##// END OF EJS Templates
Sync
paul -
r147:8abc460aa11b VHDLib206
parent child
Show More
@@ -1,273 +1,273
1 #############################################################################
1 #############################################################################
2 # Makefile for building: bin/fsw
2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Thu Jun 12 08:10:29 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Thu Jun 12 15:33:39 2014
4 # Project: fsw-qt.pro
4 # Project: fsw-qt.pro
5 # Template: app
5 # Template: app
6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 #############################################################################
7 #############################################################################
8
8
9 ####### Compiler, tools and options
9 ####### Compiler, tools and options
10
10
11 CC = sparc-rtems-gcc
11 CC = sparc-rtems-gcc
12 CXX = sparc-rtems-g++
12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=9 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=9 -DPRINT_MESSAGES_ON_CONSOLE
14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/LFR_basic-parameters
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/LFR_basic-parameters
17 LINK = sparc-rtems-g++
17 LINK = sparc-rtems-g++
18 LFLAGS =
18 LFLAGS =
19 LIBS = $(SUBLIBS)
19 LIBS = $(SUBLIBS)
20 AR = sparc-rtems-ar rcs
20 AR = sparc-rtems-ar rcs
21 RANLIB =
21 RANLIB =
22 QMAKE = /usr/bin/qmake-qt4
22 QMAKE = /usr/bin/qmake-qt4
23 TAR = tar -cf
23 TAR = tar -cf
24 COMPRESS = gzip -9f
24 COMPRESS = gzip -9f
25 COPY = cp -f
25 COPY = cp -f
26 SED = sed
26 SED = sed
27 COPY_FILE = $(COPY)
27 COPY_FILE = $(COPY)
28 COPY_DIR = $(COPY) -r
28 COPY_DIR = $(COPY) -r
29 STRIP = sparc-rtems-strip
29 STRIP = sparc-rtems-strip
30 INSTALL_FILE = install -m 644 -p
30 INSTALL_FILE = install -m 644 -p
31 INSTALL_DIR = $(COPY_DIR)
31 INSTALL_DIR = $(COPY_DIR)
32 INSTALL_PROGRAM = install -m 755 -p
32 INSTALL_PROGRAM = install -m 755 -p
33 DEL_FILE = rm -f
33 DEL_FILE = rm -f
34 SYMLINK = ln -f -s
34 SYMLINK = ln -f -s
35 DEL_DIR = rmdir
35 DEL_DIR = rmdir
36 MOVE = mv -f
36 MOVE = mv -f
37 CHK_DIR_EXISTS= test -d
37 CHK_DIR_EXISTS= test -d
38 MKDIR = mkdir -p
38 MKDIR = mkdir -p
39
39
40 ####### Output directory
40 ####### Output directory
41
41
42 OBJECTS_DIR = obj/
42 OBJECTS_DIR = obj/
43
43
44 ####### Files
44 ####### Files
45
45
46 SOURCES = ../src/wf_handler.c \
46 SOURCES = ../src/wf_handler.c \
47 ../src/tc_handler.c \
47 ../src/tc_handler.c \
48 ../src/fsw_misc.c \
48 ../src/fsw_misc.c \
49 ../src/fsw_init.c \
49 ../src/fsw_init.c \
50 ../src/fsw_globals.c \
50 ../src/fsw_globals.c \
51 ../src/fsw_spacewire.c \
51 ../src/fsw_spacewire.c \
52 ../src/tc_load_dump_parameters.c \
52 ../src/tc_load_dump_parameters.c \
53 ../src/tm_lfr_tc_exe.c \
53 ../src/tm_lfr_tc_exe.c \
54 ../src/tc_acceptance.c \
54 ../src/tc_acceptance.c \
55 ../src/processing/fsw_processing.c \
55 ../src/processing/fsw_processing.c \
56 ../src/processing/avf0_prc0.c \
56 ../src/processing/avf0_prc0.c \
57 ../src/processing/avf1_prc1.c \
57 ../src/processing/avf1_prc1.c \
58 ../src/processing/avf2_prc2.c \
58 ../src/processing/avf2_prc2.c \
59 ../src/lfr_cpu_usage_report.c \
59 ../src/lfr_cpu_usage_report.c \
60 ../src/LFR_basic-parameters/basic_parameters.c
60 ../src/LFR_basic-parameters/basic_parameters.c
61 OBJECTS = obj/wf_handler.o \
61 OBJECTS = obj/wf_handler.o \
62 obj/tc_handler.o \
62 obj/tc_handler.o \
63 obj/fsw_misc.o \
63 obj/fsw_misc.o \
64 obj/fsw_init.o \
64 obj/fsw_init.o \
65 obj/fsw_globals.o \
65 obj/fsw_globals.o \
66 obj/fsw_spacewire.o \
66 obj/fsw_spacewire.o \
67 obj/tc_load_dump_parameters.o \
67 obj/tc_load_dump_parameters.o \
68 obj/tm_lfr_tc_exe.o \
68 obj/tm_lfr_tc_exe.o \
69 obj/tc_acceptance.o \
69 obj/tc_acceptance.o \
70 obj/fsw_processing.o \
70 obj/fsw_processing.o \
71 obj/avf0_prc0.o \
71 obj/avf0_prc0.o \
72 obj/avf1_prc1.o \
72 obj/avf1_prc1.o \
73 obj/avf2_prc2.o \
73 obj/avf2_prc2.o \
74 obj/lfr_cpu_usage_report.o \
74 obj/lfr_cpu_usage_report.o \
75 obj/basic_parameters.o
75 obj/basic_parameters.o
76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
77 /usr/lib64/qt4/mkspecs/common/linux.conf \
77 /usr/lib64/qt4/mkspecs/common/linux.conf \
78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
82 /usr/lib64/qt4/mkspecs/qconfig.pri \
82 /usr/lib64/qt4/mkspecs/qconfig.pri \
83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
88 sparc.pri \
88 sparc.pri \
89 /usr/lib64/qt4/mkspecs/features/release.prf \
89 /usr/lib64/qt4/mkspecs/features/release.prf \
90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
91 /usr/lib64/qt4/mkspecs/features/shared.prf \
91 /usr/lib64/qt4/mkspecs/features/shared.prf \
92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
94 /usr/lib64/qt4/mkspecs/features/resources.prf \
94 /usr/lib64/qt4/mkspecs/features/resources.prf \
95 /usr/lib64/qt4/mkspecs/features/uic.prf \
95 /usr/lib64/qt4/mkspecs/features/uic.prf \
96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
97 /usr/lib64/qt4/mkspecs/features/lex.prf \
97 /usr/lib64/qt4/mkspecs/features/lex.prf \
98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
99 fsw-qt.pro
99 fsw-qt.pro
100 QMAKE_TARGET = fsw
100 QMAKE_TARGET = fsw
101 DESTDIR = bin/
101 DESTDIR = bin/
102 TARGET = bin/fsw
102 TARGET = bin/fsw
103
103
104 first: all
104 first: all
105 ####### Implicit rules
105 ####### Implicit rules
106
106
107 .SUFFIXES: .o .c .cpp .cc .cxx .C
107 .SUFFIXES: .o .c .cpp .cc .cxx .C
108
108
109 .cpp.o:
109 .cpp.o:
110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
111
111
112 .cc.o:
112 .cc.o:
113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
114
114
115 .cxx.o:
115 .cxx.o:
116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
117
117
118 .C.o:
118 .C.o:
119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
120
120
121 .c.o:
121 .c.o:
122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
123
123
124 ####### Build rules
124 ####### Build rules
125
125
126 all: Makefile $(TARGET)
126 all: Makefile $(TARGET)
127
127
128 $(TARGET): $(OBJECTS)
128 $(TARGET): $(OBJECTS)
129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
131
131
132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
133 /usr/lib64/qt4/mkspecs/common/linux.conf \
133 /usr/lib64/qt4/mkspecs/common/linux.conf \
134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
138 /usr/lib64/qt4/mkspecs/qconfig.pri \
138 /usr/lib64/qt4/mkspecs/qconfig.pri \
139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
144 sparc.pri \
144 sparc.pri \
145 /usr/lib64/qt4/mkspecs/features/release.prf \
145 /usr/lib64/qt4/mkspecs/features/release.prf \
146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
147 /usr/lib64/qt4/mkspecs/features/shared.prf \
147 /usr/lib64/qt4/mkspecs/features/shared.prf \
148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
150 /usr/lib64/qt4/mkspecs/features/resources.prf \
150 /usr/lib64/qt4/mkspecs/features/resources.prf \
151 /usr/lib64/qt4/mkspecs/features/uic.prf \
151 /usr/lib64/qt4/mkspecs/features/uic.prf \
152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
153 /usr/lib64/qt4/mkspecs/features/lex.prf \
153 /usr/lib64/qt4/mkspecs/features/lex.prf \
154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
156 /usr/lib64/qt4/mkspecs/common/unix.conf:
156 /usr/lib64/qt4/mkspecs/common/unix.conf:
157 /usr/lib64/qt4/mkspecs/common/linux.conf:
157 /usr/lib64/qt4/mkspecs/common/linux.conf:
158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
162 /usr/lib64/qt4/mkspecs/qconfig.pri:
162 /usr/lib64/qt4/mkspecs/qconfig.pri:
163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
168 sparc.pri:
168 sparc.pri:
169 /usr/lib64/qt4/mkspecs/features/release.prf:
169 /usr/lib64/qt4/mkspecs/features/release.prf:
170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
171 /usr/lib64/qt4/mkspecs/features/shared.prf:
171 /usr/lib64/qt4/mkspecs/features/shared.prf:
172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
174 /usr/lib64/qt4/mkspecs/features/resources.prf:
174 /usr/lib64/qt4/mkspecs/features/resources.prf:
175 /usr/lib64/qt4/mkspecs/features/uic.prf:
175 /usr/lib64/qt4/mkspecs/features/uic.prf:
176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
177 /usr/lib64/qt4/mkspecs/features/lex.prf:
177 /usr/lib64/qt4/mkspecs/features/lex.prf:
178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
179 qmake: FORCE
179 qmake: FORCE
180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
181
181
182 dist:
182 dist:
183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
185
185
186
186
187 clean:compiler_clean
187 clean:compiler_clean
188 -$(DEL_FILE) $(OBJECTS)
188 -$(DEL_FILE) $(OBJECTS)
189 -$(DEL_FILE) *~ core *.core
189 -$(DEL_FILE) *~ core *.core
190
190
191
191
192 ####### Sub-libraries
192 ####### Sub-libraries
193
193
194 distclean: clean
194 distclean: clean
195 -$(DEL_FILE) $(TARGET)
195 -$(DEL_FILE) $(TARGET)
196 -$(DEL_FILE) Makefile
196 -$(DEL_FILE) Makefile
197
197
198
198
199 grmon:
199 grmon:
200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
201
201
202 check: first
202 check: first
203
203
204 compiler_rcc_make_all:
204 compiler_rcc_make_all:
205 compiler_rcc_clean:
205 compiler_rcc_clean:
206 compiler_uic_make_all:
206 compiler_uic_make_all:
207 compiler_uic_clean:
207 compiler_uic_clean:
208 compiler_image_collection_make_all: qmake_image_collection.cpp
208 compiler_image_collection_make_all: qmake_image_collection.cpp
209 compiler_image_collection_clean:
209 compiler_image_collection_clean:
210 -$(DEL_FILE) qmake_image_collection.cpp
210 -$(DEL_FILE) qmake_image_collection.cpp
211 compiler_yacc_decl_make_all:
211 compiler_yacc_decl_make_all:
212 compiler_yacc_decl_clean:
212 compiler_yacc_decl_clean:
213 compiler_yacc_impl_make_all:
213 compiler_yacc_impl_make_all:
214 compiler_yacc_impl_clean:
214 compiler_yacc_impl_clean:
215 compiler_lex_make_all:
215 compiler_lex_make_all:
216 compiler_lex_clean:
216 compiler_lex_clean:
217 compiler_clean:
217 compiler_clean:
218
218
219 ####### Compile
219 ####### Compile
220
220
221 obj/wf_handler.o: ../src/wf_handler.c
221 obj/wf_handler.o: ../src/wf_handler.c
222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
223
223
224 obj/tc_handler.o: ../src/tc_handler.c
224 obj/tc_handler.o: ../src/tc_handler.c
225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
226
226
227 obj/fsw_misc.o: ../src/fsw_misc.c
227 obj/fsw_misc.o: ../src/fsw_misc.c
228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
229
229
230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
232
232
233 obj/fsw_globals.o: ../src/fsw_globals.c
233 obj/fsw_globals.o: ../src/fsw_globals.c
234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
235
235
236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
238
238
239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
241
241
242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
244
244
245 obj/tc_acceptance.o: ../src/tc_acceptance.c
245 obj/tc_acceptance.o: ../src/tc_acceptance.c
246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
247
247
248 obj/fsw_processing.o: ../src/processing/fsw_processing.c
248 obj/fsw_processing.o: ../src/processing/fsw_processing.c
249 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
249 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
250
250
251 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
251 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
252 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
252 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
253
253
254 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
254 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
255 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
255 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
256
256
257 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
257 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
259
259
260 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
260 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
261 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
261 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
262
262
263 obj/basic_parameters.o: ../src/LFR_basic-parameters/basic_parameters.c
263 obj/basic_parameters.o: ../src/LFR_basic-parameters/basic_parameters.c
264 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/LFR_basic-parameters/basic_parameters.c
264 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/LFR_basic-parameters/basic_parameters.c
265
265
266 ####### Install
266 ####### Install
267
267
268 install: FORCE
268 install: FORCE
269
269
270 uninstall: FORCE
270 uninstall: FORCE
271
271
272 FORCE:
272 FORCE:
273
273
@@ -1,578 +1,632
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "fsw_processing.h"
10 #include "fsw_processing.h"
11 #include "fsw_processing_globals.c"
11 #include "fsw_processing_globals.c"
12
12
13 unsigned int nb_sm_f0;
13 unsigned int nb_sm_f0;
14 unsigned int nb_sm_f0_aux_f1;
14 unsigned int nb_sm_f0_aux_f1;
15 unsigned int nb_sm_f1;
15 unsigned int nb_sm_f1;
16 unsigned int nb_sm_f0_aux_f2;
16 unsigned int nb_sm_f0_aux_f2;
17
17
18 //************************
18 //************************
19 // spectral matrices rings
19 // spectral matrices rings
20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 ring_node_sm *current_ring_node_sm_f0;
23 ring_node_sm *current_ring_node_sm_f0;
24 ring_node_sm *current_ring_node_sm_f1;
24 ring_node_sm *current_ring_node_sm_f1;
25 ring_node_sm *current_ring_node_sm_f2;
25 ring_node_sm *current_ring_node_sm_f2;
26 ring_node_sm *ring_node_for_averaging_sm_f0;
26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 ring_node_sm *ring_node_for_averaging_sm_f1;
27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 ring_node_sm *ring_node_for_averaging_sm_f2;
28 ring_node_sm *ring_node_for_averaging_sm_f2;
29
29
30 //***********************************************************
30 //***********************************************************
31 // Interrupt Service Routine for spectral matrices processing
31 // Interrupt Service Routine for spectral matrices processing
32
32
33 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
33 void spectral_matrices_isr_f0( void )
34 {
34 {
35 unsigned char status;
35 unsigned char status;
36 unsigned long long int time_0;
36 unsigned long long int time_0;
37 unsigned long long int time_1;
37 unsigned long long int time_1;
38 // STATUS REGISTER
39 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
40 // 10 9 8
41 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
42 // 7 6 5 4 3 2 1 0
43
38
44 //***
45 // F0
46 status = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
39 status = spectral_matrix_regs->status & 0x03; // [0011] get the status_ready_matrix_f0_x bits
40
47 switch(status)
41 switch(status)
48 {
42 {
49 case 0:
43 case 0:
50 break;
44 break;
51 case 3:
45 case 3:
52 time_0 = get_acquisition_time( (unsigned char *) spectral_matrix_regs->f0_0_coarse_time );
46 time_0 = get_acquisition_time( (unsigned char *) spectral_matrix_regs->f0_0_coarse_time );
53 time_1 = get_acquisition_time( (unsigned char *) spectral_matrix_regs->f0_1_coarse_time );
47 time_1 = get_acquisition_time( (unsigned char *) spectral_matrix_regs->f0_1_coarse_time );
54 if ( time_0 < time_1 )
48 if ( time_0 < time_1 )
55 {
49 {
56 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
50 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
57 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
51 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
58 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
52 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
59 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
53 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
60 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
54 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
61 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
55 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
62 }
56 }
63 else
57 else
64 {
58 {
65 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
59 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
66 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
60 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
67 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
61 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
68 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
62 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
69 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
63 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
70 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
64 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
71 }
65 }
72 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffc; // [1100]
66 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x03; // [0011]
73 break;
67 break;
74 case 1:
68 case 1:
75 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
69 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
76 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
70 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
77 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
71 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
78 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // [1110]
72 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x01; // [0001]
79 break;
73 break;
80 case 2:
74 case 2:
81 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
75 close_matrix_actions( &nb_sm_f0, NB_SM_BEFORE_AVF0, Task_id[TASKID_AVF0], ring_node_for_averaging_sm_f0, current_ring_node_sm_f0->previous);
82 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
76 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
83 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
77 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
84 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // [1101]
78 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x02; // [0010]
79 break;
80 }
81 }
82
83 void spectral_matrices_isr_f1( void )
84 {
85 unsigned char status;
86 unsigned long long int time_0;
87 unsigned long long int time_1;
88
89 status = (spectral_matrix_regs->status & 0x0c) >> 2; // [1100] get the status_ready_matrix_f0_x bits
90
91 switch(status)
92 {
93 case 0:
94 break;
95 case 3:
96 time_0 = get_acquisition_time( (unsigned char *) spectral_matrix_regs->f1_0_coarse_time );
97 time_1 = get_acquisition_time( (unsigned char *) spectral_matrix_regs->f1_1_coarse_time );
98 if ( time_0 < time_1 )
99 {
100 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1], ring_node_for_averaging_sm_f1, current_ring_node_sm_f1->previous);
101 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
102 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
103 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1], ring_node_for_averaging_sm_f1, current_ring_node_sm_f1->previous);
104 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
105 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
106 }
107 else
108 {
109 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1], ring_node_for_averaging_sm_f1, current_ring_node_sm_f1->previous);
110 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
111 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
112 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1], ring_node_for_averaging_sm_f1, current_ring_node_sm_f1->previous);
