vhdlVersion[3])
160 PRINTF("*************************\n")
160 PRINTF("*************************\n")
161 PRINTF("\n\n")
161 PRINTF("\n\n")
162
162
163 init_parameter_dump();
163 init_parameter_dump();
164 init_kcoefficients_dump();
164 init_kcoefficients_dump();
165 init_local_mode_parameters();
165 init_local_mode_parameters();
166 init_housekeeping_parameters();
166 init_housekeeping_parameters();
167 init_k_coefficients_prc0();
167 init_k_coefficients_prc0();
168 init_k_coefficients_prc1();
168 init_k_coefficients_prc1();
169 init_k_coefficients_prc2();
169 init_k_coefficients_prc2();
170 pa_bia_status_info = INIT_CHAR;
170 pa_bia_status_info = INIT_CHAR;
171
171
172 // initialize all reaction wheels frequencies to NaN
172 // initialize all reaction wheels frequencies to NaN
173 rw_f.cp_rpw_sc_rw1_f1 = NAN;
173 rw_f.cp_rpw_sc_rw1_f1 = NAN;
174 rw_f.cp_rpw_sc_rw1_f2 = NAN;
174 rw_f.cp_rpw_sc_rw1_f2 = NAN;
175 rw_f.cp_rpw_sc_rw1_f3 = NAN;
175 rw_f.cp_rpw_sc_rw1_f3 = NAN;
176 rw_f.cp_rpw_sc_rw1_f4 = NAN;
176 rw_f.cp_rpw_sc_rw1_f4 = NAN;
177 rw_f.cp_rpw_sc_rw2_f1 = NAN;
177 rw_f.cp_rpw_sc_rw2_f1 = NAN;
178 rw_f.cp_rpw_sc_rw2_f2 = NAN;
178 rw_f.cp_rpw_sc_rw2_f2 = NAN;
179 rw_f.cp_rpw_sc_rw2_f3 = NAN;
179 rw_f.cp_rpw_sc_rw2_f3 = NAN;
180 rw_f.cp_rpw_sc_rw2_f4 = NAN;
180 rw_f.cp_rpw_sc_rw2_f4 = NAN;
181 rw_f.cp_rpw_sc_rw3_f1 = NAN;
181 rw_f.cp_rpw_sc_rw3_f1 = NAN;
182 rw_f.cp_rpw_sc_rw3_f2 = NAN;
182 rw_f.cp_rpw_sc_rw3_f2 = NAN;
183 rw_f.cp_rpw_sc_rw3_f3 = NAN;
183 rw_f.cp_rpw_sc_rw3_f3 = NAN;
184 rw_f.cp_rpw_sc_rw3_f4 = NAN;
184 rw_f.cp_rpw_sc_rw3_f4 = NAN;
185 rw_f.cp_rpw_sc_rw4_f1 = NAN;
185 rw_f.cp_rpw_sc_rw4_f1 = NAN;
186 rw_f.cp_rpw_sc_rw4_f2 = NAN;
186 rw_f.cp_rpw_sc_rw4_f2 = NAN;
187 rw_f.cp_rpw_sc_rw4_f3 = NAN;
187 rw_f.cp_rpw_sc_rw4_f3 = NAN;
188 rw_f.cp_rpw_sc_rw4_f4 = NAN;
188 rw_f.cp_rpw_sc_rw4_f4 = NAN;
189
189
190 // initialize filtering parameters
190 // initialize filtering parameters
191 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
191 filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED;
192 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
192 filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F;
193 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
193 filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD;
194 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
194 filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT;
195 filterPar.modulus_in_finetime = DEFAULT_MODULUS;
195 filterPar.modulus_in_finetime = DEFAULT_MODULUS;
196 filterPar.tbad_in_finetime = DEFAULT_TBAD;
196 filterPar.tbad_in_finetime = DEFAULT_TBAD;
197 filterPar.offset_in_finetime = DEFAULT_OFFSET;
197 filterPar.offset_in_finetime = DEFAULT_OFFSET;
198 filterPar.shift_in_finetime = DEFAULT_SHIFT;
198 filterPar.shift_in_finetime = DEFAULT_SHIFT;
199 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
199 update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE );
200
200
201 // waveform picker initialization
201 // waveform picker initialization
202 WFP_init_rings();
202 WFP_init_rings();
203 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
203 LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings
204 WFP_reset_current_ring_nodes();
204 WFP_reset_current_ring_nodes();
205 reset_waveform_picker_regs();
205 reset_waveform_picker_regs();
206
206
207 // spectral matrices initialization
207 // spectral matrices initialization
208 SM_init_rings(); // initialize spectral matrices rings
208 SM_init_rings(); // initialize spectral matrices rings
209 SM_reset_current_ring_nodes();
209 SM_reset_current_ring_nodes();
210 reset_spectral_matrix_regs();
210 reset_spectral_matrix_regs();
211
211
212 // configure calibration
212 // configure calibration
213 configureCalibration( false ); // true means interleaved mode, false is for normal mode
213 configureCalibration( false ); // true means interleaved mode, false is for normal mode
214
214
215 updateLFRCurrentMode( LFR_MODE_STANDBY );
215 updateLFRCurrentMode( LFR_MODE_STANDBY );
216
216
217 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
217 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
218
218
219 create_names(); // create all names
219 create_names(); // create all names
220
220
221 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
221 status = create_timecode_timer(); // create the timer used by timecode_irq_handler
222 if (status != RTEMS_SUCCESSFUL)
222 if (status != RTEMS_SUCCESSFUL)
223 {
223 {
224 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
224 PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status)
225 }
225 }
226
226
227 status = create_message_queues(); // create message queues
227 status = create_message_queues(); // create message queues
228 if (status != RTEMS_SUCCESSFUL)
228 if (status != RTEMS_SUCCESSFUL)
229 {
229 {
230 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
230 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
231 }
231 }
232
232
233 status = create_all_tasks(); // create all tasks
233 status = create_all_tasks(); // create all tasks
234 if (status != RTEMS_SUCCESSFUL)
234 if (status != RTEMS_SUCCESSFUL)
235 {
235 {
236 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
236 PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status)
237 }
237 }
238
238
239 // **************************
239 // **************************
240 // <SPACEWIRE INITIALIZATION>
240 // <SPACEWIRE INITIALIZATION>
241 status_spw = spacewire_open_link(); // (1) open the link
241 status_spw = spacewire_open_link(); // (1) open the link
242 if ( status_spw != RTEMS_SUCCESSFUL )
242 if ( status_spw != RTEMS_SUCCESSFUL )
243 {
243 {
244 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
244 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
245 }
245 }
246
246
247 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
247 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
248 {
248 {
249 status_spw = spacewire_configure_link( fdSPW );
249 status_spw = spacewire_configure_link( fdSPW );
250 if ( status_spw != RTEMS_SUCCESSFUL )
250 if ( status_spw != RTEMS_SUCCESSFUL )
251 {
251 {
252 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
252 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
253 }
253 }
254 }
254 }
255
255
256 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
256 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
257 {
257 {
258 status_spw = spacewire_start_link( fdSPW );
258 status_spw = spacewire_start_link( fdSPW );
259 if ( status_spw != RTEMS_SUCCESSFUL )
259 if ( status_spw != RTEMS_SUCCESSFUL )
260 {
260 {
261 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
261 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
262 }
262 }
263 }
263 }
264 // </SPACEWIRE INITIALIZATION>
264 // </SPACEWIRE INITIALIZATION>
265 // ***************************
265 // ***************************
266
266
267 status = start_all_tasks(); // start all tasks
267 status = start_all_tasks(); // start all tasks
268 if (status != RTEMS_SUCCESSFUL)
268 if (status != RTEMS_SUCCESSFUL)
269 {
269 {
270 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
270 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
271 }
271 }
272
272
273 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
273 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
274 status = start_recv_send_tasks();
274 status = start_recv_send_tasks();
275 if ( status != RTEMS_SUCCESSFUL )
275 if ( status != RTEMS_SUCCESSFUL )
276 {
276 {
277 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
277 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
278 }
278 }
279
279
280 // suspend science tasks, they will be restarted later depending on the mode
280 // suspend science tasks, they will be restarted later depending on the mode
281 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
281 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
282 if (status != RTEMS_SUCCESSFUL)
282 if (status != RTEMS_SUCCESSFUL)
283 {
283 {
284 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
284 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
285 }
285 }
286
286
287 // configure IRQ handling for the waveform picker unit
287 // configure IRQ handling for the waveform picker unit
288 status = rtems_interrupt_catch( waveforms_isr,
288 status = rtems_interrupt_catch( waveforms_isr,
289 IRQ_SPARC_WAVEFORM_PICKER,
289 IRQ_SPARC_WAVEFORM_PICKER,
290 &old_isr_handler) ;
290 &old_isr_handler) ;
291 // configure IRQ handling for the spectral matrices unit
291 // configure IRQ handling for the spectral matrices unit
292 status = rtems_interrupt_catch( spectral_matrices_isr,
292 status = rtems_interrupt_catch( spectral_matrices_isr,
293 IRQ_SPARC_SPECTRAL_MATRIX,
293 IRQ_SPARC_SPECTRAL_MATRIX,
294 &old_isr_handler) ;
294 &old_isr_handler) ;
295
295
296 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
296 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
297 if ( status_spw != RTEMS_SUCCESSFUL )
297 if ( status_spw != RTEMS_SUCCESSFUL )
298 {
298 {
299 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
299 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
300 if ( status != RTEMS_SUCCESSFUL ) {
300 if ( status != RTEMS_SUCCESSFUL ) {
301 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
301 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
302 }
302 }
303 }
303 }
304
304
305 BOOT_PRINTF("delete INIT\n")
305 BOOT_PRINTF("delete INIT\n")
306
306
307 set_hk_lfr_sc_potential_flag( true );
307 set_hk_lfr_sc_potential_flag( true );
308
308
309 // start the timer to detect a missing spacewire timecode
309 // start the timer to detect a missing spacewire timecode
310 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
310 // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout
311 // if a tickout is generated, the timer is restarted
311 // if a tickout is generated, the timer is restarted
312 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
312 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL );
313
313
314 grspw_timecode_callback = &timecode_irq_handler;
314 grspw_timecode_callback = &timecode_irq_handler;
315
315
316 status = rtems_task_delete(RTEMS_SELF);
316 status = rtems_task_delete(RTEMS_SELF);
317
317
318 }
318 }
319
319
320 void init_local_mode_parameters( void )
320 void init_local_mode_parameters( void )
321 {
321 {
322 /** This function initialize the param_local global variable with default values.
