##// END OF EJS Templates
rev 2.0.2.3...
paul -
r191:88d58b8c0419 VHDL_0_1_28
parent child
Show More
@@ -0,0 +1,13
1 # LOAD FSW USING LINK 1
2 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
3
4 dsu3plugin0.openFile("/opt/DEV_PLE/FSW-qt/bin/fsw")
5 dsu3plugin0.loadFile()
6
7 dsu3plugin0.run()
8
9 # START SENDING TIMECODES AT 1 Hz
10 SpwPlugin0.StarDundeeStartTimecodes( 1 )
11
12 # it is possible to change the time code frequency
13 #RMAPPlugin0.changeTimecodeFrequency(2)
@@ -0,0 +1,12
1 # LOAD FSW USING LINK 1
2 SpwPlugin0.StarDundeeSelectLinkNumber( 2 )
3
4 dsu3plugin0.openFile("/opt/DEV_PLE/timegen-qt/bin/timegen")
5 dsu3plugin0.loadFile()
6
7 dsu3plugin0.run()
8
9 # START SENDING TIMECODES AT 1 Hz
10 SpwPlugin0.StarDundeeStartTimecodes( 1 )
11
12 SpwPlugin0.StarDundeeSelectLinkNumber( 1 )
@@ -0,0 +1,29
1 #!/usr/bin/lppmon -e
2
3 import time
4
5 proxy.loadSysDriver("SpwPlugin","SpwPlugin0")
6 SpwPlugin0.selectBridge("STAR-Dundee Spw USB Brick")
7
8 proxy.loadSysDriverToParent("dsu3plugin","SpwPlugin0")
9 proxy.loadSysDriverToParent("LFRControlPlugin","SpwPlugin0")
10
11 availableBrickCount = SpwPlugin0.StarDundeeGetAvailableBrickCount()
12 print "availableBrickCount = ", availableBrickCount
13
14 SpwPlugin0.StarDundeeSelectBrick(1)
15 SpwPlugin0.StarDundeeSetBrickAsARouter(1)
16 SpwPlugin0.connectBridge()
17
18 #SpwPlugin0.TCPServerSetIP("127.0.0.1")
19 SpwPlugin0.TCPServerConnect()
20
21 #LFRControlPlugin0.SetSpwServerIP(129,104,27,164)
22 LFRControlPlugin0.TCPServerConnect()
23
24 dsu3plugin0.openFile("/opt/DEV_PLE/FSW-qt/bin/fsw")
25 dsu3plugin0.loadFile()
26 dsu3plugin0.run()
27
28 LFRControlPlugin0.TMEchoBridgeOpenPort()
29
@@ -1,21 +1,22
1 syntax: glob
1 syntax: glob
2 *.pdf
2 *.pdf
3 *~
3 *~
4 *.o
4 *.o
5 *.gcno
5 *.gcno
6 *.gcda
6 *.gcda
7 *.html
7 *.html
8 *.zip
8 *.zip
9 tests/*.err
9 tests/*.err
10 doc
10 doc
11 *.srec
11 *.srec
12 FSW-qt/bin/fsw
12 FSW-qt/bin/fsw
13 timegen-qt/bin/timegen
13 src/LFR_basic-parameters
14 src/LFR_basic-parameters
14 *.pro.user.*
15 *.pro.user.*
15 FSW-qt/bin/spectralmatrix/asm_f0_test_20140403_case1.txt
16 FSW-qt/bin/spectralmatrix/asm_f0_test_20140403_case1.txt
16 FSW-qt/bin/spectralmatrix/asm_f0_test_20140403_case2.txt
17 FSW-qt/bin/spectralmatrix/asm_f0_test_20140403_case2.txt
17 FSW-qt/bin/spectralmatrix/asm_f0_test_paul_1.txt
18 FSW-qt/bin/spectralmatrix/asm_f0_test_paul_1.txt
18 run2/src
19 run2/src
19 run2/trace
20 run2/trace
20 run3/src
21 run3/src
21 run3/trace
22 run3/trace
@@ -1,2 +1,2
1 a586fe639ac179e95bdc150ebdbab0312f31dc30 LFR_basic-parameters
1 a586fe639ac179e95bdc150ebdbab0312f31dc30 LFR_basic-parameters
2 be0dc1c1876987307ddfc0fb47044f6d41815866 header/lfr_common_headers
2 611fe904e4b4e05736a8a618c561980d10bceead header/lfr_common_headers
@@ -1,112 +1,112
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 # lpp_dpu_destid
4 # lpp_dpu_destid
5 CONFIG += console verbose lpp_dpu_destid
5 CONFIG += console verbose lpp_dpu_destid
6 CONFIG -= qt
6 CONFIG -= qt
7
7
8 include(./sparc.pri)
8 include(./sparc.pri)
9
9
10 # flight software version
10 # flight software version
11 SWVERSION=-1-0
11 SWVERSION=-1-0
12 DEFINES += SW_VERSION_N1=2 # major
12 DEFINES += SW_VERSION_N1=2 # major
13 DEFINES += SW_VERSION_N2=0 # minor
13 DEFINES += SW_VERSION_N2=0 # minor
14 DEFINES += SW_VERSION_N3=2 # patch
14 DEFINES += SW_VERSION_N3=2 # patch
15 DEFINES += SW_VERSION_N4=2 # internal
15 DEFINES += SW_VERSION_N4=3 # internal
16
16
17 # <GCOV>
17 # <GCOV>
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
20 # </GCOV>
20 # </GCOV>
21
21
22 # <CHANGE BEFORE FLIGHT>
22 # <CHANGE BEFORE FLIGHT>
23 contains( CONFIG, lpp_dpu_destid ) {
23 contains( CONFIG, lpp_dpu_destid ) {
24 DEFINES += LPP_DPU_DESTID
24 DEFINES += LPP_DPU_DESTID
25 }
25 }
26 # </CHANGE BEFORE FLIGHT>
26 # </CHANGE BEFORE FLIGHT>
27
27
28 contains( CONFIG, debug_tch ) {
28 contains( CONFIG, debug_tch ) {
29 DEFINES += DEBUG_TCH
29 DEFINES += DEBUG_TCH
30 }
30 }
31 DEFINES += MSB_FIRST_TCH
31 DEFINES += MSB_FIRST_TCH
32
32
33 contains( CONFIG, vhdl_dev ) {
33 contains( CONFIG, vhdl_dev ) {
34 DEFINES += VHDL_DEV
34 DEFINES += VHDL_DEV
35 }
35 }
36
36
37 contains( CONFIG, verbose ) {
37 contains( CONFIG, verbose ) {
38 DEFINES += PRINT_MESSAGES_ON_CONSOLE
38 DEFINES += PRINT_MESSAGES_ON_CONSOLE
39 }
39 }
40
40
41 contains( CONFIG, debug_messages ) {
41 contains( CONFIG, debug_messages ) {
42 DEFINES += DEBUG_MESSAGES
42 DEFINES += DEBUG_MESSAGES
43 }
43 }
44
44
45 contains( CONFIG, cpu_usage_report ) {
45 contains( CONFIG, cpu_usage_report ) {
46 DEFINES += PRINT_TASK_STATISTICS
46 DEFINES += PRINT_TASK_STATISTICS
47 }
47 }
48
48
49 contains( CONFIG, stack_report ) {
49 contains( CONFIG, stack_report ) {
50 DEFINES += PRINT_STACK_REPORT
50 DEFINES += PRINT_STACK_REPORT
51 }
51 }
52
52
53 contains( CONFIG, boot_messages ) {
53 contains( CONFIG, boot_messages ) {
54 DEFINES += BOOT_MESSAGES
54 DEFINES += BOOT_MESSAGES
55 }
55 }
56
56
57 #doxygen.target = doxygen
57 #doxygen.target = doxygen
58 #doxygen.commands = doxygen ../doc/Doxyfile
58 #doxygen.commands = doxygen ../doc/Doxyfile
59 #QMAKE_EXTRA_TARGETS += doxygen
59 #QMAKE_EXTRA_TARGETS += doxygen
60
60
61 TARGET = fsw
61 TARGET = fsw
62
62
63 INCLUDEPATH += \
63 INCLUDEPATH += \
64 $${PWD}/../src \
64 $${PWD}/../src \
65 $${PWD}/../header \
65 $${PWD}/../header \
66 $${PWD}/../header/lfr_common_headers \
66 $${PWD}/../header/lfr_common_headers \
67 $${PWD}/../header/processing \
67 $${PWD}/../header/processing \
68 $${PWD}/../LFR_basic-parameters
68 $${PWD}/../LFR_basic-parameters
69
69
70 SOURCES += \
70 SOURCES += \
71 ../src/wf_handler.c \
71 ../src/wf_handler.c \
72 ../src/tc_handler.c \
72 ../src/tc_handler.c \
73 ../src/fsw_misc.c \
73 ../src/fsw_misc.c \
74 ../src/fsw_init.c \
74 ../src/fsw_init.c \
75 ../src/fsw_globals.c \
75 ../src/fsw_globals.c \
76 ../src/fsw_spacewire.c \
76 ../src/fsw_spacewire.c \
77 ../src/tc_load_dump_parameters.c \
77 ../src/tc_load_dump_parameters.c \
78 ../src/tm_lfr_tc_exe.c \
78 ../src/tm_lfr_tc_exe.c \
79 ../src/tc_acceptance.c \
79 ../src/tc_acceptance.c \
80 ../src/processing/fsw_processing.c \
80 ../src/processing/fsw_processing.c \
81 ../src/processing/avf0_prc0.c \
81 ../src/processing/avf0_prc0.c \
82 ../src/processing/avf1_prc1.c \
82 ../src/processing/avf1_prc1.c \
83 ../src/processing/avf2_prc2.c \
83 ../src/processing/avf2_prc2.c \
84 ../src/lfr_cpu_usage_report.c \
84 ../src/lfr_cpu_usage_report.c \
85 ../LFR_basic-parameters/basic_parameters.c
85 ../LFR_basic-parameters/basic_parameters.c
86
86
87 HEADERS += \
87 HEADERS += \
88 ../header/wf_handler.h \
88 ../header/wf_handler.h \
89 ../header/tc_handler.h \
89 ../header/tc_handler.h \
90 ../header/grlib_regs.h \
90 ../header/grlib_regs.h \
91 ../header/fsw_misc.h \
91 ../header/fsw_misc.h \
92 ../header/fsw_init.h \
92 ../header/fsw_init.h \
93 ../header/fsw_spacewire.h \
93 ../header/fsw_spacewire.h \
94 ../header/tc_load_dump_parameters.h \
94 ../header/tc_load_dump_parameters.h \
95 ../header/tm_lfr_tc_exe.h \
95 ../header/tm_lfr_tc_exe.h \
96 ../header/tc_acceptance.h \
96 ../header/tc_acceptance.h \
97 ../header/processing/fsw_processing.h \
97 ../header/processing/fsw_processing.h \
98 ../header/processing/avf0_prc0.h \
98 ../header/processing/avf0_prc0.h \
99 ../header/processing/avf1_prc1.h \
99 ../header/processing/avf1_prc1.h \
100 ../header/processing/avf2_prc2.h \
100 ../header/processing/avf2_prc2.h \
101 ../header/fsw_params_wf_handler.h \
101 ../header/fsw_params_wf_handler.h \
102 ../header/lfr_cpu_usage_report.h \
102 ../header/lfr_cpu_usage_report.h \
103 ../header/lfr_common_headers/ccsds_types.h \
103 ../header/lfr_common_headers/ccsds_types.h \
104 ../header/lfr_common_headers/fsw_params.h \
104 ../header/lfr_common_headers/fsw_params.h \
105 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
105 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
106 ../header/lfr_common_headers/fsw_params_processing.h \
106 ../header/lfr_common_headers/fsw_params_processing.h \
107 ../header/lfr_common_headers/TC_types.h \
107 ../header/lfr_common_headers/TC_types.h \
108 ../header/lfr_common_headers/tm_byte_positions.h \
108 ../header/lfr_common_headers/tm_byte_positions.h \
109 ../LFR_basic-parameters/basic_parameters.h \
109 ../LFR_basic-parameters/basic_parameters.h \
110 ../LFR_basic-parameters/basic_parameters_params.h \
110 ../LFR_basic-parameters/basic_parameters_params.h \
111 ../header/GscMemoryLPP.hpp
111 ../header/GscMemoryLPP.hpp
112
112
@@ -1,1117 +1,1117
1 /** Functions related to the SpaceWire interface.
1 /** Functions related to the SpaceWire interface.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle SpaceWire transmissions:
6 * A group of functions to handle SpaceWire transmissions:
7 * - configuration of the SpaceWire link
7 * - configuration of the SpaceWire link
8 * - SpaceWire related interruption requests processing
8 * - SpaceWire related interruption requests processing
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
11 *
11 *
12 */
12 */
13
13
14 #include "fsw_spacewire.h"
14 #include "fsw_spacewire.h"
15
15
16 rtems_name semq_name;
16 rtems_name semq_name;
17 rtems_id semq_id;
17 rtems_id semq_id;
18
18
19 //*****************
19 //*****************
20 // waveform headers
20 // waveform headers
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
24
24
25 //***********
25 //***********
26 // RTEMS TASK
26 // RTEMS TASK
27 rtems_task spiq_task(rtems_task_argument unused)
27 rtems_task spiq_task(rtems_task_argument unused)
28 {
28 {
29 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
29 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
30 *
30 *
31 * @param unused is the starting argument of the RTEMS task
31 * @param unused is the starting argument of the RTEMS task
32 *
32 *
33 */
33 */
34
34
35 rtems_event_set event_out;
35 rtems_event_set event_out;
36 rtems_status_code status;
36 rtems_status_code status;
37 int linkStatus;
37 int linkStatus;
38
38
39 BOOT_PRINTF("in SPIQ *** \n")
39 BOOT_PRINTF("in SPIQ *** \n")
40
40
41 while(true){
41 while(true){
42 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
42 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
43 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
43 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
44
44
45 // [0] SUSPEND RECV AND SEND TASKS
45 // [0] SUSPEND RECV AND SEND TASKS
46 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
46 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
47 if ( status != RTEMS_SUCCESSFUL ) {
47 if ( status != RTEMS_SUCCESSFUL ) {
48 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
48 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
49 }
49 }
50 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
50 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
51 if ( status != RTEMS_SUCCESSFUL ) {
51 if ( status != RTEMS_SUCCESSFUL ) {
52 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
52 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
53 }
53 }
54
54
55 // [1] CHECK THE LINK
55 // [1] CHECK THE LINK
56 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
56 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
57 if ( linkStatus != 5) {
57 if ( linkStatus != 5) {
58 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
58 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
59 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
59 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
60 }
60 }
61
61
62 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
62 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
63 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
63 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
64 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
64 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
65 {
65 {
66 spacewire_compute_stats_offsets();
66 spacewire_compute_stats_offsets();
67 status = spacewire_reset_link( );
67 status = spacewire_reset_link( );
68 }
68 }
69 else // [2.b] in run state, start the link
69 else // [2.b] in run state, start the link
70 {
70 {
71 status = spacewire_stop_and_start_link( fdSPW ); // start the link
71 status = spacewire_stop_and_start_link( fdSPW ); // start the link
72 if ( status != RTEMS_SUCCESSFUL)
72 if ( status != RTEMS_SUCCESSFUL)
73 {
73 {
74 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
74 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
75 }
75 }
76 }
76 }
77
77
78 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
78 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
79 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
79 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
80 {
80 {
81 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
81 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
82 if ( status != RTEMS_SUCCESSFUL ) {
82 if ( status != RTEMS_SUCCESSFUL ) {
83 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
83 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
84 }
84 }
85 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
85 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
86 if ( status != RTEMS_SUCCESSFUL ) {
86 if ( status != RTEMS_SUCCESSFUL ) {
87 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
87 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
88 }
88 }
89 }
89 }
90 else // [3.b] the link is not in run state, go in STANDBY mode
90 else // [3.b] the link is not in run state, go in STANDBY mode
91 {
91 {
92 status = stop_current_mode();
92 status = stop_current_mode();
93 if ( status != RTEMS_SUCCESSFUL ) {
93 if ( status != RTEMS_SUCCESSFUL ) {
94 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
94 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
95 }
95 }
96 status = enter_mode( LFR_MODE_STANDBY, 0 );
96 status = enter_mode( LFR_MODE_STANDBY, 0 );
97 if ( status != RTEMS_SUCCESSFUL ) {
97 if ( status != RTEMS_SUCCESSFUL ) {
98 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
98 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
99 }
99 }
100 // wake the WTDG task up to wait for the link recovery
100 // wake the WTDG task up to wait for the link recovery
101 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
101 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
102 status = rtems_task_suspend( RTEMS_SELF );
102 status = rtems_task_suspend( RTEMS_SELF );
103 }
103 }
104 }
104 }
105 }
105 }
106
106
107 rtems_task recv_task( rtems_task_argument unused )
107 rtems_task recv_task( rtems_task_argument unused )
108 {
108 {
109 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
109 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
110 *
110 *
111 * @param unused is the starting argument of the RTEMS task
111 * @param unused is the starting argument of the RTEMS task
112 *
112 *
113 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
113 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
114 * 1. It reads the incoming data.
114 * 1. It reads the incoming data.
115 * 2. Launches the acceptance procedure.
115 * 2. Launches the acceptance procedure.
116 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
116 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
117 *
117 *
118 */
118 */
119
119
120 int len;
120 int len;
121 ccsdsTelecommandPacket_t currentTC;
121 ccsdsTelecommandPacket_t currentTC;
122 unsigned char computed_CRC[ 2 ];
122 unsigned char computed_CRC[ 2 ];
123 unsigned char currentTC_LEN_RCV[ 2 ];
123 unsigned char currentTC_LEN_RCV[ 2 ];
124 unsigned char destinationID;
124 unsigned char destinationID;
125 unsigned int estimatedPacketLength;
125 unsigned int estimatedPacketLength;
126 unsigned int parserCode;
126 unsigned int parserCode;
127 rtems_status_code status;
127 rtems_status_code status;
128 rtems_id queue_recv_id;
128 rtems_id queue_recv_id;
129 rtems_id queue_send_id;
129 rtems_id queue_send_id;
130
130
131 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
131 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
132
132
133 status = get_message_queue_id_recv( &queue_recv_id );
133 status = get_message_queue_id_recv( &queue_recv_id );
134 if (status != RTEMS_SUCCESSFUL)
134 if (status != RTEMS_SUCCESSFUL)
135 {
135 {
136 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
136 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
137 }
137 }
138
138
139 status = get_message_queue_id_send( &queue_send_id );
139 status = get_message_queue_id_send( &queue_send_id );
140 if (status != RTEMS_SUCCESSFUL)
140 if (status != RTEMS_SUCCESSFUL)
141 {
141 {
142 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
142 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
143 }
143 }
144
144
145 BOOT_PRINTF("in RECV *** \n")
145 BOOT_PRINTF("in RECV *** \n")
146
146
147 while(1)
147 while(1)
148 {
148 {
149 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
149 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
150 if (len == -1){ // error during the read call
150 if (len == -1){ // error during the read call
151 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
151 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
152 }
152 }
153 else {
153 else {
154 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
154 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
155 PRINTF("in RECV *** packet lenght too short\n")
155 PRINTF("in RECV *** packet lenght too short\n")
156 }
156 }
157 else {
157 else {
158 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
158 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
159 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
159 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
160 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
160 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
161 // CHECK THE TC
161 // CHECK THE TC
162 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
162 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
163 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
163 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
164 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
164 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
165 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
165 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
166 || (parserCode == WRONG_SRC_ID) )
166 || (parserCode == WRONG_SRC_ID) )
167 { // send TM_LFR_TC_EXE_CORRUPTED
167 { // send TM_LFR_TC_EXE_CORRUPTED
168 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
168 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
169 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
169 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
170 &&
170 &&
171 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
171 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
172 )
172 )
173 {
173 {
174 if ( parserCode == WRONG_SRC_ID )
174 if ( parserCode == WRONG_SRC_ID )
175 {
175 {
176 destinationID = SID_TC_GROUND;
176 destinationID = SID_TC_GROUND;
177 }
177 }
178 else
178 else
179 {
179 {
180 destinationID = currentTC.sourceID;
180 destinationID = currentTC.sourceID;
181 }
181 }
182 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
182 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
183 computed_CRC, currentTC_LEN_RCV,
183 computed_CRC, currentTC_LEN_RCV,
184 destinationID );
184 destinationID );
185 }
185 }
186 }
186 }
187 else
187 else
188 { // send valid TC to the action launcher
188 { // send valid TC to the action launcher
189 status = rtems_message_queue_send( queue_recv_id, &currentTC,
189 status = rtems_message_queue_send( queue_recv_id, &currentTC,
190 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
190 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
191 }
191 }
192 }
192 }
193 }
193 }
194 }
194 }
195 }
195 }
196
196
197 rtems_task send_task( rtems_task_argument argument)
197 rtems_task send_task( rtems_task_argument argument)
198 {
198 {
199 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
199 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
200 *
200 *
201 * @param unused is the starting argument of the RTEMS task
201 * @param unused is the starting argument of the RTEMS task
202 *
202 *
203 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
203 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
204 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
204 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
205 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
205 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
206 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
206 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
207 * data it contains.
207 * data it contains.