113 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
114 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
115 }
116 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x0c; // [1100]
117 break;
118 case 1:
119 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1], ring_node_for_averaging_sm_f1, current_ring_node_sm_f1->previous);
120 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
121 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
122 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x07; // [0100]
123 break;
124 case 2:
125 close_matrix_actions( &nb_sm_f1, NB_SM_BEFORE_AVF1, Task_id[TASKID_AVF1], ring_node_for_averaging_sm_f1, current_ring_node_sm_f1->previous);
126 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
127 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
128 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x08; // [1000]
129 break;
130 }
131 }
132
133 void spectral_matrices_isr_f2( void )
134 {
135 unsigned char status;
136
137 status = (spectral_matrix_regs->status & 0x30) >> 4; // [0011 0000] get the status_ready_matrix_f0_x bits
138
139 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
140
141 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
142
143 switch(status)
144 {
145 case 0:
146 case 3:
147 break;
148 case 1:
149 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
150 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x10; // [0001 0000]
151 break;
152 case 2:
153 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
154 spectral_matrix_regs->status = spectral_matrix_regs->status & 0x20; // [0010 0000]
85 break;
155 break;
86 }
156 }
87
157
88 //***
158 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
89 // F1
159 {
90 // if ( (spectral_matrix_regs->status & 0x4) == 0x04) // check the status_ready_matrix_f1 bit
160 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
91 // {
161 }
92 // nb_sm_f1 = nb_sm_f1 + 1;
162 }
93 // if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
163
94 // {
164 void spectral_matrix_isr_error_handler( void )
95 // ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
165 {
96 // current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
166 spectral_matrix_regs->status = 0x7c0; // [0111 1100 0000]
97 // spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
167 }
98 // if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
99 // {
100 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
101 // }
102 // nb_sm_f1 = 0;
103 // }
104 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffb; // 1011
105 // }
106
168
107 //***
169 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
108 // F2
170 {
109 // if ( (spectral_matrix_regs->status & 0x8) == 0x08) // check the status_ready_matrix_f2 bit
171 // STATUS REGISTER
110 // {
172 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
173 // 10 9 8
174 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
175 // 7 6 5 4 3 2 1 0
111
176
112 // ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
177 spectral_matrices_isr_f0();
113 // current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
178
114 // spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
179 spectral_matrices_isr_f1();
115 // if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
116 // {
117 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
118 // }
119 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff7; // 0111
120 // }
121
180
122 //************************
181 spectral_matrices_isr_f2();
123 // reset status error bits
124 // if ( (spectral_matrix_regs->status & 0x3e0) != 0x00) // [0011 1110 0000] check the status bits
125 // {
126 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
127 // spectral_matrix_regs->status = spectral_matrix_regs->status | 0xfffffc1f; // [1100 0001 1111]
128 // }
129
182
183 spectral_matrix_isr_error_handler();
130 }
184 }
131
185
132 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
186 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
133 {
187 {
134 //***
188 //***
135 // F0
189 // F0
136 nb_sm_f0 = nb_sm_f0 + 1;
190 nb_sm_f0 = nb_sm_f0 + 1;
137 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
191 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
138 {
192 {
139 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
193 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
140 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
194 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
141 {
195 {
142 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
196 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
143 }
197 }
144 nb_sm_f0 = 0;
198 nb_sm_f0 = 0;
145 }
199 }
146
200
147 //***
201 //***
148 // F1
202 // F1
149 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
203 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
150 if (nb_sm_f0_aux_f1 == 6)
204 if (nb_sm_f0_aux_f1 == 6)
151 {
205 {
152 nb_sm_f0_aux_f1 = 0;
206 nb_sm_f0_aux_f1 = 0;
153 nb_sm_f1 = nb_sm_f1 + 1;
207 nb_sm_f1 = nb_sm_f1 + 1;
154 }
208 }
155 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
209 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
156 {
210 {
157 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
211 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
158 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
212 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
159 {
213 {
160 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
214 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
161 }
215 }
162 nb_sm_f1 = 0;
216 nb_sm_f1 = 0;
163 }
217 }
164
218
165 //***
219 //***
166 // F2
220 // F2
167 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
221 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
168 if (nb_sm_f0_aux_f2 == 96)
222 if (nb_sm_f0_aux_f2 == 96)
169 {
223 {
170 nb_sm_f0_aux_f2 = 0;
224 nb_sm_f0_aux_f2 = 0;
171 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
225 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
172 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
226 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
173 {
227 {
174 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
228 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
175 }
229 }
176 }
230 }
177 }
231 }
178
232
179 //******************
233 //******************
180 // Spectral Matrices
234 // Spectral Matrices
181
235
182 void reset_nb_sm( void )
236 void reset_nb_sm( void )
183 {
237 {
184 nb_sm_f0 = 0;
238 nb_sm_f0 = 0;
185 nb_sm_f0_aux_f1 = 0;
239 nb_sm_f0_aux_f1 = 0;
186 nb_sm_f0_aux_f2 = 0;
240 nb_sm_f0_aux_f2 = 0;
187
241
188 nb_sm_f1 = 0;
242 nb_sm_f1 = 0;
189 }
243 }
190
244
191 void SM_init_rings( void )
245 void SM_init_rings( void )
192 {
246 {
193 unsigned char i;
247 unsigned char i;
194
248
195 // F0 RING
249 // F0 RING
196 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
250 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
197 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
251 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
198 sm_ring_f0[0].buffer_address =
252 sm_ring_f0[0].buffer_address =
199 (int) &sm_f0[ 0 ];
253 (int) &sm_f0[ 0 ];
200
254
201 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
255 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
202 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
256 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
203 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
257 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
204 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
258 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
205
259
206 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
260 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
207 {
261 {
208 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
262 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
209 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
263 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
210 sm_ring_f0[i].buffer_address =
264 sm_ring_f0[i].buffer_address =
211 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
265 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
212 }
266 }
213
267
214 // F1 RING
268 // F1 RING
215 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
269 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
216 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
270 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
217 sm_ring_f1[0].buffer_address =
271 sm_ring_f1[0].buffer_address =
218 (int) &sm_f1[ 0 ];
272 (int) &sm_f1[ 0 ];
219
273
220 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
274 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
221 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
275 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
222 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
276 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
223 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
277 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
224
278
225 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
279 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
226 {
280 {
227 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
281 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
228 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
282 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
229 sm_ring_f1[i].buffer_address =
283 sm_ring_f1[i].buffer_address =
230 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
284 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
231 }
285 }
232
286
233 // F2 RING
287 // F2 RING
234 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
288 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
235 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
289 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
236 sm_ring_f2[0].buffer_address =
290 sm_ring_f2[0].buffer_address =
237 (int) &sm_f2[ 0 ];
291 (int) &sm_f2[ 0 ];
238
292
239 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
293 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
240 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
294 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
241 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
295 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
242 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
296 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
243
297
244 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
298 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
245 {
299 {
246 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
300 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
247 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
301 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
248 sm_ring_f2[i].buffer_address =
302 sm_ring_f2[i].buffer_address =
249 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
303 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
250 }
304 }
251
305
252 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
306 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
253 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
307 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
254 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
308 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
255
309
256 spectral_matrix_regs->f0_0_address = sm_ring_f0[0].buffer_address;
310 spectral_matrix_regs->f0_0_address = sm_ring_f0[0].buffer_address;
257 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->f0_0_address)
311 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->f0_0_address)
258 }
312 }
259
313
260 void SM_generic_init_ring( ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] )
314 void SM_generic_init_ring( ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] )
261 {
315 {
262 unsigned char i;
316 unsigned char i;
263
317
264 //***************
318 //***************
265 // BUFFER ADDRESS
319 // BUFFER ADDRESS
266 for(i=0; i<nbNodes; i++)
320 for(i=0; i<nbNodes; i++)
267 {
321 {
268 ring[ i ].buffer_address = (int) &sm_f[ i * TOTAL_SIZE_SM ];
322 ring[ i ].buffer_address = (int) &sm_f[ i * TOTAL_SIZE_SM ];
269 }
323 }
270
324
271 //*****
325 //*****
272 // NEXT
326 // NEXT
273 ring[ nbNodes - 1 ].next = (ring_node_sm*) &ring[ 0 ];
327 ring[ nbNodes - 1 ].next = (ring_node_sm*) &ring[ 0 ];
274 for(i=0; i<nbNodes-1; i++)
328 for(i=0; i<nbNodes-1; i++)
275 {
329 {
276 ring[ i ].next = (ring_node_sm*) &ring[ i + 1 ];
330 ring[ i ].next = (ring_node_sm*) &ring[ i + 1 ];
277 }
331 }
278
332
279 //*********
333 //*********
280 // PREVIOUS
334 // PREVIOUS
281 ring[ 0 ].previous = (ring_node_sm*) &ring[ nbNodes -1 ];
335 ring[ 0 ].previous = (ring_node_sm*) &ring[ nbNodes -1 ];
282 for(i=1; i<nbNodes; i++)
336 for(i=1; i<nbNodes; i++)
283 {
337 {
284 ring[ i ].previous = (ring_node_sm*) &ring[ i - 1 ];
338 ring[ i ].previous = (ring_node_sm*) &ring[ i - 1 ];
285 }
339 }
286 }
340 }
287
341
288 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
342 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
289 {
343 {
290 unsigned char i;
344 unsigned char i;
291
345
292 ring[ nbNodes - 1 ].next
346 ring[ nbNodes - 1 ].next
293 = (ring_node_asm*) &ring[ 0 ];
347 = (ring_node_asm*) &ring[ 0 ];
294
348
295 for(i=0; i<nbNodes-1; i++)
349 for(i=0; i<nbNodes-1; i++)
296 {
350 {
297 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
351 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
298 }
352 }
299 }
353 }
300
354
301 void SM_reset_current_ring_nodes( void )
355 void SM_reset_current_ring_nodes( void )
302 {
356 {
303 current_ring_node_sm_f0 = sm_ring_f0[0].next;
357 current_ring_node_sm_f0 = sm_ring_f0[0].next;
304 current_ring_node_sm_f1 = sm_ring_f1[0].next;
358 current_ring_node_sm_f1 = sm_ring_f1[0].next;
305 current_ring_node_sm_f2 = sm_ring_f2[0].next;
359 current_ring_node_sm_f2 = sm_ring_f2[0].next;
306
360
307 ring_node_for_averaging_sm_f0 = sm_ring_f0;
361 ring_node_for_averaging_sm_f0 = sm_ring_f0;
308 ring_node_for_averaging_sm_f1 = sm_ring_f1;
362 ring_node_for_averaging_sm_f1 = sm_ring_f1;
309 ring_node_for_averaging_sm_f2 = sm_ring_f2;
363 ring_node_for_averaging_sm_f2 = sm_ring_f2;
310 }
364 }
311
365
312 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
366 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
313 {
367 {
314 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
368 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
315 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
369 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
316 header->reserved = 0x00;
370 header->reserved = 0x00;
317 header->userApplication = CCSDS_USER_APP;
371 header->userApplication = CCSDS_USER_APP;
318 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
372 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
319 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
373 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
320 header->packetSequenceControl[0] = 0xc0;
374 header->packetSequenceControl[0] = 0xc0;
321 header->packetSequenceControl[1] = 0x00;
375 header->packetSequenceControl[1] = 0x00;
322 header->packetLength[0] = 0x00;
376 header->packetLength[0] = 0x00;
323 header->packetLength[1] = 0x00;
377 header->packetLength[1] = 0x00;
324 // DATA FIELD HEADER
378 // DATA FIELD HEADER
325 header->spare1_pusVersion_spare2 = 0x10;
379 header->spare1_pusVersion_spare2 = 0x10;
326 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
380 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
327 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
381 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
328 header->destinationID = TM_DESTINATION_ID_GROUND;
382 header->destinationID = TM_DESTINATION_ID_GROUND;
329 // AUXILIARY DATA HEADER
383 // AUXILIARY DATA HEADER
330 header->sid = 0x00;
384 header->sid = 0x00;
331 header->biaStatusInfo = 0x00;
385 header->biaStatusInfo = 0x00;
332 header->pa_lfr_pkt_cnt_asm = 0x00;
386 header->pa_lfr_pkt_cnt_asm = 0x00;
333 header->pa_lfr_pkt_nr_asm = 0x00;
387 header->pa_lfr_pkt_nr_asm = 0x00;
334 header->time[0] = 0x00;
388 header->time[0] = 0x00;
335 header->time[0] = 0x00;
389 header->time[0] = 0x00;
336 header->time[0] = 0x00;
390 header->time[0] = 0x00;
337 header->time[0] = 0x00;
391 header->time[0] = 0x00;
338 header->time[0] = 0x00;
392 header->time[0] = 0x00;
339 header->time[0] = 0x00;
393 header->time[0] = 0x00;
340 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
394 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
341 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
395 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
342 }
396 }
343
397
344 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
398 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
345 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
399 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
346 {
400 {
347 unsigned int i;
401 unsigned int i;
348 unsigned int length = 0;
402 unsigned int length = 0;
349 rtems_status_code status;
403 rtems_status_code status;
350
404
351 for (i=0; i<2; i++)
405 for (i=0; i<2; i++)
352 {
406 {
353 // (1) BUILD THE DATA
407 // (1) BUILD THE DATA
354 switch(sid)
408 switch(sid)
355 {
409 {
356 case SID_NORM_ASM_F0:
410 case SID_NORM_ASM_F0:
357 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
411 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
358 spw_ioctl_send->data = &spectral_matrix[
412 spw_ioctl_send->data = &spectral_matrix[
359 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
413 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
360 ];
414 ];
361 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
415 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
362 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
416 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
363 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
417 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
364 break;
418 break;
365 case SID_NORM_ASM_F1:
419 case SID_NORM_ASM_F1:
366 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
420 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
367 spw_ioctl_send->data = &spectral_matrix[
421 spw_ioctl_send->data = &spectral_matrix[
368 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
422 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
369 ];
423 ];
370 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
424 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
371 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
425 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
372 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
426 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
373 break;
427 break;
374 case SID_NORM_ASM_F2:
428 case SID_NORM_ASM_F2:
375 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
429 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
376 spw_ioctl_send->data = &spectral_matrix[
430 spw_ioctl_send->data = &spectral_matrix[
377 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
431 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
378 ];
432 ];
379 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
433 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
380 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
434 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