322 /** This function initialize the param_local global variable with default values.
323 *
323 *
324 */
324 */
325
325
326 unsigned int i;
326 unsigned int i;
327
327
328 // LOCAL PARAMETERS
328 // LOCAL PARAMETERS
329
329
330 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
330 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
331 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
331 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
332
332
333 // init sequence counters
333 // init sequence counters
334
334
335 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
335 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
336 {
336 {
337 sequenceCounters_TC_EXE[i] = INIT_CHAR;
337 sequenceCounters_TC_EXE[i] = INIT_CHAR;
338 sequenceCounters_TM_DUMP[i] = INIT_CHAR;
338 sequenceCounters_TM_DUMP[i] = INIT_CHAR;
339 }
339 }
340 sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR;
340 sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR;
341 sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR;
341 sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR;
342 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT;
342 sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT;
343 }
343 }
344
344
345 void reset_local_time( void )
345 void reset_local_time( void )
346 {
346 {
347 time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000
347 time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000
348 }
348 }
349
349
350 void create_names( void ) // create all names for tasks and queues
350 void create_names( void ) // create all names for tasks and queues
351 {
351 {
352 /** This function creates all RTEMS names used in the software for tasks and queues.
352 /** This function creates all RTEMS names used in the software for tasks and queues.
353 *
353 *
354 * @return RTEMS directive status codes:
354 * @return RTEMS directive status codes:
355 * - RTEMS_SUCCESSFUL - successful completion
355 * - RTEMS_SUCCESSFUL - successful completion
356 *
356 *
357 */
357 */
358
358
359 // task names
359 // task names
360 Task_name[TASKID_AVGV] = rtems_build_name( 'A', 'V', 'G', 'V' );
360 Task_name[TASKID_AVGV] = rtems_build_name( 'A', 'V', 'G', 'V' );
361 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
361 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
362 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
362 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
363 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
363 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
364 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
364 Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' );
365 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
365 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
366 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
366 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
367 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
367 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
368 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
368 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
369 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
369 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
370 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
370 Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' );
371 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
371 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
372 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
372 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
373 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
373 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
374 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
374 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
375 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
375 Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' );
376 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
376 Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' );
377 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
377 Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' );
378 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
378 Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' );
379 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
379 Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' );
380 Task_name[TASKID_SCRB] = rtems_build_name( 'S', 'C', 'R', 'B' );
380 Task_name[TASKID_SCRB] = rtems_build_name( 'S', 'C', 'R', 'B' );
381
381
382 // rate monotonic period names
382 // rate monotonic period names
383 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
383 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
384 name_avgv_rate_monotonic = rtems_build_name( 'A', 'V', 'G', 'V' );
384 name_avgv_rate_monotonic = rtems_build_name( 'A', 'V', 'G', 'V' );
385
385
386 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
386 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
387 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
387 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
388 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
388 misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' );
389 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
389 misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' );
390 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
390 misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' );
391
391
392 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
392 timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' );
393 }
393 }
394
394
395 int create_all_tasks( void ) // create all tasks which run in the software
395 int create_all_tasks( void ) // create all tasks which run in the software
396 {
396 {
397 /** This function creates all RTEMS tasks used in the software.
397 /** This function creates all RTEMS tasks used in the software.
398 *
398 *
399 * @return RTEMS directive status codes:
399 * @return RTEMS directive status codes:
400 * - RTEMS_SUCCESSFUL - task created successfully
400 * - RTEMS_SUCCESSFUL - task created successfully
401 * - RTEMS_INVALID_ADDRESS - id is NULL
401 * - RTEMS_INVALID_ADDRESS - id is NULL
402 * - RTEMS_INVALID_NAME - invalid task name
402 * - RTEMS_INVALID_NAME - invalid task name
403 * - RTEMS_INVALID_PRIORITY - invalid task priority
403 * - RTEMS_INVALID_PRIORITY - invalid task priority
404 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
404 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
405 * - RTEMS_TOO_MANY - too many tasks created
405 * - RTEMS_TOO_MANY - too many tasks created
406 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
406 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
407 * - RTEMS_TOO_MANY - too many global objects
407 * - RTEMS_TOO_MANY - too many global objects
408 *
408 *
409 */
409 */
410
410
411 rtems_status_code status;
411 rtems_status_code status;
412
412
413 //**********
413 //**********
414 // SPACEWIRE
414 // SPACEWIRE
415 // RECV
415 // RECV
416 status = rtems_task_create(
416 status = rtems_task_create(
417 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
417 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
418 RTEMS_DEFAULT_MODES,
418 RTEMS_DEFAULT_MODES,
419 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
419 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
420 );
420 );
421 if (status == RTEMS_SUCCESSFUL) // SEND
421 if (status == RTEMS_SUCCESSFUL) // SEND
422 {
422 {
423 status = rtems_task_create(
423 status = rtems_task_create(
424 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
424 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
425 RTEMS_DEFAULT_MODES,
425 RTEMS_DEFAULT_MODES,
426 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
426 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND]
427 );
427 );
428 }
428 }
429 if (status == RTEMS_SUCCESSFUL) // LINK
429 if (status == RTEMS_SUCCESSFUL) // LINK
430 {
430 {
431 status = rtems_task_create(
431 status = rtems_task_create(
432 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
432 Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE,
433 RTEMS_DEFAULT_MODES,
433 RTEMS_DEFAULT_MODES,
434 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
434 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK]
435 );
435 );
436 }
436 }
437 if (status == RTEMS_SUCCESSFUL) // ACTN
437 if (status == RTEMS_SUCCESSFUL) // ACTN
438 {
438 {
439 status = rtems_task_create(
439 status = rtems_task_create(
440 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
440 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
441 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
441 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
442 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
442 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
443 );
443 );
444 }
444 }
445 if (status == RTEMS_SUCCESSFUL) // SPIQ
445 if (status == RTEMS_SUCCESSFUL) // SPIQ
446 {
446 {
447 status = rtems_task_create(
447 status = rtems_task_create(
448 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
448 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
449 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
449 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
450 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
450 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
451 );
451 );
452 }
452 }
453
453
454 //******************
454 //******************
455 // SPECTRAL MATRICES
455 // SPECTRAL MATRICES
456 if (status == RTEMS_SUCCESSFUL) // AVF0
456 if (status == RTEMS_SUCCESSFUL) // AVF0
457 {
457 {
458 status = rtems_task_create(
458 status = rtems_task_create(
459 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
459 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
460 RTEMS_DEFAULT_MODES,
460 RTEMS_DEFAULT_MODES,
461 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
461 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
462 );
462 );
463 }
463 }
464 if (status == RTEMS_SUCCESSFUL) // PRC0
464 if (status == RTEMS_SUCCESSFUL) // PRC0
465 {
465 {
466 status = rtems_task_create(
466 status = rtems_task_create(
467 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
467 Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
468 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
468 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
469 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
469 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0]
470 );
470 );
471 }
471 }
472 if (status == RTEMS_SUCCESSFUL) // AVF1
472 if (status == RTEMS_SUCCESSFUL) // AVF1
473 {
473 {
474 status = rtems_task_create(
474 status = rtems_task_create(
475 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
475 Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE,
476 RTEMS_DEFAULT_MODES,
476 RTEMS_DEFAULT_MODES,
477 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
477 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1]
478 );
478 );
479 }
479 }
480 if (status == RTEMS_SUCCESSFUL) // PRC1
480 if (status == RTEMS_SUCCESSFUL) // PRC1
481 {
481 {
482 status = rtems_task_create(
482 status = rtems_task_create(
483 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
483 Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
484 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
484 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
485 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
485 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1]
486 );
486 );
487 }
487 }
488 if (status == RTEMS_SUCCESSFUL) // AVF2
488 if (status == RTEMS_SUCCESSFUL) // AVF2
489 {
489 {
490 status = rtems_task_create(
490 status = rtems_task_create(
491 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
491 Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE,
492 RTEMS_DEFAULT_MODES,
492 RTEMS_DEFAULT_MODES,
493 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
493 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2]
494 );
494 );
495 }
495 }
496 if (status == RTEMS_SUCCESSFUL) // PRC2
496 if (status == RTEMS_SUCCESSFUL) // PRC2
497 {
497 {
498 status = rtems_task_create(
498 status = rtems_task_create(
499 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
499 Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT,
500 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
500 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
501 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
501 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2]
502 );
502 );
503 }
503 }
504
504
505 //****************
505 //****************
506 // WAVEFORM PICKER
506 // WAVEFORM PICKER
507 if (status == RTEMS_SUCCESSFUL) // WFRM
507 if (status == RTEMS_SUCCESSFUL) // WFRM
508 {
508 {
509 status = rtems_task_create(
509 status = rtems_task_create(
510 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
510 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
511 RTEMS_DEFAULT_MODES,
511 RTEMS_DEFAULT_MODES,
512 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
512 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
513 );
513 );
514 }
514 }
515 if (status == RTEMS_SUCCESSFUL) // CWF3
515 if (status == RTEMS_SUCCESSFUL) // CWF3
516 {
516 {
517 status = rtems_task_create(
517 status = rtems_task_create(
518 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
518 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
519 RTEMS_DEFAULT_MODES,
519 RTEMS_DEFAULT_MODES,