208 *
208 *
209 */
209 */
210
210
211 rtems_status_code status; // RTEMS status code
211 rtems_status_code status; // RTEMS status code
212 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
212 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
213 ring_node *incomingRingNodePtr;
213 ring_node *incomingRingNodePtr;
214 int ring_node_address;
214 int ring_node_address;
215 char *charPtr;
215 char *charPtr;
216 spw_ioctl_pkt_send *spw_ioctl_send;
216 spw_ioctl_pkt_send *spw_ioctl_send;
217 size_t size; // size of the incoming TC packet
217 size_t size; // size of the incoming TC packet
218 u_int32_t count;
218 u_int32_t count;
219 rtems_id queue_id;
219 rtems_id queue_id;
220 unsigned char sid;
220 unsigned char sid;
221
221
222 incomingRingNodePtr = NULL;
222 incomingRingNodePtr = NULL;
223 ring_node_address = 0;
223 ring_node_address = 0;
224 charPtr = (char *) &ring_node_address;
224 charPtr = (char *) &ring_node_address;
225 sid = 0;
225 sid = 0;
226
226
227 init_header_cwf( &headerCWF );
227 init_header_cwf( &headerCWF );
228 init_header_swf( &headerSWF );
228 init_header_swf( &headerSWF );
229 init_header_asm( &headerASM );
229 init_header_asm( &headerASM );
230
230
231 status = get_message_queue_id_send( &queue_id );
231 status = get_message_queue_id_send( &queue_id );
232 if (status != RTEMS_SUCCESSFUL)
232 if (status != RTEMS_SUCCESSFUL)
233 {
233 {
234 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
234 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
235 }
235 }
236
236
237 BOOT_PRINTF("in SEND *** \n")
237 BOOT_PRINTF("in SEND *** \n")
238
238
239 while(1)
239 while(1)
240 {
240 {
241 status = rtems_message_queue_receive( queue_id, incomingData, &size,
241 status = rtems_message_queue_receive( queue_id, incomingData, &size,
242 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
242 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
243
243
244 if (status!=RTEMS_SUCCESSFUL)
244 if (status!=RTEMS_SUCCESSFUL)
245 {
245 {
246 PRINTF1("in SEND *** (1) ERR = %d\n", status)
246 PRINTF1("in SEND *** (1) ERR = %d\n", status)
247 }
247 }
248 else
248 else
249 {
249 {
250 if ( size == sizeof(ring_node*) )
250 if ( size == sizeof(ring_node*) )
251 {
251 {
252 charPtr[0] = incomingData[0];
252 charPtr[0] = incomingData[0];
253 charPtr[1] = incomingData[1];
253 charPtr[1] = incomingData[1];
254 charPtr[2] = incomingData[2];
254 charPtr[2] = incomingData[2];
255 charPtr[3] = incomingData[3];
255 charPtr[3] = incomingData[3];
256 incomingRingNodePtr = (ring_node*) ring_node_address;
256 incomingRingNodePtr = (ring_node*) ring_node_address;
257 sid = incomingRingNodePtr->sid;
257 sid = incomingRingNodePtr->sid;
258 if ( (sid==SID_NORM_CWF_LONG_F3)
258 if ( (sid==SID_NORM_CWF_LONG_F3)
259 || (sid==SID_BURST_CWF_F2 )
259 || (sid==SID_BURST_CWF_F2 )
260 || (sid==SID_SBM1_CWF_F1 )
260 || (sid==SID_SBM1_CWF_F1 )
261 || (sid==SID_SBM2_CWF_F2 ))
261 || (sid==SID_SBM2_CWF_F2 ))
262 {
262 {
263 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
263 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
264 }
264 }
265 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
265 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
266 {
266 {
267 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
267 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
268 }
268 }
269 else if ( (sid==SID_NORM_CWF_F3) )
269 else if ( (sid==SID_NORM_CWF_F3) )
270 {
270 {
271 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
271 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
272 }
272 }
273 else if ( (sid==SID_NORM_ASM_F0) || (SID_NORM_ASM_F1) || (SID_NORM_ASM_F2) )
273 else if ( (sid==SID_NORM_ASM_F0) || (SID_NORM_ASM_F1) || (SID_NORM_ASM_F2) )
274 {
274 {
275 spw_send_asm( incomingRingNodePtr, &headerASM );
275 spw_send_asm( incomingRingNodePtr, &headerASM );
276 }
276 }
277 else
277 else
278 {
278 {
279 printf("unexpected sid = %d\n", sid);
279 printf("unexpected sid = %d\n", sid);
280 }
280 }
281 }
281 }
282 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
282 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
283 {
283 {
284 status = write( fdSPW, incomingData, size );
284 status = write( fdSPW, incomingData, size );
285 if (status == -1){
285 if (status == -1){
286 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
286 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
287 }
287 }
288 }
288 }
289 else // the incoming message is a spw_ioctl_pkt_send structure
289 else // the incoming message is a spw_ioctl_pkt_send structure
290 {
290 {
291 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
291 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
292 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
292 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
293 if (status == -1){
293 if (status == -1){
294 printf("size = %d, %x, %x, %x, %x, %x\n",
294 printf("size = %d, %x, %x, %x, %x, %x\n",
295 size,
295 size,
296 incomingData[0],
296 incomingData[0],
297 incomingData[1],
297 incomingData[1],
298 incomingData[2],
298 incomingData[2],
299 incomingData[3],
299 incomingData[3],
300 incomingData[4]);
300 incomingData[4]);
301 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
301 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
302 }
302 }
303 }
303 }
304 }
304 }
305
305
306 status = rtems_message_queue_get_number_pending( queue_id, &count );
306 status = rtems_message_queue_get_number_pending( queue_id, &count );
307 if (status != RTEMS_SUCCESSFUL)
307 if (status != RTEMS_SUCCESSFUL)
308 {
308 {
309 PRINTF1("in SEND *** (3) ERR = %d\n", status)
309 PRINTF1("in SEND *** (3) ERR = %d\n", status)
310 }
310 }
311 else
311 else
312 {
312 {
313 if (count > maxCount)
313 if (count > maxCount)
314 {
314 {
315 maxCount = count;
315 maxCount = count;
316 }
316 }
317 }
317 }
318 }
318 }
319 }
319 }
320
320
321 rtems_task wtdg_task( rtems_task_argument argument )
321 rtems_task wtdg_task( rtems_task_argument argument )
322 {
322 {
323 rtems_event_set event_out;
323 rtems_event_set event_out;
324 rtems_status_code status;
324 rtems_status_code status;
325 int linkStatus;
325 int linkStatus;
326
326
327 BOOT_PRINTF("in WTDG ***\n")
327 BOOT_PRINTF("in WTDG ***\n")
328
328
329 while(1)
329 while(1)
330 {
330 {
331 // wait for an RTEMS_EVENT
331 // wait for an RTEMS_EVENT
332 rtems_event_receive( RTEMS_EVENT_0,
332 rtems_event_receive( RTEMS_EVENT_0,
333 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
333 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
334 PRINTF("in WTDG *** wait for the link\n")
334 PRINTF("in WTDG *** wait for the link\n")
335 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
335 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
336 while( linkStatus != 5) // wait for the link
336 while( linkStatus != 5) // wait for the link
337 {
337 {
338 status = rtems_task_wake_after( 10 ); // monitor the link each 100ms
338 status = rtems_task_wake_after( 10 ); // monitor the link each 100ms
339 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
339 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
340 }
340 }
341
341
342 status = spacewire_stop_and_start_link( fdSPW );
342 status = spacewire_stop_and_start_link( fdSPW );
343
343
344 if (status != RTEMS_SUCCESSFUL)
344 if (status != RTEMS_SUCCESSFUL)
345 {
345 {
346 PRINTF1("in WTDG *** ERR link not started %d\n", status)
346 PRINTF1("in WTDG *** ERR link not started %d\n", status)
347 }
347 }
348 else
348 else
349 {
349 {
350 PRINTF("in WTDG *** OK link started\n")
350 PRINTF("in WTDG *** OK link started\n")
351 }
351 }
352
352
353 // restart the SPIQ task
353 // restart the SPIQ task
354 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
354 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
355 if ( status != RTEMS_SUCCESSFUL ) {
355 if ( status != RTEMS_SUCCESSFUL ) {
356 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
356 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
357 }
357 }
358
358
359 // restart RECV and SEND
359 // restart RECV and SEND
360 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
360 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
361 if ( status != RTEMS_SUCCESSFUL ) {
361 if ( status != RTEMS_SUCCESSFUL ) {
362 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
362 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
363 }
363 }
364 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
364 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
365 if ( status != RTEMS_SUCCESSFUL ) {
365 if ( status != RTEMS_SUCCESSFUL ) {
366 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
366 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
367 }
367 }
368 }
368 }
369 }
369 }
370
370
371 //****************
371 //****************
372 // OTHER FUNCTIONS
372 // OTHER FUNCTIONS
373 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
373 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
374 {
374 {
375 /** This function opens the SpaceWire link.
375 /** This function opens the SpaceWire link.
376 *
376 *
377 * @return a valid file descriptor in case of success, -1 in case of a failure
377 * @return a valid file descriptor in case of success, -1 in case of a failure
378 *
378 *
379 */
379 */
380 rtems_status_code status;
380 rtems_status_code status;
381
381
382 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
382 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
383 if ( fdSPW < 0 ) {
383 if ( fdSPW < 0 ) {
384 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
384 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
385 }
385 }
386 else
386 else
387 {
387 {
388 status = RTEMS_SUCCESSFUL;
388 status = RTEMS_SUCCESSFUL;
389 }
389 }
390
390
391 return status;
391 return status;
392 }
392 }
393
393
394 int spacewire_start_link( int fd )
394 int spacewire_start_link( int fd )
395 {
395 {
396 rtems_status_code status;
396 rtems_status_code status;
397
397
398 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
398 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
399 // -1 default hardcoded driver timeout
399 // -1 default hardcoded driver timeout
400
400
401 return status;
401 return status;
402 }
402 }
403
403
404 int spacewire_stop_and_start_link( int fd )
404 int spacewire_stop_and_start_link( int fd )
405 {
405 {
406 rtems_status_code status;
406 rtems_status_code status;
407
407
408 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
408 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
409 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
409 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
410 // -1 default hardcoded driver timeout
410 // -1 default hardcoded driver timeout
411
411
412 return status;
412 return status;
413 }
413 }
414
414
415 int spacewire_configure_link( int fd )
415 int spacewire_configure_link( int fd )
416 {
416 {
417 /** This function configures the SpaceWire link.
417 /** This function configures the SpaceWire link.
418 *
418 *
419 * @return GR-RTEMS-DRIVER directive status codes:
419 * @return GR-RTEMS-DRIVER directive status codes:
420 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
420 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
421 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
421 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
422 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
422 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
423 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
423 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
424 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
424 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
425 * - 5 EIO - Error when writing to grswp hardware registers.
425 * - 5 EIO - Error when writing to grswp hardware registers.
426 * - 2 ENOENT - No such file or directory
426 * - 2 ENOENT - No such file or directory
427 */
427 */
428
428
429 rtems_status_code status;
429 rtems_status_code status;
430
430
431 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
431 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
432 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
432 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
433
433
434 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
434 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
435 if (status!=RTEMS_SUCCESSFUL) {
435 if (status!=RTEMS_SUCCESSFUL) {
436 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
436 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
437 }
437 }
438 //
438 //
439 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
439 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
440 if (status!=RTEMS_SUCCESSFUL) {
440 if (status!=RTEMS_SUCCESSFUL) {
441 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
441 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
442 }
442 }
443 //
443 //
444 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
444 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
445 if (status!=RTEMS_SUCCESSFUL) {
445 if (status!=RTEMS_SUCCESSFUL) {
446 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
446 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
447 }
447 }
448 //
448 //
449 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
449 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
450 if (status!=RTEMS_SUCCESSFUL) {
450 if (status!=RTEMS_SUCCESSFUL) {
451 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
451 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
452 }
452 }
453 //
453 //
454 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
454 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
455 if (status!=RTEMS_SUCCESSFUL) {
455 if (status!=RTEMS_SUCCESSFUL) {
456 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
456 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
457 }
457 }
458 //
458 //
459 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
459 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
460 if (status!=RTEMS_SUCCESSFUL) {
460 if (status!=RTEMS_SUCCESSFUL) {
461 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
461 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
462 }
462 }
463 //
463 //
464 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
464 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
465 if (status!=RTEMS_SUCCESSFUL) {
465 if (status!=RTEMS_SUCCESSFUL) {
466 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
466 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
467 }
467 }
468
468
469 return status;
469 return status;
470 }
470 }
471
471
472 int spacewire_reset_link( void )
472 int spacewire_reset_link( void )
473 {
473 {
474 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
474 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
475 *
475 *
476 * @return RTEMS directive status code:
476 * @return RTEMS directive status code:
477 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
477 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
478 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
478 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
479 *
479 *
480 */
480 */
481
481
482 rtems_status_code status_spw;
482 rtems_status_code status_spw;
483 rtems_status_code status;
483 rtems_status_code status;
484 int i;
484 int i;
485
485
486 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
486 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
487 {
487 {
488 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
488 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
489
489
490 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
490 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
491
491
492 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
492 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
493
493
494 status_spw = spacewire_stop_and_start_link( fdSPW );
494 status_spw = spacewire_stop_and_start_link( fdSPW );
495 if ( status_spw != RTEMS_SUCCESSFUL )
495 if ( status_spw != RTEMS_SUCCESSFUL )
496 {
496 {
497 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
497 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
498 }
498 }
499
499
500 if ( status_spw == RTEMS_SUCCESSFUL)
500 if ( status_spw == RTEMS_SUCCESSFUL)
501 {
501 {
502 break;
502 break;
503 }
503 }
504 }
504 }
505
505
506 return status_spw;
506 return status_spw;
507 }
507 }
508
508
509 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
509 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
510 {
510 {
511 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
511 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
512 *
512 *
513 * @param val is the value, 0 or 1, used to set the value of the NP bit.
513 * @param val is the value, 0 or 1, used to set the value of the NP bit.
514 * @param regAddr is the address of the GRSPW control register.
514 * @param regAddr is the address of the GRSPW control register.
515 *
515 *
516 * NP is the bit 20 of the GRSPW control register.
516 * NP is the bit 20 of the GRSPW control register.
517 *
517 *
518 */
518 */
519
519
520 unsigned int *spwptr = (unsigned int*) regAddr;
520 unsigned int *spwptr = (unsigned int*) regAddr;
521
521
522 if (val == 1) {
522 if (val == 1) {
523 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
523 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
524 }
524 }
525 if (val== 0) {
525 if (val== 0) {
526 *spwptr = *spwptr & 0xffdfffff;
526 *spwptr = *spwptr & 0xffdfffff;
527 }
527 }
528 }
528 }
529
529
530 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
530 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
531 {
531 {
532 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
532 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
533 *
533 *
534 * @param val is the value, 0 or 1, used to set the value of the RE bit.
534 * @param val is the value, 0 or 1, used to set the value of the RE bit.
535 * @param regAddr is the address of the GRSPW control register.
535 * @param regAddr is the address of the GRSPW control register.
536 *
536 *
537 * RE is the bit 16 of the GRSPW control register.
537 * RE is the bit 16 of the GRSPW control register.
538 *
538 *
539 */
539 */
540
540
541 unsigned int *spwptr = (unsigned int*) regAddr;
541 unsigned int *spwptr = (unsigned int*) regAddr;
542
542
543 if (val == 1)
543 if (val == 1)
544 {
544 {
545 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
545 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
546 }
546 }
547 if (val== 0)
547 if (val== 0)
548 {
548 {
549 *spwptr = *spwptr & 0xfffdffff;
549 *spwptr = *spwptr & 0xfffdffff;
550 }
550 }
551 }
551 }
552
552
553 void spacewire_compute_stats_offsets( void )
553 void spacewire_compute_stats_offsets( void )
554 {
554 {
555 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
555 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
556 *
556 *
557 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
557 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
558 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
558 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
559 * during the open systel call).
559 * during the open systel call).
560 *
560 *
561 */
561 */
562
562
563 spw_stats spacewire_stats_grspw;
563 spw_stats spacewire_stats_grspw;
564 rtems_status_code status;
564 rtems_status_code status;
565
565
566 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
566 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
567
567
568 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
568 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
569 + spacewire_stats.packets_received;
569 + spacewire_stats.packets_received;
570 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
570 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
571 + spacewire_stats.packets_sent;
571 + spacewire_stats.packets_sent;
572 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
572 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
573 + spacewire_stats.parity_err;
573 + spacewire_stats.parity_err;
574 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
574 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
575 + spacewire_stats.disconnect_err;
575 + spacewire_stats.disconnect_err;
576 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
576 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
577 + spacewire_stats.escape_err;
577 + spacewire_stats.escape_err;
578 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
578 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
579 + spacewire_stats.credit_err;
579 + spacewire_stats.credit_err;
580 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
580 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
581 + spacewire_stats.write_sync_err;
581 + spacewire_stats.write_sync_err;
582 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
582 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
583 + spacewire_stats.rx_rmap_header_crc_err;
583 + spacewire_stats.rx_rmap_header_crc_err;
584 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
584 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
585 + spacewire_stats.rx_rmap_data_crc_err;
585 + spacewire_stats.rx_rmap_data_crc_err;
586 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
586 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
587 + spacewire_stats.early_ep;
587 + spacewire_stats.early_ep;
588 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
588 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
589 + spacewire_stats.invalid_address;
589 + spacewire_stats.invalid_address;
590 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
590 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
591 + spacewire_stats.rx_eep_err;
591 + spacewire_stats.rx_eep_err;
592 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
592 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
593 + spacewire_stats.rx_truncated;
593 + spacewire_stats.rx_truncated;
594 }
594 }
595
595
596 void spacewire_update_statistics( void )
596 void spacewire_update_statistics( void )
597 {
597 {
598 rtems_status_code status;
598 rtems_status_code status;
599 spw_stats spacewire_stats_grspw;
599 spw_stats spacewire_stats_grspw;
600
600
601 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
601 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
602
602
603 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
603 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
604 + spacewire_stats_grspw.packets_received;
604 + spacewire_stats_grspw.packets_received;
605 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
605 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
606 + spacewire_stats_grspw.packets_sent;
606 + spacewire_stats_grspw.packets_sent;
607 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
607 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
608 + spacewire_stats_grspw.parity_err;
608 + spacewire_stats_grspw.parity_err;
609 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
609 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
610 + spacewire_stats_grspw.disconnect_err;
610 + spacewire_stats_grspw.disconnect_err;
611 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
611 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
612 + spacewire_stats_grspw.escape_err;
612 + spacewire_stats_grspw.escape_err;
613 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
613 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
614 + spacewire_stats_grspw.credit_err;
614 + spacewire_stats_grspw.credit_err;
615 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
615 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
616 + spacewire_stats_grspw.write_sync_err;
616 + spacewire_stats_grspw.write_sync_err;
617 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
617 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
618 + spacewire_stats_grspw.rx_rmap_header_crc_err;
618 + spacewire_stats_grspw.rx_rmap_header_crc_err;
619 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
619 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
620 + spacewire_stats_grspw.rx_rmap_data_crc_err;
620 + spacewire_stats_grspw.rx_rmap_data_crc_err;
621 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
621 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
622 + spacewire_stats_grspw.early_ep;
622 + spacewire_stats_grspw.early_ep;
623 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
623 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
624 + spacewire_stats_grspw.invalid_address;
624 + spacewire_stats_grspw.invalid_address;
625 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
625 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
626 + spacewire_stats_grspw.rx_eep_err;
626 + spacewire_stats_grspw.rx_eep_err;
627 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
627 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
628 + spacewire_stats_grspw.rx_truncated;
628 + spacewire_stats_grspw.rx_truncated;
629 //spacewire_stats.tx_link_err;
629 //spacewire_stats.tx_link_err;
630
630
631 //****************************
631 //****************************
632 // DPU_SPACEWIRE_IF_STATISTICS
632 // DPU_SPACEWIRE_IF_STATISTICS
633 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
633 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
634 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
634 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
635 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
635 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
636 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
636 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
637 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
637 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
638 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
638 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
639
639
640 //******************************************
640 //******************************************
641 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
641 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
642 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
642 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
643 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
643 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
644 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
644 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
645 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
645 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
646 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
646 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
647
647
648 //*********************************************
648 //*********************************************
649 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
649 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
650 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
650 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
651 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
651 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
652 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
652 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
653 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
653 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
654 }
654 }
655
655
656 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
656 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
657 {
657 {
658 // a valid timecode has been received, write it in the HK report
658 // a valid timecode has been received, write it in the HK report
659 unsigned int * grspwPtr;
659 unsigned int * grspwPtr;
660
660
661 grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
661 grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
662
662
663 housekeeping_packet.hk_lfr_dpu_spw_last_timc = (unsigned char) (grspwPtr[0] & 0x3f); // [11 1111]
663 housekeeping_packet.hk_lfr_dpu_spw_last_timc = (unsigned char) (grspwPtr[0] & 0xff); // [11 1111]
664
664
665 // update the number of valid timecodes that have been received
665 // update the number of valid timecodes that have been received
666 if (housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt == 255)
666 if (housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt == 255)
667 {
667 {
668 housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt = 0;
668 housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt = 0;
669 }
669 }
670 else
670 else
671 {
671 {
672 housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt = housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt + 1;
672 housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt = housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt + 1;
673 }
673 }
674 }
674 }
675
675
676 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
676 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
677 {
677 {
678 int linkStatus;
678 int linkStatus;
679 rtems_status_code status;
679 rtems_status_code status;
680
680
681 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
681 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
682
682
683 if ( linkStatus == 5) {
683 if ( linkStatus == 5) {
684 PRINTF("in spacewire_reset_link *** link is running\n")
684 PRINTF("in spacewire_reset_link *** link is running\n")
685 status = RTEMS_SUCCESSFUL;
685 status = RTEMS_SUCCESSFUL;
686 }
686 }
687 }
687 }
688
688
689 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
689 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
690 {
690 {
691 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
691 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
692 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
692 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
693 header->reserved = DEFAULT_RESERVED;
693 header->reserved = DEFAULT_RESERVED;
694 header->userApplication = CCSDS_USER_APP;
694 header->userApplication = CCSDS_USER_APP;
695 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
695 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
696 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
696 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
697 header->packetLength[0] = 0x00;
697 header->packetLength[0] = 0x00;
698 header->packetLength[1] = 0x00;
698 header->packetLength[1] = 0x00;
699 // DATA FIELD HEADER
699 // DATA FIELD HEADER
700 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
700 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
701 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
701 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
702 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
702 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
703 header->destinationID = TM_DESTINATION_ID_GROUND;
703 header->destinationID = TM_DESTINATION_ID_GROUND;
704 header->time[0] = 0x00;
704 header->time[0] = 0x00;
705 header->time[0] = 0x00;
705 header->time[0] = 0x00;
706 header->time[0] = 0x00;
706 header->time[0] = 0x00;
707 header->time[0] = 0x00;
707 header->time[0] = 0x00;
708 header->time[0] = 0x00;
708 header->time[0] = 0x00;
709 header->time[0] = 0x00;
709 header->time[0] = 0x00;
710 // AUXILIARY DATA HEADER
710 // AUXILIARY DATA HEADER
711 header->sid = 0x00;
711 header->sid = 0x00;
712 header->hkBIA = DEFAULT_HKBIA;
712 header->hkBIA = DEFAULT_HKBIA;
713 header->blkNr[0] = 0x00;
713 header->blkNr[0] = 0x00;
714 header->blkNr[1] = 0x00;
714 header->blkNr[1] = 0x00;
715 }
715 }
716
716
717 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
717 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
718 {
718 {
719 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
719 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
720 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
720 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
721 header->reserved = DEFAULT_RESERVED;
721 header->reserved = DEFAULT_RESERVED;
722 header->userApplication = CCSDS_USER_APP;
722 header->userApplication = CCSDS_USER_APP;
723 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
723 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
724 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
724 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
725 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
725 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
726 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
726 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
727 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
727 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
728 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
728 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
729 // DATA FIELD HEADER
729 // DATA FIELD HEADER
730 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
730 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
731 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
731 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
732 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
732 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
733 header->destinationID = TM_DESTINATION_ID_GROUND;
733 header->destinationID = TM_DESTINATION_ID_GROUND;
734 header->time[0] = 0x00;
734 header->time[0] = 0x00;
735 header->time[0] = 0x00;
735 header->time[0] = 0x00;
736 header->time[0] = 0x00;
736 header->time[0] = 0x00;
737 header->time[0] = 0x00;
737 header->time[0] = 0x00;
738 header->time[0] = 0x00;
738 header->time[0] = 0x00;
739 header->time[0] = 0x00;
739 header->time[0] = 0x00;
740 // AUXILIARY DATA HEADER
740 // AUXILIARY DATA HEADER
741 header->sid = 0x00;
741 header->sid = 0x00;
742 header->hkBIA = DEFAULT_HKBIA;
742 header->hkBIA = DEFAULT_HKBIA;
743 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
743 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
744 header->pktNr = 0x00;
744 header->pktNr = 0x00;
745 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
745 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
746 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
746 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
747 }
747 }
748
748
749 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
749 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
750 {
750 {
751 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
751 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
752 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
752 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
753 header->reserved = DEFAULT_RESERVED;
753 header->reserved = DEFAULT_RESERVED;
754 header->userApplication = CCSDS_USER_APP;
754 header->userApplication = CCSDS_USER_APP;
755 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
755 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
756 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
756 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
757 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
757 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
758 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
758 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
759 header->packetLength[0] = 0x00;
759 header->packetLength[0] = 0x00;
760 header->packetLength[1] = 0x00;
760 header->packetLength[1] = 0x00;
761 // DATA FIELD HEADER
761 // DATA FIELD HEADER
762 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
762 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
763 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
763 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
764 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
764 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
765 header->destinationID = TM_DESTINATION_ID_GROUND;
765 header->destinationID = TM_DESTINATION_ID_GROUND;
766 header->time[0] = 0x00;
766 header->time[0] = 0x00;
767 header->time[0] = 0x00;
767 header->time[0] = 0x00;
768 header->time[0] = 0x00;
768 header->time[0] = 0x00;
769 header->time[0] = 0x00;
769 header->time[0] = 0x00;
770 header->time[0] = 0x00;
770 header->time[0] = 0x00;
771 header->time[0] = 0x00;
771 header->time[0] = 0x00;
772 // AUXILIARY DATA HEADER
772 // AUXILIARY DATA HEADER
773 header->sid = 0x00;
773 header->sid = 0x00;
774 header->biaStatusInfo = 0x00;
774 header->biaStatusInfo = 0x00;
775 header->pa_lfr_pkt_cnt_asm = 0x00;
775 header->pa_lfr_pkt_cnt_asm = 0x00;
776 header->pa_lfr_pkt_nr_asm = 0x00;
776 header->pa_lfr_pkt_nr_asm = 0x00;
777 header->pa_lfr_asm_blk_nr[0] = 0x00;
777 header->pa_lfr_asm_blk_nr[0] = 0x00;
778 header->pa_lfr_asm_blk_nr[1] = 0x00;
778 header->pa_lfr_asm_blk_nr[1] = 0x00;
779 }
779 }
780
780
781 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
781 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
782 Header_TM_LFR_SCIENCE_CWF_t *header )
782 Header_TM_LFR_SCIENCE_CWF_t *header )
783 {
783 {
784 /** This function sends CWF CCSDS packets (F2, F1 or F0).