381 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
435 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
382 break;
436 break;
383 default:
437 default:
384 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
438 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
385 break;
439 break;
386 }
440 }
387 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
441 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
388 spw_ioctl_send->hdr = (char *) header;
442 spw_ioctl_send->hdr = (char *) header;
389 spw_ioctl_send->options = 0;
443 spw_ioctl_send->options = 0;
390
444
391 // (2) BUILD THE HEADER
445 // (2) BUILD THE HEADER
392 increment_seq_counter_source_id( header->packetSequenceControl, sid );
446 increment_seq_counter_source_id( header->packetSequenceControl, sid );
393 header->packetLength[0] = (unsigned char) (length>>8);
447 header->packetLength[0] = (unsigned char) (length>>8);
394 header->packetLength[1] = (unsigned char) (length);
448 header->packetLength[1] = (unsigned char) (length);
395 header->sid = (unsigned char) sid; // SID
449 header->sid = (unsigned char) sid; // SID
396 header->pa_lfr_pkt_cnt_asm = 2;
450 header->pa_lfr_pkt_cnt_asm = 2;
397 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
451 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
398
452
399 // (3) SET PACKET TIME
453 // (3) SET PACKET TIME
400 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
454 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
401 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
455 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
402 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
456 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
403 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
457 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
404 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
458 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
405 header->time[5] = (unsigned char) (time_management_regs->fine_time);
459 header->time[5] = (unsigned char) (time_management_regs->fine_time);
406 //
460 //
407 header->acquisitionTime[0] = header->time[0];
461 header->acquisitionTime[0] = header->time[0];
408 header->acquisitionTime[1] = header->time[1];
462 header->acquisitionTime[1] = header->time[1];
409 header->acquisitionTime[2] = header->time[2];
463 header->acquisitionTime[2] = header->time[2];
410 header->acquisitionTime[3] = header->time[3];
464 header->acquisitionTime[3] = header->time[3];
411 header->acquisitionTime[4] = header->time[4];
465 header->acquisitionTime[4] = header->time[4];
412 header->acquisitionTime[5] = header->time[5];
466 header->acquisitionTime[5] = header->time[5];
413
467
414 // (4) SEND PACKET
468 // (4) SEND PACKET
415 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
469 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
416 if (status != RTEMS_SUCCESSFUL) {
470 if (status != RTEMS_SUCCESSFUL) {
417 printf("in ASM_send *** ERR %d\n", (int) status);
471 printf("in ASM_send *** ERR %d\n", (int) status);
418 }
472 }
419 }
473 }
420 }
474 }
421
475
422 //*****************
476 //*****************
423 // Basic Parameters
477 // Basic Parameters
424
478
425 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
479 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
426 unsigned int apid, unsigned char sid,
480 unsigned int apid, unsigned char sid,
427 unsigned int packetLength, unsigned char blkNr )
481 unsigned int packetLength, unsigned char blkNr )
428 {
482 {
429 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
483 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
430 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
484 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
431 header->reserved = 0x00;
485 header->reserved = 0x00;
432 header->userApplication = CCSDS_USER_APP;
486 header->userApplication = CCSDS_USER_APP;
433 header->packetID[0] = (unsigned char) (apid >> 8);
487 header->packetID[0] = (unsigned char) (apid >> 8);
434 header->packetID[1] = (unsigned char) (apid);
488 header->packetID[1] = (unsigned char) (apid);
435 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
489 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
436 header->packetSequenceControl[1] = 0x00;
490 header->packetSequenceControl[1] = 0x00;
437 header->packetLength[0] = (unsigned char) (packetLength >> 8);
491 header->packetLength[0] = (unsigned char) (packetLength >> 8);
438 header->packetLength[1] = (unsigned char) (packetLength);
492 header->packetLength[1] = (unsigned char) (packetLength);
439 // DATA FIELD HEADER
493 // DATA FIELD HEADER
440 header->spare1_pusVersion_spare2 = 0x10;
494 header->spare1_pusVersion_spare2 = 0x10;
441 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
495 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
442 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
496 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
443 header->destinationID = TM_DESTINATION_ID_GROUND;
497 header->destinationID = TM_DESTINATION_ID_GROUND;
444 // AUXILIARY DATA HEADER
498 // AUXILIARY DATA HEADER
445 header->sid = sid;
499 header->sid = sid;
446 header->biaStatusInfo = 0x00;
500 header->biaStatusInfo = 0x00;
447 header->time[0] = 0x00;
501 header->time[0] = 0x00;
448 header->time[0] = 0x00;
502 header->time[0] = 0x00;
449 header->time[0] = 0x00;
503 header->time[0] = 0x00;
450 header->time[0] = 0x00;
504 header->time[0] = 0x00;
451 header->time[0] = 0x00;
505 header->time[0] = 0x00;
452 header->time[0] = 0x00;
506 header->time[0] = 0x00;
453 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
507 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
454 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
508 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
455 }
509 }
456
510
457 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
511 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
458 unsigned int apid, unsigned char sid,
512 unsigned int apid, unsigned char sid,
459 unsigned int packetLength , unsigned char blkNr)
513 unsigned int packetLength , unsigned char blkNr)
460 {
514 {
461 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
515 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
462 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
516 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
463 header->reserved = 0x00;
517 header->reserved = 0x00;
464 header->userApplication = CCSDS_USER_APP;
518 header->userApplication = CCSDS_USER_APP;
465 header->packetID[0] = (unsigned char) (apid >> 8);
519 header->packetID[0] = (unsigned char) (apid >> 8);
466 header->packetID[1] = (unsigned char) (apid);
520 header->packetID[1] = (unsigned char) (apid);
467 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
521 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
468 header->packetSequenceControl[1] = 0x00;
522 header->packetSequenceControl[1] = 0x00;
469 header->packetLength[0] = (unsigned char) (packetLength >> 8);
523 header->packetLength[0] = (unsigned char) (packetLength >> 8);
470 header->packetLength[1] = (unsigned char) (packetLength);
524 header->packetLength[1] = (unsigned char) (packetLength);
471 // DATA FIELD HEADER
525 // DATA FIELD HEADER
472 header->spare1_pusVersion_spare2 = 0x10;
526 header->spare1_pusVersion_spare2 = 0x10;
473 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
527 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
474 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
528 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
475 header->destinationID = TM_DESTINATION_ID_GROUND;
529 header->destinationID = TM_DESTINATION_ID_GROUND;
476 // AUXILIARY DATA HEADER
530 // AUXILIARY DATA HEADER
477 header->sid = sid;
531 header->sid = sid;
478 header->biaStatusInfo = 0x00;
532 header->biaStatusInfo = 0x00;
479 header->time[0] = 0x00;
533 header->time[0] = 0x00;
480 header->time[0] = 0x00;
534 header->time[0] = 0x00;
481 header->time[0] = 0x00;
535 header->time[0] = 0x00;
482 header->time[0] = 0x00;
536 header->time[0] = 0x00;
483 header->time[0] = 0x00;
537 header->time[0] = 0x00;
484 header->time[0] = 0x00;
538 header->time[0] = 0x00;
485 header->source_data_spare = 0x00;
539 header->source_data_spare = 0x00;
486 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
540 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
487 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
541 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
488 }
542 }
489
543
490 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
544 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
491 {
545 {
492 rtems_status_code status;
546 rtems_status_code status;
493
547
494 // SET THE SEQUENCE_CNT PARAMETER
548 // SET THE SEQUENCE_CNT PARAMETER
495 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
549 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
496 // SEND PACKET
550 // SEND PACKET
497 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
551 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
498 if (status != RTEMS_SUCCESSFUL)
552 if (status != RTEMS_SUCCESSFUL)
499 {
553 {
500 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
554 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
501 }
555 }
502 }
556 }
503
557
504 //******************
558 //******************
505 // general functions
559 // general functions
506
560
507 void reset_spectral_matrix_regs( void )
561 void reset_spectral_matrix_regs( void )
508 {
562 {
509 /** This function resets the spectral matrices module registers.
563 /** This function resets the spectral matrices module registers.
510 *
564 *
511 * The registers affected by this function are located at the following offset addresses:
565 * The registers affected by this function are located at the following offset addresses:
512 *
566 *
513 * - 0x00 config
567 * - 0x00 config
514 * - 0x04 status
568 * - 0x04 status
515 * - 0x08 matrixF0_Address0
569 * - 0x08 matrixF0_Address0
516 * - 0x10 matrixFO_Address1
570 * - 0x10 matrixFO_Address1
517 * - 0x14 matrixF1_Address
571 * - 0x14 matrixF1_Address
518 * - 0x18 matrixF2_Address
572 * - 0x18 matrixF2_Address
519 *
573 *
520 */
574 */
521
575
522 spectral_matrix_regs->config = 0x00;
576 spectral_matrix_regs->config = 0x00;
523 spectral_matrix_regs->status = 0x00;
577 spectral_matrix_regs->status = 0x00;
524
578
525 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
579 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
526 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
580 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
527 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
581 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
528 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
582 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
529 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
583 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
530 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
584 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
531 }
585 }
532
586
533 void set_time( unsigned char *time, unsigned char * timeInBuffer )
587 void set_time( unsigned char *time, unsigned char * timeInBuffer )
534 {
588 {
535 // time[0] = timeInBuffer[2];
589 // time[0] = timeInBuffer[2];
536 // time[1] = timeInBuffer[3];
590 // time[1] = timeInBuffer[3];
537 // time[2] = timeInBuffer[0];
591 // time[2] = timeInBuffer[0];
538 // time[3] = timeInBuffer[1];
592 // time[3] = timeInBuffer[1];
539 // time[4] = timeInBuffer[6];
593 // time[4] = timeInBuffer[6];
540 // time[5] = timeInBuffer[7];
594 // time[5] = timeInBuffer[7];
541
595
542 time[0] = timeInBuffer[0];
596 time[0] = timeInBuffer[0];
543 time[1] = timeInBuffer[1];
597 time[1] = timeInBuffer[1];
544 time[2] = timeInBuffer[2];
598 time[2] = timeInBuffer[2];
545 time[3] = timeInBuffer[3];
599 time[3] = timeInBuffer[3];
546 time[4] = timeInBuffer[6];
600 time[4] = timeInBuffer[6];
547 time[5] = timeInBuffer[7];
601 time[5] = timeInBuffer[7];
548 }
602 }
549
603
550 unsigned long long int get_acquisition_time( unsigned char *timePtr )
604 unsigned long long int get_acquisition_time( unsigned char *timePtr )
551 {
605 {
552 unsigned long long int acquisitionTimeAslong;
606 unsigned long long int acquisitionTimeAslong;
553 acquisitionTimeAslong = 0x00;
607 acquisitionTimeAslong = 0x00;
554 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
608 acquisitionTimeAslong = ( (unsigned long long int) (timePtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
555 + ( (unsigned long long int) timePtr[1] << 32 )
609 + ( (unsigned long long int) timePtr[1] << 32 )
556 + ( timePtr[2] << 24 )
610 + ( timePtr[2] << 24 )
557 + ( timePtr[3] << 16 )
611 + ( timePtr[3] << 16 )
558 + ( timePtr[4] << 8 )
612 + ( timePtr[4] << 8 )
559 + ( timePtr[5] );
613 + ( timePtr[5] );
560 return acquisitionTimeAslong;
614 return acquisitionTimeAslong;
561 }
615 }
562
616
563 void close_matrix_actions( unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
617 void close_matrix_actions( unsigned int *nb_sm, unsigned int nb_sm_before_avf, rtems_id task_id,
564 ring_node_sm *node_for_averaging, ring_node_sm *ringNode )
618 ring_node_sm *node_for_averaging, ring_node_sm *ringNode )
565 {
619 {
566 *nb_sm = *nb_sm + 1;
620 *nb_sm = *nb_sm + 1;
567 if (*nb_sm == nb_sm_before_avf)
621 if (*nb_sm == nb_sm_before_avf)
568 {
622 {
569 node_for_averaging = ringNode;
623 node_for_averaging = ringNode;
570 if (rtems_event_send( task_id, RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
624 if (rtems_event_send( task_id, RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
571 {
625 {
572 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
626 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
573 }
627 }
574 *nb_sm = 0;
628 *nb_sm = 0;
575 }
629 }
576 }
630 }
577
631
578
632
@@ -1,949 +1,949
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14
14
15 //***********
15 //***********
16 // RTEMS TASK
16 // RTEMS TASK
17
17
18 rtems_task actn_task( rtems_task_argument unused )
18 rtems_task actn_task( rtems_task_argument unused )
19 {
19 {
20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 *
21 *
22 * @param unused is the starting argument of the RTEMS task
22 * @param unused is the starting argument of the RTEMS task
23 *
23 *
24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * on the incoming TeleCommand.
25 * on the incoming TeleCommand.
26 *
26 *
27 */
27 */
28
28
29 int result;
29 int result;
30 rtems_status_code status; // RTEMS status code
30 rtems_status_code status; // RTEMS status code
31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 size_t size; // size of the incoming TC packet
32 size_t size; // size of the incoming TC packet
33 unsigned char subtype; // subtype of the current TC packet
33 unsigned char subtype; // subtype of the current TC packet
34 unsigned char time[6];
34 unsigned char time[6];
35 rtems_id queue_rcv_id;
35 rtems_id queue_rcv_id;
36 rtems_id queue_snd_id;
36 rtems_id queue_snd_id;
37
37
38 status = get_message_queue_id_recv( &queue_rcv_id );
38 status = get_message_queue_id_recv( &queue_rcv_id );
39 if (status != RTEMS_SUCCESSFUL)
39 if (status != RTEMS_SUCCESSFUL)
40 {
40 {
41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 }
42 }
43
43
44 status = get_message_queue_id_send( &queue_snd_id );
44 status = get_message_queue_id_send( &queue_snd_id );
45 if (status != RTEMS_SUCCESSFUL)
45 if (status != RTEMS_SUCCESSFUL)
46 {
46 {
47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 }
48 }
49
49
50 result = LFR_SUCCESSFUL;
50 result = LFR_SUCCESSFUL;
51 subtype = 0; // subtype of the current TC packet
51 subtype = 0; // subtype of the current TC packet
52
52
53 BOOT_PRINTF("in ACTN *** \n")
53 BOOT_PRINTF("in ACTN *** \n")
54
54
55 while(1)
55 while(1)
56 {
56 {
57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 getTime( time ); // set time to the current time
59 getTime( time ); // set time to the current time
60 if (status!=RTEMS_SUCCESSFUL)
60 if (status!=RTEMS_SUCCESSFUL)
61 {
61 {
62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 }
63 }
64 else
64 else
65 {
65 {
66 subtype = TC.serviceSubType;
66 subtype = TC.serviceSubType;
67 switch(subtype)
67 switch(subtype)
68 {
68 {
69 case TC_SUBTYPE_RESET:
69 case TC_SUBTYPE_RESET:
70 result = action_reset( &TC, queue_snd_id, time );
70 result = action_reset( &TC, queue_snd_id, time );
71 close_action( &TC, result, queue_snd_id );
71 close_action( &TC, result, queue_snd_id );
72 break;
72 break;
73 //
73 //
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 //
78 //
79 case TC_SUBTYPE_LOAD_NORM:
79 case TC_SUBTYPE_LOAD_NORM:
80 result = action_load_normal_par( &TC, queue_snd_id, time );
80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 close_action( &TC, result, queue_snd_id );
81 close_action( &TC, result, queue_snd_id );
82 break;
82 break;
83 //
83 //
84 case TC_SUBTYPE_LOAD_BURST:
84 case TC_SUBTYPE_LOAD_BURST:
85 result = action_load_burst_par( &TC, queue_snd_id, time );
85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 close_action( &TC, result, queue_snd_id );
86 close_action( &TC, result, queue_snd_id );
87 break;
87 break;
88 //
88 //
89 case TC_SUBTYPE_LOAD_SBM1:
89 case TC_SUBTYPE_LOAD_SBM1:
90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 close_action( &TC, result, queue_snd_id );
91 close_action( &TC, result, queue_snd_id );
92 break;
92 break;
93 //
93 //
94 case TC_SUBTYPE_LOAD_SBM2:
94 case TC_SUBTYPE_LOAD_SBM2:
95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 //
98 //
99 case TC_SUBTYPE_DUMP:
99 case TC_SUBTYPE_DUMP:
100 result = action_dump_par( queue_snd_id );
100 result = action_dump_par( queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
102 break;
102 break;
103 //
103 //
104 case TC_SUBTYPE_ENTER:
104 case TC_SUBTYPE_ENTER:
105 result = action_enter_mode( &TC, queue_snd_id );
105 result = action_enter_mode( &TC, queue_snd_id );
106 close_action( &TC, result, queue_snd_id );
106 close_action( &TC, result, queue_snd_id );
107 break;
107 break;
108 //
108 //
109 case TC_SUBTYPE_UPDT_INFO:
109 case TC_SUBTYPE_UPDT_INFO:
110 result = action_update_info( &TC, queue_snd_id );
110 result = action_update_info( &TC, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
112 break;
112 break;
113 //
113 //
114 case TC_SUBTYPE_EN_CAL:
114 case TC_SUBTYPE_EN_CAL:
115 result = action_enable_calibration( &TC, queue_snd_id, time );
115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 //
118 //
119 case TC_SUBTYPE_DIS_CAL:
119 case TC_SUBTYPE_DIS_CAL:
120 result = action_disable_calibration( &TC, queue_snd_id, time );
120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
121 close_action( &TC, result, queue_snd_id );
122 break;
122 break;
123 //
123 //
124 case TC_SUBTYPE_UPDT_TIME:
124 case TC_SUBTYPE_UPDT_TIME:
125 result = action_update_time( &TC );
125 result = action_update_time( &TC );
126 close_action( &TC, result, queue_snd_id );
126 close_action( &TC, result, queue_snd_id );
127 break;
127 break;
128 //
128 //
129 default:
129 default:
130 break;
130 break;
131 }
131 }
132 }
132 }
133 }
133 }
134 }
134 }
135
135
136 //***********
136 //***********
137 // TC ACTIONS
137 // TC ACTIONS
138
138
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 {
140 {
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 *
142 *
143 * @param TC points to the TeleCommand packet that is being processed