520 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
520 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
521 );
521 );
522 }
522 }
523 if (status == RTEMS_SUCCESSFUL) // CWF2
523 if (status == RTEMS_SUCCESSFUL) // CWF2
524 {
524 {
525 status = rtems_task_create(
525 status = rtems_task_create(
526 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
526 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
527 RTEMS_DEFAULT_MODES,
527 RTEMS_DEFAULT_MODES,
528 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
528 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
529 );
529 );
530 }
530 }
531 if (status == RTEMS_SUCCESSFUL) // CWF1
531 if (status == RTEMS_SUCCESSFUL) // CWF1
532 {
532 {
533 status = rtems_task_create(
533 status = rtems_task_create(
534 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
534 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
535 RTEMS_DEFAULT_MODES,
535 RTEMS_DEFAULT_MODES,
536 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
536 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
537 );
537 );
538 }
538 }
539 if (status == RTEMS_SUCCESSFUL) // SWBD
539 if (status == RTEMS_SUCCESSFUL) // SWBD
540 {
540 {
541 status = rtems_task_create(
541 status = rtems_task_create(
542 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
542 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
543 RTEMS_DEFAULT_MODES,
543 RTEMS_DEFAULT_MODES,
544 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
544 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
545 );
545 );
546 }
546 }
547
547
548 //*****
548 //*****
549 // MISC
549 // MISC
550 if (status == RTEMS_SUCCESSFUL) // LOAD
550 if (status == RTEMS_SUCCESSFUL) // LOAD
551 {
551 {
552 status = rtems_task_create(
552 status = rtems_task_create(
553 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
553 Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE,
554 RTEMS_DEFAULT_MODES,
554 RTEMS_DEFAULT_MODES,
555 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
555 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD]
556 );
556 );
557 }
557 }
558 if (status == RTEMS_SUCCESSFUL) // DUMB
558 if (status == RTEMS_SUCCESSFUL) // DUMB
559 {
559 {
560 status = rtems_task_create(
560 status = rtems_task_create(
561 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
561 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
562 RTEMS_DEFAULT_MODES,
562 RTEMS_DEFAULT_MODES,
563 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
563 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
564 );
564 );
565 }
565 }
566 if (status == RTEMS_SUCCESSFUL) // SCRUBBING TASK
566 if (status == RTEMS_SUCCESSFUL) // SCRUBBING TASK
567 {
567 {
568 status = rtems_task_create(
568 status = rtems_task_create(
569 Task_name[TASKID_SCRB], TASK_PRIORITY_SCRB, RTEMS_MINIMUM_STACK_SIZE,
569 Task_name[TASKID_SCRB], TASK_PRIORITY_SCRB, RTEMS_MINIMUM_STACK_SIZE,
570 RTEMS_DEFAULT_MODES,
570 RTEMS_DEFAULT_MODES,
571 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SCRB]
571 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SCRB]
572 );
572 );
573 }
573 }
574 if (status == RTEMS_SUCCESSFUL) // HOUS
574 if (status == RTEMS_SUCCESSFUL) // HOUS
575 {
575 {
576 status = rtems_task_create(
576 status = rtems_task_create(
577 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
577 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
578 RTEMS_DEFAULT_MODES,
578 RTEMS_DEFAULT_MODES,
579 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
579 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS]
580 );
580 );
581 }
581 }
582 if (status == RTEMS_SUCCESSFUL) // AVGV
582 if (status == RTEMS_SUCCESSFUL) // AVGV
583 {
583 {
584 status = rtems_task_create(
584 status = rtems_task_create(
585 Task_name[TASKID_AVGV], TASK_PRIORITY_AVGV, RTEMS_MINIMUM_STACK_SIZE,
585 Task_name[TASKID_AVGV], TASK_PRIORITY_AVGV, RTEMS_MINIMUM_STACK_SIZE,
586 RTEMS_DEFAULT_MODES,
586 RTEMS_DEFAULT_MODES,
587 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVGV]
587 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVGV]
588 );
588 );
589 }
589 }
590
590
591 return status;
591 return status;
592 }
592 }
593
593
594 int start_recv_send_tasks( void )
594 int start_recv_send_tasks( void )
595 {
595 {
596 rtems_status_code status;
596 rtems_status_code status;
597
597
598 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
598 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
599 if (status!=RTEMS_SUCCESSFUL) {
599 if (status!=RTEMS_SUCCESSFUL) {
600 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
600 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
601 }
601 }
602
602
603 if (status == RTEMS_SUCCESSFUL) // SEND
603 if (status == RTEMS_SUCCESSFUL) // SEND
604 {
604 {
605 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
605 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
606 if (status!=RTEMS_SUCCESSFUL) {
606 if (status!=RTEMS_SUCCESSFUL) {
607 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
607 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
608 }
608 }
609 }
609 }
610
610
611 return status;
611 return status;
612 }
612 }
613
613
614 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
614 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
615 {
615 {
616 /** This function starts all RTEMS tasks used in the software.
616 /** This function starts all RTEMS tasks used in the software.
617 *
617 *
618 * @return RTEMS directive status codes:
618 * @return RTEMS directive status codes:
619 * - RTEMS_SUCCESSFUL - ask started successfully
619 * - RTEMS_SUCCESSFUL - ask started successfully
620 * - RTEMS_INVALID_ADDRESS - invalid task entry point
620 * - RTEMS_INVALID_ADDRESS - invalid task entry point
621 * - RTEMS_INVALID_ID - invalid task id
621 * - RTEMS_INVALID_ID - invalid task id
622 * - RTEMS_INCORRECT_STATE - task not in the dormant state
622 * - RTEMS_INCORRECT_STATE - task not in the dormant state
623 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
623 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
624 *
624 *
625 */
625 */
626 // starts all the tasks fot eh flight software
626 // starts all the tasks fot eh flight software
627
627
628 rtems_status_code status;
628 rtems_status_code status;
629
629
630 //**********
630 //**********
631 // SPACEWIRE
631 // SPACEWIRE
632 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
632 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
633 if (status!=RTEMS_SUCCESSFUL) {
633 if (status!=RTEMS_SUCCESSFUL) {
634 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
634 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
635 }
635 }
636
636
637 if (status == RTEMS_SUCCESSFUL) // LINK
637 if (status == RTEMS_SUCCESSFUL) // LINK
638 {
638 {
639 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
639 status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 );
640 if (status!=RTEMS_SUCCESSFUL) {
640 if (status!=RTEMS_SUCCESSFUL) {
641 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
641 BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n")
642 }
642 }
643 }
643 }
644
644
645 if (status == RTEMS_SUCCESSFUL) // ACTN
645 if (status == RTEMS_SUCCESSFUL) // ACTN
646 {
646 {
647 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
647 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
648 if (status!=RTEMS_SUCCESSFUL) {
648 if (status!=RTEMS_SUCCESSFUL) {
649 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
649 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
650 }
650 }
651 }
651 }
652
652
653 //******************
653 //******************
654 // SPECTRAL MATRICES
654 // SPECTRAL MATRICES
655 if (status == RTEMS_SUCCESSFUL) // AVF0
655 if (status == RTEMS_SUCCESSFUL) // AVF0
656 {
656 {
657 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
657 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY );
658 if (status!=RTEMS_SUCCESSFUL) {
658 if (status!=RTEMS_SUCCESSFUL) {
659 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
659 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
660 }
660 }
661 }
661 }
662 if (status == RTEMS_SUCCESSFUL) // PRC0
662 if (status == RTEMS_SUCCESSFUL) // PRC0
663 {
663 {
664 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
664 status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY );
665 if (status!=RTEMS_SUCCESSFUL) {
665 if (status!=RTEMS_SUCCESSFUL) {
666 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
666 BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n")
667 }
667 }
668 }
668 }
669 if (status == RTEMS_SUCCESSFUL) // AVF1
669 if (status == RTEMS_SUCCESSFUL) // AVF1
670 {
670 {
671 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
671 status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY );
672 if (status!=RTEMS_SUCCESSFUL) {
672 if (status!=RTEMS_SUCCESSFUL) {
673 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
673 BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n")
674 }
674 }
675 }
675 }
676 if (status == RTEMS_SUCCESSFUL) // PRC1
676 if (status == RTEMS_SUCCESSFUL) // PRC1
677 {
677 {
678 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
678 status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY );
679 if (status!=RTEMS_SUCCESSFUL) {
679 if (status!=RTEMS_SUCCESSFUL) {
680 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
680 BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n")
681 }
681 }
682 }
682 }
683 if (status == RTEMS_SUCCESSFUL) // AVF2
683 if (status == RTEMS_SUCCESSFUL) // AVF2
684 {
684 {
685 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
685 status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 );
686 if (status!=RTEMS_SUCCESSFUL) {
686 if (status!=RTEMS_SUCCESSFUL) {
687 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
687 BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n")
688 }
688 }
689 }
689 }
690 if (status == RTEMS_SUCCESSFUL) // PRC2
690 if (status == RTEMS_SUCCESSFUL) // PRC2
691 {
691 {
692 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
692 status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 );
693 if (status!=RTEMS_SUCCESSFUL) {
693 if (status!=RTEMS_SUCCESSFUL) {
694 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
694 BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n")
695 }
695 }
696 }
696 }
697
697
698 //****************
698 //****************
699 // WAVEFORM PICKER
699 // WAVEFORM PICKER
700 if (status == RTEMS_SUCCESSFUL) // WFRM
700 if (status == RTEMS_SUCCESSFUL) // WFRM
701 {
701 {
702 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
702 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
703 if (status!=RTEMS_SUCCESSFUL) {
703 if (status!=RTEMS_SUCCESSFUL) {
704 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
704 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
705 }
705 }
706 }
706 }
707 if (status == RTEMS_SUCCESSFUL) // CWF3
707 if (status == RTEMS_SUCCESSFUL) // CWF3
708 {
708 {
709 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
709 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
710 if (status!=RTEMS_SUCCESSFUL) {
710 if (status!=RTEMS_SUCCESSFUL) {
711 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
711 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
712 }
712 }
713 }
713 }
714 if (status == RTEMS_SUCCESSFUL) // CWF2
714 if (status == RTEMS_SUCCESSFUL) // CWF2
715 {
715 {
716 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
716 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
717 if (status!=RTEMS_SUCCESSFUL) {
717 if (status!=RTEMS_SUCCESSFUL) {
718 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
718 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
719 }
719 }
720 }
720 }
721 if (status == RTEMS_SUCCESSFUL) // CWF1
721 if (status == RTEMS_SUCCESSFUL) // CWF1
722 {
722 {
723 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
723 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
724 if (status!=RTEMS_SUCCESSFUL) {
724 if (status!=RTEMS_SUCCESSFUL) {
725 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
725 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
726 }
726 }
727 }
727 }
728 if (status == RTEMS_SUCCESSFUL) // SWBD
728 if (status == RTEMS_SUCCESSFUL) // SWBD
729 {
729 {
730 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
730 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
731 if (status!=RTEMS_SUCCESSFUL) {
731 if (status!=RTEMS_SUCCESSFUL) {
732 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
732 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
733 }
733 }
734 }
734 }
735
735
736 //*****
736 //*****
737 // MISC
737 // MISC
738 if (status == RTEMS_SUCCESSFUL) // HOUS
738 if (status == RTEMS_SUCCESSFUL) // HOUS
739 {
739 {
740 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
740 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
741 if (status!=RTEMS_SUCCESSFUL) {
741 if (status!=RTEMS_SUCCESSFUL) {
742 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
742 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
743 }
743 }
744 }
744 }
745 if (status == RTEMS_SUCCESSFUL) // AVGV
745 if (status == RTEMS_SUCCESSFUL) // AVGV
746 {
746 {
747 status = rtems_task_start( Task_id[TASKID_AVGV], avgv_task, 1 );
747 status = rtems_task_start( Task_id[TASKID_AVGV], avgv_task, 1 );
748 if (status!=RTEMS_SUCCESSFUL) {
748 if (status!=RTEMS_SUCCESSFUL) {
749 BOOT_PRINTF("in INIT *** Error starting TASK_AVGV\n")
749 BOOT_PRINTF("in INIT *** Error starting TASK_AVGV\n")
750 }
750 }
751 }
751 }
752 if (status == RTEMS_SUCCESSFUL) // DUMB
752 if (status == RTEMS_SUCCESSFUL) // DUMB
753 {
753 {