784 /** This function sends CWF CCSDS packets (F2, F1 or F0).
785 *
785 *
786 * @param waveform points to the buffer containing the data that will be send.
786 * @param waveform points to the buffer containing the data that will be send.
787 * @param sid is the source identifier of the data that will be sent.
787 * @param sid is the source identifier of the data that will be sent.
788 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
788 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
789 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
789 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
790 * contain information to setup the transmission of the data packets.
790 * contain information to setup the transmission of the data packets.
791 *
791 *
792 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
792 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
793 *
793 *
794 */
794 */
795
795
796 unsigned int i;
796 unsigned int i;
797 int ret;
797 int ret;
798 unsigned int coarseTime;
798 unsigned int coarseTime;
799 unsigned int fineTime;
799 unsigned int fineTime;
800 rtems_status_code status;
800 rtems_status_code status;
801 spw_ioctl_pkt_send spw_ioctl_send_CWF;
801 spw_ioctl_pkt_send spw_ioctl_send_CWF;
802 int *dataPtr;
802 int *dataPtr;
803 unsigned char sid;
803 unsigned char sid;
804
804
805 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
805 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
806 spw_ioctl_send_CWF.options = 0;
806 spw_ioctl_send_CWF.options = 0;
807
807
808 ret = LFR_DEFAULT;
808 ret = LFR_DEFAULT;
809 sid = (unsigned char) ring_node_to_send->sid;
809 sid = (unsigned char) ring_node_to_send->sid;
810
810
811 coarseTime = ring_node_to_send->coarseTime;
811 coarseTime = ring_node_to_send->coarseTime;
812 fineTime = ring_node_to_send->fineTime;
812 fineTime = ring_node_to_send->fineTime;
813 dataPtr = (int*) ring_node_to_send->buffer_address;
813 dataPtr = (int*) ring_node_to_send->buffer_address;
814
814
815 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
815 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
816 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
816 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
817 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
817 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
818 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
818 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
819
819
820 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
820 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
821 {
821 {
822 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
822 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
823 spw_ioctl_send_CWF.hdr = (char*) header;
823 spw_ioctl_send_CWF.hdr = (char*) header;
824 // BUILD THE DATA
824 // BUILD THE DATA
825 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
825 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
826
826
827 // SET PACKET SEQUENCE CONTROL
827 // SET PACKET SEQUENCE CONTROL
828 increment_seq_counter_source_id( header->packetSequenceControl, sid );
828 increment_seq_counter_source_id( header->packetSequenceControl, sid );
829
829
830 // SET SID
830 // SET SID
831 header->sid = sid;
831 header->sid = sid;
832
832
833 // SET PACKET TIME
833 // SET PACKET TIME
834 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
834 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
835 //
835 //
836 header->time[0] = header->acquisitionTime[0];
836 header->time[0] = header->acquisitionTime[0];
837 header->time[1] = header->acquisitionTime[1];
837 header->time[1] = header->acquisitionTime[1];
838 header->time[2] = header->acquisitionTime[2];
838 header->time[2] = header->acquisitionTime[2];
839 header->time[3] = header->acquisitionTime[3];
839 header->time[3] = header->acquisitionTime[3];
840 header->time[4] = header->acquisitionTime[4];
840 header->time[4] = header->acquisitionTime[4];
841 header->time[5] = header->acquisitionTime[5];
841 header->time[5] = header->acquisitionTime[5];
842
842
843 // SET PACKET ID
843 // SET PACKET ID
844 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
844 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
845 {
845 {
846 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
846 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
847 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
847 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
848 }
848 }
849 else
849 else
850 {
850 {
851 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
851 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
852 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
852 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
853 }
853 }
854
854
855 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
855 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
856 if (status != RTEMS_SUCCESSFUL) {
856 if (status != RTEMS_SUCCESSFUL) {
857 printf("%d-%d, ERR %d\n", sid, i, (int) status);
857 printf("%d-%d, ERR %d\n", sid, i, (int) status);
858 ret = LFR_DEFAULT;
858 ret = LFR_DEFAULT;
859 }
859 }
860 }
860 }
861
861
862 return ret;
862 return ret;
863 }
863 }
864
864
865 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
865 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
866 Header_TM_LFR_SCIENCE_SWF_t *header )
866 Header_TM_LFR_SCIENCE_SWF_t *header )
867 {
867 {
868 /** This function sends SWF CCSDS packets (F2, F1 or F0).
868 /** This function sends SWF CCSDS packets (F2, F1 or F0).
869 *
869 *
870 * @param waveform points to the buffer containing the data that will be send.
870 * @param waveform points to the buffer containing the data that will be send.
871 * @param sid is the source identifier of the data that will be sent.
871 * @param sid is the source identifier of the data that will be sent.
872 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
872 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
873 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
873 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
874 * contain information to setup the transmission of the data packets.
874 * contain information to setup the transmission of the data packets.
875 *
875 *
876 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
876 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
877 *
877 *
878 */
878 */
879
879
880 unsigned int i;
880 unsigned int i;
881 int ret;
881 int ret;
882 unsigned int coarseTime;
882 unsigned int coarseTime;
883 unsigned int fineTime;
883 unsigned int fineTime;
884 rtems_status_code status;
884 rtems_status_code status;
885 spw_ioctl_pkt_send spw_ioctl_send_SWF;
885 spw_ioctl_pkt_send spw_ioctl_send_SWF;
886 int *dataPtr;
886 int *dataPtr;
887 unsigned char sid;
887 unsigned char sid;
888
888
889 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
889 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
890 spw_ioctl_send_SWF.options = 0;
890 spw_ioctl_send_SWF.options = 0;
891
891
892 ret = LFR_DEFAULT;
892 ret = LFR_DEFAULT;
893
893
894 coarseTime = ring_node_to_send->coarseTime;
894 coarseTime = ring_node_to_send->coarseTime;
895 fineTime = ring_node_to_send->fineTime;
895 fineTime = ring_node_to_send->fineTime;
896 dataPtr = (int*) ring_node_to_send->buffer_address;
896 dataPtr = (int*) ring_node_to_send->buffer_address;
897 sid = ring_node_to_send->sid;
897 sid = ring_node_to_send->sid;
898
898
899 for (i=0; i<7; i++) // send waveform
899 for (i=0; i<7; i++) // send waveform
900 {
900 {
901 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
901 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
902 spw_ioctl_send_SWF.hdr = (char*) header;
902 spw_ioctl_send_SWF.hdr = (char*) header;
903
903
904 // SET PACKET SEQUENCE CONTROL
904 // SET PACKET SEQUENCE CONTROL
905 increment_seq_counter_source_id( header->packetSequenceControl, sid );
905 increment_seq_counter_source_id( header->packetSequenceControl, sid );
906
906
907 // SET PACKET LENGTH AND BLKNR
907 // SET PACKET LENGTH AND BLKNR
908 if (i == 6)
908 if (i == 6)
909 {
909 {
910 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
910 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
911 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
911 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
912 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
912 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
913 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
913 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
914 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
914 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
915 }
915 }
916 else
916 else
917 {
917 {
918 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
918 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
919 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
919 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
920 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
920 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
921 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
921 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
922 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
922 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
923 }
923 }
924
924
925 // SET PACKET TIME
925 // SET PACKET TIME
926 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
926 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
927 //
927 //
928 header->time[0] = header->acquisitionTime[0];
928 header->time[0] = header->acquisitionTime[0];
929 header->time[1] = header->acquisitionTime[1];
929 header->time[1] = header->acquisitionTime[1];
930 header->time[2] = header->acquisitionTime[2];
930 header->time[2] = header->acquisitionTime[2];
931 header->time[3] = header->acquisitionTime[3];
931 header->time[3] = header->acquisitionTime[3];
932 header->time[4] = header->acquisitionTime[4];
932 header->time[4] = header->acquisitionTime[4];
933 header->time[5] = header->acquisitionTime[5];
933 header->time[5] = header->acquisitionTime[5];
934
934
935 // SET SID
935 // SET SID
936 header->sid = sid;
936 header->sid = sid;
937
937
938 // SET PKTNR
938 // SET PKTNR
939 header->pktNr = i+1; // PKT_NR
939 header->pktNr = i+1; // PKT_NR
940
940
941 // SEND PACKET
941 // SEND PACKET
942 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
942 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
943 if (status != RTEMS_SUCCESSFUL) {
943 if (status != RTEMS_SUCCESSFUL) {
944 printf("%d-%d, ERR %d\n", sid, i, (int) status);
944 printf("%d-%d, ERR %d\n", sid, i, (int) status);
945 ret = LFR_DEFAULT;
945 ret = LFR_DEFAULT;
946 }
946 }
947 }
947 }
948
948
949 return ret;
949 return ret;
950 }
950 }
951
951
952 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
952 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
953 Header_TM_LFR_SCIENCE_CWF_t *header )
953 Header_TM_LFR_SCIENCE_CWF_t *header )
954 {
954 {
955 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
955 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
956 *
956 *
957 * @param waveform points to the buffer containing the data that will be send.
957 * @param waveform points to the buffer containing the data that will be send.
958 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
958 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
959 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
959 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
960 * contain information to setup the transmission of the data packets.
960 * contain information to setup the transmission of the data packets.
961 *
961 *
962 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
962 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
963 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
963 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
964 *
964 *
965 */
965 */
966
966
967 unsigned int i;
967 unsigned int i;
968 int ret;
968 int ret;
969 unsigned int coarseTime;
969 unsigned int coarseTime;
970 unsigned int fineTime;
970 unsigned int fineTime;
971 rtems_status_code status;
971 rtems_status_code status;
972 spw_ioctl_pkt_send spw_ioctl_send_CWF;
972 spw_ioctl_pkt_send spw_ioctl_send_CWF;
973 char *dataPtr;
973 char *dataPtr;
974 unsigned char sid;
974 unsigned char sid;
975
975
976 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
976 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
977 spw_ioctl_send_CWF.options = 0;
977 spw_ioctl_send_CWF.options = 0;
978
978
979 ret = LFR_DEFAULT;
979 ret = LFR_DEFAULT;
980 sid = ring_node_to_send->sid;
980 sid = ring_node_to_send->sid;
981
981
982 coarseTime = ring_node_to_send->coarseTime;
982 coarseTime = ring_node_to_send->coarseTime;
983 fineTime = ring_node_to_send->fineTime;
983 fineTime = ring_node_to_send->fineTime;
984 dataPtr = (char*) ring_node_to_send->buffer_address;
984 dataPtr = (char*) ring_node_to_send->buffer_address;
985
985
986 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
986 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
987 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
987 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
988 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
988 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
989 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
989 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
990
990
991 //*********************
991 //*********************
992 // SEND CWF3_light DATA
992 // SEND CWF3_light DATA
993 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
993 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
994 {
994 {
995 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
995 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
996 spw_ioctl_send_CWF.hdr = (char*) header;
996 spw_ioctl_send_CWF.hdr = (char*) header;
997 // BUILD THE DATA
997 // BUILD THE DATA
998 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
998 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
999
999
1000 // SET PACKET SEQUENCE COUNTER
1000 // SET PACKET SEQUENCE COUNTER
1001 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1001 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1002
1002
1003 // SET SID
1003 // SET SID
1004 header->sid = sid;
1004 header->sid = sid;
1005
1005
1006 // SET PACKET TIME
1006 // SET PACKET TIME
1007 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1007 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1008 //
1008 //
1009 header->time[0] = header->acquisitionTime[0];
1009 header->time[0] = header->acquisitionTime[0];
1010 header->time[1] = header->acquisitionTime[1];
1010 header->time[1] = header->acquisitionTime[1];
1011 header->time[2] = header->acquisitionTime[2];
1011 header->time[2] = header->acquisitionTime[2];
1012 header->time[3] = header->acquisitionTime[3];
1012 header->time[3] = header->acquisitionTime[3];
1013 header->time[4] = header->acquisitionTime[4];
1013 header->time[4] = header->acquisitionTime[4];
1014 header->time[5] = header->acquisitionTime[5];
1014 header->time[5] = header->acquisitionTime[5];
1015
1015
1016 // SET PACKET ID
1016 // SET PACKET ID
1017 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1017 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1018 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1018 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1019
1019
1020 // SEND PACKET
1020 // SEND PACKET
1021 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1021 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1022 if (status != RTEMS_SUCCESSFUL) {
1022 if (status != RTEMS_SUCCESSFUL) {
1023 printf("%d-%d, ERR %d\n", sid, i, (int) status);
1023 printf("%d-%d, ERR %d\n", sid, i, (int) status);
1024 ret = LFR_DEFAULT;
1024 ret = LFR_DEFAULT;
1025 }
1025 }
1026 }
1026 }
1027
1027
1028 return ret;
1028 return ret;
1029 }
1029 }
1030
1030
1031 void spw_send_asm( ring_node *ring_node_to_send,
1031 void spw_send_asm( ring_node *ring_node_to_send,
1032 Header_TM_LFR_SCIENCE_ASM_t *header )
1032 Header_TM_LFR_SCIENCE_ASM_t *header )
1033 {
1033 {
1034 unsigned int i;
1034 unsigned int i;
1035 unsigned int length = 0;
1035 unsigned int length = 0;
1036 rtems_status_code status;
1036 rtems_status_code status;
1037 unsigned int sid;
1037 unsigned int sid;
1038 char *spectral_matrix;
1038 char *spectral_matrix;
1039 int coarseTime;
1039 int coarseTime;
1040 int fineTime;
1040 int fineTime;
1041 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1041 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1042
1042
1043 sid = ring_node_to_send->sid;
1043 sid = ring_node_to_send->sid;
1044 spectral_matrix = (char*) ring_node_to_send->buffer_address;
1044 spectral_matrix = (char*) ring_node_to_send->buffer_address;
1045 coarseTime = ring_node_to_send->coarseTime;
1045 coarseTime = ring_node_to_send->coarseTime;
1046 fineTime = ring_node_to_send->fineTime;
1046 fineTime = ring_node_to_send->fineTime;
1047
1047
1048 for (i=0; i<2; i++)
1048 for (i=0; i<2; i++)
1049 {
1049 {
1050 // (1) BUILD THE DATA
1050 // (1) BUILD THE DATA
1051 switch(sid)
1051 switch(sid)
1052 {
1052 {
1053 case SID_NORM_ASM_F0:
1053 case SID_NORM_ASM_F0:
1054 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
1054 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
1055 spw_ioctl_send_ASM.data = &spectral_matrix[
1055 spw_ioctl_send_ASM.data = &spectral_matrix[
1056 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
1056 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
1057 ];
1057 ];
1058 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
1058 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
1059 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
1059 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
1060 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
1060 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
1061 break;
1061 break;
1062 case SID_NORM_ASM_F1:
1062 case SID_NORM_ASM_F1:
1063 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
1063 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
1064 spw_ioctl_send_ASM.data = &spectral_matrix[
1064 spw_ioctl_send_ASM.data = &spectral_matrix[
1065 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
1065 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
1066 ];
1066 ];
1067 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
1067 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
1068 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
1068 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
1069 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
1069 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
1070 break;
1070 break;
1071 case SID_NORM_ASM_F2:
1071 case SID_NORM_ASM_F2:
1072 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
1072 spw_ioctl_send_ASM.dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
1073 spw_ioctl_send_ASM.data = &spectral_matrix[
1073 spw_ioctl_send_ASM.data = &spectral_matrix[
1074 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
1074 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
1075 ];
1075 ];
1076 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1076 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1077 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1077 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1078 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1078 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1079 break;
1079 break;
1080 default:
1080 default:
1081 PRINTF1("ERR *** in spw_send_asm *** unexpected sid %d\n", sid)
1081 PRINTF1("ERR *** in spw_send_asm *** unexpected sid %d\n", sid)
1082 break;
1082 break;
1083 }
1083 }
1084 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
1084 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
1085 spw_ioctl_send_ASM.hdr = (char *) header;
1085 spw_ioctl_send_ASM.hdr = (char *) header;
1086 spw_ioctl_send_ASM.options = 0;
1086 spw_ioctl_send_ASM.options = 0;
1087
1087
1088 // (2) BUILD THE HEADER
1088 // (2) BUILD THE HEADER
1089 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1089 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1090 header->packetLength[0] = (unsigned char) (length>>8);
1090 header->packetLength[0] = (unsigned char) (length>>8);
1091 header->packetLength[1] = (unsigned char) (length);
1091 header->packetLength[1] = (unsigned char) (length);
1092 header->sid = (unsigned char) sid; // SID
1092 header->sid = (unsigned char) sid; // SID
1093 header->pa_lfr_pkt_cnt_asm = 2;
1093 header->pa_lfr_pkt_cnt_asm = 2;
1094 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1094 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1095
1095
1096 // (3) SET PACKET TIME
1096 // (3) SET PACKET TIME
1097 header->time[0] = (unsigned char) (coarseTime>>24);
1097 header->time[0] = (unsigned char) (coarseTime>>24);
1098 header->time[1] = (unsigned char) (coarseTime>>16);
1098 header->time[1] = (unsigned char) (coarseTime>>16);
1099 header->time[2] = (unsigned char) (coarseTime>>8);
1099 header->time[2] = (unsigned char) (coarseTime>>8);
1100 header->time[3] = (unsigned char) (coarseTime);
1100 header->time[3] = (unsigned char) (coarseTime);
1101 header->time[4] = (unsigned char) (fineTime>>8);
1101 header->time[4] = (unsigned char) (fineTime>>8);
1102 header->time[5] = (unsigned char) (fineTime);
1102 header->time[5] = (unsigned char) (fineTime);
1103 //
1103 //
1104 header->acquisitionTime[0] = header->time[0];
1104 header->acquisitionTime[0] = header->time[0];
1105 header->acquisitionTime[1] = header->time[1];
1105 header->acquisitionTime[1] = header->time[1];
1106 header->acquisitionTime[2] = header->time[2];
1106 header->acquisitionTime[2] = header->time[2];
1107 header->acquisitionTime[3] = header->time[3];
1107 header->acquisitionTime[3] = header->time[3];
1108 header->acquisitionTime[4] = header->time[4];
1108 header->acquisitionTime[4] = header->time[4];
1109 header->acquisitionTime[5] = header->time[5];
1109 header->acquisitionTime[5] = header->time[5];
1110
1110
1111 // (4) SEND PACKET
1111 // (4) SEND PACKET
1112 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1112 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1113 if (status != RTEMS_SUCCESSFUL) {
1113 if (status != RTEMS_SUCCESSFUL) {
1114 printf("in ASM_send *** ERR %d\n", (int) status);
1114 printf("in ASM_send *** ERR %d\n", (int) status);