143 * @param TC points to the TeleCommand packet that is being processed
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 *
145 *
146 */
146 */
147
147
148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 return LFR_DEFAULT;
149 return LFR_DEFAULT;
150 }
150 }
151
151
152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 {
153 {
154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 *
155 *
156 * @param TC points to the TeleCommand packet that is being processed
156 * @param TC points to the TeleCommand packet that is being processed
157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 *
158 *
159 */
159 */
160
160
161 rtems_status_code status;
161 rtems_status_code status;
162 unsigned char requestedMode;
162 unsigned char requestedMode;
163 unsigned int *transitionCoarseTime_ptr;
163 unsigned int *transitionCoarseTime_ptr;
164 unsigned int transitionCoarseTime;
164 unsigned int transitionCoarseTime;
165 unsigned char * bytePosPtr;
165 unsigned char * bytePosPtr;
166
166
167 bytePosPtr = (unsigned char *) &TC->packetID;
167 bytePosPtr = (unsigned char *) &TC->packetID;
168
168
169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172
172
173 status = check_mode_value( requestedMode );
173 status = check_mode_value( requestedMode );
174
174
175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 {
176 {
177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 }
178 }
179 else // the mode value is consistent, check the transition
179 else // the mode value is consistent, check the transition
180 {
180 {
181 status = check_mode_transition(requestedMode);
181 status = check_mode_transition(requestedMode);
182 if (status != LFR_SUCCESSFUL)
182 if (status != LFR_SUCCESSFUL)
183 {
183 {
184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 }
186 }
187 }
187 }
188
188
189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 {
190 {
191 status = check_transition_date( transitionCoarseTime );
191 status = check_transition_date( transitionCoarseTime );
192 if (status != LFR_SUCCESSFUL)
192 if (status != LFR_SUCCESSFUL)
193 {
193 {
194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 }
198 }
199 }
199 }
200
200
201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 {
202 {
203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 status = enter_mode( requestedMode, transitionCoarseTime );
204 status = enter_mode( requestedMode, transitionCoarseTime );
205 }
205 }
206
206
207 return status;
207 return status;
208 }
208 }
209
209
210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 {
211 {
212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 *
213 *
214 * @param TC points to the TeleCommand packet that is being processed
214 * @param TC points to the TeleCommand packet that is being processed
215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 *
216 *
217 * @return LFR directive status code:
217 * @return LFR directive status code:
218 * - LFR_DEFAULT
218 * - LFR_DEFAULT
219 * - LFR_SUCCESSFUL
219 * - LFR_SUCCESSFUL
220 *
220 *
221 */
221 */
222
222
223 unsigned int val;
223 unsigned int val;
224 int result;
224 int result;
225 unsigned int status;
225 unsigned int status;
226 unsigned char mode;
226 unsigned char mode;
227 unsigned char * bytePosPtr;
227 unsigned char * bytePosPtr;
228
228
229 bytePosPtr = (unsigned char *) &TC->packetID;
229 bytePosPtr = (unsigned char *) &TC->packetID;
230
230
231 // check LFR mode
231 // check LFR mode
232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 status = check_update_info_hk_lfr_mode( mode );
233 status = check_update_info_hk_lfr_mode( mode );
234 if (status == LFR_SUCCESSFUL) // check TDS mode
234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 {
235 {
236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 status = check_update_info_hk_tds_mode( mode );
237 status = check_update_info_hk_tds_mode( mode );
238 }
238 }
239 if (status == LFR_SUCCESSFUL) // check THR mode
239 if (status == LFR_SUCCESSFUL) // check THR mode
240 {
240 {
241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 status = check_update_info_hk_thr_mode( mode );
242 status = check_update_info_hk_thr_mode( mode );
243 }
243 }
244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 {
245 {
246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 val++;
248 val++;
249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 }
251 }
252
252
253 result = status;
253 result = status;
254
254
255 return result;
255 return result;
256 }
256 }
257
257
258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 {
259 {
260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 *
261 *
262 * @param TC points to the TeleCommand packet that is being processed
262 * @param TC points to the TeleCommand packet that is being processed
263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 *
264 *
265 */
265 */
266
266
267 int result;
267 int result;
268 unsigned char lfrMode;
268 unsigned char lfrMode;
269
269
270 result = LFR_DEFAULT;
270 result = LFR_DEFAULT;
271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272
272
273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 result = LFR_DEFAULT;
274 result = LFR_DEFAULT;
275
275
276 return result;
276 return result;
277 }
277 }
278
278
279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 {
280 {
281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 *
282 *
283 * @param TC points to the TeleCommand packet that is being processed
283 * @param TC points to the TeleCommand packet that is being processed
284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 *
285 *
286 */
286 */
287
287
288 int result;
288 int result;
289 unsigned char lfrMode;
289 unsigned char lfrMode;
290
290
291 result = LFR_DEFAULT;
291 result = LFR_DEFAULT;
292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293
293
294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 result = LFR_DEFAULT;
295 result = LFR_DEFAULT;
296
296
297 return result;
297 return result;
298 }
298 }
299
299
300 int action_update_time(ccsdsTelecommandPacket_t *TC)
300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 {
301 {
302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 *
303 *
304 * @param TC points to the TeleCommand packet that is being processed
304 * @param TC points to the TeleCommand packet that is being processed
305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 *
306 *
307 * @return LFR_SUCCESSFUL
307 * @return LFR_SUCCESSFUL
308 *
308 *
309 */
309 */
310
310
311 unsigned int val;
311 unsigned int val;
312
312
313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 + (TC->dataAndCRC[1] << 16)
314 + (TC->dataAndCRC[1] << 16)
315 + (TC->dataAndCRC[2] << 8)
315 + (TC->dataAndCRC[2] << 8)
316 + TC->dataAndCRC[3];
316 + TC->dataAndCRC[3];
317
317
318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319
319
320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 val++;
322 val++;
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326
326
327 return LFR_SUCCESSFUL;
327 return LFR_SUCCESSFUL;
328 }
328 }
329
329
330 //*******************
330 //*******************
331 // ENTERING THE MODES
331 // ENTERING THE MODES
332 int check_mode_value( unsigned char requestedMode )
332 int check_mode_value( unsigned char requestedMode )
333 {
333 {
334 int status;
334 int status;
335
335
336 if ( (requestedMode != LFR_MODE_STANDBY)
336 if ( (requestedMode != LFR_MODE_STANDBY)
337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 {
339 {
340 status = LFR_DEFAULT;
340 status = LFR_DEFAULT;
341 }
341 }
342 else
342 else
343 {
343 {
344 status = LFR_SUCCESSFUL;
344 status = LFR_SUCCESSFUL;
345 }
345 }
346
346
347 return status;
347 return status;
348 }
348 }
349
349
350 int check_mode_transition( unsigned char requestedMode )
350 int check_mode_transition( unsigned char requestedMode )
351 {
351 {
352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 *
353 *
354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 *
355 *
356 * @return LFR directive status codes:
356 * @return LFR directive status codes:
357 * - LFR_SUCCESSFUL - the transition is authorized
357 * - LFR_SUCCESSFUL - the transition is authorized
358 * - LFR_DEFAULT - the transition is not authorized
358 * - LFR_DEFAULT - the transition is not authorized
359 *
359 *
360 */
360 */
361
361
362 int status;
362 int status;
363
363
364 switch (requestedMode)
364 switch (requestedMode)
365 {
365 {
366 case LFR_MODE_STANDBY:
366 case LFR_MODE_STANDBY:
367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 status = LFR_DEFAULT;
368 status = LFR_DEFAULT;
369 }
369 }
370 else
370 else
371 {
371 {
372 status = LFR_SUCCESSFUL;
372 status = LFR_SUCCESSFUL;
373 }
373 }
374 break;
374 break;
375 case LFR_MODE_NORMAL:
375 case LFR_MODE_NORMAL:
376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 status = LFR_DEFAULT;
377 status = LFR_DEFAULT;
378 }
378 }
379 else {
379 else {
380 status = LFR_SUCCESSFUL;
380 status = LFR_SUCCESSFUL;
381 }
381 }
382 break;
382 break;
383 case LFR_MODE_BURST:
383 case LFR_MODE_BURST:
384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 status = LFR_DEFAULT;
385 status = LFR_DEFAULT;
386 }
386 }
387 else {
387 else {
388 status = LFR_SUCCESSFUL;
388 status = LFR_SUCCESSFUL;
389 }
389 }
390 break;
390 break;
391 case LFR_MODE_SBM1:
391 case LFR_MODE_SBM1:
392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 status = LFR_DEFAULT;
393 status = LFR_DEFAULT;
394 }
394 }
395 else {
395 else {
396 status = LFR_SUCCESSFUL;
396 status = LFR_SUCCESSFUL;
397 }
397 }
398 break;
398 break;
399 case LFR_MODE_SBM2:
399 case LFR_MODE_SBM2:
400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 status = LFR_DEFAULT;
401 status = LFR_DEFAULT;
402 }
402 }
403 else {
403 else {
404 status = LFR_SUCCESSFUL;
404 status = LFR_SUCCESSFUL;
405 }
405 }
406 break;
406 break;
407 default:
407 default:
408 status = LFR_DEFAULT;
408 status = LFR_DEFAULT;
409 break;
409 break;
410 }
410 }
411
411
412 return status;
412 return status;
413 }
413 }
414
414
415 int check_transition_date( unsigned int transitionCoarseTime )
415 int check_transition_date( unsigned int transitionCoarseTime )
416 {
416 {
417 int status;
417 int status;
418 unsigned int localCoarseTime;
418 unsigned int localCoarseTime;
419 unsigned int deltaCoarseTime;
419 unsigned int deltaCoarseTime;
420
420
421 status = LFR_SUCCESSFUL;
421 status = LFR_SUCCESSFUL;
422
422
423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 {
424 {
425 status = LFR_SUCCESSFUL;
425 status = LFR_SUCCESSFUL;
426 }
426 }
427 else
427 else
428 {
428 {
429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430
430
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 {
432 {
433 status = LFR_DEFAULT;
433 status = LFR_DEFAULT;
434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 }
435 }
436
436
437 if (status == LFR_SUCCESSFUL)
437 if (status == LFR_SUCCESSFUL)
438 {
438 {
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 {
441 {
442 status = LFR_DEFAULT;
442 status = LFR_DEFAULT;
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 return status;
448 return status;
449 }
449 }
450
450
451 int stop_current_mode( void )
451 int stop_current_mode( void )
452 {
452 {
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 *
454 *
455 * @return RTEMS directive status codes:
455 * @return RTEMS directive status codes:
456 * - RTEMS_SUCCESSFUL - task restarted successfully
456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 * - RTEMS_INVALID_ID - task id invalid
457 * - RTEMS_INVALID_ID - task id invalid
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 *
459 *
460 */
460 */
461
461
462 rtems_status_code status;
462 rtems_status_code status;
463
463
464 status = RTEMS_SUCCESSFUL;
464 status = RTEMS_SUCCESSFUL;
465
465
466 // (1) mask interruptions
466 // (1) mask interruptions
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469
469
470 // (2) clear interruptions
470 // (2) clear interruptions
471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473
473
474 // (3) reset waveform picker registers
474 // (3) reset waveform picker registers
475 reset_wfp_burst_enable(); // reset burst and enable bits
475 reset_wfp_burst_enable(); // reset burst and enable bits
476 reset_wfp_status(); // reset all the status bits
476 reset_wfp_status(); // reset all the status bits
477
477
478 // (4) reset spectral matrices registers
478 // (4) reset spectral matrices registers
479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 reset_extractSWF(); // reset the extractSWF flag to false
481 reset_extractSWF(); // reset the extractSWF flag to false
482
482
483 // <Spectral Matrices simulator>
483 // <Spectral Matrices simulator>
484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 // </Spectral Matrices simulator>
487 // </Spectral Matrices simulator>
488
488
489 // suspend several tasks
489 // suspend several tasks
490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 status = suspend_science_tasks();
491 status = suspend_science_tasks();
492 }
492 }
493
493
494 if (status != RTEMS_SUCCESSFUL)
494 if (status != RTEMS_SUCCESSFUL)
495 {
495 {
496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 }
497 }
498
498
499 return status;
499 return status;
500 }
500 }
501
501
502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 {
503 {
504 /** This function is launched after a mode transition validation.
504 /** This function is launched after a mode transition validation.
505 *
505 *
506 * @param mode is the mode in which LFR will be put.
506 * @param mode is the mode in which LFR will be put.
507 *
507 *
508 * @return RTEMS directive status codes:
508 * @return RTEMS directive status codes:
509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 *
511 *
512 */
512 */
513
513
514 rtems_status_code status;
514 rtems_status_code status;
515
515
516 //**********************
516 //**********************
517 // STOP THE CURRENT MODE
517 // STOP THE CURRENT MODE
518 status = stop_current_mode();
518 status = stop_current_mode();
519 if (status != RTEMS_SUCCESSFUL)
519 if (status != RTEMS_SUCCESSFUL)
520 {
520 {
521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 }
522 }
523
523
524 //*************************
524 //*************************
525 // ENTER THE REQUESTED MODE
525 // ENTER THE REQUESTED MODE
526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 {
528 {
529 #ifdef PRINT_TASK_STATISTICS
529 #ifdef PRINT_TASK_STATISTICS
530 rtems_cpu_usage_reset();
530 rtems_cpu_usage_reset();
531 maxCount = 0;
531 maxCount = 0;
532 #endif
532 #endif
533 status = restart_science_tasks( mode );
533 status = restart_science_tasks( mode );
534 launch_waveform_picker( mode, transitionCoarseTime );
534 launch_waveform_picker( mode, transitionCoarseTime );
535 // launch_spectral_matrix( );
535 // launch_spectral_matrix( );
536 launch_spectral_matrix_simu( );
536 // launch_spectral_matrix_simu( );
537 }
537 }
538 else if ( mode == LFR_MODE_STANDBY )
538 else if ( mode == LFR_MODE_STANDBY )
539 {
539 {
540 #ifdef PRINT_TASK_STATISTICS
540 #ifdef PRINT_TASK_STATISTICS
541 rtems_cpu_usage_report();
541 rtems_cpu_usage_report();
542 #endif
542 #endif
543
543
544 #ifdef PRINT_STACK_REPORT
544 #ifdef PRINT_STACK_REPORT
545 PRINTF("stack report selected\n")
545 PRINTF("stack report selected\n")
546 rtems_stack_checker_report_usage();
546 rtems_stack_checker_report_usage();
547 #endif
547 #endif
548 PRINTF1("maxCount = %d\n", maxCount)
548 PRINTF1("maxCount = %d\n", maxCount)
549 }
549 }
550 else
550 else
551 {
551 {
552 status = RTEMS_UNSATISFIED;
552 status = RTEMS_UNSATISFIED;
553 }
553 }
554
554
555 if (status != RTEMS_SUCCESSFUL)
555 if (status != RTEMS_SUCCESSFUL)
556 {
556 {
557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
558 status = RTEMS_UNSATISFIED;
558 status = RTEMS_UNSATISFIED;
559 }
559 }
560
560
561 return status;
561 return status;
562 }
562 }
563
563
564 int restart_science_tasks(unsigned char lfrRequestedMode )
564 int restart_science_tasks(unsigned char lfrRequestedMode )
565 {
565 {
566 /** This function is used to restart all science tasks.
566 /** This function is used to restart all science tasks.
567 *
567 *
568 * @return RTEMS directive status codes:
568 * @return RTEMS directive status codes:
569 * - RTEMS_SUCCESSFUL - task restarted successfully
569 * - RTEMS_SUCCESSFUL - task restarted successfully
570 * - RTEMS_INVALID_ID - task id invalid
570 * - RTEMS_INVALID_ID - task id invalid
571 * - RTEMS_INCORRECT_STATE - task never started
571 * - RTEMS_INCORRECT_STATE - task never started
572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
573 *
573 *
574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
575 *
575 *
576 */
576 */
577
577
578 rtems_status_code status[10];
578 rtems_status_code status[10];
579 rtems_status_code ret;
579 rtems_status_code ret;
580
580
581 ret = RTEMS_SUCCESSFUL;
581 ret = RTEMS_SUCCESSFUL;
582
582
583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
584 if (status[0] != RTEMS_SUCCESSFUL)
584 if (status[0] != RTEMS_SUCCESSFUL)
585 {
585 {
586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
587 }
587 }
588
588
589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
590 if (status[1] != RTEMS_SUCCESSFUL)
590 if (status[1] != RTEMS_SUCCESSFUL)
591 {
591 {
592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
593 }
593 }
594
594
595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
596 if (status[2] != RTEMS_SUCCESSFUL)
596 if (status[2] != RTEMS_SUCCESSFUL)
597 {
597 {
598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
599 }
599 }
600
600
601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
602 if (status[3] != RTEMS_SUCCESSFUL)
602 if (status[3] != RTEMS_SUCCESSFUL)
603 {
603 {
604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
605 }
605 }
606
606
607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
608 if (status[4] != RTEMS_SUCCESSFUL)
608 if (status[4] != RTEMS_SUCCESSFUL)
609 {
609 {
610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
611 }
611 }
612
612
613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
614 if (status[5] != RTEMS_SUCCESSFUL)
614 if (status[5] != RTEMS_SUCCESSFUL)
615 {
615 {
616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
617 }
617 }
618
618
619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
620 if (status[6] != RTEMS_SUCCESSFUL)
620 if (status[6] != RTEMS_SUCCESSFUL)
621 {
621 {
622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
623 }
623 }
624
624
625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
626 if (status[7] != RTEMS_SUCCESSFUL)
626 if (status[7] != RTEMS_SUCCESSFUL)
627 {
627 {
628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
629 }
629 }
630
630
631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 if (status[8] != RTEMS_SUCCESSFUL)
632 if (status[8] != RTEMS_SUCCESSFUL)
633 {
633 {
634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 }
635 }
636
636
637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 if (status[9] != RTEMS_SUCCESSFUL)
638 if (status[9] != RTEMS_SUCCESSFUL)
639 {
639 {
640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 }
641 }
642
642
643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
648 {
648 {
649 ret = RTEMS_UNSATISFIED;
649 ret = RTEMS_UNSATISFIED;
650 }
650 }
651
651
652 return ret;
652 return ret;
653 }
653 }
654
654
655 int suspend_science_tasks()
655 int suspend_science_tasks()
656 {
656 {
657 /** This function suspends the science tasks.
657 /** This function suspends the science tasks.