754 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
754 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
755 if (status!=RTEMS_SUCCESSFUL) {
755 if (status!=RTEMS_SUCCESSFUL) {
756 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
756 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
757 }
757 }
758 }
758 }
759 if (status == RTEMS_SUCCESSFUL) // SCRUBBING
759 if (status == RTEMS_SUCCESSFUL) // SCRUBBING
760 {
760 {
761 status = rtems_task_start( Task_id[TASKID_SCRB], scrubbing_task, 1 );
761 status = rtems_task_start( Task_id[TASKID_SCRB], scrubbing_task, 1 );
762 if (status!=RTEMS_SUCCESSFUL) {
762 if (status!=RTEMS_SUCCESSFUL) {
763 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
763 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
764 }
764 }
765 }
765 }
766 if (status == RTEMS_SUCCESSFUL) // LOAD
766 if (status == RTEMS_SUCCESSFUL) // LOAD
767 {
767 {
768 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
768 status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 );
769 if (status!=RTEMS_SUCCESSFUL) {
769 if (status!=RTEMS_SUCCESSFUL) {
770 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
770 BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n")
771 }
771 }
772 }
772 }
773
773
774 return status;
774 return status;
775 }
775 }
776
776
777 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
777 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
778 {
778 {
779 rtems_status_code status_recv;
779 rtems_status_code status_recv;
780 rtems_status_code status_send;
780 rtems_status_code status_send;
781 rtems_status_code status_q_p0;
781 rtems_status_code status_q_p0;
782 rtems_status_code status_q_p1;
782 rtems_status_code status_q_p1;
783 rtems_status_code status_q_p2;
783 rtems_status_code status_q_p2;
784 rtems_status_code ret;
784 rtems_status_code ret;
785 rtems_id queue_id;
785 rtems_id queue_id;
786
786
787 ret = RTEMS_SUCCESSFUL;
787 ret = RTEMS_SUCCESSFUL;
788 queue_id = RTEMS_ID_NONE;
788 queue_id = RTEMS_ID_NONE;
789
789
790 //****************************************
790 //****************************************
791 // create the queue for handling valid TCs
791 // create the queue for handling valid TCs
792 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
792 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
793 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
793 MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE,
794 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
794 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
795 if ( status_recv != RTEMS_SUCCESSFUL ) {
795 if ( status_recv != RTEMS_SUCCESSFUL ) {
796 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
796 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
797 }
797 }
798
798
799 //************************************************
799 //************************************************
800 // create the queue for handling TM packet sending
800 // create the queue for handling TM packet sending
801 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
801 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
802 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
802 MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND,
803 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
803 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
804 if ( status_send != RTEMS_SUCCESSFUL ) {
804 if ( status_send != RTEMS_SUCCESSFUL ) {
805 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
805 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
806 }
806 }
807
807
808 //*****************************************************************************
808 //*****************************************************************************
809 // create the queue for handling averaged spectral matrices for processing @ f0
809 // create the queue for handling averaged spectral matrices for processing @ f0
810 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
810 status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0],
811 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
811 MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0,
812 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
812 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
813 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
813 if ( status_q_p0 != RTEMS_SUCCESSFUL ) {
814 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
814 PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0)
815 }
815 }
816
816
817 //*****************************************************************************
817 //*****************************************************************************
818 // create the queue for handling averaged spectral matrices for processing @ f1
818 // create the queue for handling averaged spectral matrices for processing @ f1
819 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
819 status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1],
820 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
820 MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1,
821 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
821 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
822 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
822 if ( status_q_p1 != RTEMS_SUCCESSFUL ) {
823 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
823 PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1)
824 }
824 }
825
825
826 //*****************************************************************************
826 //*****************************************************************************
827 // create the queue for handling averaged spectral matrices for processing @ f2
827 // create the queue for handling averaged spectral matrices for processing @ f2
828 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
828 status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2],
829 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
829 MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2,
830 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
830 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
831 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
831 if ( status_q_p2 != RTEMS_SUCCESSFUL ) {
832 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
832 PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2)
833 }
833 }
834
834
835 if ( status_recv != RTEMS_SUCCESSFUL )
835 if ( status_recv != RTEMS_SUCCESSFUL )
836 {
836 {
837 ret = status_recv;
837 ret = status_recv;
838 }
838 }
839 else if( status_send != RTEMS_SUCCESSFUL )
839 else if( status_send != RTEMS_SUCCESSFUL )
840 {
840 {
841 ret = status_send;
841 ret = status_send;
842 }
842 }
843 else if( status_q_p0 != RTEMS_SUCCESSFUL )
843 else if( status_q_p0 != RTEMS_SUCCESSFUL )
844 {
844 {
845 ret = status_q_p0;
845 ret = status_q_p0;
846 }
846 }
847 else if( status_q_p1 != RTEMS_SUCCESSFUL )
847 else if( status_q_p1 != RTEMS_SUCCESSFUL )
848 {
848 {
849 ret = status_q_p1;
849 ret = status_q_p1;
850 }
850 }
851 else
851 else
852 {
852 {
853 ret = status_q_p2;
853 ret = status_q_p2;
854 }
854 }
855
855
856 return ret;
856 return ret;
857 }
857 }
858
858
859 rtems_status_code create_timecode_timer( void )
859 rtems_status_code create_timecode_timer( void )
860 {
860 {
861 rtems_status_code status;
861 rtems_status_code status;
862
862
863 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
863 status = rtems_timer_create( timecode_timer_name, &timecode_timer_id );
864
864
865 if ( status != RTEMS_SUCCESSFUL )
865 if ( status != RTEMS_SUCCESSFUL )
866 {
866 {
867 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
867 PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status)
868 }
868 }
869 else
869 else
870 {
870 {
871 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
871 PRINTF("in create_timer_timecode *** OK creating SPTC timer\n")
872 }
872 }
873
873
874 return status;
874 return status;
875 }
875 }
876
876
877 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
877 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
878 {
878 {
879 rtems_status_code status;
879 rtems_status_code status;
880 rtems_name queue_name;
880 rtems_name queue_name;
881
881
882 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
882 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
883
883
884 status = rtems_message_queue_ident( queue_name, 0, queue_id );
884 status = rtems_message_queue_ident( queue_name, 0, queue_id );
885
885
886 return status;
886 return status;
887 }
887 }
888
888
889 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
889 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
890 {
890 {
891 rtems_status_code status;
891 rtems_status_code status;
892 rtems_name queue_name;
892 rtems_name queue_name;
893
893
894 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
894 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
895
895
896 status = rtems_message_queue_ident( queue_name, 0, queue_id );
896 status = rtems_message_queue_ident( queue_name, 0, queue_id );
897
897
898 return status;
898 return status;
899 }
899 }
900
900
901 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
901 rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id )
902 {
902 {
903 rtems_status_code status;
903 rtems_status_code status;
904 rtems_name queue_name;
904 rtems_name queue_name;
905
905
906 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
906 queue_name = rtems_build_name( 'Q', '_', 'P', '0' );
907
907
908 status = rtems_message_queue_ident( queue_name, 0, queue_id );
908 status = rtems_message_queue_ident( queue_name, 0, queue_id );
909
909
910 return status;
910 return status;
911 }
911 }
912
912
913 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
913 rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id )
914 {
914 {
915 rtems_status_code status;
915 rtems_status_code status;
916 rtems_name queue_name;
916 rtems_name queue_name;
917
917
918 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
918 queue_name = rtems_build_name( 'Q', '_', 'P', '1' );
919
919
920 status = rtems_message_queue_ident( queue_name, 0, queue_id );
920 status = rtems_message_queue_ident( queue_name, 0, queue_id );
921
921
922 return status;
922 return status;
923 }
923 }
924
924
925 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
925 rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id )
926 {
926 {
927 rtems_status_code status;
927 rtems_status_code status;
928 rtems_name queue_name;
928 rtems_name queue_name;
929
929
930 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
930 queue_name = rtems_build_name( 'Q', '_', 'P', '2' );
931
931
932 status = rtems_message_queue_ident( queue_name, 0, queue_id );
932 status = rtems_message_queue_ident( queue_name, 0, queue_id );
933
933
934 return status;
934 return status;
935 }
935 }
936
936
937 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
937 void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max )
938 {
938 {
939 u_int32_t count;
939 u_int32_t count;
940 rtems_status_code status;
940 rtems_status_code status;
941
941
942 count = 0;
942 count = 0;
943
943
944 status = rtems_message_queue_get_number_pending( queue_id, &count );
944 status = rtems_message_queue_get_number_pending( queue_id, &count );
945
945
946 count = count + 1;
946 count = count + 1;
947
947
948 if (status != RTEMS_SUCCESSFUL)
948 if (status != RTEMS_SUCCESSFUL)
949 {
949 {
950 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
950 PRINTF1("in update_queue_max_count *** ERR = %d\n", status)
951 }
951 }
952 else
952 else
953 {
953 {
954 if (count > *fifo_size_max)
954 if (count > *fifo_size_max)
955 {
955 {
956 *fifo_size_max = count;
956 *fifo_size_max = count;
957 }
957 }
958 }
958 }
959 }
959 }
960
960
961 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
961 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
962 {
962 {
963 unsigned char i;
963 unsigned char i;
964
964
965 //***************
965 //***************
966 // BUFFER ADDRESS
966 // BUFFER ADDRESS
967 for(i=0; i<nbNodes; i++)
967 for(i=0; i<nbNodes; i++)
968 {
968 {
969 ring[i].coarseTime = INT32_ALL_F;
969 ring[i].coarseTime = INT32_ALL_F;
970 ring[i].fineTime = INT32_ALL_F;
970 ring[i].fineTime = INT32_ALL_F;
971 ring[i].sid = INIT_CHAR;
971 ring[i].sid = INIT_CHAR;
972 ring[i].status = INIT_CHAR;
972 ring[i].status = INIT_CHAR;
973 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
973 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
974 }
974 }
975
975
976 //*****
976 //*****
977 // NEXT
977 // NEXT
978 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
978 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
979 for(i=0; i<nbNodes-1; i++)
979 for(i=0; i<nbNodes-1; i++)
980 {
980 {
981 ring[i].next = (ring_node*) &ring[ i + 1 ];
981 ring[i].next = (ring_node*) &ring[ i + 1 ];
982 }
982 }
983
983
984 //*********
984 //*********
985 // PREVIOUS
985 // PREVIOUS
986 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
986 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
987 for(i=1; i<nbNodes; i++)
987 for(i=1; i<nbNodes; i++)
988 {
988 {
989 ring[i].previous = (ring_node*) &ring[ i - 1 ];
989 ring[i].previous = (ring_node*) &ring[ i - 1 ];
990 }
990 }
991 }
991 }
@@ -1,1056 +1,1057
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13
13
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 {
16 {
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 *
18 *
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 * @param interrupt_level is the interrupt level that the timer drives.