1115 }
1115 }
1116 }
1116 }
1117 }
1117 }
@@ -1,1117 +1,1118
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[6];
35 unsigned char time[6];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 status = get_message_queue_id_recv( &queue_rcv_id );
39 status = get_message_queue_id_recv( &queue_rcv_id );
40 if (status != RTEMS_SUCCESSFUL)
40 if (status != RTEMS_SUCCESSFUL)
41 {
41 {
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 }
43 }
44
44
45 status = get_message_queue_id_send( &queue_snd_id );
45 status = get_message_queue_id_send( &queue_snd_id );
46 if (status != RTEMS_SUCCESSFUL)
46 if (status != RTEMS_SUCCESSFUL)
47 {
47 {
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 }
49 }
50
50
51 result = LFR_SUCCESSFUL;
51 result = LFR_SUCCESSFUL;
52 subtype = 0; // subtype of the current TC packet
52 subtype = 0; // subtype of the current TC packet
53
53
54 BOOT_PRINTF("in ACTN *** \n")
54 BOOT_PRINTF("in ACTN *** \n")
55
55
56 while(1)
56 while(1)
57 {
57 {
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 getTime( time ); // set time to the current time
60 getTime( time ); // set time to the current time
61 if (status!=RTEMS_SUCCESSFUL)
61 if (status!=RTEMS_SUCCESSFUL)
62 {
62 {
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 }
64 }
65 else
65 else
66 {
66 {
67 subtype = TC.serviceSubType;
67 subtype = TC.serviceSubType;
68 switch(subtype)
68 switch(subtype)
69 {
69 {
70 case TC_SUBTYPE_RESET:
70 case TC_SUBTYPE_RESET:
71 result = action_reset( &TC, queue_snd_id, time );
71 result = action_reset( &TC, queue_snd_id, time );
72 close_action( &TC, result, queue_snd_id );
72 close_action( &TC, result, queue_snd_id );
73 break;
73 break;
74 //
74 //
75 case TC_SUBTYPE_LOAD_COMM:
75 case TC_SUBTYPE_LOAD_COMM:
76 result = action_load_common_par( &TC );
76 result = action_load_common_par( &TC );
77 close_action( &TC, result, queue_snd_id );
77 close_action( &TC, result, queue_snd_id );
78 break;
78 break;
79 //
79 //
80 case TC_SUBTYPE_LOAD_NORM:
80 case TC_SUBTYPE_LOAD_NORM:
81 result = action_load_normal_par( &TC, queue_snd_id, time );
81 result = action_load_normal_par( &TC, queue_snd_id, time );
82 close_action( &TC, result, queue_snd_id );
82 close_action( &TC, result, queue_snd_id );
83 break;
83 break;
84 //
84 //
85 case TC_SUBTYPE_LOAD_BURST:
85 case TC_SUBTYPE_LOAD_BURST:
86 result = action_load_burst_par( &TC, queue_snd_id, time );
86 result = action_load_burst_par( &TC, queue_snd_id, time );
87 close_action( &TC, result, queue_snd_id );
87 close_action( &TC, result, queue_snd_id );
88 break;
88 break;
89 //
89 //
90 case TC_SUBTYPE_LOAD_SBM1:
90 case TC_SUBTYPE_LOAD_SBM1:
91 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 result = action_load_sbm1_par( &TC, queue_snd_id, time );
92 close_action( &TC, result, queue_snd_id );
92 close_action( &TC, result, queue_snd_id );
93 break;
93 break;
94 //
94 //
95 case TC_SUBTYPE_LOAD_SBM2:
95 case TC_SUBTYPE_LOAD_SBM2:
96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 result = action_load_sbm2_par( &TC, queue_snd_id, time );
97 close_action( &TC, result, queue_snd_id );
97 close_action( &TC, result, queue_snd_id );
98 break;
98 break;
99 //
99 //
100 case TC_SUBTYPE_DUMP:
100 case TC_SUBTYPE_DUMP:
101 result = action_dump_par( queue_snd_id );
101 result = action_dump_par( queue_snd_id );
102 close_action( &TC, result, queue_snd_id );
102 close_action( &TC, result, queue_snd_id );
103 break;
103 break;
104 //
104 //
105 case TC_SUBTYPE_ENTER:
105 case TC_SUBTYPE_ENTER:
106 result = action_enter_mode( &TC, queue_snd_id );
106 result = action_enter_mode( &TC, queue_snd_id );
107 close_action( &TC, result, queue_snd_id );
107 close_action( &TC, result, queue_snd_id );
108 break;
108 break;
109 //
109 //
110 case TC_SUBTYPE_UPDT_INFO:
110 case TC_SUBTYPE_UPDT_INFO:
111 result = action_update_info( &TC, queue_snd_id );
111 result = action_update_info( &TC, queue_snd_id );
112 close_action( &TC, result, queue_snd_id );
112 close_action( &TC, result, queue_snd_id );
113 break;
113 break;
114 //
114 //
115 case TC_SUBTYPE_EN_CAL:
115 case TC_SUBTYPE_EN_CAL:
116 result = action_enable_calibration( &TC, queue_snd_id, time );
116 result = action_enable_calibration( &TC, queue_snd_id, time );
117 close_action( &TC, result, queue_snd_id );
117 close_action( &TC, result, queue_snd_id );
118 break;
118 break;
119 //
119 //
120 case TC_SUBTYPE_DIS_CAL:
120 case TC_SUBTYPE_DIS_CAL:
121 result = action_disable_calibration( &TC, queue_snd_id, time );
121 result = action_disable_calibration( &TC, queue_snd_id, time );
122 close_action( &TC, result, queue_snd_id );
122 close_action( &TC, result, queue_snd_id );
123 break;
123 break;
124 //
124 //
125 case TC_SUBTYPE_UPDT_TIME:
125 case TC_SUBTYPE_UPDT_TIME:
126 result = action_update_time( &TC );
126 result = action_update_time( &TC );
127 close_action( &TC, result, queue_snd_id );
127 close_action( &TC, result, queue_snd_id );
128 break;
128 break;
129 //
129 //
130 default:
130 default:
131 break;
131 break;
132 }
132 }
133 }
133 }
134 }
134 }
135 }
135 }
136
136
137 //***********
137 //***********
138 // TC ACTIONS
138 // TC ACTIONS
139
139
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 {
141 {
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 *
143 *
144 * @param TC points to the TeleCommand packet that is being processed
144 * @param TC points to the TeleCommand packet that is being processed
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 *
146 *
147 */
147 */
148
148
149 printf("this is the end!!!\n");
149 printf("this is the end!!!\n");
150 exit(0);
150 exit(0);
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 return LFR_DEFAULT;
152 return LFR_DEFAULT;
153 }
153 }
154
154
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 {
156 {
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 *
158 *
159 * @param TC points to the TeleCommand packet that is being processed
159 * @param TC points to the TeleCommand packet that is being processed
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 *
161 *
162 */
162 */
163
163
164 rtems_status_code status;
164 rtems_status_code status;
165 unsigned char requestedMode;
165 unsigned char requestedMode;
166 unsigned int *transitionCoarseTime_ptr;
166 unsigned int *transitionCoarseTime_ptr;
167 unsigned int transitionCoarseTime;
167 unsigned int transitionCoarseTime;
168 unsigned char * bytePosPtr;
168 unsigned char * bytePosPtr;
169
169
170 bytePosPtr = (unsigned char *) &TC->packetID;
170 bytePosPtr = (unsigned char *) &TC->packetID;
171
171
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175
175
176 status = check_mode_value( requestedMode );
176 status = check_mode_value( requestedMode );
177
177
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 {
179 {
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 }
181 }
182 else // the mode value is consistent, check the transition
182 else // the mode value is consistent, check the transition
183 {
183 {
184 status = check_mode_transition(requestedMode);
184 status = check_mode_transition(requestedMode);
185 if (status != LFR_SUCCESSFUL)
185 if (status != LFR_SUCCESSFUL)
186 {
186 {
187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 }
189 }
190 }
190 }
191
191
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
193 {
193 {
194 status = check_transition_date( transitionCoarseTime );
194 status = check_transition_date( transitionCoarseTime );
195 if (status != LFR_SUCCESSFUL)
195 if (status != LFR_SUCCESSFUL)
196 {
196 {
197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 }
201 }
202 }
202 }
203
203
204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 {
205 {
206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 status = enter_mode( requestedMode, transitionCoarseTime );
207 status = enter_mode( requestedMode, transitionCoarseTime );
208 }
208 }
209
209
210 return status;
210 return status;
211 }
211 }
212
212
213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
214 {
214 {
215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
216 *
216 *
217 * @param TC points to the TeleCommand packet that is being processed
217 * @param TC points to the TeleCommand packet that is being processed
218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
219 *
219 *
220 * @return LFR directive status code:
220 * @return LFR directive status code:
221 * - LFR_DEFAULT
221 * - LFR_DEFAULT
222 * - LFR_SUCCESSFUL
222 * - LFR_SUCCESSFUL
223 *
223 *
224 */
224 */
225
225
226 unsigned int val;
226 unsigned int val;
227 int result;
227 int result;
228 unsigned int status;
228 unsigned int status;
229 unsigned char mode;
229 unsigned char mode;
230 unsigned char * bytePosPtr;
230 unsigned char * bytePosPtr;
231
231
232 bytePosPtr = (unsigned char *) &TC->packetID;
232 bytePosPtr = (unsigned char *) &TC->packetID;
233
233
234 // check LFR mode
234 // check LFR mode
235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
236 status = check_update_info_hk_lfr_mode( mode );
236 status = check_update_info_hk_lfr_mode( mode );
237 if (status == LFR_SUCCESSFUL) // check TDS mode
237 if (status == LFR_SUCCESSFUL) // check TDS mode
238 {
238 {
239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
240 status = check_update_info_hk_tds_mode( mode );
240 status = check_update_info_hk_tds_mode( mode );
241 }
241 }
242 if (status == LFR_SUCCESSFUL) // check THR mode
242 if (status == LFR_SUCCESSFUL) // check THR mode
243 {
243 {
244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
245 status = check_update_info_hk_thr_mode( mode );
245 status = check_update_info_hk_thr_mode( mode );
246 }
246 }
247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
248 {
248 {
249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
251 val++;
251 val++;
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
254 }
254 }
255
255
256 result = status;
256 result = status;
257
257
258 return result;
258 return result;
259 }
259 }
260
260
261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 {
262 {
263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
264 *
264 *
265 * @param TC points to the TeleCommand packet that is being processed
265 * @param TC points to the TeleCommand packet that is being processed
266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 *
267 *
268 */
268 */
269
269
270 int result;
270 int result;
271
271
272 result = LFR_DEFAULT;
272 result = LFR_DEFAULT;
273
273
274 startCalibration();
274 startCalibration();
275
275
276 result = LFR_SUCCESSFUL;
276 result = LFR_SUCCESSFUL;
277
277
278 return result;
278 return result;
279 }
279 }
280
280
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
282 {
282 {
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
284 *
284 *
285 * @param TC points to the TeleCommand packet that is being processed
285 * @param TC points to the TeleCommand packet that is being processed
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
287 *
287 *
288 */
288 */
289
289
290 int result;
290 int result;
291
291
292 result = LFR_DEFAULT;
292 result = LFR_DEFAULT;
293
293
294 stopCalibration();
294 stopCalibration();
295
295
296 result = LFR_SUCCESSFUL;
296 result = LFR_SUCCESSFUL;
297
297
298 return result;
298 return result;
299 }
299 }
300
300
301 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 int action_update_time(ccsdsTelecommandPacket_t *TC)
302 {
302 {
303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
304 *
304 *
305 * @param TC points to the TeleCommand packet that is being processed
305 * @param TC points to the TeleCommand packet that is being processed
306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
307 *
307 *
308 * @return LFR_SUCCESSFUL
308 * @return LFR_SUCCESSFUL
309 *
309 *
310 */
310 */
311
311
312 unsigned int val;
312 unsigned int val;
313
313
314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
315 + (TC->dataAndCRC[1] << 16)
315 + (TC->dataAndCRC[1] << 16)
316 + (TC->dataAndCRC[2] << 8)
316 + (TC->dataAndCRC[2] << 8)
317 + TC->dataAndCRC[3];
317 + TC->dataAndCRC[3];
318
318
319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 val++;
321 val++;
322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324
324
325 return LFR_SUCCESSFUL;
325 return LFR_SUCCESSFUL;
326 }
326 }
327
327
328 //*******************
328 //*******************
329 // ENTERING THE MODES
329 // ENTERING THE MODES
330 int check_mode_value( unsigned char requestedMode )
330 int check_mode_value( unsigned char requestedMode )
331 {
331 {
332 int status;
332 int status;
333
333
334 if ( (requestedMode != LFR_MODE_STANDBY)
334 if ( (requestedMode != LFR_MODE_STANDBY)
335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
337 {
337 {
338 status = LFR_DEFAULT;
338 status = LFR_DEFAULT;
339 }
339 }
340 else
340 else
341 {
341 {
342 status = LFR_SUCCESSFUL;
342 status = LFR_SUCCESSFUL;
343 }
343 }
344
344
345 return status;
345 return status;
346 }
346 }
347
347
348 int check_mode_transition( unsigned char requestedMode )
348 int check_mode_transition( unsigned char requestedMode )
349 {
349 {
350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
351 *
351 *
352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
353 *
353 *
354 * @return LFR directive status codes:
354 * @return LFR directive status codes:
355 * - LFR_SUCCESSFUL - the transition is authorized
355 * - LFR_SUCCESSFUL - the transition is authorized
356 * - LFR_DEFAULT - the transition is not authorized
356 * - LFR_DEFAULT - the transition is not authorized
357 *
357 *
358 */
358 */
359
359
360 int status;
360 int status;
361
361
362 switch (requestedMode)
362 switch (requestedMode)
363 {
363 {
364 case LFR_MODE_STANDBY:
364 case LFR_MODE_STANDBY:
365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
366 status = LFR_DEFAULT;
366 status = LFR_DEFAULT;
367 }
367 }
368 else
368 else
369 {
369 {
370 status = LFR_SUCCESSFUL;
370 status = LFR_SUCCESSFUL;
371 }
371 }
372 break;
372 break;
373 case LFR_MODE_NORMAL:
373 case LFR_MODE_NORMAL:
374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
375 status = LFR_DEFAULT;
375 status = LFR_DEFAULT;
376 }
376 }
377 else {
377 else {
378 status = LFR_SUCCESSFUL;
378 status = LFR_SUCCESSFUL;
379 }
379 }
380 break;
380 break;
381 case LFR_MODE_BURST:
381 case LFR_MODE_BURST:
382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
383 status = LFR_DEFAULT;
383 status = LFR_DEFAULT;
384 }
384 }
385 else {
385 else {
386 status = LFR_SUCCESSFUL;
386 status = LFR_SUCCESSFUL;
387 }
387 }
388 break;
388 break;
389 case LFR_MODE_SBM1:
389 case LFR_MODE_SBM1:
390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
391 status = LFR_DEFAULT;
391 status = LFR_DEFAULT;
392 }
392 }
393 else {
393 else {
394 status = LFR_SUCCESSFUL;
394 status = LFR_SUCCESSFUL;
395 }
395 }
396 break;
396 break;
397 case LFR_MODE_SBM2:
397 case LFR_MODE_SBM2:
398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
399 status = LFR_DEFAULT;
399 status = LFR_DEFAULT;
400 }
400 }
401 else {
401 else {
402 status = LFR_SUCCESSFUL;
402 status = LFR_SUCCESSFUL;
403 }
403 }
404 break;
404 break;
405 default:
405 default:
406 status = LFR_DEFAULT;
406 status = LFR_DEFAULT;
407 break;
407 break;
408 }
408 }
409
409
410 return status;
410 return status;
411 }
411 }
412
412
413 int check_transition_date( unsigned int transitionCoarseTime )
413 int check_transition_date( unsigned int transitionCoarseTime )
414 {
414 {
415 int status;
415 int status;
416 unsigned int localCoarseTime;
416 unsigned int localCoarseTime;
417 unsigned int deltaCoarseTime;
417 unsigned int deltaCoarseTime;
418
418
419 status = LFR_SUCCESSFUL;
419 status = LFR_SUCCESSFUL;
420
420
421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
422 {
422 {
423 status = LFR_SUCCESSFUL;
423 status = LFR_SUCCESSFUL;
424 }
424 }
425 else
425 else
426 {
426 {
427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
428
428
429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
430
429 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
430 {
432 {
431 status = LFR_DEFAULT;
433 status = LFR_DEFAULT;
432 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
433 }
435 }
434
436
435 if (status == LFR_SUCCESSFUL)
437 if (status == LFR_SUCCESSFUL)
436 {
438 {
437 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
438 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
439 {
441 {
440 status = LFR_DEFAULT;
442 status = LFR_DEFAULT;
441 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
442 }
444 }
443 }
445 }
444 }
446 }
445
447
446 return status;
448 return status;
447 }
449 }
448
450
449 int stop_current_mode( void )
451 int stop_current_mode( void )
450 {
452 {
451 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
452 *
454 *
453 * @return RTEMS directive status codes:
455 * @return RTEMS directive status codes:
454 * - RTEMS_SUCCESSFUL - task restarted successfully
456 * - RTEMS_SUCCESSFUL - task restarted successfully
455 * - RTEMS_INVALID_ID - task id invalid
457 * - RTEMS_INVALID_ID - task id invalid
456 * - RTEMS_ALREADY_SUSPENDED - task already suspended
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
457 *
459 *
458 */
460 */
459
461
460 rtems_status_code status;
462 rtems_status_code status;
461
463
462 status = RTEMS_SUCCESSFUL;
464 status = RTEMS_SUCCESSFUL;
463
465
464 // (1) mask interruptions
466 // (1) mask interruptions
465 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
466 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
467
469
468 // (2) reset waveform picker registers
470 // (2) reset waveform picker registers
469 reset_wfp_burst_enable(); // reset burst and enable bits
471 reset_wfp_burst_enable(); // reset burst and enable bits
470 reset_wfp_status(); // reset all the status bits
472 reset_wfp_status(); // reset all the status bits
471
473
472 // (3) reset spectral matrices registers
474 // (3) reset spectral matrices registers
473 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
474 reset_sm_status();
476 reset_sm_status();
475
477
476 // reset lfr VHDL module
478 // reset lfr VHDL module
477 reset_lfr();
479 reset_lfr();
478
480
479 reset_extractSWF(); // reset the extractSWF flag to false
481 reset_extractSWF(); // reset the extractSWF flag to false
480
482
481 // (4) clear interruptions
483 // (4) clear interruptions
482 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
483 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
484
486
485 // <Spectral Matrices simulator>
487 // <Spectral Matrices simulator>
486 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
487 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
488 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
489 // </Spectral Matrices simulator>
491 // </Spectral Matrices simulator>
490
492
491 // suspend several tasks
493 // suspend several tasks
492 if (lfrCurrentMode != LFR_MODE_STANDBY) {
494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
493 status = suspend_science_tasks();
495 status = suspend_science_tasks();
494 }
496 }
495
497
496 if (status != RTEMS_SUCCESSFUL)
498 if (status != RTEMS_SUCCESSFUL)
497 {
499 {
498 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
499 }
501 }
500
502
501 return status;
503 return status;
502 }
504 }
503
505
504 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
505 {
507 {
506 /** This function is launched after a mode transition validation.
508 /** This function is launched after a mode transition validation.
507 *
509 *
508 * @param mode is the mode in which LFR will be put.
510 * @param mode is the mode in which LFR will be put.
509 *
511 *
510 * @return RTEMS directive status codes:
512 * @return RTEMS directive status codes:
511 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
512 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
513 *
515 *
514 */
516 */
515
517
516 rtems_status_code status;
518 rtems_status_code status;
517
519
518 //**********************
520 //**********************
519 // STOP THE CURRENT MODE
521 // STOP THE CURRENT MODE
520 status = stop_current_mode();
522 status = stop_current_mode();
521 if (status != RTEMS_SUCCESSFUL)
523 if (status != RTEMS_SUCCESSFUL)
522 {
524 {
523 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
524 }
526 }
525
527
526 //*************************
528 //*************************
527 // ENTER THE REQUESTED MODE
529 // ENTER THE REQUESTED MODE
528 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
530 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
529 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
531 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
530 {
532 {
531 #ifdef PRINT_TASK_STATISTICS
533 #ifdef PRINT_TASK_STATISTICS
532 rtems_cpu_usage_reset();
534 rtems_cpu_usage_reset();
533 maxCount = 0;
535 maxCount = 0;
534 #endif
536 #endif
535 status = restart_science_tasks( mode );
537 status = restart_science_tasks( mode );
536 launch_spectral_matrix( );
538 launch_spectral_matrix( );
537 launch_waveform_picker( mode, transitionCoarseTime );
539 launch_waveform_picker( mode, transitionCoarseTime );
538 // launch_spectral_matrix_simu( );
540 // launch_spectral_matrix_simu( );
539 }
541 }
540 else if ( mode == LFR_MODE_STANDBY )
542 else if ( mode == LFR_MODE_STANDBY )
541 {
543 {
542 #ifdef PRINT_TASK_STATISTICS
544 #ifdef PRINT_TASK_STATISTICS
543 rtems_cpu_usage_report();
545 rtems_cpu_usage_report();
544 #endif
546 #endif
545
547
546 #ifdef PRINT_STACK_REPORT
548 #ifdef PRINT_STACK_REPORT
547 PRINTF("stack report selected\n")
549 PRINTF("stack report selected\n")
548 rtems_stack_checker_report_usage();
550 rtems_stack_checker_report_usage();
549 #endif
551 #endif
550 PRINTF1("maxCount = %d\n", maxCount)
552 PRINTF1("maxCount = %d\n", maxCount)
551 }
553 }
552 else
554 else
553 {
555 {
554 status = RTEMS_UNSATISFIED;
556 status = RTEMS_UNSATISFIED;
555 }
557 }
556
558
557 if (status != RTEMS_SUCCESSFUL)
559 if (status != RTEMS_SUCCESSFUL)
558 {
560 {
559 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
561 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
560 status = RTEMS_UNSATISFIED;
562 status = RTEMS_UNSATISFIED;
561 }
563 }
562
564
563 return status;
565 return status;
564 }
566 }
565
567
566 int restart_science_tasks(unsigned char lfrRequestedMode )
568 int restart_science_tasks(unsigned char lfrRequestedMode )
567 {
569 {
568 /** This function is used to restart all science tasks.
570 /** This function is used to restart all science tasks.