658 *
658 *
659 * @return RTEMS directive status codes:
659 * @return RTEMS directive status codes:
660 * - RTEMS_SUCCESSFUL - task restarted successfully
660 * - RTEMS_SUCCESSFUL - task restarted successfully
661 * - RTEMS_INVALID_ID - task id invalid
661 * - RTEMS_INVALID_ID - task id invalid
662 * - RTEMS_ALREADY_SUSPENDED - task already suspended
662 * - RTEMS_ALREADY_SUSPENDED - task already suspended
663 *
663 *
664 */
664 */
665
665
666 rtems_status_code status;
666 rtems_status_code status;
667
667
668 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
668 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
669 if (status != RTEMS_SUCCESSFUL)
669 if (status != RTEMS_SUCCESSFUL)
670 {
670 {
671 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
671 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
672 }
672 }
673 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
673 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
674 {
674 {
675 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
675 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
676 if (status != RTEMS_SUCCESSFUL)
676 if (status != RTEMS_SUCCESSFUL)
677 {
677 {
678 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
678 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
679 }
679 }
680 }
680 }
681 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
681 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
682 {
682 {
683 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
683 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
684 if (status != RTEMS_SUCCESSFUL)
684 if (status != RTEMS_SUCCESSFUL)
685 {
685 {
686 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
686 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
687 }
687 }
688 }
688 }
689 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
689 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
690 {
690 {
691 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
691 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
692 if (status != RTEMS_SUCCESSFUL)
692 if (status != RTEMS_SUCCESSFUL)
693 {
693 {
694 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
694 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
695 }
695 }
696 }
696 }
697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
698 {
698 {
699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
700 if (status != RTEMS_SUCCESSFUL)
700 if (status != RTEMS_SUCCESSFUL)
701 {
701 {
702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
703 }
703 }
704 }
704 }
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
706 {
706 {
707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
708 if (status != RTEMS_SUCCESSFUL)
708 if (status != RTEMS_SUCCESSFUL)
709 {
709 {
710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
711 }
711 }
712 }
712 }
713 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
713 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
714 {
714 {
715 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
715 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
716 if (status != RTEMS_SUCCESSFUL)
716 if (status != RTEMS_SUCCESSFUL)
717 {
717 {
718 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
718 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
719 }
719 }
720 }
720 }
721 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
721 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
722 {
722 {
723 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
723 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
724 if (status != RTEMS_SUCCESSFUL)
724 if (status != RTEMS_SUCCESSFUL)
725 {
725 {
726 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
726 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
727 }
727 }
728 }
728 }
729 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
729 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
730 {
730 {
731 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
731 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
732 if (status != RTEMS_SUCCESSFUL)
732 if (status != RTEMS_SUCCESSFUL)
733 {
733 {
734 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
734 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
735 }
735 }
736 }
736 }
737 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
737 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
738 {
738 {
739 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
739 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
740 if (status != RTEMS_SUCCESSFUL)
740 if (status != RTEMS_SUCCESSFUL)
741 {
741 {
742 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
742 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
743 }
743 }
744 }
744 }
745
745
746 return status;
746 return status;
747 }
747 }
748
748
749 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
749 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
750 {
750 {
751 WFP_reset_current_ring_nodes();
751 WFP_reset_current_ring_nodes();
752 reset_waveform_picker_regs();
752 reset_waveform_picker_regs();
753 set_wfp_burst_enable_register( mode );
753 set_wfp_burst_enable_register( mode );
754
754
755 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
755 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
756 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
756 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
757
757
758 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
758 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
759 if (transitionCoarseTime == 0)
759 if (transitionCoarseTime == 0)
760 {
760 {
761 waveform_picker_regs->start_date = time_management_regs->coarse_time;
761 waveform_picker_regs->start_date = time_management_regs->coarse_time;
762 }
762 }
763 else
763 else
764 {
764 {
765 waveform_picker_regs->start_date = transitionCoarseTime;
765 waveform_picker_regs->start_date = transitionCoarseTime;
766 }
766 }
767 }
767 }
768
768
769 void launch_spectral_matrix( void )
769 void launch_spectral_matrix( void )
770 {
770 {
771 SM_reset_current_ring_nodes();
771 SM_reset_current_ring_nodes();
772 reset_spectral_matrix_regs();
772 reset_spectral_matrix_regs();
773 reset_nb_sm();
773 reset_nb_sm();
774
774
775 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
775 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
776 grgpio_regs->io_port_direction_register =
776 grgpio_regs->io_port_direction_register =
777 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
777 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
778 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
778 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
779 set_irq_on_new_ready_matrix( 1 );
779 set_irq_on_new_ready_matrix( 1 );
780 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
780 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
781 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
781 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
782 set_run_matrix_spectral( 1 );
782 set_run_matrix_spectral( 1 );
783
783
784 }
784 }
785
785
786 void launch_spectral_matrix_simu( void )
786 void launch_spectral_matrix_simu( void )
787 {
787 {
788 SM_reset_current_ring_nodes();
788 SM_reset_current_ring_nodes();
789 reset_spectral_matrix_regs();
789 reset_spectral_matrix_regs();
790 reset_nb_sm();
790 reset_nb_sm();
791
791
792 // Spectral Matrices simulator
792 // Spectral Matrices simulator
793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
796 }
796 }
797
797
798 void set_irq_on_new_ready_matrix( unsigned char value )
798 void set_irq_on_new_ready_matrix( unsigned char value )
799 {
799 {
800 if (value == 1)
800 if (value == 1)
801 {
801 {
802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
803 }
803 }
804 else
804 else
805 {
805 {
806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
807 }
807 }
808 }
808 }
809
809
810 void set_run_matrix_spectral( unsigned char value )
810 void set_run_matrix_spectral( unsigned char value )
811 {
811 {
812 if (value == 1)
812 if (value == 1)
813 {
813 {
814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
815 }
815 }
816 else
816 else
817 {
817 {
818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
819 }
819 }
820 }
820 }
821
821
822 //****************
822 //****************
823 // CLOSING ACTIONS
823 // CLOSING ACTIONS
824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
825 {
825 {
826 /** This function is used to update the HK packets statistics after a successful TC execution.
826 /** This function is used to update the HK packets statistics after a successful TC execution.
827 *
827 *
828 * @param TC points to the TC being processed
828 * @param TC points to the TC being processed
829 * @param time is the time used to date the TC execution
829 * @param time is the time used to date the TC execution
830 *
830 *
831 */
831 */
832
832
833 unsigned int val;
833 unsigned int val;
834
834
835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
847
847
848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
849 val++;
849 val++;
850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
852 }
852 }
853
853
854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
855 {
855 {
856 /** This function is used to update the HK packets statistics after a TC rejection.
856 /** This function is used to update the HK packets statistics after a TC rejection.
857 *
857 *
858 * @param TC points to the TC being processed
858 * @param TC points to the TC being processed
859 * @param time is the time used to date the TC rejection
859 * @param time is the time used to date the TC rejection
860 *
860 *
861 */
861 */
862
862
863 unsigned int val;
863 unsigned int val;
864
864
865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
877
877
878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
879 val++;
879 val++;
880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
882 }
882 }
883
883
884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
885 {
885 {
886 /** This function is the last step of the TC execution workflow.
886 /** This function is the last step of the TC execution workflow.
887 *
887 *
888 * @param TC points to the TC being processed
888 * @param TC points to the TC being processed
889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
891 * @param time is the time used to date the TC execution
891 * @param time is the time used to date the TC execution
892 *
892 *
893 */
893 */
894
894
895 unsigned char requestedMode;
895 unsigned char requestedMode;
896
896
897 if (result == LFR_SUCCESSFUL)
897 if (result == LFR_SUCCESSFUL)
898 {
898 {
899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
900 &
900 &
901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
902 )
902 )
903 {
903 {
904 send_tm_lfr_tc_exe_success( TC, queue_id );
904 send_tm_lfr_tc_exe_success( TC, queue_id );
905 }
905 }
906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
907 {
907 {
908 //**********************************
908 //**********************************
909 // UPDATE THE LFRMODE LOCAL VARIABLE
909 // UPDATE THE LFRMODE LOCAL VARIABLE
910 requestedMode = TC->dataAndCRC[1];
910 requestedMode = TC->dataAndCRC[1];
911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
912 updateLFRCurrentMode();
912 updateLFRCurrentMode();
913 }
913 }
914 }
914 }
915 else if (result == LFR_EXE_ERROR)
915 else if (result == LFR_EXE_ERROR)
916 {
916 {
917 send_tm_lfr_tc_exe_error( TC, queue_id );
917 send_tm_lfr_tc_exe_error( TC, queue_id );
918 }
918 }
919 }
919 }
920
920
921 //***************************
921 //***************************
922 // Interrupt Service Routines
922 // Interrupt Service Routines
923 rtems_isr commutation_isr1( rtems_vector_number vector )
923 rtems_isr commutation_isr1( rtems_vector_number vector )
924 {
924 {
925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
927 }
927 }
928 }
928 }
929
929
930 rtems_isr commutation_isr2( rtems_vector_number vector )
930 rtems_isr commutation_isr2( rtems_vector_number vector )
931 {
931 {
932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
934 }
934 }
935 }
935 }
936
936
937 //****************
937 //****************
938 // OTHER FUNCTIONS
938 // OTHER FUNCTIONS
939 void updateLFRCurrentMode()
939 void updateLFRCurrentMode()
940 {
940 {
941 /** This function updates the value of the global variable lfrCurrentMode.
941 /** This function updates the value of the global variable lfrCurrentMode.
942 *
942 *
943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
944 *
944 *
945 */
945 */
946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
948 }
948 }
949
949
@@ -1,1392 +1,1398
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //*****************
12 //*****************
13 // waveform headers
13 // waveform headers
14 // SWF
14 // SWF
15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 // CWF
18 // CWF
19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24
24
25 //**************
25 //**************
26 // waveform ring
26 // waveform ring
27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
31 ring_node *current_ring_node_f0;
31 ring_node *current_ring_node_f0;
32 ring_node *ring_node_to_send_swf_f0;
32 ring_node *ring_node_to_send_swf_f0;
33 ring_node *current_ring_node_f1;
33 ring_node *current_ring_node_f1;
34 ring_node *ring_node_to_send_swf_f1;
34 ring_node *ring_node_to_send_swf_f1;
35 ring_node *ring_node_to_send_cwf_f1;
35 ring_node *ring_node_to_send_cwf_f1;
36 ring_node *current_ring_node_f2;
36 ring_node *current_ring_node_f2;
37 ring_node *ring_node_to_send_swf_f2;
37 ring_node *ring_node_to_send_swf_f2;
38 ring_node *ring_node_to_send_cwf_f2;
38 ring_node *ring_node_to_send_cwf_f2;
39 ring_node *current_ring_node_f3;
39 ring_node *current_ring_node_f3;
40 ring_node *ring_node_to_send_cwf_f3;
40 ring_node *ring_node_to_send_cwf_f3;
41
41
42 bool extractSWF = false;
42 bool extractSWF = false;
43 bool swf_f0_ready = false;
43 bool swf_f0_ready = false;
44 bool swf_f1_ready = false;
44 bool swf_f1_ready = false;
45 bool swf_f2_ready = false;
45 bool swf_f2_ready = false;
46
46
47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
48
48
49 //*********************
49 //*********************
50 // Interrupt SubRoutine
50 // Interrupt SubRoutine
51
51
52 void reset_extractSWF( void )
52 void reset_extractSWF( void )
53 {
53 {
54 extractSWF = false;
54 extractSWF = false;
55 swf_f0_ready = false;
55 swf_f0_ready = false;
56 swf_f1_ready = false;
56 swf_f1_ready = false;
57 swf_f2_ready = false;
57 swf_f2_ready = false;
58 }
58 }
59
59
60 rtems_isr waveforms_isr( rtems_vector_number vector )
60 rtems_isr waveforms_isr( rtems_vector_number vector )
61 {
61 {
62 /** This is the interrupt sub routine called by the waveform picker core.
62 /** This is the interrupt sub routine called by the waveform picker core.
63 *
63 *
64 * This ISR launch different actions depending mainly on two pieces of information:
64 * This ISR launch different actions depending mainly on two pieces of information:
65 * 1. the values read in the registers of the waveform picker.
65 * 1. the values read in the registers of the waveform picker.
66 * 2. the current LFR mode.
66 * 2. the current LFR mode.
67 *
67 *
68 */
68 */
69
69
70 rtems_status_code status;
70 rtems_status_code status;
71
71
72 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
72 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
73 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
73 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
74 { // in modes other than STANDBY and BURST, send the CWF_F3 data
74 { // in modes other than STANDBY and BURST, send the CWF_F3 data
75 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
75 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
76 // (1) change the receiving buffer for the waveform picker
76 // (1) change the receiving buffer for the waveform picker
77 ring_node_to_send_cwf_f3 = current_ring_node_f3;
77 ring_node_to_send_cwf_f3 = current_ring_node_f3;
78 current_ring_node_f3 = current_ring_node_f3->next;
78 current_ring_node_f3 = current_ring_node_f3->next;
79 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
79 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
80 // (2) send an event for the waveforms transmission
80 // (2) send an event for the waveforms transmission
81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 }
83 }
84 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
84 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 }
86 }
87 }
87 }
88
88
89 switch(lfrCurrentMode)
89 switch(lfrCurrentMode)
90 {
90 {
91 //********
91 //********
92 // STANDBY
92 // STANDBY
93 case(LFR_MODE_STANDBY):
93 case(LFR_MODE_STANDBY):
94 break;
94 break;
95
95
96 //******
96 //******
97 // NORMAL
97 // NORMAL
98 case(LFR_MODE_NORMAL):
98 case(LFR_MODE_NORMAL):
99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 {
100 {
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 }
102 }
103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 {
104 {
105 // change F0 ring node
105 // change F0 ring node
106 ring_node_to_send_swf_f0 = current_ring_node_f0;
106 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 current_ring_node_f0 = current_ring_node_f0->next;
107 current_ring_node_f0 = current_ring_node_f0->next;
108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 // change F1 ring node
109 // change F1 ring node
110 ring_node_to_send_swf_f1 = current_ring_node_f1;
110 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 current_ring_node_f1 = current_ring_node_f1->next;
111 current_ring_node_f1 = current_ring_node_f1->next;
112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 // change F2 ring node
113 // change F2 ring node
114 ring_node_to_send_swf_f2 = current_ring_node_f2;
114 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 current_ring_node_f2 = current_ring_node_f2->next;
115 current_ring_node_f2 = current_ring_node_f2->next;
116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 //
117 //
118 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
118 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
119 {
119 {
120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
121 }
121 }
122 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
122 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
123 }
123 }
124 break;
124 break;
125
125
126 //******
126 //******
127 // BURST
127 // BURST
128 case(LFR_MODE_BURST):
128 case(LFR_MODE_BURST):
129 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
129 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
130 // (1) change the receiving buffer for the waveform picker
130 // (1) change the receiving buffer for the waveform picker
131 ring_node_to_send_cwf_f2 = current_ring_node_f2;
131 ring_node_to_send_cwf_f2 = current_ring_node_f2;
132 current_ring_node_f2 = current_ring_node_f2->next;
132 current_ring_node_f2 = current_ring_node_f2->next;
133 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
133 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
134 // (2) send an event for the waveforms transmission
134 // (2) send an event for the waveforms transmission
135 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
135 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 }
137 }
138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
139 }
139 }
140 break;
140 break;
141
141
142 //*****
142 //*****
143 // SBM1
143 // SBM1
144 case(LFR_MODE_SBM1):
144 case(LFR_MODE_SBM1):
145 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
145 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
146 // (1) change the receiving buffer for the waveform picker
146 // (1) change the receiving buffer for the waveform picker
147 ring_node_to_send_cwf_f1 = current_ring_node_f1;
147 ring_node_to_send_cwf_f1 = current_ring_node_f1;
148 current_ring_node_f1 = current_ring_node_f1->next;
148 current_ring_node_f1 = current_ring_node_f1->next;
149 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
149 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
150 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
150 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
151 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
151 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
152 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
152 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
153 }
153 }
154 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
154 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
155 swf_f0_ready = true;
155 swf_f0_ready = true;
156 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
156 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
157 }
157 }
158 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
158 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
159 swf_f2_ready = true;
159 swf_f2_ready = true;
160 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
160 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
161 }
161 }
162 break;
162 break;
163
163
164 //*****
164 //*****
165 // SBM2
165 // SBM2
166 case(LFR_MODE_SBM2):
166 case(LFR_MODE_SBM2):
167 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
167 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
168 // (1) change the receiving buffer for the waveform picker
168 // (1) change the receiving buffer for the waveform picker
169 ring_node_to_send_cwf_f2 = current_ring_node_f2;
169 ring_node_to_send_cwf_f2 = current_ring_node_f2;
170 current_ring_node_f2 = current_ring_node_f2->next;
170 current_ring_node_f2 = current_ring_node_f2->next;
171 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
171 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
172 // (2) send an event for the waveforms transmission
172 // (2) send an event for the waveforms transmission
173 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
173 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
174 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
174 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
175 }
175 }
176 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
176 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
177 swf_f0_ready = true;
177 swf_f0_ready = true;
178 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
178 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
179 }
179 }
180 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
180 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
181 swf_f1_ready = true;
181 swf_f1_ready = true;
182 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
182 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
183 }
183 }
184 break;
184 break;
185
185
186 //********
186 //********
187 // DEFAULT
187 // DEFAULT
188 default:
188 default:
189 break;
189 break;
190 }
190 }
191 }
191 }
192
192
193 //************
193 //************
194 // RTEMS TASKS
194 // RTEMS TASKS
195
195
196 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
196 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
197 {
197 {
198 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
198 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
199 *
199 *
200 * @param unused is the starting argument of the RTEMS task
200 * @param unused is the starting argument of the RTEMS task
201 *
201 *
202 * The following data packets are sent by this task:
202 * The following data packets are sent by this task:
203 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
203 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
204 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
204 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
205 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
205 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
206 *
206 *
207 */
207 */
208
208
209 rtems_event_set event_out;
209 rtems_event_set event_out;
210 rtems_id queue_id;
210 rtems_id queue_id;
211 rtems_status_code status;
211 rtems_status_code status;
212
212
213 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
213 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
214 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
214 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
215 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
215 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
216
216
217 status = get_message_queue_id_send( &queue_id );
217 status = get_message_queue_id_send( &queue_id );
218 if (status != RTEMS_SUCCESSFUL)
218 if (status != RTEMS_SUCCESSFUL)
219 {
219 {
220 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
220 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
221 }
221 }
222
222
223 BOOT_PRINTF("in WFRM ***\n")
223 BOOT_PRINTF("in WFRM ***\n")
224
224
225 while(1){
225 while(1){
226 // wait for an RTEMS_EVENT
226 // wait for an RTEMS_EVENT
227 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
227 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
228 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
228 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
229 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
229 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
230 if (event_out == RTEMS_EVENT_MODE_NORMAL)
230 if (event_out == RTEMS_EVENT_MODE_NORMAL)