22 * @param interrupt_level is the interrupt level that the timer drives.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 *
24 *
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 *
26 *
27 */
27 */
28
28
29 rtems_status_code status;
29 rtems_status_code status;
30 rtems_isr_entry old_isr_handler;
30 rtems_isr_entry old_isr_handler;
31
31
32 old_isr_handler = NULL;
32 old_isr_handler = NULL;
33
33
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35
35
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 if (status!=RTEMS_SUCCESSFUL)
37 if (status!=RTEMS_SUCCESSFUL)
38 {
38 {
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 }
40 }
41
41
42 timer_set_clock_divider( timer, clock_divider);
42 timer_set_clock_divider( timer, clock_divider);
43 }
43 }
44
44
45 void timer_start(unsigned char timer)
45 void timer_start(unsigned char timer)
46 {
46 {
47 /** This function starts a GPTIMER timer.
47 /** This function starts a GPTIMER timer.
48 *
48 *
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 *
51 *
52 */
52 */
53
53
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 }
59 }
60
60
61 void timer_stop(unsigned char timer)
61 void timer_stop(unsigned char timer)
62 {
62 {
63 /** This function stops a GPTIMER timer.
63 /** This function stops a GPTIMER timer.
64 *
64 *
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 *
67 *
68 */
68 */
69
69
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 }
73 }
74
74
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 {
76 {
77 /** This function sets the clock divider of a GPTIMER timer.
77 /** This function sets the clock divider of a GPTIMER timer.
78 *
78 *
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 *
82 *
83 */
83 */
84
84
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 }
86 }
87
87
88 // WATCHDOG
88 // WATCHDOG
89
89
90 rtems_isr watchdog_isr( rtems_vector_number vector )
90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 {
91 {
92 rtems_status_code status_code;
92 rtems_status_code status_code;
93
93
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95
95
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97
97
98 exit(0);
98 exit(0);
99 }
99 }
100
100
101 void watchdog_configure(void)
101 void watchdog_configure(void)
102 {
102 {
103 /** This function configure the watchdog.
103 /** This function configure the watchdog.
104 *
104 *
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 *
107 *
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 *
109 *
110 */
110 */
111
111
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113
113
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115
115
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 }
117 }
118
118
119 void watchdog_stop(void)
119 void watchdog_stop(void)
120 {
120 {
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 timer_stop( TIMER_WATCHDOG );
122 timer_stop( TIMER_WATCHDOG );
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 }
124 }
125
125
126 void watchdog_reload(void)
126 void watchdog_reload(void)
127 {
127 {
128 /** This function reloads the watchdog timer counter with the timer reload value.
128 /** This function reloads the watchdog timer counter with the timer reload value.
129 *
129 *
130 * @param void
130 * @param void
131 *
131 *
132 * @return void
132 * @return void
133 *
133 *
134 */
134 */
135
135
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 }
137 }
138
138
139 void watchdog_start(void)
139 void watchdog_start(void)
140 {
140 {
141 /** This function starts the watchdog timer.
141 /** This function starts the watchdog timer.
142 *
142 *
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 *
145 *
146 */
146 */
147
147
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149
149
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154
154
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156
156
157 }
157 }
158
158
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 {
160 {
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162
162
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164
164
165 return 0;
165 return 0;
166 }
166 }
167
167
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 {
169 {
170 /** This function sets the scaler reload register of the apbuart module
170 /** This function sets the scaler reload register of the apbuart module
171 *
171 *
172 * @param regs is the address of the apbuart registers in memory
172 * @param regs is the address of the apbuart registers in memory
173 * @param value is the value that will be stored in the scaler register
173 * @param value is the value that will be stored in the scaler register
174 *
174 *
175 * The value shall be set by the software to get data on the serial interface.
175 * The value shall be set by the software to get data on the serial interface.
176 *
176 *
177 */
177 */
178
178
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180
180
181 apbuart_regs->scaler = value;
181 apbuart_regs->scaler = value;
182
182
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 }
184 }
185
185
186 //************
186 //************
187 // RTEMS TASKS
187 // RTEMS TASKS
188
188
189 rtems_task load_task(rtems_task_argument argument)
189 rtems_task load_task(rtems_task_argument argument)
190 {
190 {
191 BOOT_PRINTF("in LOAD *** \n")
191 BOOT_PRINTF("in LOAD *** \n")
192
192
193 rtems_status_code status;
193 rtems_status_code status;
194 unsigned int i;
194 unsigned int i;
195 unsigned int j;
195 unsigned int j;
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198
198
199 watchdog_period_id = RTEMS_ID_NONE;
199 watchdog_period_id = RTEMS_ID_NONE;
200
200
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202
202
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 if( status != RTEMS_SUCCESSFUL ) {
204 if( status != RTEMS_SUCCESSFUL ) {
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 }
206 }
207
207
208 i = 0;
208 i = 0;
209 j = 0;
209 j = 0;
210
210
211 watchdog_configure();
211 watchdog_configure();
212
212
213 watchdog_start();
213 watchdog_start();
214
214
215 set_sy_lfr_watchdog_enabled( true );
215 set_sy_lfr_watchdog_enabled( true );
216
216
217 while(1){
217 while(1){
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 watchdog_reload();
219 watchdog_reload();
220 i = i + 1;
220 i = i + 1;
221 if ( i == WATCHDOG_LOOP_PRINTF )
221 if ( i == WATCHDOG_LOOP_PRINTF )
222 {
222 {
223 i = 0;
223 i = 0;
224 j = j + 1;
224 j = j + 1;
225 PRINTF1("%d\n", j)
225 PRINTF1("%d\n", j)
226 }
226 }
227 #ifdef DEBUG_WATCHDOG
227 #ifdef DEBUG_WATCHDOG
228 if (j == WATCHDOG_LOOP_DEBUG )
228 if (j == WATCHDOG_LOOP_DEBUG )
229 {
229 {
230 status = rtems_task_delete(RTEMS_SELF);
230 status = rtems_task_delete(RTEMS_SELF);
231 }
231 }
232 #endif
232 #endif
233 }
233 }
234 }
234 }
235
235
236 rtems_task hous_task(rtems_task_argument argument)
236 rtems_task hous_task(rtems_task_argument argument)
237 {
237 {
238 rtems_status_code status;
238 rtems_status_code status;
239 rtems_status_code spare_status;
239 rtems_status_code spare_status;
240 rtems_id queue_id;
240 rtems_id queue_id;
241 rtems_rate_monotonic_period_status period_status;
241 rtems_rate_monotonic_period_status period_status;
242 bool isSynchronized;
242 bool isSynchronized;
243
243
244 queue_id = RTEMS_ID_NONE;
244 queue_id = RTEMS_ID_NONE;
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 isSynchronized = false;
246 isSynchronized = false;
247
247
248 status = get_message_queue_id_send( &queue_id );
248 status = get_message_queue_id_send( &queue_id );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253
253
254 BOOT_PRINTF("in HOUS ***\n");
254 BOOT_PRINTF("in HOUS ***\n");
255
255
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 if( status != RTEMS_SUCCESSFUL ) {
258 if( status != RTEMS_SUCCESSFUL ) {
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 }
260 }
261 }
261 }
262
262
263 status = rtems_rate_monotonic_cancel(HK_id);
263 status = rtems_rate_monotonic_cancel(HK_id);
264 if( status != RTEMS_SUCCESSFUL ) {
264 if( status != RTEMS_SUCCESSFUL ) {
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 }
266 }
267 else {
267 else {
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 }
269 }
270
270
271 // startup phase
271 // startup phase
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 {
277 {
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 {
279 {
280 isSynchronized = true;
280 isSynchronized = true;
281 }
281 }
282 else
282 else
283 {
283 {
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285
285
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 }
287 }
288 }
288 }
289 status = rtems_rate_monotonic_cancel(HK_id);
289 status = rtems_rate_monotonic_cancel(HK_id);
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291
291
292 set_hk_lfr_reset_cause( POWER_ON );
292 set_hk_lfr_reset_cause( POWER_ON );
293
293
294 while(1){ // launch the rate monotonic task
294 while(1){ // launch the rate monotonic task
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 if ( status != RTEMS_SUCCESSFUL ) {
296 if ( status != RTEMS_SUCCESSFUL ) {
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 }
299 }
300 else {
300 else {
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
304
304
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311
311
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313
313
314 spacewire_read_statistics();
314 spacewire_read_statistics();
315
315
316 update_hk_with_grspw_stats();
316 update_hk_with_grspw_stats();
317
317
318 set_hk_lfr_time_not_synchro();
318 set_hk_lfr_time_not_synchro();
319
319
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325
325
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331
331
332 hk_lfr_le_me_he_update();
332 hk_lfr_le_me_he_update();
333
333
334 // SEND PACKET
334 // SEND PACKET
335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
337 if (status != RTEMS_SUCCESSFUL) {
337 if (status != RTEMS_SUCCESSFUL) {
338 PRINTF1("in HOUS *** ERR send: %d\n", status)