569 *
571 *
570 * @return RTEMS directive status codes:
572 * @return RTEMS directive status codes:
571 * - RTEMS_SUCCESSFUL - task restarted successfully
573 * - RTEMS_SUCCESSFUL - task restarted successfully
572 * - RTEMS_INVALID_ID - task id invalid
574 * - RTEMS_INVALID_ID - task id invalid
573 * - RTEMS_INCORRECT_STATE - task never started
575 * - RTEMS_INCORRECT_STATE - task never started
574 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
576 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
575 *
577 *
576 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
578 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
577 *
579 *
578 */
580 */
579
581
580 rtems_status_code status[10];
582 rtems_status_code status[10];
581 rtems_status_code ret;
583 rtems_status_code ret;
582
584
583 ret = RTEMS_SUCCESSFUL;
585 ret = RTEMS_SUCCESSFUL;
584
586
585 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
587 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
586 if (status[0] != RTEMS_SUCCESSFUL)
588 if (status[0] != RTEMS_SUCCESSFUL)
587 {
589 {
588 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
590 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
589 }
591 }
590
592
591 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
593 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
592 if (status[1] != RTEMS_SUCCESSFUL)
594 if (status[1] != RTEMS_SUCCESSFUL)
593 {
595 {
594 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
596 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
595 }
597 }
596
598
597 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
599 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
598 if (status[2] != RTEMS_SUCCESSFUL)
600 if (status[2] != RTEMS_SUCCESSFUL)
599 {
601 {
600 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
602 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
601 }
603 }
602
604
603 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
605 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
604 if (status[3] != RTEMS_SUCCESSFUL)
606 if (status[3] != RTEMS_SUCCESSFUL)
605 {
607 {
606 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
608 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
607 }
609 }
608
610
609 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
611 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
610 if (status[4] != RTEMS_SUCCESSFUL)
612 if (status[4] != RTEMS_SUCCESSFUL)
611 {
613 {
612 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
614 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
613 }
615 }
614
616
615 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
617 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
616 if (status[5] != RTEMS_SUCCESSFUL)
618 if (status[5] != RTEMS_SUCCESSFUL)
617 {
619 {
618 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
620 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
619 }
621 }
620
622
621 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
623 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
622 if (status[6] != RTEMS_SUCCESSFUL)
624 if (status[6] != RTEMS_SUCCESSFUL)
623 {
625 {
624 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
626 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
625 }
627 }
626
628
627 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
629 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
628 if (status[7] != RTEMS_SUCCESSFUL)
630 if (status[7] != RTEMS_SUCCESSFUL)
629 {
631 {
630 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
632 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
631 }
633 }
632
634
633 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
635 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
634 if (status[8] != RTEMS_SUCCESSFUL)
636 if (status[8] != RTEMS_SUCCESSFUL)
635 {
637 {
636 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
638 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
637 }
639 }
638
640
639 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
641 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
640 if (status[9] != RTEMS_SUCCESSFUL)
642 if (status[9] != RTEMS_SUCCESSFUL)
641 {
643 {
642 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
644 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
643 }
645 }
644
646
645 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
647 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
646 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
648 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
647 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
649 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
648 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
650 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
649 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
651 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
650 {
652 {
651 ret = RTEMS_UNSATISFIED;
653 ret = RTEMS_UNSATISFIED;
652 }
654 }
653
655
654 return ret;
656 return ret;
655 }
657 }
656
658
657 int suspend_science_tasks()
659 int suspend_science_tasks()
658 {
660 {
659 /** This function suspends the science tasks.
661 /** This function suspends the science tasks.
660 *
662 *
661 * @return RTEMS directive status codes:
663 * @return RTEMS directive status codes:
662 * - RTEMS_SUCCESSFUL - task restarted successfully
664 * - RTEMS_SUCCESSFUL - task restarted successfully
663 * - RTEMS_INVALID_ID - task id invalid
665 * - RTEMS_INVALID_ID - task id invalid
664 * - RTEMS_ALREADY_SUSPENDED - task already suspended
666 * - RTEMS_ALREADY_SUSPENDED - task already suspended
665 *
667 *
666 */
668 */
667
669
668 rtems_status_code status;
670 rtems_status_code status;
669
671
670 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
672 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
671 if (status != RTEMS_SUCCESSFUL)
673 if (status != RTEMS_SUCCESSFUL)
672 {
674 {
673 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
675 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
674 }
676 }
675 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
677 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
676 {
678 {
677 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
679 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
678 if (status != RTEMS_SUCCESSFUL)
680 if (status != RTEMS_SUCCESSFUL)
679 {
681 {
680 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
682 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
681 }
683 }
682 }
684 }
683 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
685 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
684 {
686 {
685 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
687 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
686 if (status != RTEMS_SUCCESSFUL)
688 if (status != RTEMS_SUCCESSFUL)
687 {
689 {
688 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
690 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
689 }
691 }
690 }
692 }
691 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
693 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
692 {
694 {
693 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
695 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
694 if (status != RTEMS_SUCCESSFUL)
696 if (status != RTEMS_SUCCESSFUL)
695 {
697 {
696 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
698 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
697 }
699 }
698 }
700 }
699 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
701 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
700 {
702 {
701 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
703 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
702 if (status != RTEMS_SUCCESSFUL)
704 if (status != RTEMS_SUCCESSFUL)
703 {
705 {
704 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
706 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
705 }
707 }
706 }
708 }
707 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
709 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
708 {
710 {
709 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
711 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
710 if (status != RTEMS_SUCCESSFUL)
712 if (status != RTEMS_SUCCESSFUL)
711 {
713 {
712 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
714 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
713 }
715 }
714 }
716 }
715 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
717 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
716 {
718 {
717 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
719 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
718 if (status != RTEMS_SUCCESSFUL)
720 if (status != RTEMS_SUCCESSFUL)
719 {
721 {
720 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
722 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
721 }
723 }
722 }
724 }
723 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
725 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
724 {
726 {
725 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
727 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
726 if (status != RTEMS_SUCCESSFUL)
728 if (status != RTEMS_SUCCESSFUL)
727 {
729 {
728 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
730 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
729 }
731 }
730 }
732 }
731 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
733 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
732 {
734 {
733 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
735 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
734 if (status != RTEMS_SUCCESSFUL)
736 if (status != RTEMS_SUCCESSFUL)
735 {
737 {
736 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
738 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
737 }
739 }
738 }
740 }
739 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
741 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
740 {
742 {
741 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
743 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
742 if (status != RTEMS_SUCCESSFUL)
744 if (status != RTEMS_SUCCESSFUL)
743 {
745 {
744 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
746 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
745 }
747 }
746 }
748 }
747
749
748 return status;
750 return status;
749 }
751 }
750
752
751 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
753 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
752 {
754 {
753 WFP_reset_current_ring_nodes();
755 WFP_reset_current_ring_nodes();
754
756
755 reset_waveform_picker_regs();
757 reset_waveform_picker_regs();
756
758
757 set_wfp_burst_enable_register( mode );
759 set_wfp_burst_enable_register( mode );
758
760
759 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
761 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
760 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
762 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
761
763
762 if (transitionCoarseTime == 0)
764 if (transitionCoarseTime == 0)
763 {
765 {
764 waveform_picker_regs->start_date = time_management_regs->coarse_time;
766 waveform_picker_regs->start_date = time_management_regs->coarse_time;
765 }
767 }
766 else
768 else
767 {
769 {
768 waveform_picker_regs->start_date = transitionCoarseTime;
770 waveform_picker_regs->start_date = transitionCoarseTime;
769 }
771 }
770
772
771 PRINTF1("commutation coarse time = %x\n", transitionCoarseTime)
772 }
773 }
773
774
774 void launch_spectral_matrix( void )
775 void launch_spectral_matrix( void )
775 {
776 {
776 SM_reset_current_ring_nodes();
777 SM_reset_current_ring_nodes();
777
778
778 reset_spectral_matrix_regs();
779 reset_spectral_matrix_regs();
779
780
780 reset_nb_sm();
781 reset_nb_sm();
781
782
782 set_sm_irq_onNewMatrix( 1 );
783 set_sm_irq_onNewMatrix( 1 );
783
784
784 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
785 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
785 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
786 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
786
787
787 }
788 }
788
789
789 void launch_spectral_matrix_simu( void )
790 void launch_spectral_matrix_simu( void )
790 {
791 {
791 SM_reset_current_ring_nodes();
792 SM_reset_current_ring_nodes();
792 reset_spectral_matrix_regs();
793 reset_spectral_matrix_regs();
793 reset_nb_sm();
794 reset_nb_sm();
794
795
795 // Spectral Matrices simulator
796 // Spectral Matrices simulator
796 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
797 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
797 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
798 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
798 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
799 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
799 }
800 }
800
801
801 void set_sm_irq_onNewMatrix( unsigned char value )
802 void set_sm_irq_onNewMatrix( unsigned char value )
802 {
803 {
803 if (value == 1)
804 if (value == 1)
804 {
805 {
805 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
806 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
806 }
807 }
807 else
808 else
808 {
809 {
809 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
810 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
810 }
811 }
811 }
812 }
812
813
813 void set_sm_irq_onError( unsigned char value )
814 void set_sm_irq_onError( unsigned char value )
814 {
815 {
815 if (value == 1)
816 if (value == 1)
816 {
817 {
817 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
818 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
818 }
819 }
819 else
820 else
820 {
821 {
821 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
822 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
822 }
823 }
823 }
824 }
824
825
825 //*****************************
826 //*****************************
826 // CONFIGURE CALIBRATION SIGNAL
827 // CONFIGURE CALIBRATION SIGNAL
827 void setCalibrationPrescaler( unsigned int prescaler )
828 void setCalibrationPrescaler( unsigned int prescaler )
828 {
829 {
829 // prescaling of the master clock (25 MHz)
830 // prescaling of the master clock (25 MHz)
830 // master clock is divided by 2^prescaler
831 // master clock is divided by 2^prescaler
831 time_management_regs->calPrescaler = prescaler;
832 time_management_regs->calPrescaler = prescaler;
832 }
833 }
833
834
834 void setCalibrationDivisor( unsigned int divisionFactor )
835 void setCalibrationDivisor( unsigned int divisionFactor )
835 {
836 {
836 // division of the prescaled clock by the division factor
837 // division of the prescaled clock by the division factor
837 time_management_regs->calDivisor = divisionFactor;
838 time_management_regs->calDivisor = divisionFactor;
838 }
839 }
839
840
840 void setCalibrationData( void ){
841 void setCalibrationData( void ){
841 unsigned int k;
842 unsigned int k;
842 unsigned short data;
843 unsigned short data;
843 float val;
844 float val;
844 float f0;
845 float f0;
845 float f1;
846 float f1;
846 float fs;
847 float fs;
847 float Ts;
848 float Ts;
848 float scaleFactor;
849 float scaleFactor;
849
850
850 f0 = 625;
851 f0 = 625;
851 f1 = 10000;
852 f1 = 10000;
852 fs = 160256.410;
853 fs = 160256.410;
853 Ts = 1. / fs;
854 Ts = 1. / fs;
854 scaleFactor = 0.125 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 250 mVpp each, amplitude = 125 mV
855 scaleFactor = 0.125 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 250 mVpp each, amplitude = 125 mV
855
856
856 time_management_regs->calDataPtr = 0x00;
857 time_management_regs->calDataPtr = 0x00;
857
858
858 // build the signal for the SCM calibration
859 // build the signal for the SCM calibration
859 for (k=0; k<256; k++)
860 for (k=0; k<256; k++)
860 {
861 {
861 val = sin( 2 * pi * f0 * k * Ts )
862 val = sin( 2 * pi * f0 * k * Ts )
862 + sin( 2 * pi * f1 * k * Ts );
863 + sin( 2 * pi * f1 * k * Ts );
863 data = (unsigned short) ((val * scaleFactor) + 2048);
864 data = (unsigned short) ((val * scaleFactor) + 2048);
864 time_management_regs->calData = data & 0xfff;
865 time_management_regs->calData = data & 0xfff;
865 }
866 }
866 }
867 }
867
868
868 void setCalibrationDataInterleaved( void ){
869 void setCalibrationDataInterleaved( void ){
869 unsigned int k;
870 unsigned int k;
870 float val;
871 float val;
871 float f0;
872 float f0;
872 float f1;
873 float f1;
873 float fs;
874 float fs;
874 float Ts;
875 float Ts;
875 unsigned short data[384];
876 unsigned short data[384];
876 unsigned char *dataPtr;
877 unsigned char *dataPtr;
877
878
878 f0 = 625;
879 f0 = 625;
879 f1 = 10000;
880 f1 = 10000;
880 fs = 240384.615;
881 fs = 240384.615;
881 Ts = 1. / fs;
882 Ts = 1. / fs;
882
883
883 time_management_regs->calDataPtr = 0x00;
884 time_management_regs->calDataPtr = 0x00;
884
885
885 // build the signal for the SCM calibration
886 // build the signal for the SCM calibration
886 for (k=0; k<384; k++)
887 for (k=0; k<384; k++)
887 {
888 {
888 val = sin( 2 * pi * f0 * k * Ts )
889 val = sin( 2 * pi * f0 * k * Ts )
889 + sin( 2 * pi * f1 * k * Ts );
890 + sin( 2 * pi * f1 * k * Ts );
890 data[k] = (unsigned short) (val * 512 + 2048);
891 data[k] = (unsigned short) (val * 512 + 2048);
891 }
892 }
892
893
893 // write the signal in interleaved mode
894 // write the signal in interleaved mode
894 for (k=0; k<128; k++)
895 for (k=0; k<128; k++)
895 {
896 {
896 dataPtr = (unsigned char*) &data[k*3 + 2];
897 dataPtr = (unsigned char*) &data[k*3 + 2];
897 time_management_regs->calData = (data[k*3] & 0xfff)
898 time_management_regs->calData = (data[k*3] & 0xfff)
898 + ( (dataPtr[0] & 0x3f) << 12);
899 + ( (dataPtr[0] & 0x3f) << 12);
899 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
900 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
900 + ( (dataPtr[1] & 0x3f) << 12);
901 + ( (dataPtr[1] & 0x3f) << 12);
901 }
902 }
902 }
903 }
903
904
904 void setCalibrationReload( bool state)
905 void setCalibrationReload( bool state)
905 {
906 {
906 if (state == true)
907 if (state == true)
907 {
908 {
908 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
909 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
909 }
910 }
910 else
911 else
911 {
912 {
912 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
913 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
913 }
914 }
914 }
915 }
915
916
916 void setCalibrationEnable( bool state )
917 void setCalibrationEnable( bool state )
917 {
918 {
918 // this bit drives the multiplexer
919 // this bit drives the multiplexer
919 if (state == true)
920 if (state == true)
920 {
921 {
921 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
922 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
922 }
923 }
923 else
924 else
924 {
925 {
925 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
926 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
926 }
927 }
927 }
928 }
928
929
929 void setCalibrationInterleaved( bool state )
930 void setCalibrationInterleaved( bool state )
930 {
931 {
931 // this bit drives the multiplexer
932 // this bit drives the multiplexer
932 if (state == true)
933 if (state == true)
933 {
934 {
934 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
935 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
935 }
936 }
936 else
937 else
937 {
938 {
938 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
939 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
939 }
940 }
940 }
941 }
941
942
942 void startCalibration( void )
943 void startCalibration( void )
943 {
944 {
944 setCalibrationEnable( true );
945 setCalibrationEnable( true );
945 setCalibrationReload( false );
946 setCalibrationReload( false );
946 }
947 }
947
948
948 void stopCalibration( void )
949 void stopCalibration( void )
949 {
950 {
950 setCalibrationEnable( false );
951 setCalibrationEnable( false );
951 setCalibrationReload( true );
952 setCalibrationReload( true );
952 }
953 }
953
954
954 void configureCalibration( bool interleaved )
955 void configureCalibration( bool interleaved )
955 {
956 {
956 stopCalibration();
957 stopCalibration();
957 if ( interleaved == true )
958 if ( interleaved == true )
958 {
959 {
959 setCalibrationInterleaved( true );
960 setCalibrationInterleaved( true );
960 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
961 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
961 setCalibrationDivisor( 26 ); // => 240 384
962 setCalibrationDivisor( 26 ); // => 240 384
962 setCalibrationDataInterleaved();
963 setCalibrationDataInterleaved();
963 }
964 }
964 else
965 else
965 {
966 {
966 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
967 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
967 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
968 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
968 setCalibrationData();
969 setCalibrationData();
969 }
970 }
970 }
971 }
971
972
972 //****************
973 //****************
973 // CLOSING ACTIONS
974 // CLOSING ACTIONS
974 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
975 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
975 {
976 {
976 /** This function is used to update the HK packets statistics after a successful TC execution.
977 /** This function is used to update the HK packets statistics after a successful TC execution.
977 *
978 *
978 * @param TC points to the TC being processed
979 * @param TC points to the TC being processed
979 * @param time is the time used to date the TC execution
980 * @param time is the time used to date the TC execution
980 *
981 *
981 */
982 */
982
983
983 unsigned int val;
984 unsigned int val;
984
985
985 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
986 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
986 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
987 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
987 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
988 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
988 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
989 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
989 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
990 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
990 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
991 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
991 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
992 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
992 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
993 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
993 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
994 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
994 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
995 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
995 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
996 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
996 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
997 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
997
998
998 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
999 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
999 val++;
1000 val++;
1000 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1001 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1001 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1002 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1002 }
1003 }
1003
1004
1004 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1005 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1005 {
1006 {
1006 /** This function is used to update the HK packets statistics after a TC rejection.
1007 /** This function is used to update the HK packets statistics after a TC rejection.
1007 *
1008 *
1008 * @param TC points to the TC being processed
1009 * @param TC points to the TC being processed
1009 * @param time is the time used to date the TC rejection
1010 * @param time is the time used to date the TC rejection
1010 *
1011 *
1011 */
1012 */
1012
1013
1013 unsigned int val;
1014 unsigned int val;
1014
1015
1015 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1016 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1016 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1017 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1017 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1018 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1018 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1019 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1019 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1020 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1020 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1021 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1021 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1022 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1022 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1023 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1023 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1024 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1024 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1025 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1025 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1026 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1026 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1027 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1027
1028
1028 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1029 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1029 val++;
1030 val++;
1030 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1031 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1031 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1032 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1032 }
1033 }
1033
1034
1034 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1035 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1035 {
1036 {
1036 /** This function is the last step of the TC execution workflow.
1037 /** This function is the last step of the TC execution workflow.
1037 *
1038 *
1038 * @param TC points to the TC being processed
1039 * @param TC points to the TC being processed
1039 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1040 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1040 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1041 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1041 * @param time is the time used to date the TC execution
1042 * @param time is the time used to date the TC execution
1042 *
1043 *
1043 */
1044 */
1044
1045
1045 unsigned char requestedMode;
1046 unsigned char requestedMode;
1046
1047
1047 if (result == LFR_SUCCESSFUL)
1048 if (result == LFR_SUCCESSFUL)
1048 {
1049 {
1049 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1050 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1050 &
1051 &
1051 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1052 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1052 )
1053 )
1053 {
1054 {
1054 send_tm_lfr_tc_exe_success( TC, queue_id );
1055 send_tm_lfr_tc_exe_success( TC, queue_id );
1055 }
1056 }
1056 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1057 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1057 {
1058 {
1058 //**********************************
1059 //**********************************
1059 // UPDATE THE LFRMODE LOCAL VARIABLE
1060 // UPDATE THE LFRMODE LOCAL VARIABLE
1060 requestedMode = TC->dataAndCRC[1];
1061 requestedMode = TC->dataAndCRC[1];
1061 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1062 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1062 updateLFRCurrentMode();
1063 updateLFRCurrentMode();
1063 }
1064 }
1064 }
1065 }
1065 else if (result == LFR_EXE_ERROR)
1066 else if (result == LFR_EXE_ERROR)
1066 {
1067 {
1067 send_tm_lfr_tc_exe_error( TC, queue_id );
1068 send_tm_lfr_tc_exe_error( TC, queue_id );
1068 }
1069 }
1069 }
1070 }
1070
1071
1071 //***************************
1072 //***************************
1072 // Interrupt Service Routines
1073 // Interrupt Service Routines
1073 rtems_isr commutation_isr1( rtems_vector_number vector )
1074 rtems_isr commutation_isr1( rtems_vector_number vector )
1074 {
1075 {
1075 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1076 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1076 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1077 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1077 }
1078 }
1078 }
1079 }
1079
1080
1080 rtems_isr commutation_isr2( rtems_vector_number vector )
1081 rtems_isr commutation_isr2( rtems_vector_number vector )
1081 {
1082 {
1082 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1083 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1083 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1084 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1084 }
1085 }
1085 }
1086 }
1086
1087
1087 //****************
1088 //****************
1088 // OTHER FUNCTIONS
1089 // OTHER FUNCTIONS
1089 void updateLFRCurrentMode()
1090 void updateLFRCurrentMode()
1090 {
1091 {
1091 /** This function updates the value of the global variable lfrCurrentMode.
1092 /** This function updates the value of the global variable lfrCurrentMode.