231 {
231 {
232 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
232 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
233 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
233 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
236 }
236 }
237 if (event_out == RTEMS_EVENT_MODE_SBM1)
237 if (event_out == RTEMS_EVENT_MODE_SBM1)
238 {
238 {
239 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
239 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
240 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
240 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
241 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
241 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
242 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
242 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
243 }
243 }
244 if (event_out == RTEMS_EVENT_MODE_SBM2)
244 if (event_out == RTEMS_EVENT_MODE_SBM2)
245 {
245 {
246 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
246 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
249 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
249 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
250 }
250 }
251 }
251 }
252 }
252 }
253
253
254 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
254 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
255 {
255 {
256 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
256 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
257 *
257 *
258 * @param unused is the starting argument of the RTEMS task
258 * @param unused is the starting argument of the RTEMS task
259 *
259 *
260 * The following data packet is sent by this task:
260 * The following data packet is sent by this task:
261 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
261 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
262 *
262 *
263 */
263 */
264
264
265 rtems_event_set event_out;
265 rtems_event_set event_out;
266 rtems_id queue_id;
266 rtems_id queue_id;
267 rtems_status_code status;
267 rtems_status_code status;
268
268
269 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
269 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
270 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
270 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
271
271
272 status = get_message_queue_id_send( &queue_id );
272 status = get_message_queue_id_send( &queue_id );
273 if (status != RTEMS_SUCCESSFUL)
273 if (status != RTEMS_SUCCESSFUL)
274 {
274 {
275 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
275 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
276 }
276 }
277
277
278 BOOT_PRINTF("in CWF3 ***\n")
278 BOOT_PRINTF("in CWF3 ***\n")
279
279
280 while(1){
280 while(1){
281 // wait for an RTEMS_EVENT
281 // wait for an RTEMS_EVENT
282 rtems_event_receive( RTEMS_EVENT_0,
282 rtems_event_receive( RTEMS_EVENT_0,
283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
284 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
284 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
285 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
285 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
286 {
286 {
287 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
287 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
288 {
288 {
289 PRINTF("send CWF_LONG_F3\n")
289 PRINTF("send CWF_LONG_F3\n")
290 send_waveform_CWF(
290 send_waveform_CWF(
291 (volatile int*) current_ring_node_f3->buffer_address,
291 (volatile int*) current_ring_node_f3->buffer_address,
292 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
292 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
293 }
293 }
294 else
294 else
295 {
295 {
296 PRINTF("send CWF_F3 (light)\n")
296 PRINTF("send CWF_F3 (light)\n")
297 send_waveform_CWF3_light(
297 send_waveform_CWF3_light(
298 (volatile int*) current_ring_node_f3->buffer_address,
298 (volatile int*) current_ring_node_f3->buffer_address,
299 headerCWF_F3_light, queue_id );
299 headerCWF_F3_light, queue_id );
300 }
300 }
301
301
302 }
302 }
303 else
303 else
304 {
304 {
305 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
305 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
306 }
306 }
307 }
307 }
308 }
308 }
309
309
310 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
310 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
311 {
311 {
312 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
312 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
313 *
313 *
314 * @param unused is the starting argument of the RTEMS task
314 * @param unused is the starting argument of the RTEMS task
315 *
315 *
316 * The following data packet is sent by this function:
316 * The following data packet is sent by this function:
317 * - TM_LFR_SCIENCE_BURST_CWF_F2
317 * - TM_LFR_SCIENCE_BURST_CWF_F2
318 * - TM_LFR_SCIENCE_SBM2_CWF_F2
318 * - TM_LFR_SCIENCE_SBM2_CWF_F2
319 *
319 *
320 */
320 */
321
321
322 rtems_event_set event_out;
322 rtems_event_set event_out;
323 rtems_id queue_id;
323 rtems_id queue_id;
324 rtems_status_code status;
324 rtems_status_code status;
325
325
326 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
326 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
327 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
327 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
328
328
329 status = get_message_queue_id_send( &queue_id );
329 status = get_message_queue_id_send( &queue_id );
330 if (status != RTEMS_SUCCESSFUL)
330 if (status != RTEMS_SUCCESSFUL)
331 {
331 {
332 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
332 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
333 }
333 }
334
334
335 BOOT_PRINTF("in CWF2 ***\n")
335 BOOT_PRINTF("in CWF2 ***\n")
336
336
337 while(1){
337 while(1){
338 // wait for an RTEMS_EVENT
338 // wait for an RTEMS_EVENT
339 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
339 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
340 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
340 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 if (event_out == RTEMS_EVENT_MODE_BURST)
341 if (event_out == RTEMS_EVENT_MODE_BURST)
342 {
342 {
343 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
343 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
344 }
344 }
345 if (event_out == RTEMS_EVENT_MODE_SBM2)
345 if (event_out == RTEMS_EVENT_MODE_SBM2)
346 {
346 {
347 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
347 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
348 // launch snapshot extraction if needed
348 // launch snapshot extraction if needed
349 if (extractSWF == true)
349 if (extractSWF == true)
350 {
350 {
351 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
351 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
352 // extract the snapshot
352 // extract the snapshot
353 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
353 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
354 // send the snapshot when built
354 // send the snapshot when built
355 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
355 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
356 extractSWF = false;
356 extractSWF = false;
357 }
357 }
358 if (swf_f0_ready && swf_f1_ready)
358 if (swf_f0_ready && swf_f1_ready)
359 {
359 {
360 extractSWF = true;
360 extractSWF = true;
361 swf_f0_ready = false;
361 swf_f0_ready = false;
362 swf_f1_ready = false;
362 swf_f1_ready = false;
363 }
363 }
364 }
364 }
365 }
365 }
366 }
366 }
367
367
368 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
368 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
369 {
369 {
370 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
370 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
371 *
371 *
372 * @param unused is the starting argument of the RTEMS task
372 * @param unused is the starting argument of the RTEMS task
373 *
373 *
374 * The following data packet is sent by this function:
374 * The following data packet is sent by this function:
375 * - TM_LFR_SCIENCE_SBM1_CWF_F1
375 * - TM_LFR_SCIENCE_SBM1_CWF_F1
376 *
376 *
377 */
377 */
378
378
379 rtems_event_set event_out;
379 rtems_event_set event_out;
380 rtems_id queue_id;
380 rtems_id queue_id;
381 rtems_status_code status;
381 rtems_status_code status;
382
382
383 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
383 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
384
384
385 status = get_message_queue_id_send( &queue_id );
385 status = get_message_queue_id_send( &queue_id );
386 if (status != RTEMS_SUCCESSFUL)
386 if (status != RTEMS_SUCCESSFUL)
387 {
387 {
388 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
388 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
389 }
389 }
390
390
391 BOOT_PRINTF("in CWF1 ***\n")
391 BOOT_PRINTF("in CWF1 ***\n")
392
392
393 while(1){
393 while(1){
394 // wait for an RTEMS_EVENT
394 // wait for an RTEMS_EVENT
395 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
395 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
396 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
396 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
397 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
397 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
398 // launch snapshot extraction if needed
398 // launch snapshot extraction if needed
399 if (extractSWF == true)
399 if (extractSWF == true)
400 {
400 {
401 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
401 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
402 // launch the snapshot extraction
402 // launch the snapshot extraction
403 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
403 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
404 extractSWF = false;
404 extractSWF = false;
405 }
405 }
406 if (swf_f0_ready == true)
406 if (swf_f0_ready == true)
407 {
407 {
408 extractSWF = true;
408 extractSWF = true;
409 swf_f0_ready = false; // this step shall be executed only one time
409 swf_f0_ready = false; // this step shall be executed only one time
410 }
410 }
411 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
411 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
412 {
412 {
413 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
413 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
414 swf_f1_ready = false;
414 swf_f1_ready = false;
415 swf_f2_ready = false;
415 swf_f2_ready = false;
416 }
416 }
417 }
417 }
418 }
418 }
419
419
420 rtems_task swbd_task(rtems_task_argument argument)
420 rtems_task swbd_task(rtems_task_argument argument)
421 {
421 {
422 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
422 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
423 *
423 *
424 * @param unused is the starting argument of the RTEMS task
424 * @param unused is the starting argument of the RTEMS task
425 *
425 *
426 */
426 */
427
427
428 rtems_event_set event_out;
428 rtems_event_set event_out;
429
429
430 BOOT_PRINTF("in SWBD ***\n")
430 BOOT_PRINTF("in SWBD ***\n")
431
431
432 while(1){
432 while(1){
433 // wait for an RTEMS_EVENT
433 // wait for an RTEMS_EVENT
434 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
434 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
435 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
435 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
436 if (event_out == RTEMS_EVENT_MODE_SBM1)
436 if (event_out == RTEMS_EVENT_MODE_SBM1)
437 {
437 {
438 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
438 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
439 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
439 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
440 }
440 }
441 else
441 else
442 {
442 {
443 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
443 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 //******************
448 //******************
449 // general functions
449 // general functions
450
450
451 void WFP_init_rings( void )
451 void WFP_init_rings( void )
452 {
452 {
453 // F0 RING
453 // F0 RING
454 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
454 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
455 // F1 RING
455 // F1 RING
456 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
456 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
457 // F2 RING
457 // F2 RING
458 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
458 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
459 // F3 RING
459 // F3 RING
460 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
460 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
461
461
462 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
462 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
463 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
463 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
464 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
464 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
465 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
465 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
466 }
466 }
467
467
468 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
468 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
469 {
469 {
470 unsigned char i;
470 unsigned char i;
471
471
472 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
472 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
473 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
473 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
474 waveform_ring[0].buffer_address = (int) &wfrm[0];
474 waveform_ring[0].buffer_address = (int) &wfrm[0];
475
475
476 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
476 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
477 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
477 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
478 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
478 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
479
479
480 for(i=1; i<nbNodes-1; i++)
480 for(i=1; i<nbNodes-1; i++)
481 {
481 {
482 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
482 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
483 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
483 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
484 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
484 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
485 }
485 }
486 }
486 }
487
487
488 void WFP_reset_current_ring_nodes( void )
488 void WFP_reset_current_ring_nodes( void )
489 {
489 {
490 current_ring_node_f0 = waveform_ring_f0;
490 current_ring_node_f0 = waveform_ring_f0;
491 ring_node_to_send_swf_f0 = waveform_ring_f0;
491 ring_node_to_send_swf_f0 = waveform_ring_f0;
492
492
493 current_ring_node_f1 = waveform_ring_f1;
493 current_ring_node_f1 = waveform_ring_f1;
494 ring_node_to_send_cwf_f1 = waveform_ring_f1;
494 ring_node_to_send_cwf_f1 = waveform_ring_f1;
495 ring_node_to_send_swf_f1 = waveform_ring_f1;
495 ring_node_to_send_swf_f1 = waveform_ring_f1;
496
496
497 current_ring_node_f2 = waveform_ring_f2;
497 current_ring_node_f2 = waveform_ring_f2;
498 ring_node_to_send_cwf_f2 = waveform_ring_f2;
498 ring_node_to_send_cwf_f2 = waveform_ring_f2;
499 ring_node_to_send_swf_f2 = waveform_ring_f2;
499 ring_node_to_send_swf_f2 = waveform_ring_f2;
500
500
501 current_ring_node_f3 = waveform_ring_f3;
501 current_ring_node_f3 = waveform_ring_f3;
502 ring_node_to_send_cwf_f3 = waveform_ring_f3;
502 ring_node_to_send_cwf_f3 = waveform_ring_f3;
503 }
503 }
504
504
505 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
505 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
506 {
506 {
507 unsigned char i;
507 unsigned char i;
508
508
509 for (i=0; i<7; i++)
509 for (i=0; i<7; i++)
510 {
510 {
511 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
511 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
512 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
512 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
513 headerSWF[ i ].reserved = DEFAULT_RESERVED;
513 headerSWF[ i ].reserved = DEFAULT_RESERVED;
514 headerSWF[ i ].userApplication = CCSDS_USER_APP;
514 headerSWF[ i ].userApplication = CCSDS_USER_APP;
515 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
515 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
516 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
516 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
517 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
517 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
518 if (i == 6)
518 if (i == 6)
519 {
519 {
520 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
520 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
521 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
521 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
522 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
522 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
523 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
523 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
524 }
524 }
525 else
525 else
526 {
526 {
527 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
527 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
528 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
528 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
529 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
529 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
530 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
530 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
531 }
531 }
532 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
532 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
533 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
533 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
534 headerSWF[ i ].pktNr = i+1; // PKT_NR
534 headerSWF[ i ].pktNr = i+1; // PKT_NR
535 // DATA FIELD HEADER
535 // DATA FIELD HEADER
536 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
536 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
537 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
537 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
538 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
538 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
539 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
539 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
540 // AUXILIARY DATA HEADER
540 // AUXILIARY DATA HEADER
541 headerSWF[ i ].time[0] = 0x00;
541 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].time[0] = 0x00;
543 headerSWF[ i ].time[0] = 0x00;
543 headerSWF[ i ].time[0] = 0x00;
544 headerSWF[ i ].time[0] = 0x00;
544 headerSWF[ i ].time[0] = 0x00;
545 headerSWF[ i ].time[0] = 0x00;
545 headerSWF[ i ].time[0] = 0x00;
546 headerSWF[ i ].time[0] = 0x00;
546 headerSWF[ i ].time[0] = 0x00;
547 headerSWF[ i ].sid = sid;
547 headerSWF[ i ].sid = sid;
548 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
548 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
549 }
549 }
550 return LFR_SUCCESSFUL;
550 return LFR_SUCCESSFUL;
551 }
551 }
552
552
553 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
553 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
554 {
554 {
555 unsigned int i;
555 unsigned int i;
556
556
557 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
557 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
558 {
558 {
559 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
559 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
560 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
560 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
561 headerCWF[ i ].reserved = DEFAULT_RESERVED;
561 headerCWF[ i ].reserved = DEFAULT_RESERVED;
562 headerCWF[ i ].userApplication = CCSDS_USER_APP;
562 headerCWF[ i ].userApplication = CCSDS_USER_APP;
563 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
563 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
564 {
564 {
565 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
565 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
566 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
566 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
567 }
567 }
568 else
568 else
569 {
569 {
570 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
570 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
571 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
571 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
572 }
572 }
573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
578 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
578 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
579 // DATA FIELD HEADER
579 // DATA FIELD HEADER
580 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
580 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
581 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
581 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
582 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
582 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
583 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
583 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
584 // AUXILIARY DATA HEADER
584 // AUXILIARY DATA HEADER
585 headerCWF[ i ].sid = sid;
585 headerCWF[ i ].sid = sid;
586 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
586 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
587 headerCWF[ i ].time[0] = 0x00;
587 headerCWF[ i ].time[0] = 0x00;
588 headerCWF[ i ].time[0] = 0x00;
588 headerCWF[ i ].time[0] = 0x00;
589 headerCWF[ i ].time[0] = 0x00;
589 headerCWF[ i ].time[0] = 0x00;
590 headerCWF[ i ].time[0] = 0x00;
590 headerCWF[ i ].time[0] = 0x00;
591 headerCWF[ i ].time[0] = 0x00;
591 headerCWF[ i ].time[0] = 0x00;
592 headerCWF[ i ].time[0] = 0x00;
592 headerCWF[ i ].time[0] = 0x00;
593 }
593 }
594 return LFR_SUCCESSFUL;
594 return LFR_SUCCESSFUL;
595 }
595 }
596
596
597 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
597 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
598 {
598 {
599 unsigned int i;
599 unsigned int i;
600
600
601 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
601 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
602 {
602 {
603 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
603 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
604 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
604 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
605 headerCWF[ i ].reserved = DEFAULT_RESERVED;
605 headerCWF[ i ].reserved = DEFAULT_RESERVED;
606 headerCWF[ i ].userApplication = CCSDS_USER_APP;
606 headerCWF[ i ].userApplication = CCSDS_USER_APP;
607
607
608 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
608 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
609 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
609 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
610
610
611 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
611 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
612 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
612 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
613 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
613 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
614 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
614 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
615 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
615 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
616
616
617 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
617 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
618 // DATA FIELD HEADER
618 // DATA FIELD HEADER
619 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
619 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
620 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
620 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
621 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
621 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
622 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
622 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
623 // AUXILIARY DATA HEADER
623 // AUXILIARY DATA HEADER
624 headerCWF[ i ].sid = SID_NORM_CWF_F3;
624 headerCWF[ i ].sid = SID_NORM_CWF_F3;
625 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
625 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
626 headerCWF[ i ].time[0] = 0x00;
626 headerCWF[ i ].time[0] = 0x00;
627 headerCWF[ i ].time[0] = 0x00;
627 headerCWF[ i ].time[0] = 0x00;
628 headerCWF[ i ].time[0] = 0x00;
628 headerCWF[ i ].time[0] = 0x00;
629 headerCWF[ i ].time[0] = 0x00;
629 headerCWF[ i ].time[0] = 0x00;
630 headerCWF[ i ].time[0] = 0x00;
630 headerCWF[ i ].time[0] = 0x00;
631 headerCWF[ i ].time[0] = 0x00;
631 headerCWF[ i ].time[0] = 0x00;
632 }
632 }
633 return LFR_SUCCESSFUL;
633 return LFR_SUCCESSFUL;
634 }
634 }
635
635
636 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
636 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
637 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
637 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
638 {
638 {
639 /** This function sends SWF CCSDS packets (F2, F1 or F0).
639 /** This function sends SWF CCSDS packets (F2, F1 or F0).