338 PRINTF1("in HOUS *** ERR send: %d\n", status)
339 }
339 }
340 }
340 }
341 }
341 }
342
342
343 PRINTF("in HOUS *** deleting task\n")
343 PRINTF("in HOUS *** deleting task\n")
344
344
345 status = rtems_task_delete( RTEMS_SELF ); // should not return
345 status = rtems_task_delete( RTEMS_SELF ); // should not return
346
346
347 return;
347 return;
348 }
348 }
349
349
350 int filter( int x, filter_ctx* ctx )
350 int filter( int x, filter_ctx* ctx )
351 {
351 {
352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
354 static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
354 static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
355 static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
355 static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
356
356
357 int_fast32_t W;
357 int_fast32_t W;
358 int i;
358 int i;
359
359
360 W = INIT_INT;
360 W = INIT_INT;
361 i = INIT_INT;
361 i = INIT_INT;
362
362
363 //Direct-Form-II
363 //Direct-Form-II
364 for ( i = 0; i < NB_COEFFS; i++ )
364 for ( i = 0; i < NB_COEFFS; i++ )
365 {
365 {
366 x = x << a_gain[i];
366 x = x << a_gain[i];
367 W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
367 W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
368 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
368 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
369 x = ( b[i][COEFF0] * W )
369 x = ( b[i][COEFF0] * W )
370 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
370 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
371 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
371 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
372 x = x >> b_gain[i];
372 x = x >> b_gain[i];
373 ctx->W[i][1] = ctx->W[i][0];
373 ctx->W[i][1] = ctx->W[i][0];
374 ctx->W[i][0] = W;
374 ctx->W[i][0] = W;
375 }
375 }
376 return x;
376 return x;
377 }
377 }
378
378
379 rtems_task avgv_task(rtems_task_argument argument)
379 rtems_task avgv_task(rtems_task_argument argument)
380 {
380 {
381 #define MOVING_AVERAGE 16
381 #define MOVING_AVERAGE 16
382 rtems_status_code status;
382 rtems_status_code status;
383 static int32_t v[MOVING_AVERAGE] = {0};
383 static int32_t v[MOVING_AVERAGE] = {0};
384 static int32_t e1[MOVING_AVERAGE] = {0};
384 static int32_t e1[MOVING_AVERAGE] = {0};
385 static int32_t e2[MOVING_AVERAGE] = {0};
385 static int32_t e2[MOVING_AVERAGE] = {0};
386 static int old_v = 0;
386 static int old_v = 0;
387 static int old_e1 = 0;
387 static int old_e1 = 0;
388 static int old_e2 = 0;
388 static int old_e2 = 0;
389 int32_t current_v;
389 int32_t current_v;
390 int32_t current_e1;
390 int32_t current_e1;
391 int32_t current_e2;
391 int32_t current_e2;
392 int32_t average_v;
392 int32_t average_v;
393 int32_t average_e1;
393 int32_t average_e1;
394 int32_t average_e2;
394 int32_t average_e2;
395 int32_t newValue_v;
395 int32_t newValue_v;
396 int32_t newValue_e1;
396 int32_t newValue_e1;
397 int32_t newValue_e2;
397 int32_t newValue_e2;
398 unsigned char k;
398 unsigned char k;
399 unsigned char indexOfOldValue;
399 unsigned char indexOfOldValue;
400
400
401 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
401 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
404
404
405 BOOT_PRINTF("in AVGV ***\n");
405 BOOT_PRINTF("in AVGV ***\n");
406
406
407 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
407 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
408 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
408 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
409 if( status != RTEMS_SUCCESSFUL ) {
409 if( status != RTEMS_SUCCESSFUL ) {
410 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
410 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
411 }
411 }
412 }
412 }
413
413
414 status = rtems_rate_monotonic_cancel(AVGV_id);
414 status = rtems_rate_monotonic_cancel(AVGV_id);
415 if( status != RTEMS_SUCCESSFUL ) {
415 if( status != RTEMS_SUCCESSFUL ) {
416 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
416 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
417 }
417 }
418 else {
418 else {
419 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
419 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
420 }
420 }
421
421
422 // initialize values
422 // initialize values
423 indexOfOldValue = MOVING_AVERAGE - 1;
423 indexOfOldValue = MOVING_AVERAGE - 1;
424 current_v = 0;
424 current_v = 0;
425 current_e1 = 0;
425 current_e1 = 0;
426 current_e2 = 0;
426 current_e2 = 0;
427 average_v = 0;
427 average_v = 0;
428 average_e1 = 0;
428 average_e1 = 0;
429 average_e2 = 0;
429 average_e2 = 0;
430 newValue_v = 0;
430 newValue_v = 0;
431 newValue_e1 = 0;
431 newValue_e1 = 0;
432 newValue_e2 = 0;
432 newValue_e2 = 0;
433
433
434 k = INIT_CHAR;
434 k = INIT_CHAR;
435
435
436 while(1)
436 while(1)
437 { // launch the rate monotonic task
437 { // launch the rate monotonic task
438 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
438 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
439 if ( status != RTEMS_SUCCESSFUL )
439 if ( status != RTEMS_SUCCESSFUL )
440 {
440 {
441 PRINTF1( "in AVGV *** ERR period: %d\n", status);
441 PRINTF1( "in AVGV *** ERR period: %d\n", status);
442 }
442 }
443 else
443 else
444 {
444 {
445 current_v = waveform_picker_regs->v;
445 current_v = waveform_picker_regs->v;
446 current_e1 = waveform_picker_regs->e1;
446 current_e1 = waveform_picker_regs->e1;
447 current_e2 = waveform_picker_regs->e2;
447 current_e2 = waveform_picker_regs->e2;
448 if ( (current_v != old_v)
448 if ( (current_v != old_v)
449 || (current_e1 != old_e1)
449 || (current_e1 != old_e1)
450 || (current_e2 != old_e2))
450 || (current_e2 != old_e2))
451 {
451 {
452 average_v = filter( current_v, &ctx_v );
452 average_v = filter( current_v, &ctx_v );
453 average_e1 = filter( current_e1, &ctx_e1 );
453 average_e1 = filter( current_e1, &ctx_e1 );
454 average_e2 = filter( current_e2, &ctx_e2 );
454 average_e2 = filter( current_e2, &ctx_e2 );
455
455
456 //update int16 values
456 //update int16 values
457 hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v;
457 hk_lfr_sc_v_f3_as_int16 = (int16_t) average_v;
458 hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1;
458 hk_lfr_sc_e1_f3_as_int16 = (int16_t) average_e1;
459 hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2;
459 hk_lfr_sc_e2_f3_as_int16 = (int16_t) average_e2;
460 }
460 }
461 old_v = current_v;
461 old_v = current_v;
462 old_e1 = current_e1;
462 old_e1 = current_e1;
463 old_e2 = current_e2;
463 old_e2 = current_e2;
464 }
464 }
465 }
465 }
466
466
467 PRINTF("in AVGV *** deleting task\n");
467 PRINTF("in AVGV *** deleting task\n");
468
468
469 status = rtems_task_delete( RTEMS_SELF ); // should not return
469 status = rtems_task_delete( RTEMS_SELF ); // should not return
470
470
471 return;
471 return;
472 }
472 }
473
473
474 rtems_task dumb_task( rtems_task_argument unused )
474 rtems_task dumb_task( rtems_task_argument unused )
475 {
475 {
476 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
476 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
477 *
477 *
478 * @param unused is the starting argument of the RTEMS task
478 * @param unused is the starting argument of the RTEMS task
479 *
479 *
480 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
480 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
481 *
481 *
482 */
482 */
483
483
484 unsigned int i;
484 unsigned int i;
485 unsigned int intEventOut;
485 unsigned int intEventOut;
486 unsigned int coarse_time = 0;
486 unsigned int coarse_time = 0;
487 unsigned int fine_time = 0;
487 unsigned int fine_time = 0;
488 rtems_event_set event_out;
488 rtems_event_set event_out;
489
489
490 event_out = EVENT_SETS_NONE_PENDING;
490 event_out = EVENT_SETS_NONE_PENDING;
491
491
492 BOOT_PRINTF("in DUMB *** \n")
492 BOOT_PRINTF("in DUMB *** \n")
493
493
494 while(1){
494 while(1){
495 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
495 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
496 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
496 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
497 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
497 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
498 | RTEMS_EVENT_14,
498 | RTEMS_EVENT_14,
499 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
499 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
500 intEventOut = (unsigned int) event_out;
500 intEventOut = (unsigned int) event_out;
501 for ( i=0; i<NB_RTEMS_EVENTS; i++)
501 for ( i=0; i<NB_RTEMS_EVENTS; i++)
502 {
502 {
503 if ( ((intEventOut >> i) & 1) != 0)
503 if ( ((intEventOut >> i) & 1) != 0)
504 {
504 {
505 coarse_time = time_management_regs->coarse_time;
505 coarse_time = time_management_regs->coarse_time;
506 fine_time = time_management_regs->fine_time;
506 fine_time = time_management_regs->fine_time;
507 if (i==EVENT_12)
507 if (i==EVENT_12)
508 {
508 {
509 PRINTF1("%s\n", DUMB_MESSAGE_12)
509 PRINTF1("%s\n", DUMB_MESSAGE_12)
510 }
510 }
511 if (i==EVENT_13)
511 if (i==EVENT_13)
512 {
512 {
513 PRINTF1("%s\n", DUMB_MESSAGE_13)
513 PRINTF1("%s\n", DUMB_MESSAGE_13)
514 }
514 }
515 if (i==EVENT_14)
515 if (i==EVENT_14)
516 {
516 {
517 PRINTF1("%s\n", DUMB_MESSAGE_1)
517 PRINTF1("%s\n", DUMB_MESSAGE_1)
518 }
518 }
519 }
519 }
520 }
520 }
521 }
521 }
522 }
522 }
523
523
524 rtems_task scrubbing_task( rtems_task_argument unused )
524 rtems_task scrubbing_task( rtems_task_argument unused )
525 {
525 {
526 /** This RTEMS taks is to avoid entering IDLE task and also scrub memory to increase scubbing frequency.
526 /** This RTEMS taks is to avoid entering IDLE task and also scrub memory to increase scubbing frequency.
527 *
527 *
528 * @param unused is the starting argument of the RTEMS task
528 * @param unused is the starting argument of the RTEMS task
529 *
529 *
530 * The scrubbing reads continuously memory when no other tasks are ready.
530 * The scrubbing reads continuously memory when no other tasks are ready.