1092 *
1093 *
1093 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1094 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1094 *
1095 *
1095 */
1096 */
1096 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1097 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1097 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1098 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1098 }
1099 }
1099
1100
1100 void set_lfr_soft_reset( unsigned char value )
1101 void set_lfr_soft_reset( unsigned char value )
1101 {
1102 {
1102 if (value == 1)
1103 if (value == 1)
1103 {
1104 {
1104 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1105 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1105 }
1106 }
1106 else
1107 else
1107 {
1108 {
1108 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1109 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1109 }
1110 }
1110 }
1111 }
1111
1112
1112 void reset_lfr( void )
1113 void reset_lfr( void )
1113 {
1114 {
1114 set_lfr_soft_reset( 1 );
1115 set_lfr_soft_reset( 1 );
1115
1116
1116 set_lfr_soft_reset( 0 );
1117 set_lfr_soft_reset( 0 );
1117 }
1118 }
@@ -1,1402 +1,1402
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //***************
12 //***************
13 // waveform rings
13 // waveform rings
14 // F0
14 // F0
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 ring_node *current_ring_node_f0;
16 ring_node *current_ring_node_f0;
17 ring_node *ring_node_to_send_swf_f0;
17 ring_node *ring_node_to_send_swf_f0;
18 // F1
18 // F1
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 ring_node *current_ring_node_f1;
20 ring_node *current_ring_node_f1;
21 ring_node *ring_node_to_send_swf_f1;
21 ring_node *ring_node_to_send_swf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
23 // F2
23 // F2
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 ring_node *current_ring_node_f2;
25 ring_node *current_ring_node_f2;
26 ring_node *ring_node_to_send_swf_f2;
26 ring_node *ring_node_to_send_swf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
28 // F3
28 // F3
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node *current_ring_node_f3;
30 ring_node *current_ring_node_f3;
31 ring_node *ring_node_to_send_cwf_f3;
31 ring_node *ring_node_to_send_cwf_f3;
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33
33
34 bool extractSWF = false;
34 bool extractSWF = false;
35 bool swf_f0_ready = false;
35 bool swf_f0_ready = false;
36 bool swf_f1_ready = false;
36 bool swf_f1_ready = false;
37 bool swf_f2_ready = false;
37 bool swf_f2_ready = false;
38
38
39 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
39 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
40 ring_node ring_node_wf_snap_extracted;
40 ring_node ring_node_wf_snap_extracted;
41
41
42 //*********************
42 //*********************
43 // Interrupt SubRoutine
43 // Interrupt SubRoutine
44
44
45 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
45 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
46 {
46 {
47 ring_node *node;
47 ring_node *node;
48
48
49 node = NULL;
49 node = NULL;
50 switch ( frequencyChannel ) {
50 switch ( frequencyChannel ) {
51 case 1:
51 case 1:
52 node = ring_node_to_send_cwf_f1;
52 node = ring_node_to_send_cwf_f1;
53 break;
53 break;
54 case 2:
54 case 2:
55 node = ring_node_to_send_cwf_f2;
55 node = ring_node_to_send_cwf_f2;
56 break;
56 break;
57 case 3:
57 case 3:
58 node = ring_node_to_send_cwf_f3;
58 node = ring_node_to_send_cwf_f3;
59 break;
59 break;
60 default:
60 default:
61 break;
61 break;
62 }
62 }
63
63
64 return node;
64 return node;
65 }
65 }
66
66
67 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
67 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
68 {
68 {
69 ring_node *node;
69 ring_node *node;
70
70
71 node = NULL;
71 node = NULL;
72 switch ( frequencyChannel ) {
72 switch ( frequencyChannel ) {
73 case 0:
73 case 0:
74 node = ring_node_to_send_swf_f0;
74 node = ring_node_to_send_swf_f0;
75 break;
75 break;
76 case 1:
76 case 1:
77 node = ring_node_to_send_swf_f1;
77 node = ring_node_to_send_swf_f1;
78 break;
78 break;
79 case 2:
79 case 2:
80 node = ring_node_to_send_swf_f2;
80 node = ring_node_to_send_swf_f2;
81 break;
81 break;
82 default:
82 default:
83 break;
83 break;
84 }
84 }
85
85
86 return node;
86 return node;
87 }
87 }
88
88
89 void reset_extractSWF( void )
89 void reset_extractSWF( void )
90 {
90 {
91 extractSWF = false;
91 extractSWF = false;
92 swf_f0_ready = false;
92 swf_f0_ready = false;
93 swf_f1_ready = false;
93 swf_f1_ready = false;
94 swf_f2_ready = false;
94 swf_f2_ready = false;
95 }
95 }
96
96
97 inline void waveforms_isr_f3( void )
97 inline void waveforms_isr_f3( void )
98 {
98 {
99 rtems_status_code spare_status;
99 rtems_status_code spare_status;
100
100
101 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
101 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
102 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
102 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
103 { // in modes other than STANDBY and BURST, send the CWF_F3 data
103 { // in modes other than STANDBY and BURST, send the CWF_F3 data
104 //***
104 //***
105 // F3
105 // F3
106 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
106 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
107 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
107 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
108 current_ring_node_f3 = current_ring_node_f3->next;
108 current_ring_node_f3 = current_ring_node_f3->next;
109 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
109 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
110 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
110 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
111 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
111 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
112 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
112 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
113 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
113 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
114 }
114 }
115 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
115 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
116 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
116 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
117 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
117 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
118 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
118 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
119 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
119 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
120 }
120 }
121 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
121 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
122 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
122 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
123 }
123 }
124 }
124 }
125 }
125 }
126 }
126 }
127
127
128 inline void waveforms_isr_normal( void )
128 inline void waveforms_isr_normal( void )
129 {
129 {
130 rtems_status_code status;
130 rtems_status_code status;
131
131
132 if ( ( (waveform_picker_regs->status & 0x30) != 0x00 ) // [0011 0000] check the f2 full bits
132 if ( ( (waveform_picker_regs->status & 0x30) != 0x00 ) // [0011 0000] check the f2 full bits
133 && ( (waveform_picker_regs->status & 0x0c) != 0x00 ) // [0000 1100] check the f1 full bits
133 && ( (waveform_picker_regs->status & 0x0c) != 0x00 ) // [0000 1100] check the f1 full bits
134 && ( (waveform_picker_regs->status & 0x03) != 0x00 )) // [0000 0011] check the f0 full bits
134 && ( (waveform_picker_regs->status & 0x03) != 0x00 )) // [0000 0011] check the f0 full bits
135 {
135 {
136 //***
136 //***
137 // F0
137 // F0
138 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
138 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
139 current_ring_node_f0 = current_ring_node_f0->next;
139 current_ring_node_f0 = current_ring_node_f0->next;
140 if ( (waveform_picker_regs->status & 0x01) == 0x01)
140 if ( (waveform_picker_regs->status & 0x01) == 0x01)
141 {
141 {
142
142
143 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
143 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
144 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
144 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
145 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
145 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
146 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
146 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
147 }
147 }
148 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
148 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
149 {
149 {
150 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
150 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
151 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
151 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
152 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
152 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
153 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
153 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
154 }
154 }
155
155
156 //***
156 //***
157 // F1
157 // F1
158 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
158 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
159 current_ring_node_f1 = current_ring_node_f1->next;
159 current_ring_node_f1 = current_ring_node_f1->next;
160 if ( (waveform_picker_regs->status & 0x04) == 0x04)
160 if ( (waveform_picker_regs->status & 0x04) == 0x04)
161 {
161 {
162 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
162 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
163 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
163 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
164 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
164 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
165 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
165 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
166 }
166 }
167 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
167 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
168 {
168 {
169 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
169 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
170 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
170 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
171 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
171 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
173 }
173 }
174
174
175 //***
175 //***
176 // F2
176 // F2
177 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
177 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
178 current_ring_node_f2 = current_ring_node_f2->next;
178 current_ring_node_f2 = current_ring_node_f2->next;
179 if ( (waveform_picker_regs->status & 0x10) == 0x10)
179 if ( (waveform_picker_regs->status & 0x10) == 0x10)
180 {
180 {
181 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
181 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
182 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
182 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
183 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
183 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
184 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
184 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
185 }
185 }
186 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
186 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
187 {
187 {
188 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
188 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
189 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
189 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
190 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
190 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
191 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
191 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
192 }
192 }
193 //
193 //
194 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
194 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
195 if ( status != RTEMS_SUCCESSFUL)
195 if ( status != RTEMS_SUCCESSFUL)
196 {
196 {
197 status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
197 status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
198 }
198 }
199 }
199 }
200 }
200 }
201
201
202 inline void waveforms_isr_burst( void )
202 inline void waveforms_isr_burst( void )
203 {
203 {
204 unsigned char status;
204 unsigned char status;
205 rtems_status_code spare_status;
205 rtems_status_code spare_status;
206
206
207 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
207 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
208
208
209
209
210 switch(status)
210 switch(status)
211 {
211 {
212 case 1:
212 case 1:
213 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
213 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
214 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
214 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
215 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
215 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
216 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
216 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
217 current_ring_node_f2 = current_ring_node_f2->next;
217 current_ring_node_f2 = current_ring_node_f2->next;
218 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
218 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
219 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
219 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
220 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
220 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
221 }
221 }
222 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
222 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
223 break;
223 break;
224 case 2:
224 case 2:
225 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
225 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
226 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
226 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
227 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
227 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
228 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
228 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
229 current_ring_node_f2 = current_ring_node_f2->next;
229 current_ring_node_f2 = current_ring_node_f2->next;
230 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
230 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
231 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
231 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
232 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
232 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
233 }
233 }
234 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
234 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
235 break;
235 break;
236 default:
236 default:
237 break;
237 break;
238 }
238 }
239 }
239 }
240
240
241 inline void waveforms_isr_sbm1( void )
241 inline void waveforms_isr_sbm1( void )
242 {
242 {
243 rtems_status_code status;
243 rtems_status_code status;
244
244
245 //***
245 //***
246 // F1
246 // F1
247 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
247 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
248 // (1) change the receiving buffer for the waveform picker
248 // (1) change the receiving buffer for the waveform picker
249 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
249 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
250 current_ring_node_f1 = current_ring_node_f1->next;
250 current_ring_node_f1 = current_ring_node_f1->next;
251 if ( (waveform_picker_regs->status & 0x04) == 0x04)
251 if ( (waveform_picker_regs->status & 0x04) == 0x04)
252 {
252 {
253 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
253 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
254 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
254 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
255 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
255 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
256 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
256 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
257 }
257 }
258 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
258 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
259 {
259 {
260 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
260 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
261 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
261 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
262 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
262 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
263 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
263 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
264 }
264 }
265 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
265 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
266 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
266 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
267 }
267 }
268
268
269 //***
269 //***
270 // F0
270 // F0
271 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) { // [0000 0011] check the f0 full bits
271 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) { // [0000 0011] check the f0 full bits
272 swf_f0_ready = true;
272 swf_f0_ready = true;
273 // change f0 buffer
273 // change f0 buffer
274 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
274 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
275 current_ring_node_f0 = current_ring_node_f0->next;
275 current_ring_node_f0 = current_ring_node_f0->next;
276 if ( (waveform_picker_regs->status & 0x01) == 0x01)
276 if ( (waveform_picker_regs->status & 0x01) == 0x01)
277 {
277 {
278
278
279 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
279 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
280 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
280 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
281 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
281 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
282 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
282 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
283 }
283 }
284 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
284 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
285 {
285 {
286 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
286 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
287 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
287 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
288 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
288 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
289 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
289 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
290 }
290 }
291 }
291 }
292
292
293 //***
293 //***
294 // F2
294 // F2
295 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bits
295 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bits
296 swf_f2_ready = true;
296 swf_f2_ready = true;
297 // change f2 buffer
297 // change f2 buffer
298 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
298 ring_node_to_send_swf_f2 = current_ring_node_f2->previous;
299 current_ring_node_f2 = current_ring_node_f2->next;
299 current_ring_node_f2 = current_ring_node_f2->next;
300 if ( (waveform_picker_regs->status & 0x10) == 0x10)
300 if ( (waveform_picker_regs->status & 0x10) == 0x10)
301 {
301 {
302 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
302 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
303 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
303 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
304 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
304 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
305 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
305 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
306 }
306 }
307 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
307 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
308 {
308 {
309 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
309 ring_node_to_send_swf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
310 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
310 ring_node_to_send_swf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
311 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
311 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
312 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
312 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
313 }
313 }
314 }
314 }
315 }
315 }
316
316
317 inline void waveforms_isr_sbm2( void )
317 inline void waveforms_isr_sbm2( void )
318 {
318 {
319 rtems_status_code status;
319 rtems_status_code status;
320
320
321 //***
321 //***
322 // F2
322 // F2
323 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
323 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
324 // (1) change the receiving buffer for the waveform picker
324 // (1) change the receiving buffer for the waveform picker
325 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
325 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
326 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
326 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
327 current_ring_node_f2 = current_ring_node_f2->next;
327 current_ring_node_f2 = current_ring_node_f2->next;
328 if ( (waveform_picker_regs->status & 0x10) == 0x10)
328 if ( (waveform_picker_regs->status & 0x10) == 0x10)
329 {
329 {
330 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
330 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
331 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
331 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
332 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
332 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
333 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
333 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
334 }
334 }
335 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
335 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
336 {
336 {
337 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
337 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
338 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
338 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
339 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
339 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
340 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
340 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
341 }
341 }
342 // (2) send an event for the waveforms transmission
342 // (2) send an event for the waveforms transmission
343 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
343 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
344 }
344 }
345
345
346 //***
346 //***
347 // F0
347 // F0
348 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) { // [0000 0011] check the f0 full bit
348 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) { // [0000 0011] check the f0 full bit
349 swf_f0_ready = true;
349 swf_f0_ready = true;
350 // change f0 buffer
350 // change f0 buffer
351 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
351 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
352 current_ring_node_f0 = current_ring_node_f0->next;
352 current_ring_node_f0 = current_ring_node_f0->next;
353 if ( (waveform_picker_regs->status & 0x01) == 0x01)
353 if ( (waveform_picker_regs->status & 0x01) == 0x01)
354 {
354 {
355
355
356 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
356 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
357 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
357 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
358 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
358 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
359 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
359 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
360 }
360 }
361 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
361 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
362 {
362 {
363 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
363 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
364 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
364 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
365 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
365 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
366 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
366 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
367 }
367 }
368 }
368 }
369
369
370 //***
370 //***
371 // F1
371 // F1
372 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bit
372 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bit
373 swf_f1_ready = true;
373 swf_f1_ready = true;
374 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
374 ring_node_to_send_swf_f1 = current_ring_node_f1->previous;
375 current_ring_node_f1 = current_ring_node_f1->next;
375 current_ring_node_f1 = current_ring_node_f1->next;
376 if ( (waveform_picker_regs->status & 0x04) == 0x04)
376 if ( (waveform_picker_regs->status & 0x04) == 0x04)
377 {
377 {
378 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
378 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
379 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
379 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
380 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
380 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
381 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
381 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
382 }
382 }
383 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
383 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
384 {
384 {
385 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
385 ring_node_to_send_swf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
386 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
386 ring_node_to_send_swf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
387 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
387 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
388 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
388 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
389 }
389 }
390 }
390 }
391 }
391 }
392
392
393 rtems_isr waveforms_isr( rtems_vector_number vector )
393 rtems_isr waveforms_isr( rtems_vector_number vector )
394 {
394 {
395 /** This is the interrupt sub routine called by the waveform picker core.
395 /** This is the interrupt sub routine called by the waveform picker core.
396 *
396 *
397 * This ISR launch different actions depending mainly on two pieces of information:
397 * This ISR launch different actions depending mainly on two pieces of information:
398 * 1. the values read in the registers of the waveform picker.
398 * 1. the values read in the registers of the waveform picker.
399 * 2. the current LFR mode.
399 * 2. the current LFR mode.
400 *
400 *
401 */
401 */
402
402
403 // STATUS
403 // STATUS
404 // new error error buffer full
404 // new error error buffer full
405 // 15 14 13 12 11 10 9 8
405 // 15 14 13 12 11 10 9 8
406 // f3 f2 f1 f0 f3 f2 f1 f0
406 // f3 f2 f1 f0 f3 f2 f1 f0
407 //
407 //
408 // ready buffer
408 // ready buffer
409 // 7 6 5 4 3 2 1 0
409 // 7 6 5 4 3 2 1 0
410 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
410 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
411
411
412 rtems_status_code spare_status;
412 rtems_status_code spare_status;
413
413
414 waveforms_isr_f3();
414 waveforms_isr_f3();
415
415
416 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
416 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
417 {
417 {
418 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
418 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
419 }
419 }
420
420
421 switch(lfrCurrentMode)
421 switch(lfrCurrentMode)
422 {
422 {
423 //********
423 //********
424 // STANDBY
424 // STANDBY
425 case(LFR_MODE_STANDBY):
425 case(LFR_MODE_STANDBY):
426 break;
426 break;
427
427
428 //******
428 //******
429 // NORMAL
429 // NORMAL
430 case(LFR_MODE_NORMAL):
430 case(LFR_MODE_NORMAL):
431 waveforms_isr_normal();
431 waveforms_isr_normal();
432 break;
432 break;
433
433
434 //******
434 //******
435 // BURST
435 // BURST
436 case(LFR_MODE_BURST):
436 case(LFR_MODE_BURST):
437 waveforms_isr_burst();
437 waveforms_isr_burst();
438 break;
438 break;
439
439
440 //*****
440 //*****
441 // SBM1
441 // SBM1
442 case(LFR_MODE_SBM1):
442 case(LFR_MODE_SBM1):
443 waveforms_isr_sbm1();
443 waveforms_isr_sbm1();
444 break;
444 break;
445
445
446 //*****
446 //*****
447 // SBM2
447 // SBM2
448 case(LFR_MODE_SBM2):
448 case(LFR_MODE_SBM2):
449 waveforms_isr_sbm2();
449 waveforms_isr_sbm2();
450 break;
450 break;
451
451
452 //********
452 //********
453 // DEFAULT
453 // DEFAULT
454 default:
454 default:
455 break;
455 break;
456 }
456 }
457 }
457 }
458
458
459 //************
459 //************
460 // RTEMS TASKS
460 // RTEMS TASKS
461
461
462 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
462 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
463 {
463 {
464 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
464 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
465 *
465 *
466 * @param unused is the starting argument of the RTEMS task
466 * @param unused is the starting argument of the RTEMS task
467 *
467 *
468 * The following data packets are sent by this task:
468 * The following data packets are sent by this task:
469 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
469 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
470 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
470 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
471 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
471 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
472 *
472 *
473 */
473 */
474
474
475 rtems_event_set event_out;
475 rtems_event_set event_out;
476 rtems_id queue_id;
476 rtems_id queue_id;
477 rtems_status_code status;
477 rtems_status_code status;
478 bool resynchronisationEngaged;
478 bool resynchronisationEngaged;
479 ring_node *ring_node_wf_snap_extracted_ptr;
479 ring_node *ring_node_wf_snap_extracted_ptr;
480
480
481 ring_node_wf_snap_extracted_ptr = (ring_node *) &ring_node_wf_snap_extracted;
481 ring_node_wf_snap_extracted_ptr = (ring_node *) &ring_node_wf_snap_extracted;
482
482
483 resynchronisationEngaged = false;
483 resynchronisationEngaged = false;
484
484
485 status = get_message_queue_id_send( &queue_id );
485 status = get_message_queue_id_send( &queue_id );
486 if (status != RTEMS_SUCCESSFUL)
486 if (status != RTEMS_SUCCESSFUL)
487 {
487 {
488 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
488 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
489 }
489 }
490
490
491 BOOT_PRINTF("in WFRM ***\n")
491 BOOT_PRINTF("in WFRM ***\n")
492
492
493 while(1){
493 while(1){
494 // wait for an RTEMS_EVENT
494 // wait for an RTEMS_EVENT
495 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
495 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
496 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
496 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
497 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
497 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
498 if(resynchronisationEngaged == false)
498 if(resynchronisationEngaged == false)
499 { // engage resynchronisation
499 { // engage resynchronisation
500 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
500 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
501 resynchronisationEngaged = true;
501 resynchronisationEngaged = true;
502 }
502 }
503 else
503 else
504 { // reset delta_snapshot to the nominal value
504 { // reset delta_snapshot to the nominal value
505 PRINTF("no resynchronisation, reset delta_snapshot to the nominal value\n")
505 PRINTF("no resynchronisation, reset delta_snapshot to the nominal value\n")
506 set_wfp_delta_snapshot();
506 set_wfp_delta_snapshot();
507 resynchronisationEngaged = false;
507 resynchronisationEngaged = false;
508 }
508 }
509 //
509 //
510
510
511 if (event_out == RTEMS_EVENT_MODE_NORMAL)
511 if (event_out == RTEMS_EVENT_MODE_NORMAL)
512 {
512 {
513 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
513 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
514 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
514 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
515 ring_node_to_send_swf_f1->sid = SID_NORM_SWF_F1;
515 ring_node_to_send_swf_f1->sid = SID_NORM_SWF_F1;
516 ring_node_to_send_swf_f2->sid = SID_NORM_SWF_F2;
516 ring_node_to_send_swf_f2->sid = SID_NORM_SWF_F2;
517 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
517 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
518 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f1, sizeof( ring_node* ) );
518 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f1, sizeof( ring_node* ) );
519 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f2, sizeof( ring_node* ) );
519 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f2, sizeof( ring_node* ) );
520 }
520 }
521 if (event_out == RTEMS_EVENT_MODE_SBM1)
521 if (event_out == RTEMS_EVENT_MODE_SBM1)
522 {
522 {
523 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
523 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
524 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
524 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
525 ring_node_wf_snap_extracted_ptr->sid = SID_NORM_SWF_F1;
525 ring_node_wf_snap_extracted_ptr->sid = SID_NORM_SWF_F1;
526 ring_node_to_send_swf_f2->sid = SID_NORM_SWF_F2;
526 ring_node_to_send_swf_f2->sid = SID_NORM_SWF_F2;
527 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
527 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
528 status = rtems_message_queue_send( queue_id, &ring_node_wf_snap_extracted_ptr, sizeof( ring_node* ) );
528 status = rtems_message_queue_send( queue_id, &ring_node_wf_snap_extracted_ptr, sizeof( ring_node* ) );
529 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f2, sizeof( ring_node* ) );
529 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f2, sizeof( ring_node* ) );
530 }
530 }
531 if (event_out == RTEMS_EVENT_MODE_SBM2)
531 if (event_out == RTEMS_EVENT_MODE_SBM2)
532 {
532 {
533 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
533 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
534 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
534 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
535 ring_node_to_send_swf_f1->sid = SID_NORM_SWF_F1;
535 ring_node_to_send_swf_f1->sid = SID_NORM_SWF_F1;
536 ring_node_wf_snap_extracted_ptr->sid = SID_NORM_SWF_F2;
536 ring_node_wf_snap_extracted_ptr->sid = SID_NORM_SWF_F2;
537 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
537 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
538 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f1, sizeof( ring_node* ) );
538 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f1, sizeof( ring_node* ) );
539 status = rtems_message_queue_send( queue_id, &ring_node_wf_snap_extracted_ptr, sizeof( ring_node* ) );
539 status = rtems_message_queue_send( queue_id, &ring_node_wf_snap_extracted_ptr, sizeof( ring_node* ) );
540 }
540 }
541 }
541 }
542 }
542 }
543
543
544 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
544 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
545 {
545 {
546 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
546 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
547 *
547 *