640 *
640 *
641 * @param waveform points to the buffer containing the data that will be send.
641 * @param waveform points to the buffer containing the data that will be send.
642 * @param sid is the source identifier of the data that will be sent.
642 * @param sid is the source identifier of the data that will be sent.
643 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
643 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
644 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
644 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
645 * contain information to setup the transmission of the data packets.
645 * contain information to setup the transmission of the data packets.
646 *
646 *
647 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
647 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
648 *
648 *
649 */
649 */
650
650
651 unsigned int i;
651 unsigned int i;
652 int ret;
652 int ret;
653 unsigned int coarseTime;
653 unsigned int coarseTime;
654 unsigned int fineTime;
654 unsigned int fineTime;
655 rtems_status_code status;
655 rtems_status_code status;
656 spw_ioctl_pkt_send spw_ioctl_send_SWF;
656 spw_ioctl_pkt_send spw_ioctl_send_SWF;
657
657
658 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
658 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
659 spw_ioctl_send_SWF.options = 0;
659 spw_ioctl_send_SWF.options = 0;
660
660
661 ret = LFR_DEFAULT;
661 ret = LFR_DEFAULT;
662
662
663 coarseTime = waveform[0];
663 coarseTime = waveform[0];
664 fineTime = waveform[1];
664 fineTime = waveform[1];
665
665
666 for (i=0; i<7; i++) // send waveform
666 for (i=0; i<7; i++) // send waveform
667 {
667 {
668 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
668 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
669 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
669 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
670 // BUILD THE DATA
670 // BUILD THE DATA
671 if (i==6) {
671 if (i==6) {
672 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
672 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
673 }
673 }
674 else {
674 else {
675 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
675 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
676 }
676 }
677 // SET PACKET SEQUENCE COUNTER
677 // SET PACKET SEQUENCE COUNTER
678 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
678 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
679 // SET PACKET TIME
679 // SET PACKET TIME
680 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
680 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
681 //
681 //
682 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
682 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
683 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
683 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
684 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
684 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
685 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
685 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
686 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
686 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
687 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
687 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
688 // SEND PACKET
688 // SEND PACKET
689 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
689 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
690 if (status != RTEMS_SUCCESSFUL) {
690 if (status != RTEMS_SUCCESSFUL) {
691 printf("%d-%d, ERR %d\n", sid, i, (int) status);
691 printf("%d-%d, ERR %d\n", sid, i, (int) status);
692 ret = LFR_DEFAULT;
692 ret = LFR_DEFAULT;
693 }
693 }
694 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
694 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
695 }
695 }
696
696
697 return ret;
697 return ret;
698 }
698 }
699
699
700 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
700 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
701 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
701 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
702 {
702 {
703 /** This function sends CWF CCSDS packets (F2, F1 or F0).
703 /** This function sends CWF CCSDS packets (F2, F1 or F0).
704 *
704 *
705 * @param waveform points to the buffer containing the data that will be send.
705 * @param waveform points to the buffer containing the data that will be send.
706 * @param sid is the source identifier of the data that will be sent.
706 * @param sid is the source identifier of the data that will be sent.
707 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
707 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
708 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
708 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
709 * contain information to setup the transmission of the data packets.
709 * contain information to setup the transmission of the data packets.
710 *
710 *
711 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
711 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
712 *
712 *
713 */
713 */
714
714
715 unsigned int i;
715 unsigned int i;
716 int ret;
716 int ret;
717 unsigned int coarseTime;
717 unsigned int coarseTime;
718 unsigned int fineTime;
718 unsigned int fineTime;
719 rtems_status_code status;
719 rtems_status_code status;
720 spw_ioctl_pkt_send spw_ioctl_send_CWF;
720 spw_ioctl_pkt_send spw_ioctl_send_CWF;
721
721
722 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
722 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
723 spw_ioctl_send_CWF.options = 0;
723 spw_ioctl_send_CWF.options = 0;
724
724
725 ret = LFR_DEFAULT;
725 ret = LFR_DEFAULT;
726
726
727 coarseTime = waveform[0];
727 coarseTime = waveform[0];
728 fineTime = waveform[1];
728 fineTime = waveform[1];
729
729
730 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
730 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
731 {
731 {
732 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
732 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
733 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
733 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
734 // BUILD THE DATA
734 // BUILD THE DATA
735 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
735 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
736 // SET PACKET SEQUENCE COUNTER
736 // SET PACKET SEQUENCE COUNTER
737 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
737 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
738 // SET PACKET TIME
738 // SET PACKET TIME
739 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
739 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
740 //
740 //
741 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
741 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
742 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
742 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
743 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
743 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
744 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
744 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
745 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
745 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
746 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
746 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
747 // SEND PACKET
747 // SEND PACKET
748 if (sid == SID_NORM_CWF_LONG_F3)
748 if (sid == SID_NORM_CWF_LONG_F3)
749 {
749 {
750 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
750 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
751 if (status != RTEMS_SUCCESSFUL) {
751 if (status != RTEMS_SUCCESSFUL) {
752 printf("%d-%d, ERR %d\n", sid, i, (int) status);
752 printf("%d-%d, ERR %d\n", sid, i, (int) status);
753 ret = LFR_DEFAULT;
753 ret = LFR_DEFAULT;
754 }
754 }
755 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
755 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
756 }
756 }
757 else
757 else
758 {
758 {
759 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
759 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
760 if (status != RTEMS_SUCCESSFUL) {
760 if (status != RTEMS_SUCCESSFUL) {
761 printf("%d-%d, ERR %d\n", sid, i, (int) status);
761 printf("%d-%d, ERR %d\n", sid, i, (int) status);
762 ret = LFR_DEFAULT;
762 ret = LFR_DEFAULT;
763 }
763 }
764 }
764 }
765 }
765 }
766
766
767 return ret;
767 return ret;
768 }
768 }
769
769
770 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
770 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 {
771 {
772 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
772 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
773 *
773 *
774 * @param waveform points to the buffer containing the data that will be send.
774 * @param waveform points to the buffer containing the data that will be send.
775 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
775 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
776 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
776 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
777 * contain information to setup the transmission of the data packets.
777 * contain information to setup the transmission of the data packets.
778 *
778 *
779 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
779 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
780 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
780 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
781 *
781 *
782 */
782 */
783
783
784 unsigned int i;
784 unsigned int i;
785 int ret;
785 int ret;
786 unsigned int coarseTime;
786 unsigned int coarseTime;
787 unsigned int fineTime;
787 unsigned int fineTime;
788 rtems_status_code status;
788 rtems_status_code status;
789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 char *sample;
790 char *sample;
791
791
792 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
792 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
793 spw_ioctl_send_CWF.options = 0;
793 spw_ioctl_send_CWF.options = 0;
794
794
795 ret = LFR_DEFAULT;
795 ret = LFR_DEFAULT;
796
796
797 //**********************
797 //**********************
798 // BUILD CWF3_light DATA
798 // BUILD CWF3_light DATA
799 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
799 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
800 {
800 {
801 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
801 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
802 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
802 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
803 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
803 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
808 }
808 }
809
809
810 coarseTime = waveform[0];
810 coarseTime = waveform[0];
811 fineTime = waveform[1];
811 fineTime = waveform[1];
812
812
813 //*********************
813 //*********************
814 // SEND CWF3_light DATA
814 // SEND CWF3_light DATA
815 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
815 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
816 {
816 {
817 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
817 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
818 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
818 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
819 // BUILD THE DATA
819 // BUILD THE DATA
820 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
820 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
821 // SET PACKET SEQUENCE COUNTER
821 // SET PACKET SEQUENCE COUNTER
822 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
822 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
823 // SET PACKET TIME
823 // SET PACKET TIME
824 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
824 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
825 //
825 //
826 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
826 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
827 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
827 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
828 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
828 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
829 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
829 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
830 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
830 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
831 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
831 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
832 // SEND PACKET
832 // SEND PACKET
833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
834 if (status != RTEMS_SUCCESSFUL) {
834 if (status != RTEMS_SUCCESSFUL) {
835 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
835 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
836 ret = LFR_DEFAULT;
836 ret = LFR_DEFAULT;
837 }
837 }
838 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
838 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
839 }
839 }
840
840
841 return ret;
841 return ret;
842 }
842 }
843
843
844 void compute_acquisition_time_old( unsigned int coarseTime, unsigned int fineTime,
844 void compute_acquisition_time_old( unsigned int coarseTime, unsigned int fineTime,
845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
846 {
846 {
847 unsigned long long int acquisitionTimeAsLong;
847 unsigned long long int acquisitionTimeAsLong;
848 unsigned char localAcquisitionTime[6];
848 unsigned char localAcquisitionTime[6];
849 double deltaT;
849 double deltaT;
850
850
851 deltaT = 0.;
851 deltaT = 0.;
852
852
853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
854 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
854 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
856 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
856 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
858 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
858 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
859
859
860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
862 + ( localAcquisitionTime[2] << 24 )
862 + ( localAcquisitionTime[2] << 24 )
863 + ( localAcquisitionTime[3] << 16 )
863 + ( localAcquisitionTime[3] << 16 )
864 + ( localAcquisitionTime[4] << 8 )
864 + ( localAcquisitionTime[4] << 8 )
865 + ( localAcquisitionTime[5] );
865 + ( localAcquisitionTime[5] );
866
866
867 switch( sid )
867 switch( sid )
868 {
868 {
869 case SID_NORM_SWF_F0:
869 case SID_NORM_SWF_F0:
870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
871 break;
871 break;
872
872
873 case SID_NORM_SWF_F1:
873 case SID_NORM_SWF_F1:
874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
875 break;
875 break;
876
876
877 case SID_NORM_SWF_F2:
877 case SID_NORM_SWF_F2:
878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
879 break;
879 break;
880
880
881 case SID_SBM1_CWF_F1:
881 case SID_SBM1_CWF_F1:
882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
883 break;
883 break;
884
884
885 case SID_SBM2_CWF_F2:
885 case SID_SBM2_CWF_F2:
886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
887 break;
887 break;
888
888
889 case SID_BURST_CWF_F2:
889 case SID_BURST_CWF_F2:
890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
891 break;
891 break;
892
892
893 case SID_NORM_CWF_F3:
893 case SID_NORM_CWF_F3:
894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
895 break;
895 break;
896
896
897 case SID_NORM_CWF_LONG_F3:
897 case SID_NORM_CWF_LONG_F3:
898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
899 break;
899 break;
900
900
901 default:
901 default:
902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
903 deltaT = 0.;
903 deltaT = 0.;
904 break;
904 break;
905 }
905 }
906
906
907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
908 //
908 //
909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
915
915
916 }
916 }
917
917
918 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
918 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
919 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
919 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
920 {
920 {
921 unsigned long long int acquisitionTimeAsLong;
921 unsigned long long int acquisitionTimeAsLong;
922 unsigned char localAcquisitionTime[6];
922 unsigned char localAcquisitionTime[6];
923 double deltaT;
923 double deltaT;
924
924
925 deltaT = 0.;
925 deltaT = 0.;
926
926
927 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
927 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
928 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
928 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
929 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
929 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
930 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
930 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
931 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
931 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
932 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
932 localAcquisitionTime[5] = (unsigned char) ( fineTime );
933
933
934 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
934 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
935 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
935 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
936 + ( localAcquisitionTime[2] << 24 )
936 + ( localAcquisitionTime[2] << 24 )
937 + ( localAcquisitionTime[3] << 16 )
937 + ( localAcquisitionTime[3] << 16 )
938 + ( localAcquisitionTime[4] << 8 )
938 + ( localAcquisitionTime[4] << 8 )
939 + ( localAcquisitionTime[5] );
939 + ( localAcquisitionTime[5] );
940
940
941 switch( sid )
941 switch( sid )
942 {
942 {
943 case SID_NORM_SWF_F0:
943 case SID_NORM_SWF_F0:
944 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
944 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
945 break;
945 break;
946
946
947 case SID_NORM_SWF_F1:
947 case SID_NORM_SWF_F1:
948 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
948 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
949 break;
949 break;
950
950
951 case SID_NORM_SWF_F2:
951 case SID_NORM_SWF_F2:
952 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
952 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
953 break;
953 break;
954
954
955 case SID_SBM1_CWF_F1:
955 case SID_SBM1_CWF_F1:
956 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
956 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
957 break;
957 break;
958
958
959 case SID_SBM2_CWF_F2:
959 case SID_SBM2_CWF_F2:
960 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
960 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
961 break;
961 break;
962
962
963 case SID_BURST_CWF_F2:
963 case SID_BURST_CWF_F2:
964 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
964 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
965 break;
965 break;
966
966
967 case SID_NORM_CWF_F3:
967 case SID_NORM_CWF_F3:
968 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
968 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
969 break;
969 break;
970
970
971 case SID_NORM_CWF_LONG_F3:
971 case SID_NORM_CWF_LONG_F3:
972 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
972 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
973 break;
973 break;
974
974
975 default:
975 default:
976 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
976 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
977 deltaT = 0.;
977 deltaT = 0.;
978 break;
978 break;
979 }
979 }
980
980
981 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
981 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
982 //
982 //
983 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
983 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
984 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
984 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
985 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
985 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
986 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
986 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
987 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
987 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
988 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
988 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
989
989
990 }
990 }
991
991
992 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
992 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
993 {
993 {
994 unsigned int i;
994 unsigned int i;
995 unsigned long long int centerTime_asLong;
995 unsigned long long int centerTime_asLong;
996 unsigned long long int acquisitionTimeF0_asLong;
996 unsigned long long int acquisitionTimeF0_asLong;
997 unsigned long long int acquisitionTime_asLong;
997 unsigned long long int acquisitionTime_asLong;
998 unsigned long long int bufferAcquisitionTime_asLong;
998 unsigned long long int bufferAcquisitionTime_asLong;
999 unsigned char *ptr1;
999 unsigned char *ptr1;
1000 unsigned char *ptr2;
1000 unsigned char *ptr2;
1001 unsigned char *timeCharPtr;
1001 unsigned char nb_ring_nodes;
1002 unsigned char nb_ring_nodes;
1002 unsigned long long int frequency_asLong;
1003 unsigned long long int frequency_asLong;
1003 unsigned long long int nbTicksPerSample_asLong;
1004 unsigned long long int nbTicksPerSample_asLong;
1004 unsigned long long int nbSamplesPart1_asLong;
1005 unsigned long long int nbSamplesPart1_asLong;
1005 unsigned long long int sampleOffset_asLong;
1006 unsigned long long int sampleOffset_asLong;
1006
1007
1007 unsigned int deltaT_F0;
1008 unsigned int deltaT_F0;
1008 unsigned int deltaT_F1;
1009 unsigned int deltaT_F1;
1009 unsigned long long int deltaT_F2;
1010 unsigned long long int deltaT_F2;
1010
1011
1011 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1012 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1012 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1013 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1013 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1014 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1014 sampleOffset_asLong = 0x00;
1015 sampleOffset_asLong = 0x00;
1015
1016
1016 // (1) get the f0 acquisition time
1017 // (1) get the f0 acquisition time
1017 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1018 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1018
1019
1019 // (2) compute the central reference time
1020 // (2) compute the central reference time
1020 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1021 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1021
1022
1022 // (3) compute the acquisition time of the current snapshot
1023 // (3) compute the acquisition time of the current snapshot
1023 switch(frequencyChannel)
1024 switch(frequencyChannel)
1024 {
1025 {
1025 case 1: // 1 is for F1 = 4096 Hz
1026 case 1: // 1 is for F1 = 4096 Hz
1026 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1027 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1027 nb_ring_nodes = NB_RING_NODES_F1;
1028 nb_ring_nodes = NB_RING_NODES_F1;
1028 frequency_asLong = 4096;
1029 frequency_asLong = 4096;
1029 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1030 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1030 break;
1031 break;
1031 case 2: // 2 is for F2 = 256 Hz
1032 case 2: // 2 is for F2 = 256 Hz
1032 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1033 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1033 nb_ring_nodes = NB_RING_NODES_F2;
1034 nb_ring_nodes = NB_RING_NODES_F2;
1034 frequency_asLong = 256;
1035 frequency_asLong = 256;
1035 nbTicksPerSample_asLong = 256; // 65536 / 256;
1036 nbTicksPerSample_asLong = 256; // 65536 / 256;
1036 break;
1037 break;
1037 default:
1038 default:
1038 acquisitionTime_asLong = centerTime_asLong;
1039 acquisitionTime_asLong = centerTime_asLong;
1039 frequency_asLong = 256;
1040 frequency_asLong = 256;
1040 nbTicksPerSample_asLong = 256;
1041 nbTicksPerSample_asLong = 256;
1041 break;
1042 break;
1042 }
1043 }
1043
1044
1044 //****************************************************************************
1045 //****************************************************************************
1045 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1046 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1046 for (i=0; i<nb_ring_nodes; i++)
1047 for (i=0; i<nb_ring_nodes; i++)
1047 {
1048 {
1048 PRINTF1("%d ... ", i)
1049 PRINTF1("%d ... ", i)
1049 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1050 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1050 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1051 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1051 {
1052 {
1052 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1053 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1053 break;
1054 break;
1054 }
1055 }
1055 ring_node_to_send = ring_node_to_send->previous;
1056 ring_node_to_send = ring_node_to_send->previous;
1056 }
1057 }
1057
1058
1058 // (5) compute the number of samples to take in the current buffer
1059 // (5) compute the number of samples to take in the current buffer
1059 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1060 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1060 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1061 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1061 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1062 PRINTF2("sampleOffset_asLong = %llx, nbSamplesPart1_asLong = %llx\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1062
1063
1063 // (6) compute the final acquisition time
1064 // (6) compute the final acquisition time
1064 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1065 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1065 sampleOffset_asLong * nbTicksPerSample_asLong;
1066 sampleOffset_asLong * nbTicksPerSample_asLong;
1066
1067
1067 // (7) copy the acquisition time at the beginning of the extrated snapshot
1068 // (7) copy the acquisition time at the beginning of the extrated snapshot
1068 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1069 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1069 ptr2 = (unsigned char*) wf_snap_extracted;
1070 ptr2 = (unsigned char*) wf_snap_extracted;
1070 ptr2[0] = ptr1[ 2 + 2 ];
1071 ptr2[0] = ptr1[ 0 + 2 ];
1071 ptr2[1] = ptr1[ 3 + 2 ];
1072 ptr2[1] = ptr1[ 1 + 2 ];
1072 ptr2[2] = ptr1[ 0 + 2 ];
1073 ptr2[2] = ptr1[ 2 + 2 ];
1073 ptr2[3] = ptr1[ 1 + 2 ];
1074 ptr2[3] = ptr1[ 3 + 2 ];
1074 ptr2[4] = ptr1[ 4 + 2 ];
1075 ptr2[6] = ptr1[ 4 + 2 ];
1075 ptr2[5] = ptr1[ 5 + 2 ];
1076 ptr2[7] = ptr1[ 5 + 2 ];
1076
1077
1077 // re set the synchronization bit
1078 // re set the synchronization bit
1079 timeCharPtr = (unsigned char*) ring_node_to_send->buffer_address;
1080 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
1078
1081
1079
1082 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
1083 {
1084 nbSamplesPart1_asLong = 0;
1085 }
1080 // copy the part 1 of the snapshot in the extracted buffer
1086 // copy the part 1 of the snapshot in the extracted buffer
1081 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1087 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1082 {
1088 {
1083 wf_snap_extracted[i + TIME_OFFSET] =
1089 wf_snap_extracted[i + TIME_OFFSET] =
1084 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1090 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1085 }
1091 }
1086 // copy the part 2 of the snapshot in the extracted buffer
1092 // copy the part 2 of the snapshot in the extracted buffer
1087 ring_node_to_send = ring_node_to_send->next;
1093 ring_node_to_send = ring_node_to_send->next;
1088 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1094 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1089 {
1095 {
1090 wf_snap_extracted[i + TIME_OFFSET] =
1096 wf_snap_extracted[i + TIME_OFFSET] =
1091 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1097 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1092 }
1098 }
1093 }
1099 }
1094
1100
1095 void build_acquisition_time_old( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1101 void build_acquisition_time_old( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1096 {
1102 {
1097 unsigned char *acquisitionTimeCharPtr;
1103 unsigned char *acquisitionTimeCharPtr;
1098
1104
1099 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1105 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1100
1106
1101 *acquisitionTimeAslong = 0x00;
1107 *acquisitionTimeAslong = 0x00;
1102 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1108 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1103 + ( acquisitionTimeCharPtr[1] << 16 )
1109 + ( acquisitionTimeCharPtr[1] << 16 )
1104 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1110 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1105 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1111 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1106 + ( acquisitionTimeCharPtr[4] << 8 )
1112 + ( acquisitionTimeCharPtr[4] << 8 )
1107 + ( acquisitionTimeCharPtr[5] );
1113 + ( acquisitionTimeCharPtr[5] );
1108 }
1114 }
1109
1115
1110 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1116 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1111 {
1117 {
1112 unsigned char *acquisitionTimeCharPtr;
1118 unsigned char *acquisitionTimeCharPtr;
1113
1119
1114 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1120 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1115
1121
1116 *acquisitionTimeAslong = 0x00;
1122 *acquisitionTimeAslong = 0x00;
1117 *acquisitionTimeAslong = ( (unsigned long long int) (acquisitionTimeCharPtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1123 *acquisitionTimeAslong = ( (unsigned long long int) (acquisitionTimeCharPtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1118 + ( (unsigned long long int) acquisitionTimeCharPtr[1] << 32 )
1124 + ( (unsigned long long int) acquisitionTimeCharPtr[1] << 32 )
1119 + ( acquisitionTimeCharPtr[2] << 24 )
1125 + ( acquisitionTimeCharPtr[2] << 24 )
1120 + ( acquisitionTimeCharPtr[3] << 16 )
1126 + ( acquisitionTimeCharPtr[3] << 16 )
1121 + ( acquisitionTimeCharPtr[4] << 8 )
1127 + ( acquisitionTimeCharPtr[6] << 8 )
1122 + ( acquisitionTimeCharPtr[5] );
1128 + ( acquisitionTimeCharPtr[7] );
1123 }
1129 }
1124
1130
1125 //**************
1131 //**************
1126 // wfp registers
1132 // wfp registers
1127 void reset_wfp_burst_enable(void)
1133 void reset_wfp_burst_enable(void)
1128 {
1134 {
1129 /** This function resets the waveform picker burst_enable register.