531 *
531 *
532 */
532 */
533
533
534 BOOT_PRINTF("in SCRUBBING *** \n");
534 BOOT_PRINTF("in SCRUBBING *** \n");
535 volatile int i=0;
535 volatile int i=0;
536 volatile float valuef = 1.;
536 volatile uint32_t* RAM=(uint32_t*)0x40000000;
537 volatile uint32_t* RAM=(uint32_t*)0x40000000;
537 volatile uint32_t value;
538 volatile uint32_t value;
538 while(1){
539 while(1){
539 i=(i+1)%(1024*1024);
540 i=(i+1)%(1024*1024);
540 value += RAM[i];
541 valuef += 10.f*(float)RAM[i];
541 }
542 }
542 }
543 }
543
544
544 //*****************************
545 //*****************************
545 // init housekeeping parameters
546 // init housekeeping parameters
546
547
547 void init_housekeeping_parameters( void )
548 void init_housekeeping_parameters( void )
548 {
549 {
549 /** This function initialize the housekeeping_packet global variable with default values.
550 /** This function initialize the housekeeping_packet global variable with default values.
550 *
551 *
551 */
552 */
552
553
553 unsigned int i = 0;
554 unsigned int i = 0;
554 unsigned char *parameters;
555 unsigned char *parameters;
555 unsigned char sizeOfHK;
556 unsigned char sizeOfHK;
556
557
557 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
558 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
558
559
559 parameters = (unsigned char*) &housekeeping_packet;
560 parameters = (unsigned char*) &housekeeping_packet;
560
561
561 for(i = 0; i< sizeOfHK; i++)
562 for(i = 0; i< sizeOfHK; i++)
562 {
563 {
563 parameters[i] = INIT_CHAR;
564 parameters[i] = INIT_CHAR;
564 }
565 }
565
566
566 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
567 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
567 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
568 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
568 housekeeping_packet.reserved = DEFAULT_RESERVED;
569 housekeeping_packet.reserved = DEFAULT_RESERVED;
569 housekeeping_packet.userApplication = CCSDS_USER_APP;
570 housekeeping_packet.userApplication = CCSDS_USER_APP;
570 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
571 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
571 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
572 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
572 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
573 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
573 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
574 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
574 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
575 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
575 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
576 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
576 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
577 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
577 housekeeping_packet.serviceType = TM_TYPE_HK;
578 housekeeping_packet.serviceType = TM_TYPE_HK;
578 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
579 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
579 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
580 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
580 housekeeping_packet.sid = SID_HK;
581 housekeeping_packet.sid = SID_HK;
581
582
582 // init status word
583 // init status word
583 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
584 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
584 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
585 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
585 // init software version
586 // init software version
586 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
587 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
587 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
588 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
588 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
589 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
589 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
590 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
590 // init fpga version
591 // init fpga version
591 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
592 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
592 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
593 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
593 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
594 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
594 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
595 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
595
596
596 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
597 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
597 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
598 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
598 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
599 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
599 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
600 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
600 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
601 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
601 }
602 }
602
603
603 void increment_seq_counter( unsigned short *packetSequenceControl )
604 void increment_seq_counter( unsigned short *packetSequenceControl )
604 {
605 {
605 /** This function increment the sequence counter passes in argument.
606 /** This function increment the sequence counter passes in argument.
606 *
607 *
607 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
608 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
608 *
609 *
609 */
610 */
610
611
611 unsigned short segmentation_grouping_flag;
612 unsigned short segmentation_grouping_flag;
612 unsigned short sequence_cnt;
613 unsigned short sequence_cnt;
613
614
614 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
615 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
615 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
616 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
616
617
617 if ( sequence_cnt < SEQ_CNT_MAX)
618 if ( sequence_cnt < SEQ_CNT_MAX)
618 {
619 {
619 sequence_cnt = sequence_cnt + 1;
620 sequence_cnt = sequence_cnt + 1;
620 }
621 }
621 else
622 else
622 {
623 {
623 sequence_cnt = 0;
624 sequence_cnt = 0;
624 }
625 }
625
626
626 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
627 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
627 }
628 }
628
629
629 void getTime( unsigned char *time)
630 void getTime( unsigned char *time)
630 {
631 {
631 /** This function write the current local time in the time buffer passed in argument.
632 /** This function write the current local time in the time buffer passed in argument.
632 *
633 *
633 */
634 */
634
635
635 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
636 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
636 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
637 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
637 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
638 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
638 time[3] = (unsigned char) (time_management_regs->coarse_time);
639 time[3] = (unsigned char) (time_management_regs->coarse_time);
639 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
640 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
640 time[5] = (unsigned char) (time_management_regs->fine_time);
641 time[5] = (unsigned char) (time_management_regs->fine_time);
641 }
642 }
642
643
643 unsigned long long int getTimeAsUnsignedLongLongInt( )
644 unsigned long long int getTimeAsUnsignedLongLongInt( )
644 {
645 {
645 /** This function write the current local time in the time buffer passed in argument.
646 /** This function write the current local time in the time buffer passed in argument.
646 *
647 *
647 */
648 */
648 unsigned long long int time;
649 unsigned long long int time;
649
650
650 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
651 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
651 + time_management_regs->fine_time;
652 + time_management_regs->fine_time;
652
653
653 return time;
654 return time;
654 }
655 }
655
656
656 void send_dumb_hk( void )
657 void send_dumb_hk( void )
657 {
658 {
658 Packet_TM_LFR_HK_t dummy_hk_packet;
659 Packet_TM_LFR_HK_t dummy_hk_packet;
659 unsigned char *parameters;
660 unsigned char *parameters;
660 unsigned int i;
661 unsigned int i;
661 rtems_id queue_id;
662 rtems_id queue_id;
662
663
663 queue_id = RTEMS_ID_NONE;
664 queue_id = RTEMS_ID_NONE;
664
665
665 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
666 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
666 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
667 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
667 dummy_hk_packet.reserved = DEFAULT_RESERVED;
668 dummy_hk_packet.reserved = DEFAULT_RESERVED;
668 dummy_hk_packet.userApplication = CCSDS_USER_APP;
669 dummy_hk_packet.userApplication = CCSDS_USER_APP;
669 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
670 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
670 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
671 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
671 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
672 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
672 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
673 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
673 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
674 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
674 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
675 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
675 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
676 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
676 dummy_hk_packet.serviceType = TM_TYPE_HK;
677 dummy_hk_packet.serviceType = TM_TYPE_HK;
677 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
678 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
678 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
679 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
679 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
680 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
680 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
681 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
681 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
682 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
682 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
683 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
683 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
684 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
684 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
685 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
685 dummy_hk_packet.sid = SID_HK;
686 dummy_hk_packet.sid = SID_HK;
686
687
687 // init status word
688 // init status word
688 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
689 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
689 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
690 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
690 // init software version
691 // init software version
691 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
692 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
692 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
693 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
693 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
694 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
694 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
695 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
695 // init fpga version
696 // init fpga version
696 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
697 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
697 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
698 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
698 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
699 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
699 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
700 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
700
701
701 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
702 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
702
703
703 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
704 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
704 {
705 {
705 parameters[i] = INT8_ALL_F;
706 parameters[i] = INT8_ALL_F;
706 }
707 }
707
708
708 get_message_queue_id_send( &queue_id );
709 get_message_queue_id_send( &queue_id );
709
710
710 rtems_message_queue_send( queue_id, &dummy_hk_packet,
711 rtems_message_queue_send( queue_id, &dummy_hk_packet,
711 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
712 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
712 }
713 }
713
714
714 void get_temperatures( unsigned char *temperatures )
715 void get_temperatures( unsigned char *temperatures )
715 {
716 {
716 unsigned char* temp_scm_ptr;
717 unsigned char* temp_scm_ptr;
717 unsigned char* temp_pcb_ptr;
718 unsigned char* temp_pcb_ptr;
718 unsigned char* temp_fpga_ptr;
719 unsigned char* temp_fpga_ptr;
719
720
720 // SEL1 SEL0
721 // SEL1 SEL0
721 // 0 0 => PCB
722 // 0 0 => PCB
722 // 0 1 => FPGA
723 // 0 1 => FPGA
723 // 1 0 => SCM
724 // 1 0 => SCM
724
725
725 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
726 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
726 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
727 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
727 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
728 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
728
729
729 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
730 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
730 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
731 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
731 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
732 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
732 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
733 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
733 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
734 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
734 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
735 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
735 }
736 }
736
737
737 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
738 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
738 {
739 {
739 unsigned char* v_ptr;
740 unsigned char* v_ptr;
740 unsigned char* e1_ptr;
741 unsigned char* e1_ptr;
741 unsigned char* e2_ptr;
742 unsigned char* e2_ptr;
742
743
743 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
744 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
744 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
745 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
745 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
746 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
746
747
747 spacecraft_potential[BYTE_0] = v_ptr[0];
748 spacecraft_potential[BYTE_0] = v_ptr[0];
748 spacecraft_potential[BYTE_1] = v_ptr[1];
749 spacecraft_potential[BYTE_1] = v_ptr[1];
749 spacecraft_potential[BYTE_2] = e1_ptr[0];
750 spacecraft_potential[BYTE_2] = e1_ptr[0];
750 spacecraft_potential[BYTE_3] = e1_ptr[1];
751 spacecraft_potential[BYTE_3] = e1_ptr[1];
751 spacecraft_potential[BYTE_4] = e2_ptr[0];
752 spacecraft_potential[BYTE_4] = e2_ptr[0];
752 spacecraft_potential[BYTE_5] = e2_ptr[1];
753 spacecraft_potential[BYTE_5] = e2_ptr[1];
753 }
754 }
754
755
755 void get_cpu_load( unsigned char *resource_statistics )
756 void get_cpu_load( unsigned char *resource_statistics )
756 {
757 {
757 unsigned char cpu_load;
758 unsigned char cpu_load;
758
759
759 cpu_load = lfr_rtems_cpu_usage_report();
760 cpu_load = lfr_rtems_cpu_usage_report();
760
761
761 // HK_LFR_CPU_LOAD
762 // HK_LFR_CPU_LOAD
762 resource_statistics[0] = cpu_load;
763 resource_statistics[0] = cpu_load;
763
764
764 // HK_LFR_CPU_LOAD_MAX
765 // HK_LFR_CPU_LOAD_MAX
765 if (cpu_load > resource_statistics[1])
766 if (cpu_load > resource_statistics[1])
766 {
767 {
767 resource_statistics[1] = cpu_load;
768 resource_statistics[1] = cpu_load;
768 }
769 }
769
770
770 // CPU_LOAD_AVE
771 // CPU_LOAD_AVE
771 resource_statistics[BYTE_2] = 0;
772 resource_statistics[BYTE_2] = 0;
772
773
773 #ifndef PRINT_TASK_STATISTICS
774 #ifndef PRINT_TASK_STATISTICS
774 rtems_cpu_usage_reset();
775 rtems_cpu_usage_reset();
775 #endif
776 #endif
776
777
777 }
778 }
778
779
779 void set_hk_lfr_sc_potential_flag( bool state )