548 * @param unused is the starting argument of the RTEMS task
548 * @param unused is the starting argument of the RTEMS task
549 *
549 *
550 * The following data packet is sent by this task:
550 * The following data packet is sent by this task:
551 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
551 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
552 *
552 *
553 */
553 */
554
554
555 rtems_event_set event_out;
555 rtems_event_set event_out;
556 rtems_id queue_id;
556 rtems_id queue_id;
557 rtems_status_code status;
557 rtems_status_code status;
558 ring_node ring_node_cwf3_light;
558 ring_node ring_node_cwf3_light;
559
559
560 status = get_message_queue_id_send( &queue_id );
560 status = get_message_queue_id_send( &queue_id );
561 if (status != RTEMS_SUCCESSFUL)
561 if (status != RTEMS_SUCCESSFUL)
562 {
562 {
563 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
563 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
564 }
564 }
565
565
566 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
566 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
567
567
568 // init the ring_node_cwf3_light structure
568 // init the ring_node_cwf3_light structure
569 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
569 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
570 ring_node_cwf3_light.coarseTime = 0x00;
570 ring_node_cwf3_light.coarseTime = 0x00;
571 ring_node_cwf3_light.fineTime = 0x00;
571 ring_node_cwf3_light.fineTime = 0x00;
572 ring_node_cwf3_light.next = NULL;
572 ring_node_cwf3_light.next = NULL;
573 ring_node_cwf3_light.previous = NULL;
573 ring_node_cwf3_light.previous = NULL;
574 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
574 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
575 ring_node_cwf3_light.status = 0x00;
575 ring_node_cwf3_light.status = 0x00;
576
576
577 BOOT_PRINTF("in CWF3 ***\n")
577 BOOT_PRINTF("in CWF3 ***\n")
578
578
579 while(1){
579 while(1){
580 // wait for an RTEMS_EVENT
580 // wait for an RTEMS_EVENT
581 rtems_event_receive( RTEMS_EVENT_0,
581 rtems_event_receive( RTEMS_EVENT_0,
582 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
582 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
583 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
583 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
584 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
584 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
585 {
585 {
586 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
586 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
587 {
587 {
588 PRINTF("send CWF_LONG_F3\n")
588 PRINTF("send CWF_LONG_F3\n")
589 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
589 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
590 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf_f3, sizeof( ring_node* ) );
590 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf_f3, sizeof( ring_node* ) );
591 }
591 }
592 else
592 else
593 {
593 {
594 PRINTF("send CWF_F3 (light)\n")
594 PRINTF("send CWF_F3 (light)\n")
595 send_waveform_CWF3_light( ring_node_to_send_cwf_f3, &ring_node_cwf3_light, queue_id );
595 send_waveform_CWF3_light( ring_node_to_send_cwf_f3, &ring_node_cwf3_light, queue_id );
596 }
596 }
597
597
598 }
598 }
599 else
599 else
600 {
600 {
601 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
601 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
602 }
602 }
603 }
603 }
604 }
604 }
605
605
606 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
606 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
607 {
607 {
608 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
608 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
609 *
609 *
610 * @param unused is the starting argument of the RTEMS task
610 * @param unused is the starting argument of the RTEMS task
611 *
611 *
612 * The following data packet is sent by this function:
612 * The following data packet is sent by this function:
613 * - TM_LFR_SCIENCE_BURST_CWF_F2
613 * - TM_LFR_SCIENCE_BURST_CWF_F2
614 * - TM_LFR_SCIENCE_SBM2_CWF_F2
614 * - TM_LFR_SCIENCE_SBM2_CWF_F2
615 *
615 *
616 */
616 */
617
617
618 rtems_event_set event_out;
618 rtems_event_set event_out;
619 rtems_id queue_id;
619 rtems_id queue_id;
620 rtems_status_code status;
620 rtems_status_code status;
621 ring_node *ring_node_to_send;
621 ring_node *ring_node_to_send;
622 unsigned long long int acquisitionTimeF0_asLong;
622 unsigned long long int acquisitionTimeF0_asLong;
623
623
624 acquisitionTimeF0_asLong = 0x00;
624 acquisitionTimeF0_asLong = 0x00;
625
625
626 status = get_message_queue_id_send( &queue_id );
626 status = get_message_queue_id_send( &queue_id );
627 if (status != RTEMS_SUCCESSFUL)
627 if (status != RTEMS_SUCCESSFUL)
628 {
628 {
629 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
629 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
630 }
630 }
631
631
632 BOOT_PRINTF("in CWF2 ***\n")
632 BOOT_PRINTF("in CWF2 ***\n")
633
633
634 while(1){
634 while(1){
635 // wait for an RTEMS_EVENT
635 // wait for an RTEMS_EVENT
636 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
636 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
637 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
637 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
638 ring_node_to_send = getRingNodeToSendCWF( 2 );
638 ring_node_to_send = getRingNodeToSendCWF( 2 );
639 if (event_out == RTEMS_EVENT_MODE_BURST)
639 if (event_out == RTEMS_EVENT_MODE_BURST)
640 {
640 {
641 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
641 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
642 }
642 }
643 if (event_out == RTEMS_EVENT_MODE_SBM2)
643 if (event_out == RTEMS_EVENT_MODE_SBM2)
644 {
644 {
645 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
645 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
646 // launch snapshot extraction if needed
646 // launch snapshot extraction if needed
647 if (extractSWF == true)
647 if (extractSWF == true)
648 {
648 {
649 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
649 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
650 // extract the snapshot
650 // extract the snapshot
651 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong );
651 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong );
652 // send the snapshot when built
652 // send the snapshot when built
653 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
653 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
654 extractSWF = false;
654 extractSWF = false;
655 }
655 }
656 if (swf_f0_ready && swf_f1_ready)
656 if (swf_f0_ready && swf_f1_ready)
657 {
657 {
658 extractSWF = true;
658 extractSWF = true;
659 // record the acquition time of the fΓ  snapshot to use to build the snapshot at f2
659 // record the acquition time of the fΓ  snapshot to use to build the snapshot at f2
660 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
660 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
661 swf_f0_ready = false;
661 swf_f0_ready = false;
662 swf_f1_ready = false;
662 swf_f1_ready = false;
663 }
663 }
664 }
664 }
665 }
665 }
666 }
666 }
667
667
668 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
668 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
669 {
669 {
670 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
670 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
671 *
671 *
672 * @param unused is the starting argument of the RTEMS task
672 * @param unused is the starting argument of the RTEMS task
673 *
673 *
674 * The following data packet is sent by this function:
674 * The following data packet is sent by this function:
675 * - TM_LFR_SCIENCE_SBM1_CWF_F1
675 * - TM_LFR_SCIENCE_SBM1_CWF_F1
676 *
676 *
677 */
677 */
678
678
679 rtems_event_set event_out;
679 rtems_event_set event_out;
680 rtems_id queue_id;
680 rtems_id queue_id;
681 rtems_status_code status;
681 rtems_status_code status;
682
682
683 ring_node * ring_node_to_send_cwf;
683 ring_node * ring_node_to_send_cwf;
684
684
685 status = get_message_queue_id_send( &queue_id );
685 status = get_message_queue_id_send( &queue_id );
686 if (status != RTEMS_SUCCESSFUL)
686 if (status != RTEMS_SUCCESSFUL)
687 {
687 {
688 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
688 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
689 }
689 }
690
690
691 BOOT_PRINTF("in CWF1 ***\n")
691 BOOT_PRINTF("in CWF1 ***\n")
692
692
693 while(1){
693 while(1){
694 // wait for an RTEMS_EVENT
694 // wait for an RTEMS_EVENT
695 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
695 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
696 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
696 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
697 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
697 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
698 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
698 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
699 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
699 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
700 // launch snapshot extraction if needed
700 // launch snapshot extraction if needed
701 if (extractSWF == true)
701 if (extractSWF == true)
702 {
702 {
703 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
703 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
704 // launch the snapshot extraction
704 // launch the snapshot extraction
705 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
705 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
706 extractSWF = false;
706 extractSWF = false;
707 }
707 }
708 if (swf_f0_ready == true)
708 if (swf_f0_ready == true)
709 {
709 {
710 extractSWF = true;
710 extractSWF = true;
711 swf_f0_ready = false; // this step shall be executed only one time
711 swf_f0_ready = false; // this step shall be executed only one time
712 }
712 }
713 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
713 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
714 {
714 {
715 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
715 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
716 swf_f1_ready = false;
716 swf_f1_ready = false;
717 swf_f2_ready = false;
717 swf_f2_ready = false;
718 }
718 }
719 }
719 }
720 }
720 }
721
721
722 rtems_task swbd_task(rtems_task_argument argument)
722 rtems_task swbd_task(rtems_task_argument argument)
723 {
723 {
724 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
724 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
725 *
725 *
726 * @param unused is the starting argument of the RTEMS task
726 * @param unused is the starting argument of the RTEMS task
727 *
727 *
728 */
728 */
729
729
730 rtems_event_set event_out;
730 rtems_event_set event_out;
731 unsigned long long int acquisitionTimeF0_asLong;
731 unsigned long long int acquisitionTimeF0_asLong;
732
732
733 acquisitionTimeF0_asLong = 0x00;
733 acquisitionTimeF0_asLong = 0x00;
734
734
735 BOOT_PRINTF("in SWBD ***\n")
735 BOOT_PRINTF("in SWBD ***\n")
736
736
737 while(1){
737 while(1){
738 // wait for an RTEMS_EVENT
738 // wait for an RTEMS_EVENT
739 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
739 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
740 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
740 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
741 if (event_out == RTEMS_EVENT_MODE_SBM1)
741 if (event_out == RTEMS_EVENT_MODE_SBM1)
742 {
742 {
743 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
743 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
744 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong );
744 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong );
745 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
745 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
746 }
746 }
747 else
747 else
748 {
748 {
749 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
749 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
750 }
750 }
751 }
751 }
752 }
752 }
753
753
754 //******************
754 //******************
755 // general functions
755 // general functions
756
756
757 void WFP_init_rings( void )
757 void WFP_init_rings( void )
758 {
758 {
759 // F0 RING
759 // F0 RING
760 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
760 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
761 // F1 RING
761 // F1 RING
762 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
762 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
763 // F2 RING
763 // F2 RING
764 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
764 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
765 // F3 RING
765 // F3 RING
766 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
766 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
767
767
768 ring_node_wf_snap_extracted.buffer_address = (int) wf_snap_extracted;
768 ring_node_wf_snap_extracted.buffer_address = (int) wf_snap_extracted;
769
769
770 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
770 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
771 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
771 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
772 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
772 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
773 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
773 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
774 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
774 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
775 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
775 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
776 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
776 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
777 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
777 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
778
778
779 }
779 }
780
780
781 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
781 void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize )
782 {
782 {
783 unsigned char i;
783 unsigned char i;
784
784
785 //***************
785 //***************
786 // BUFFER ADDRESS
786 // BUFFER ADDRESS
787 for(i=0; i<nbNodes; i++)
787 for(i=0; i<nbNodes; i++)
788 {
788 {
789 ring[i].coarseTime = 0x00;
789 ring[i].coarseTime = 0x00;
790 ring[i].fineTime = 0x00;
790 ring[i].fineTime = 0x00;
791 ring[i].sid = 0x00;
791 ring[i].sid = 0x00;
792 ring[i].status = 0x00;
792 ring[i].status = 0x00;
793 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
793 ring[i].buffer_address = (int) &buffer[ i * bufferSize ];
794 }
794 }
795
795
796 //*****
796 //*****
797 // NEXT
797 // NEXT
798 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
798 ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ];
799 for(i=0; i<nbNodes-1; i++)
799 for(i=0; i<nbNodes-1; i++)
800 {
800 {
801 ring[i].next = (ring_node*) &ring[ i + 1 ];
801 ring[i].next = (ring_node*) &ring[ i + 1 ];
802 }
802 }
803
803
804 //*********
804 //*********
805 // PREVIOUS
805 // PREVIOUS
806 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
806 ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ];
807 for(i=1; i<nbNodes; i++)
807 for(i=1; i<nbNodes; i++)
808 {
808 {
809 ring[i].previous = (ring_node*) &ring[ i - 1 ];
809 ring[i].previous = (ring_node*) &ring[ i - 1 ];
810 }
810 }
811 }
811 }
812
812
813 void WFP_reset_current_ring_nodes( void )
813 void WFP_reset_current_ring_nodes( void )
814 {
814 {
815 current_ring_node_f0 = waveform_ring_f0[0].next;
815 current_ring_node_f0 = waveform_ring_f0[0].next;
816 current_ring_node_f1 = waveform_ring_f1[0].next;
816 current_ring_node_f1 = waveform_ring_f1[0].next;
817 current_ring_node_f2 = waveform_ring_f2[0].next;
817 current_ring_node_f2 = waveform_ring_f2[0].next;
818 current_ring_node_f3 = waveform_ring_f3[0].next;
818 current_ring_node_f3 = waveform_ring_f3[0].next;
819
819
820 ring_node_to_send_swf_f0 = waveform_ring_f0;
820 ring_node_to_send_swf_f0 = waveform_ring_f0;
821 ring_node_to_send_swf_f1 = waveform_ring_f1;
821 ring_node_to_send_swf_f1 = waveform_ring_f1;
822 ring_node_to_send_swf_f2 = waveform_ring_f2;
822 ring_node_to_send_swf_f2 = waveform_ring_f2;
823
823
824 ring_node_to_send_cwf_f1 = waveform_ring_f1;
824 ring_node_to_send_cwf_f1 = waveform_ring_f1;
825 ring_node_to_send_cwf_f2 = waveform_ring_f2;
825 ring_node_to_send_cwf_f2 = waveform_ring_f2;
826 ring_node_to_send_cwf_f3 = waveform_ring_f3;
826 ring_node_to_send_cwf_f3 = waveform_ring_f3;
827 }
827 }
828
828
829 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
829 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
830 {
830 {
831 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
831 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
832 *
832 *
833 * @param waveform points to the buffer containing the data that will be send.
833 * @param waveform points to the buffer containing the data that will be send.
834 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
834 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
835 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
835 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
836 * contain information to setup the transmission of the data packets.
836 * contain information to setup the transmission of the data packets.
837 *
837 *
838 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
838 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
839 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
839 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
840 *
840 *
841 */
841 */
842
842
843 unsigned int i;
843 unsigned int i;
844 int ret;
844 int ret;
845 rtems_status_code status;
845 rtems_status_code status;
846
846
847 char *sample;
847 char *sample;
848 int *dataPtr;
848 int *dataPtr;
849
849
850 ret = LFR_DEFAULT;
850 ret = LFR_DEFAULT;
851
851
852 dataPtr = (int*) ring_node_to_send->buffer_address;
852 dataPtr = (int*) ring_node_to_send->buffer_address;
853
853
854 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
854 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
855 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
855 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
856
856
857 //**********************
857 //**********************
858 // BUILD CWF3_light DATA
858 // BUILD CWF3_light DATA
859 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
859 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
860 {
860 {
861 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
861 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
862 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
862 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
863 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
863 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
864 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
864 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
865 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
865 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
866 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
866 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
867 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
867 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
868 }
868 }
869
869
870 // SEND PACKET
870 // SEND PACKET
871 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
871 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
872 if (status != RTEMS_SUCCESSFUL) {
872 if (status != RTEMS_SUCCESSFUL) {
873 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
873 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
874 ret = LFR_DEFAULT;
874 ret = LFR_DEFAULT;
875 }
875 }
876
876
877 return ret;
877 return ret;
878 }
878 }
879
879
880 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
880 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
881 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
881 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
882 {
882 {
883 unsigned long long int acquisitionTimeAsLong;
883 unsigned long long int acquisitionTimeAsLong;
884 unsigned char localAcquisitionTime[6];
884 unsigned char localAcquisitionTime[6];
885 double deltaT;
885 double deltaT;
886
886
887 deltaT = 0.;
887 deltaT = 0.;
888
888
889 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
889 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
890 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
890 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
891 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
891 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
892 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
892 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
893 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
893 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
894 localAcquisitionTime[5] = (unsigned char) ( fineTime );
894 localAcquisitionTime[5] = (unsigned char) ( fineTime );
895
895
896 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
896 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
897 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
897 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
898 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
898 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
899 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
899 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
900 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
900 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
901 + ( (unsigned long long int) localAcquisitionTime[5] );
901 + ( (unsigned long long int) localAcquisitionTime[5] );
902
902
903 switch( sid )
903 switch( sid )
904 {
904 {
905 case SID_NORM_SWF_F0:
905 case SID_NORM_SWF_F0:
906 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
906 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
907 break;
907 break;
908
908
909 case SID_NORM_SWF_F1:
909 case SID_NORM_SWF_F1:
910 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
910 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
911 break;
911 break;
912
912
913 case SID_NORM_SWF_F2:
913 case SID_NORM_SWF_F2:
914 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
914 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
915 break;
915 break;
916
916
917 case SID_SBM1_CWF_F1:
917 case SID_SBM1_CWF_F1:
918 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
918 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
919 break;
919 break;
920
920
921 case SID_SBM2_CWF_F2:
921 case SID_SBM2_CWF_F2:
922 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
922 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
923 break;
923 break;
924
924
925 case SID_BURST_CWF_F2:
925 case SID_BURST_CWF_F2:
926 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
926 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
927 break;
927 break;
928
928
929 case SID_NORM_CWF_F3:
929 case SID_NORM_CWF_F3:
930 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
930 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
931 break;
931 break;
932
932
933 case SID_NORM_CWF_LONG_F3:
933 case SID_NORM_CWF_LONG_F3:
934 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
934 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
935 break;
935 break;
936
936
937 default:
937 default:
938 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
938 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
939 deltaT = 0.;
939 deltaT = 0.;
940 break;
940 break;
941 }
941 }
942
942
943 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
943 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
944 //
944 //
945 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
945 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
946 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
946 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
947 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
947 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
948 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
948 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
949 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
949 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
950 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
950 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
951
951
952 }
952 }
953
953
954 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel, unsigned long long int acquisitionTimeF0_asLong )
954 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel, unsigned long long int acquisitionTimeF0_asLong )
955 {
955 {
956 unsigned int i;
956 unsigned int i;
957 unsigned long long int centerTime_asLong;
957 unsigned long long int centerTime_asLong;
958 unsigned long long int acquisitionTime_asLong;
958 unsigned long long int acquisitionTime_asLong;
959 unsigned long long int bufferAcquisitionTime_asLong;
959 unsigned long long int bufferAcquisitionTime_asLong;
960 unsigned char *ptr1;
960 unsigned char *ptr1;
961 unsigned char *ptr2;
961 unsigned char *ptr2;
962 unsigned char *timeCharPtr;
962 unsigned char *timeCharPtr;
963 unsigned char nb_ring_nodes;
963 unsigned char nb_ring_nodes;
964 unsigned long long int frequency_asLong;
964 unsigned long long int frequency_asLong;
965 unsigned long long int nbTicksPerSample_asLong;
965 unsigned long long int nbTicksPerSample_asLong;
966 unsigned long long int nbSamplesPart1_asLong;
966 unsigned long long int nbSamplesPart1_asLong;
967 unsigned long long int sampleOffset_asLong;
967 unsigned long long int sampleOffset_asLong;
968
968
969 unsigned int deltaT_F0;
969 unsigned int deltaT_F0;
970 unsigned int deltaT_F1;
970 unsigned int deltaT_F1;
971 unsigned long long int deltaT_F2;
971 unsigned long long int deltaT_F2;
972
972
973 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
973 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
974 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
974 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
975 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
975 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
976 sampleOffset_asLong = 0x00;
976 sampleOffset_asLong = 0x00;
977
977
978 // (1) get the f0 acquisition time => the value is passed in argument
978 // (1) get the f0 acquisition time => the value is passed in argument
979
979
980 // (2) compute the central reference time
980 // (2) compute the central reference time
981 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
981 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
982
982
983 // (3) compute the acquisition time of the current snapshot
983 // (3) compute the acquisition time of the current snapshot
984 switch(frequencyChannel)
984 switch(frequencyChannel)
985 {
985 {
986 case 1: // 1 is for F1 = 4096 Hz
986 case 1: // 1 is for F1 = 4096 Hz
987 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
987 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
988 nb_ring_nodes = NB_RING_NODES_F1;
988 nb_ring_nodes = NB_RING_NODES_F1;
989 frequency_asLong = 4096;
989 frequency_asLong = 4096;
990 nbTicksPerSample_asLong = 16; // 65536 / 4096;
990 nbTicksPerSample_asLong = 16; // 65536 / 4096;
991 break;
991 break;
992 case 2: // 2 is for F2 = 256 Hz
992 case 2: // 2 is for F2 = 256 Hz
993 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
993 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
994 nb_ring_nodes = NB_RING_NODES_F2;
994 nb_ring_nodes = NB_RING_NODES_F2;
995 frequency_asLong = 256;
995 frequency_asLong = 256;
996 nbTicksPerSample_asLong = 256; // 65536 / 256;
996 nbTicksPerSample_asLong = 256; // 65536 / 256;
997 break;
997 break;
998 default:
998 default:
999 acquisitionTime_asLong = centerTime_asLong;
999 acquisitionTime_asLong = centerTime_asLong;
1000 frequency_asLong = 256;
1000 frequency_asLong = 256;
1001 nbTicksPerSample_asLong = 256;
1001 nbTicksPerSample_asLong = 256;
1002 break;
1002 break;
1003 }
1003 }
1004
1004
1005 //****************************************************************************
1005 //****************************************************************************
1006 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1006 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1007 for (i=0; i<nb_ring_nodes; i++)
1007 for (i=0; i<nb_ring_nodes; i++)
1008 {
1008 {
1009 PRINTF1("%d ... ", i)
1009 PRINTF1("%d ... ", i)
1010 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
1010 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
1011 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1011 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1012 {
1012 {
1013 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1013 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1014 break;
1014 break;
1015 }
1015 }
1016 ring_node_to_send = ring_node_to_send->previous;
1016 ring_node_to_send = ring_node_to_send->previous;
1017 }
1017 }
1018
1018
1019 // (5) compute the number of samples to take in the current buffer
1019 // (5) compute the number of samples to take in the current buffer
1020 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1020 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1021 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1021 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1022 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1022 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1023
1023
1024 // (6) compute the final acquisition time
1024 // (6) compute the final acquisition time
1025 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1025 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1026 sampleOffset_asLong * nbTicksPerSample_asLong;
1026 sampleOffset_asLong * nbTicksPerSample_asLong;
1027
1027
1028 // (7) copy the acquisition time at the beginning of the extrated snapshot
1028 // (7) copy the acquisition time at the beginning of the extrated snapshot
1029 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1029 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1030 // fine time
1030 // fine time
1031 ptr2 = (unsigned char*) &ring_node_wf_snap_extracted.fineTime;
1031 ptr2 = (unsigned char*) &ring_node_wf_snap_extracted.fineTime;
1032 ptr2[2] = ptr1[ 4 + 2 ];
1032 ptr2[2] = ptr1[ 4 + 2 ];
1033 ptr2[3] = ptr1[ 5 + 2 ];
1033 ptr2[3] = ptr1[ 5 + 2 ];
1034 // coarse time
1034 // coarse time
1035 ptr2 = (unsigned char*) &ring_node_wf_snap_extracted.coarseTime;
1035 ptr2 = (unsigned char*) &ring_node_wf_snap_extracted.coarseTime;
1036 ptr2[0] = ptr1[ 0 + 2 ];
1036 ptr2[0] = ptr1[ 0 + 2 ];
1037 ptr2[1] = ptr1[ 1 + 2 ];
1037 ptr2[1] = ptr1[ 1 + 2 ];
1038 ptr2[2] = ptr1[ 2 + 2 ];
1038 ptr2[2] = ptr1[ 2 + 2 ];
1039 ptr2[3] = ptr1[ 3 + 2 ];
1039 ptr2[3] = ptr1[ 3 + 2 ];
1040
1040
1041 // re set the synchronization bit
1041 // re set the synchronization bit
1042 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
1042 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
1043 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
1043 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
1044
1044
1045 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
1045 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
1046 {
1046 {
1047 nbSamplesPart1_asLong = 0;
1047 nbSamplesPart1_asLong = 0;
1048 }
1048 }
1049 // copy the part 1 of the snapshot in the extracted buffer
1049 // copy the part 1 of the snapshot in the extracted buffer
1050 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1050 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1051 {
1051 {
1052 wf_snap_extracted[i] =
1052 wf_snap_extracted[i] =
1053 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
1053 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
1054 }
1054 }
1055 // copy the part 2 of the snapshot in the extracted buffer
1055 // copy the part 2 of the snapshot in the extracted buffer
1056 ring_node_to_send = ring_node_to_send->next;
1056 ring_node_to_send = ring_node_to_send->next;
1057 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1057 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1058 {
1058 {
1059 wf_snap_extracted[i] =
1059 wf_snap_extracted[i] =
1060 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
1060 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
1061 }
1061 }
1062 }
1062 }
1063
1063
1064 void snapshot_resynchronization( unsigned char *timePtr )
1064 void snapshot_resynchronization( unsigned char *timePtr )
1065 {
1065 {
1066 unsigned long long int acquisitionTime;
1066 unsigned long long int acquisitionTime;
1067 unsigned long long int centerTime;
1067 unsigned long long int centerTime;
1068 unsigned long long int previousTick;
1068 unsigned long long int previousTick;
1069 unsigned long long int nextTick;
1069 unsigned long long int nextTick;
1070 unsigned long long int deltaPreviousTick;
1070 unsigned long long int deltaPreviousTick;
1071 unsigned long long int deltaNextTick;
1071 unsigned long long int deltaNextTick;
1072 unsigned int deltaTickInF2;
1072 unsigned int deltaTickInF2;
1073 double deltaPrevious;
1073 double deltaPrevious;
1074 double deltaNext;
1074 double deltaNext;
1075
1075
1076 acquisitionTime = get_acquisition_time( timePtr );
1076 acquisitionTime = get_acquisition_time( timePtr );
1077
1077
1078 // compute center time
1078 // compute center time
1079 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1079 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1080 previousTick = centerTime - (centerTime & 0xffff);
1080 previousTick = centerTime - (centerTime & 0xffff);
1081 nextTick = previousTick + 65536;
1081 nextTick = previousTick + 65536;
1082
1082
1083 deltaPreviousTick = centerTime - previousTick;
1083 deltaPreviousTick = centerTime - previousTick;
1084 deltaNextTick = nextTick - centerTime;
1084 deltaNextTick = nextTick - centerTime;
1085
1085
1086 deltaPrevious = ((double) deltaPreviousTick) / 65536. * 1000.;
1086 deltaPrevious = ((double) deltaPreviousTick) / 65536. * 1000.;
1087 deltaNext = ((double) deltaNextTick) / 65536. * 1000.;
1087 deltaNext = ((double) deltaNextTick) / 65536. * 1000.;
1088
1088
1089 PRINTF2("delta previous = %f ms, delta next = %f ms\n", deltaPrevious, deltaNext)
1089 PRINTF2("delta previous = %f ms, delta next = %f ms\n", deltaPrevious, deltaNext)
1090 PRINTF2("delta previous = %llu, delta next = %llu\n", deltaPreviousTick, deltaNextTick)
1090 PRINTF2("delta previous = %llu, delta next = %llu\n", deltaPreviousTick, deltaNextTick)
1091
1091
1092 // which tick is the closest
1092 // which tick is the closest
1093 if (deltaPreviousTick > deltaNextTick)
1093 if (deltaPreviousTick > deltaNextTick)
1094 {
1094 {
1095 deltaTickInF2 = floor( (deltaNext * 256. / 1000.) ); // the division by 2 is important here
1095 deltaTickInF2 = floor( (deltaNext * 256. / 1000.) ); // the division by 2 is important here
1096 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + deltaTickInF2;
1096 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + deltaTickInF2;
1097 printf("correction of = + %u\n", deltaTickInF2);
1097 printf("correction of = + %u\n", deltaTickInF2);
1098 }
1098 }
1099 else
1099 else
1100 {
1100 {
1101 deltaTickInF2 = floor( (deltaPrevious * 256. / 1000.) ); // the division by 2 is important here
1101 deltaTickInF2 = floor( (deltaPrevious * 256. / 1000.) ); // the division by 2 is important here
1102 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot - deltaTickInF2;
1102 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot - deltaTickInF2;
1103 printf("correction of = - %u\n", deltaTickInF2);
1103 printf("correction of = - %u\n", deltaTickInF2);
1104 }
1104 }
1105 }
1105 }
1106
1106
1107 //**************
1107 //**************
1108 // wfp registers
1108 // wfp registers
1109 void reset_wfp_burst_enable( void )
1109 void reset_wfp_burst_enable( void )
1110 {
1110 {
1111 /** This function resets the waveform picker burst_enable register.