1135 /** This function resets the waveform picker burst_enable register.
1130 *
1136 *
1131 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1137 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1132 *
1138 *
1133 */
1139 */
1134
1140
1135 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1141 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1136 }
1142 }
1137
1143
1138 void reset_wfp_status( void )
1144 void reset_wfp_status( void )
1139 {
1145 {
1140 /** This function resets the waveform picker status register.
1146 /** This function resets the waveform picker status register.
1141 *
1147 *
1142 * All status bits are set to 0 [new_err full_err full].
1148 * All status bits are set to 0 [new_err full_err full].
1143 *
1149 *
1144 */
1150 */
1145
1151
1146 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1152 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1147 }
1153 }
1148
1154
1149 void reset_waveform_picker_regs(void)
1155 void reset_waveform_picker_regs(void)
1150 {
1156 {
1151 /** This function resets the waveform picker module registers.
1157 /** This function resets the waveform picker module registers.
1152 *
1158 *
1153 * The registers affected by this function are located at the following offset addresses:
1159 * The registers affected by this function are located at the following offset addresses:
1154 * - 0x00 data_shaping
1160 * - 0x00 data_shaping
1155 * - 0x04 run_burst_enable
1161 * - 0x04 run_burst_enable
1156 * - 0x08 addr_data_f0
1162 * - 0x08 addr_data_f0
1157 * - 0x0C addr_data_f1
1163 * - 0x0C addr_data_f1
1158 * - 0x10 addr_data_f2
1164 * - 0x10 addr_data_f2
1159 * - 0x14 addr_data_f3
1165 * - 0x14 addr_data_f3
1160 * - 0x18 status
1166 * - 0x18 status
1161 * - 0x1C delta_snapshot
1167 * - 0x1C delta_snapshot
1162 * - 0x20 delta_f0
1168 * - 0x20 delta_f0
1163 * - 0x24 delta_f0_2
1169 * - 0x24 delta_f0_2
1164 * - 0x28 delta_f1
1170 * - 0x28 delta_f1
1165 * - 0x2c delta_f2
1171 * - 0x2c delta_f2
1166 * - 0x30 nb_data_by_buffer
1172 * - 0x30 nb_data_by_buffer
1167 * - 0x34 nb_snapshot_param
1173 * - 0x34 nb_snapshot_param
1168 * - 0x38 start_date
1174 * - 0x38 start_date
1169 * - 0x3c nb_word_in_buffer
1175 * - 0x3c nb_word_in_buffer
1170 *
1176 *
1171 */
1177 */
1172
1178
1173 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1179 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1174 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1180 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1175 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1181 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1176 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1182 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1177 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1183 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1178 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1184 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1179 reset_wfp_status(); // 0x18
1185 reset_wfp_status(); // 0x18
1180 //
1186 //
1181 set_wfp_delta_snapshot(); // 0x1c
1187 set_wfp_delta_snapshot(); // 0x1c
1182 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1188 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1183 set_wfp_delta_f1(); // 0x28
1189 set_wfp_delta_f1(); // 0x28
1184 set_wfp_delta_f2(); // 0x2c
1190 set_wfp_delta_f2(); // 0x2c
1185 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1191 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1186 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1192 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1187 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1193 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1188 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1194 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1189 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1195 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1190 // 2688 = 8 * 336
1196 // 2688 = 8 * 336
1191 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1197 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1192 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1198 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1193 waveform_picker_regs->start_date = 0x00; // 0x38
1199 waveform_picker_regs->start_date = 0x00; // 0x38
1194 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1200 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1195 }
1201 }
1196
1202
1197 void set_wfp_data_shaping( void )
1203 void set_wfp_data_shaping( void )
1198 {
1204 {
1199 /** This function sets the data_shaping register of the waveform picker module.
1205 /** This function sets the data_shaping register of the waveform picker module.
1200 *
1206 *
1201 * The value is read from one field of the parameter_dump_packet structure:\n
1207 * The value is read from one field of the parameter_dump_packet structure:\n
1202 * bw_sp0_sp1_r0_r1
1208 * bw_sp0_sp1_r0_r1
1203 *
1209 *
1204 */
1210 */
1205
1211
1206 unsigned char data_shaping;
1212 unsigned char data_shaping;
1207
1213
1208 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1214 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1209 // waveform picker : [R1 R0 SP1 SP0 BW]
1215 // waveform picker : [R1 R0 SP1 SP0 BW]
1210
1216
1211 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1217 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1212
1218
1213 waveform_picker_regs->data_shaping =
1219 waveform_picker_regs->data_shaping =
1214 ( (data_shaping & 0x10) >> 4 ) // BW
1220 ( (data_shaping & 0x10) >> 4 ) // BW
1215 + ( (data_shaping & 0x08) >> 2 ) // SP0
1221 + ( (data_shaping & 0x08) >> 2 ) // SP0
1216 + ( (data_shaping & 0x04) ) // SP1
1222 + ( (data_shaping & 0x04) ) // SP1
1217 + ( (data_shaping & 0x02) << 2 ) // R0
1223 + ( (data_shaping & 0x02) << 2 ) // R0
1218 + ( (data_shaping & 0x01) << 4 ); // R1
1224 + ( (data_shaping & 0x01) << 4 ); // R1
1219 }
1225 }
1220
1226
1221 void set_wfp_burst_enable_register( unsigned char mode )
1227 void set_wfp_burst_enable_register( unsigned char mode )
1222 {
1228 {
1223 /** This function sets the waveform picker burst_enable register depending on the mode.
1229 /** This function sets the waveform picker burst_enable register depending on the mode.
1224 *
1230 *
1225 * @param mode is the LFR mode to launch.
1231 * @param mode is the LFR mode to launch.
1226 *
1232 *
1227 * The burst bits shall be before the enable bits.
1233 * The burst bits shall be before the enable bits.
1228 *
1234 *
1229 */
1235 */
1230
1236
1231 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1237 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1232 // the burst bits shall be set first, before the enable bits
1238 // the burst bits shall be set first, before the enable bits
1233 switch(mode) {
1239 switch(mode) {
1234 case(LFR_MODE_NORMAL):
1240 case(LFR_MODE_NORMAL):
1235 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1241 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1236 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1242 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1237 break;
1243 break;
1238 case(LFR_MODE_BURST):
1244 case(LFR_MODE_BURST):
1239 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1245 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1240 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1246 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1241 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1247 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1242 break;
1248 break;
1243 case(LFR_MODE_SBM1):
1249 case(LFR_MODE_SBM1):
1244 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1250 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1245 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1251 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1246 break;
1252 break;
1247 case(LFR_MODE_SBM2):
1253 case(LFR_MODE_SBM2):
1248 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1254 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1249 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1255 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1250 break;
1256 break;
1251 default:
1257 default:
1252 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1258 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1253 break;
1259 break;
1254 }
1260 }
1255 }
1261 }
1256
1262
1257 void set_wfp_delta_snapshot( void )
1263 void set_wfp_delta_snapshot( void )
1258 {
1264 {
1259 /** This function sets the delta_snapshot register of the waveform picker module.
1265 /** This function sets the delta_snapshot register of the waveform picker module.
1260 *
1266 *
1261 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1267 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1262 * - sy_lfr_n_swf_p[0]
1268 * - sy_lfr_n_swf_p[0]
1263 * - sy_lfr_n_swf_p[1]
1269 * - sy_lfr_n_swf_p[1]
1264 *
1270 *
1265 */
1271 */
1266
1272
1267 unsigned int delta_snapshot;
1273 unsigned int delta_snapshot;
1268 unsigned int delta_snapshot_in_T2;
1274 unsigned int delta_snapshot_in_T2;
1269
1275
1270 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1276 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1271 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1277 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1272
1278
1273 delta_snapshot_in_T2 = delta_snapshot * 256;
1279 delta_snapshot_in_T2 = delta_snapshot * 256;
1274 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1280 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1275 }
1281 }
1276
1282
1277 void set_wfp_delta_f0_f0_2( void )
1283 void set_wfp_delta_f0_f0_2( void )
1278 {
1284 {
1279 unsigned int delta_snapshot;
1285 unsigned int delta_snapshot;
1280 unsigned int nb_samples_per_snapshot;
1286 unsigned int nb_samples_per_snapshot;
1281 float delta_f0_in_float;
1287 float delta_f0_in_float;
1282
1288
1283 delta_snapshot = waveform_picker_regs->delta_snapshot;
1289 delta_snapshot = waveform_picker_regs->delta_snapshot;
1284 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1290 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1285 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1291 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1286
1292
1287 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1293 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1288 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1294 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1289 }
1295 }
1290
1296
1291 void set_wfp_delta_f1( void )
1297 void set_wfp_delta_f1( void )
1292 {
1298 {
1293 unsigned int delta_snapshot;
1299 unsigned int delta_snapshot;
1294 unsigned int nb_samples_per_snapshot;
1300 unsigned int nb_samples_per_snapshot;
1295 float delta_f1_in_float;
1301 float delta_f1_in_float;
1296
1302
1297 delta_snapshot = waveform_picker_regs->delta_snapshot;
1303 delta_snapshot = waveform_picker_regs->delta_snapshot;
1298 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1304 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1299 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1305 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1300
1306
1301 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1307 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1302 }
1308 }
1303
1309
1304 void set_wfp_delta_f2()
1310 void set_wfp_delta_f2()
1305 {
1311 {
1306 unsigned int delta_snapshot;
1312 unsigned int delta_snapshot;
1307 unsigned int nb_samples_per_snapshot;
1313 unsigned int nb_samples_per_snapshot;
1308
1314
1309 delta_snapshot = waveform_picker_regs->delta_snapshot;
1315 delta_snapshot = waveform_picker_regs->delta_snapshot;
1310 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1316 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1311
1317
1312 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1318 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1313 }
1319 }
1314
1320
1315 //*****************
1321 //*****************
1316 // local parameters
1322 // local parameters
1317
1323
1318 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1324 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1319 {
1325 {
1320 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1326 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1321 *
1327 *
1322 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1328 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1323 * @param sid is the source identifier of the packet being updated.
1329 * @param sid is the source identifier of the packet being updated.
1324 *
1330 *
1325 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1331 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1326 * The sequence counters shall wrap around from 2^14 to zero.
1332 * The sequence counters shall wrap around from 2^14 to zero.
1327 * The sequence counter shall start at zero at startup.
1333 * The sequence counter shall start at zero at startup.
1328 *
1334 *
1329 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1335 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1330 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1336 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1331 *
1337 *
1332 */
1338 */
1333
1339
1334 unsigned short *sequence_cnt;
1340 unsigned short *sequence_cnt;
1335 unsigned short segmentation_grouping_flag;
1341 unsigned short segmentation_grouping_flag;
1336 unsigned short new_packet_sequence_control;
1342 unsigned short new_packet_sequence_control;
1337 rtems_mode initial_mode_set;
1343 rtems_mode initial_mode_set;
1338 rtems_mode current_mode_set;
1344 rtems_mode current_mode_set;
1339 rtems_status_code status;
1345 rtems_status_code status;
1340
1346
1341 //******************************************
1347 //******************************************
1342 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1348 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1343 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1349 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1344
1350
1345 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1351 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1346 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1352 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1347 || (sid == SID_BURST_CWF_F2)
1353 || (sid == SID_BURST_CWF_F2)
1348 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1354 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1349 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1355 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1350 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1356 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1351 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1357 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1352 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1358 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1353 {
1359 {
1354 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1360 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1355 }
1361 }
1356 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1362 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1357 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1363 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1358 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1364 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1359 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1365 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1360 {
1366 {
1361 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1367 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1362 }
1368 }
1363 else
1369 else
1364 {
1370 {
1365 sequence_cnt = (unsigned short *) NULL;
1371 sequence_cnt = (unsigned short *) NULL;
1366 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1372 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1367 }
1373 }
1368
1374
1369 if (sequence_cnt != NULL)
1375 if (sequence_cnt != NULL)
1370 {
1376 {
1371 // increment the sequence counter
1377 // increment the sequence counter
1372 if ( *sequence_cnt < SEQ_CNT_MAX)
1378 if ( *sequence_cnt < SEQ_CNT_MAX)
1373 {
1379 {
1374 *sequence_cnt = *sequence_cnt + 1;
1380 *sequence_cnt = *sequence_cnt + 1;
1375 }
1381 }
1376 else
1382 else
1377 {
1383 {
1378 *sequence_cnt = 0;
1384 *sequence_cnt = 0;
1379 }
1385 }
1380 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1386 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1381 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1387 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1382
1388
1383 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1389 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1384
1390
1385 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1391 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1386 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1392 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1387 }
1393 }
1388
1394
1389 //***********************************
1395 //***********************************
1390 // RESET THE MODE OF THE CALLING TASK
1396 // RESET THE MODE OF THE CALLING TASK
1391 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1397 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1392 }
1398 }
General Comments 0
You need to be logged in to leave comments. Login now