780 void set_hk_lfr_sc_potential_flag( bool state )
780 {
781 {
781 if (state == true)
782 if (state == true)
782 {
783 {
783 housekeeping_packet.lfr_status_word[1] =
784 housekeeping_packet.lfr_status_word[1] =
784 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
785 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
785 }
786 }
786 else
787 else
787 {
788 {
788 housekeeping_packet.lfr_status_word[1] =
789 housekeeping_packet.lfr_status_word[1] =
789 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
790 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
790 }
791 }
791 }
792 }
792
793
793 void set_sy_lfr_pas_filter_enabled( bool state )
794 void set_sy_lfr_pas_filter_enabled( bool state )
794 {
795 {
795 if (state == true)
796 if (state == true)
796 {
797 {
797 housekeeping_packet.lfr_status_word[1] =
798 housekeeping_packet.lfr_status_word[1] =
798 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
799 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
799 }
800 }
800 else
801 else
801 {
802 {
802 housekeeping_packet.lfr_status_word[1] =
803 housekeeping_packet.lfr_status_word[1] =
803 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
804 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
804 }
805 }
805 }
806 }
806
807
807 void set_sy_lfr_watchdog_enabled( bool state )
808 void set_sy_lfr_watchdog_enabled( bool state )
808 {
809 {
809 if (state == true)
810 if (state == true)
810 {
811 {
811 housekeeping_packet.lfr_status_word[1] =
812 housekeeping_packet.lfr_status_word[1] =
812 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
813 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
813 }
814 }
814 else
815 else
815 {
816 {
816 housekeeping_packet.lfr_status_word[1] =
817 housekeeping_packet.lfr_status_word[1] =
817 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
818 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
818 }
819 }
819 }
820 }
820
821
821 void set_hk_lfr_calib_enable( bool state )
822 void set_hk_lfr_calib_enable( bool state )
822 {
823 {
823 if (state == true)
824 if (state == true)
824 {
825 {
825 housekeeping_packet.lfr_status_word[1] =
826 housekeeping_packet.lfr_status_word[1] =
826 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
827 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
827 }
828 }
828 else
829 else
829 {
830 {
830 housekeeping_packet.lfr_status_word[1] =
831 housekeeping_packet.lfr_status_word[1] =
831 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
832 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
832 }
833 }
833 }
834 }
834
835
835 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
836 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
836 {
837 {
837 housekeeping_packet.lfr_status_word[1] =
838 housekeeping_packet.lfr_status_word[1] =
838 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
839 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
839
840
840 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
841 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
841 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
842 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
842
843
843 }
844 }
844
845
845 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
846 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
846 {
847 {
847 int delta;
848 int delta;
848
849
849 delta = 0;
850 delta = 0;
850
851
851 if (newValue >= oldValue)
852 if (newValue >= oldValue)
852 {
853 {
853 delta = newValue - oldValue;
854 delta = newValue - oldValue;
854 }
855 }
855 else
856 else
856 {
857 {
857 delta = (CONST_256 - oldValue) + newValue;
858 delta = (CONST_256 - oldValue) + newValue;
858 }
859 }
859
860
860 *counter = *counter + delta;
861 *counter = *counter + delta;
861 }
862 }
862
863
863 void hk_lfr_le_update( void )
864 void hk_lfr_le_update( void )
864 {
865 {
865 static hk_lfr_le_t old_hk_lfr_le = {0};
866 static hk_lfr_le_t old_hk_lfr_le = {0};
866 hk_lfr_le_t new_hk_lfr_le;
867 hk_lfr_le_t new_hk_lfr_le;
867 unsigned int counter;
868 unsigned int counter;
868
869
869 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
870 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
870
871
871 // DPU
872 // DPU
872 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
873 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
873 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
874 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
874 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
875 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
875 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
876 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
876 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
877 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
877 // TIMECODE
878 // TIMECODE
878 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
879 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
879 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
880 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
880 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
881 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
881 // TIME
882 // TIME
882 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
883 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
883 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
884 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
884 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
885 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
885 //AHB
886 //AHB
886 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
887 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
887 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
888 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
888 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
889 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
889
890
890 // update the le counter
891 // update the le counter
891 // DPU
892 // DPU
892 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
893 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
893 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
894 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
894 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
895 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
895 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
896 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
896 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
897 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
897 // TIMECODE
898 // TIMECODE
898 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
899 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
899 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
900 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
900 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
901 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
901 // TIME
902 // TIME
902 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
903 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
903 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
904 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
904 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
905 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
905 // AHB
906 // AHB
906 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
907 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
907
908
908 // DPU
909 // DPU
909 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
910 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
910 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
911 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
911 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
912 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
912 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
913 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
913 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
914 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
914 // TIMECODE
915 // TIMECODE
915 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
916 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
916 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
917 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
917 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
918 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
918 // TIME
919 // TIME
919 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
920 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
920 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
921 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
921 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
922 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
922 //AHB
923 //AHB
923 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
924 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
924 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
925 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
925 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
926 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
926
927
927 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
928 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
928 // LE
929 // LE
929 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
930 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
930 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
931 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
931 }
932 }
932
933
933 void hk_lfr_me_update( void )
934 void hk_lfr_me_update( void )
934 {
935 {
935 static hk_lfr_me_t old_hk_lfr_me = {0};
936 static hk_lfr_me_t old_hk_lfr_me = {0};
936 hk_lfr_me_t new_hk_lfr_me;
937 hk_lfr_me_t new_hk_lfr_me;
937 unsigned int counter;
938 unsigned int counter;
938
939
939 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
940 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
940
941
941 // get the current values
942 // get the current values
942 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
943 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
943 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
944 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
944 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
945 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
945 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
946 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
946
947
947 // update the me counter
948 // update the me counter
948 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
949 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
949 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
950 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
950 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
951 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
951 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
952 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
952
953
953 // store the counters for the next time
954 // store the counters for the next time
954 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
955 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
955 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
956 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
956 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
957 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
957 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
958 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
958
959
959 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
960 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
960 // ME
961 // ME
961 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
962 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
962 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
963 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
963 }
964 }
964
965
965 void hk_lfr_le_me_he_update()
966 void hk_lfr_le_me_he_update()
966 {
967 {
967
968
968 unsigned int hk_lfr_he_cnt;
969 unsigned int hk_lfr_he_cnt;
969
970
970 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
971 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
971
972
972 //update the low severity error counter
973 //update the low severity error counter
973 hk_lfr_le_update( );
974 hk_lfr_le_update( );
974
975
975 //update the medium severity error counter
976 //update the medium severity error counter
976 hk_lfr_me_update();
977 hk_lfr_me_update();
977
978
978 //update the high severity error counter
979 //update the high severity error counter
979 hk_lfr_he_cnt = 0;
980 hk_lfr_he_cnt = 0;
980
981
981 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
982 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
982 // HE
983 // HE
983 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
984 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
984 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
985 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
985
986
986 }
987 }
987
988
988 void set_hk_lfr_time_not_synchro()
989 void set_hk_lfr_time_not_synchro()
989 {
990 {
990 static unsigned char synchroLost = 1;
991 static unsigned char synchroLost = 1;
991 int synchronizationBit;
992 int synchronizationBit;
992
993
993 // get the synchronization bit
994 // get the synchronization bit
994 synchronizationBit =
995 synchronizationBit =
995 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
996 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
996
997
997 switch (synchronizationBit)
998 switch (synchronizationBit)
998 {
999 {
999 case 0:
1000 case 0:
1000 if (synchroLost == 1)
1001 if (synchroLost == 1)
1001 {
1002 {
1002 synchroLost = 0;
1003 synchroLost = 0;
1003 }
1004 }
1004 break;
1005 break;
1005 case 1:
1006 case 1:
1006 if (synchroLost == 0 )
1007 if (synchroLost == 0 )
1007 {
1008 {
1008 synchroLost = 1;
1009 synchroLost = 1;
1009 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
1010 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
1010 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
1011 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
1011 }
1012 }
1012 break;
1013 break;
1013 default:
1014 default:
1014 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
1015 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
1015 break;
1016 break;
1016 }
1017 }
1017
1018
1018 }
1019 }
1019
1020
1020 void set_hk_lfr_ahb_correctable() // CRITICITY L
1021 void set_hk_lfr_ahb_correctable() // CRITICITY L
1021 {
1022 {
1022 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1023 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1023 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1024 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1024 * detected errors in the cache, in the integer unit and in the floating point unit.
1025 * detected errors in the cache, in the integer unit and in the floating point unit.
1025 *
1026 *
1026 * @param void
1027 * @param void
1027 *
1028 *
1028 * @return void
1029 * @return void
1029 *
1030 *
1030 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1031 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1031 *
1032 *
1032 */
1033 */
1033
1034
1034 unsigned int ahb_correctable;
1035 unsigned int ahb_correctable;
1035 unsigned int instructionErrorCounter;
1036 unsigned int instructionErrorCounter;
1036 unsigned int dataErrorCounter;
1037 unsigned int dataErrorCounter;
1037 unsigned int fprfErrorCounter;
1038 unsigned int fprfErrorCounter;
1038 unsigned int iurfErrorCounter;
1039 unsigned int iurfErrorCounter;
1039
1040
1040 instructionErrorCounter = 0;
1041 instructionErrorCounter = 0;
1041 dataErrorCounter = 0;
1042 dataErrorCounter = 0;
1042 fprfErrorCounter = 0;
1043 fprfErrorCounter = 0;
1043 iurfErrorCounter = 0;
1044 iurfErrorCounter = 0;
1044
1045
1045 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1046 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1046 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1047 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1047
1048
1048 ahb_correctable = instructionErrorCounter
1049 ahb_correctable = instructionErrorCounter
1049 + dataErrorCounter
1050 + dataErrorCounter
1050 + fprfErrorCounter
1051 + fprfErrorCounter
1051 + iurfErrorCounter
1052 + iurfErrorCounter
1052 + housekeeping_packet.hk_lfr_ahb_correctable;
1053 + housekeeping_packet.hk_lfr_ahb_correctable;
1053
1054
1054 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1055 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1055
1056
1056 }
1057 }
General Comments 0
You need to be logged in to leave comments. Login now