1111 /** This function resets the waveform picker burst_enable register.
1112 *
1112 *
1113 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1113 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1114 *
1114 *
1115 */
1115 */
1116
1116
1117 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1117 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1118 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1118 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1119 }
1119 }
1120
1120
1121 void reset_wfp_status( void )
1121 void reset_wfp_status( void )
1122 {
1122 {
1123 /** This function resets the waveform picker status register.
1123 /** This function resets the waveform picker status register.
1124 *
1124 *
1125 * All status bits are set to 0 [new_err full_err full].
1125 * All status bits are set to 0 [new_err full_err full].
1126 *
1126 *
1127 */
1127 */
1128
1128
1129 waveform_picker_regs->status = 0xffff;
1129 waveform_picker_regs->status = 0xffff;
1130 }
1130 }
1131
1131
1132 void reset_wfp_buffer_addresses( void )
1132 void reset_wfp_buffer_addresses( void )
1133 {
1133 {
1134 // F0
1134 // F0
1135 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1135 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1136 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1136 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1137 // F1
1137 // F1
1138 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1138 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1139 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1139 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1140 // F2
1140 // F2
1141 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1141 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1142 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1142 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1143 // F3
1143 // F3
1144 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1144 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1145 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1145 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1146 }
1146 }
1147
1147
1148 void reset_waveform_picker_regs( void )
1148 void reset_waveform_picker_regs( void )
1149 {
1149 {
1150 /** This function resets the waveform picker module registers.
1150 /** This function resets the waveform picker module registers.
1151 *
1151 *
1152 * The registers affected by this function are located at the following offset addresses:
1152 * The registers affected by this function are located at the following offset addresses:
1153 * - 0x00 data_shaping
1153 * - 0x00 data_shaping
1154 * - 0x04 run_burst_enable
1154 * - 0x04 run_burst_enable
1155 * - 0x08 addr_data_f0
1155 * - 0x08 addr_data_f0
1156 * - 0x0C addr_data_f1
1156 * - 0x0C addr_data_f1
1157 * - 0x10 addr_data_f2
1157 * - 0x10 addr_data_f2
1158 * - 0x14 addr_data_f3
1158 * - 0x14 addr_data_f3
1159 * - 0x18 status
1159 * - 0x18 status
1160 * - 0x1C delta_snapshot
1160 * - 0x1C delta_snapshot
1161 * - 0x20 delta_f0
1161 * - 0x20 delta_f0
1162 * - 0x24 delta_f0_2
1162 * - 0x24 delta_f0_2
1163 * - 0x28 delta_f1
1163 * - 0x28 delta_f1
1164 * - 0x2c delta_f2
1164 * - 0x2c delta_f2
1165 * - 0x30 nb_data_by_buffer
1165 * - 0x30 nb_data_by_buffer
1166 * - 0x34 nb_snapshot_param
1166 * - 0x34 nb_snapshot_param
1167 * - 0x38 start_date
1167 * - 0x38 start_date
1168 * - 0x3c nb_word_in_buffer
1168 * - 0x3c nb_word_in_buffer
1169 *
1169 *
1170 */
1170 */
1171
1171
1172 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1172 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1173
1173
1174 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1174 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1175
1175
1176 reset_wfp_buffer_addresses();
1176 reset_wfp_buffer_addresses();
1177
1177
1178 reset_wfp_status(); // 0x18
1178 reset_wfp_status(); // 0x18
1179
1179
1180 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1180 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1181
1181
1182 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1182 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1183
1183
1184 set_wfp_delta_f1(); // 0x28
1184 set_wfp_delta_f1(); // 0x28
1185
1185
1186 set_wfp_delta_f2(); // 0x2c
1186 set_wfp_delta_f2(); // 0x2c
1187
1187
1188 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1188 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1189 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1189 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1190 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1190 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1191 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1191 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1192 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1192 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1193 // 2688 = 8 * 336
1193 // 2688 = 8 * 336
1194 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1194 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1195 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1195 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1196 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1196 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1197 //
1197 //
1198 // coarse time and fine time registers are not initialized, they are volatile
1198 // coarse time and fine time registers are not initialized, they are volatile
1199 //
1199 //
1200 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1200 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1201 }
1201 }
1202
1202
1203 void set_wfp_data_shaping( void )
1203 void set_wfp_data_shaping( void )
1204 {
1204 {
1205 /** This function sets the data_shaping register of the waveform picker module.
1205 /** This function sets the data_shaping register of the waveform picker module.
1206 *
1206 *
1207 * The value is read from one field of the parameter_dump_packet structure:\n
1207 * The value is read from one field of the parameter_dump_packet structure:\n
1208 * bw_sp0_sp1_r0_r1
1208 * bw_sp0_sp1_r0_r1
1209 *
1209 *
1210 */
1210 */
1211
1211
1212 unsigned char data_shaping;
1212 unsigned char data_shaping;
1213
1213
1214 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1214 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1215 // waveform picker : [R1 R0 SP1 SP0 BW]
1215 // waveform picker : [R1 R0 SP1 SP0 BW]
1216
1216
1217 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1217 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1218
1218
1219 waveform_picker_regs->data_shaping =
1219 waveform_picker_regs->data_shaping =
1220 ( (data_shaping & 0x10) >> 4 ) // BW
1220 ( (data_shaping & 0x10) >> 4 ) // BW
1221 + ( (data_shaping & 0x08) >> 2 ) // SP0
1221 + ( (data_shaping & 0x08) >> 2 ) // SP0
1222 + ( (data_shaping & 0x04) ) // SP1
1222 + ( (data_shaping & 0x04) ) // SP1
1223 + ( (data_shaping & 0x02) << 2 ) // R0
1223 + ( (data_shaping & 0x02) << 2 ) // R0
1224 + ( (data_shaping & 0x01) << 4 ); // R1
1224 + ( (data_shaping & 0x01) << 4 ); // R1
1225
1225
1226 // this is a temporary way to set R2, compatible with the release 2 of the flight software
1226 // this is a temporary way to set R2, compatible with the release 2 of the flight software
1227 waveform_picker_regs->data_shaping = waveform_picker_regs->data_shaping + ( (0x1) << 5 ); // R2
1227 waveform_picker_regs->data_shaping = waveform_picker_regs->data_shaping + ( (0x1) << 5 ); // R2
1228 }
1228 }
1229
1229
1230 void set_wfp_burst_enable_register( unsigned char mode )
1230 void set_wfp_burst_enable_register( unsigned char mode )
1231 {
1231 {
1232 /** This function sets the waveform picker burst_enable register depending on the mode.
1232 /** This function sets the waveform picker burst_enable register depending on the mode.
1233 *
1233 *
1234 * @param mode is the LFR mode to launch.
1234 * @param mode is the LFR mode to launch.
1235 *
1235 *
1236 * The burst bits shall be before the enable bits.
1236 * The burst bits shall be before the enable bits.
1237 *
1237 *
1238 */
1238 */
1239
1239
1240 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1240 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1241 // the burst bits shall be set first, before the enable bits
1241 // the burst bits shall be set first, before the enable bits
1242 switch(mode) {
1242 switch(mode) {
1243 case(LFR_MODE_NORMAL):
1243 case(LFR_MODE_NORMAL):
1244 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1244 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1245 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1245 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1246 break;
1246 break;
1247 case(LFR_MODE_BURST):
1247 case(LFR_MODE_BURST):
1248 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1248 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1249 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1249 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1250 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1250 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1251 break;
1251 break;
1252 case(LFR_MODE_SBM1):
1252 case(LFR_MODE_SBM1):
1253 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1253 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1254 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1254 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1255 break;
1255 break;
1256 case(LFR_MODE_SBM2):
1256 case(LFR_MODE_SBM2):
1257 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1257 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1258 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1258 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1259 break;
1259 break;
1260 default:
1260 default:
1261 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1261 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1262 break;
1262 break;
1263 }
1263 }
1264 }
1264 }
1265
1265
1266 void set_wfp_delta_snapshot( void )
1266 void set_wfp_delta_snapshot( void )
1267 {
1267 {
1268 /** This function sets the delta_snapshot register of the waveform picker module.
1268 /** This function sets the delta_snapshot register of the waveform picker module.
1269 *
1269 *
1270 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1270 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1271 * - sy_lfr_n_swf_p[0]
1271 * - sy_lfr_n_swf_p[0]
1272 * - sy_lfr_n_swf_p[1]
1272 * - sy_lfr_n_swf_p[1]
1273 *
1273 *
1274 */
1274 */
1275
1275
1276 unsigned int delta_snapshot;
1276 unsigned int delta_snapshot;
1277 unsigned int delta_snapshot_in_T2;
1277 unsigned int delta_snapshot_in_T2;
1278
1278
1279 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1279 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1280 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1280 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1281
1281
1282 delta_snapshot_in_T2 = delta_snapshot * 256;
1282 delta_snapshot_in_T2 = delta_snapshot * 256;
1283 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1283 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1284 }
1284 }
1285
1285
1286 void set_wfp_delta_f0_f0_2( void )
1286 void set_wfp_delta_f0_f0_2( void )
1287 {
1287 {
1288 unsigned int delta_snapshot;
1288 unsigned int delta_snapshot;
1289 unsigned int nb_samples_per_snapshot;
1289 unsigned int nb_samples_per_snapshot;
1290 float delta_f0_in_float;
1290 float delta_f0_in_float;
1291
1291
1292 delta_snapshot = waveform_picker_regs->delta_snapshot;
1292 delta_snapshot = waveform_picker_regs->delta_snapshot;
1293 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1293 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1294 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1294 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1295
1295
1296 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1296 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1297 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1297 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1298 }
1298 }
1299
1299
1300 void set_wfp_delta_f1( void )
1300 void set_wfp_delta_f1( void )
1301 {
1301 {
1302 unsigned int delta_snapshot;
1302 unsigned int delta_snapshot;
1303 unsigned int nb_samples_per_snapshot;
1303 unsigned int nb_samples_per_snapshot;
1304 float delta_f1_in_float;
1304 float delta_f1_in_float;
1305
1305
1306 delta_snapshot = waveform_picker_regs->delta_snapshot;
1306 delta_snapshot = waveform_picker_regs->delta_snapshot;
1307 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1307 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1308 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1308 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1309
1309
1310 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1310 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1311 }
1311 }
1312
1312
1313 void set_wfp_delta_f2()
1313 void set_wfp_delta_f2()
1314 {
1314 {
1315 unsigned int delta_snapshot;
1315 unsigned int delta_snapshot;
1316 unsigned int nb_samples_per_snapshot;
1316 unsigned int nb_samples_per_snapshot;
1317
1317
1318 delta_snapshot = waveform_picker_regs->delta_snapshot;
1318 delta_snapshot = waveform_picker_regs->delta_snapshot;
1319 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1319 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1320
1320
1321 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1321 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1322 }
1322 }
1323
1323
1324 //*****************
1324 //*****************
1325 // local parameters
1325 // local parameters
1326
1326
1327 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1327 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1328 {
1328 {
1329 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1329 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1330 *
1330 *
1331 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1331 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1332 * @param sid is the source identifier of the packet being updated.
1332 * @param sid is the source identifier of the packet being updated.
1333 *
1333 *
1334 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1334 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1335 * The sequence counters shall wrap around from 2^14 to zero.
1335 * The sequence counters shall wrap around from 2^14 to zero.
1336 * The sequence counter shall start at zero at startup.
1336 * The sequence counter shall start at zero at startup.
1337 *
1337 *
1338 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1338 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1339 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1339 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1340 *
1340 *
1341 */
1341 */
1342
1342
1343 unsigned short *sequence_cnt;
1343 unsigned short *sequence_cnt;
1344 unsigned short segmentation_grouping_flag;
1344 unsigned short segmentation_grouping_flag;
1345 unsigned short new_packet_sequence_control;
1345 unsigned short new_packet_sequence_control;
1346 rtems_mode initial_mode_set;
1346 rtems_mode initial_mode_set;
1347 rtems_mode current_mode_set;
1347 rtems_mode current_mode_set;
1348 rtems_status_code status;
1348 rtems_status_code status;
1349
1349
1350 //******************************************
1350 //******************************************
1351 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1351 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1352 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1352 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1353
1353
1354 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1354 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1355 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1355 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1356 || (sid == SID_BURST_CWF_F2)
1356 || (sid == SID_BURST_CWF_F2)
1357 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1357 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1358 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1358 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1359 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1359 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1360 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1360 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1361 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1361 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1362 {
1362 {
1363 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1363 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1364 }
1364 }
1365 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1365 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1366 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1366 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1367 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1367 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1368 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1368 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1369 {
1369 {
1370 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1370 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1371 }
1371 }
1372 else
1372 else
1373 {
1373 {
1374 sequence_cnt = (unsigned short *) NULL;
1374 sequence_cnt = (unsigned short *) NULL;
1375 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1375 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1376 }
1376 }
1377
1377
1378 if (sequence_cnt != NULL)
1378 if (sequence_cnt != NULL)
1379 {
1379 {
1380 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1380 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1381 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1381 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1382
1382
1383 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1383 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1384
1384
1385 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1385 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1386 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1386 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1387
1387
1388 // increment the sequence counter
1388 // increment the sequence counter
1389 if ( *sequence_cnt < SEQ_CNT_MAX)
1389 if ( *sequence_cnt < SEQ_CNT_MAX)
1390 {
1390 {
1391 *sequence_cnt = *sequence_cnt + 1;
1391 *sequence_cnt = *sequence_cnt + 1;
1392 }
1392 }
1393 else
1393 else
1394 {
1394 {
1395 *sequence_cnt = 0;
1395 *sequence_cnt = 0;
1396 }
1396 }
1397 }
1397 }
1398
1398
1399 //***********************************
1399 //***********************************
1400 // RESET THE MODE OF THE CALLING TASK
1400 // RESET THE MODE OF THE CALLING TASK
1401 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1401 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1402 }
1402 }
@@ -1,725 +1,728
1 /** Functions related to the SpaceWire interface.
1 /** Functions related to the SpaceWire interface.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle SpaceWire transmissions:
6 * A group of functions to handle SpaceWire transmissions:
7 * - configuration of the SpaceWire link
7 * - configuration of the SpaceWire link
8 * - SpaceWire related interruption requests processing
8 * - SpaceWire related interruption requests processing
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
11 *
11 *
12 */
12 */
13
13
14 #include "fsw_spacewire.h"
14 #include "fsw_spacewire.h"
15
15
16 rtems_name semq_name;
16 rtems_name semq_name;
17 rtems_id semq_id;
17 rtems_id semq_id;
18
18
19 unsigned int localCoarseTime;
19 unsigned int localCoarseTime;
20
20
21 void resetLocalCoarseTime()
21 void resetLocalCoarseTime()
22 {
22 {
23 localCoarseTime = 0;
23 localCoarseTime = 0;
24 }
24 }
25
25
26 void setLocalCoarseTime( unsigned int value )
26 void setLocalCoarseTime( unsigned int value )
27 {
27 {
28 localCoarseTime = value;
28 localCoarseTime = value;
29 }
29 }
30
30
31 unsigned int getLocalCoarseTime()
31 unsigned int getLocalCoarseTime()
32 {
32 {
33 return localCoarseTime;
33 return localCoarseTime;
34 }
34 }
35
35
36 void incrementLocalCoarseTime()
36 void incrementLocalCoarseTime()
37 {
37 {
38 localCoarseTime = localCoarseTime + 1;
38 localCoarseTime = localCoarseTime + 1;
39 }
39 }
40
40
41 //***********
41 //***********
42 // RTEMS TASK
42 // RTEMS TASK
43 rtems_task spiq_task(rtems_task_argument unused)
43 rtems_task spiq_task(rtems_task_argument unused)
44 {
44 {
45 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
45 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
46 *
46 *
47 * @param unused is the starting argument of the RTEMS task
47 * @param unused is the starting argument of the RTEMS task
48 *
48 *
49 */
49 */
50
50
51 rtems_event_set event_out;
51 rtems_event_set event_out;
52 rtems_status_code status;
52 rtems_status_code status;
53 int linkStatus;
53 int linkStatus;
54
54
55 BOOT_PRINTF("in SPIQ *** \n")
55 BOOT_PRINTF("in SPIQ *** \n")
56
56
57 while(true){
57 while(true){
58 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
58 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
59 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
59 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
60
60
61 // [0] SUSPEND RECV AND SEND TASKS
61 // [0] SUSPEND RECV AND SEND TASKS
62 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
62 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
63 if ( status != RTEMS_SUCCESSFUL ) {
63 if ( status != RTEMS_SUCCESSFUL ) {
64 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
64 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
65 }
65 }
66 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
66 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
67 if ( status != RTEMS_SUCCESSFUL ) {
67 if ( status != RTEMS_SUCCESSFUL ) {
68 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
68 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
69 }
69 }
70
70
71 // [1] CHECK THE LINK
71 // [1] CHECK THE LINK
72 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
72 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
73 if ( linkStatus != 5) {
73 if ( linkStatus != 5) {
74 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
74 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
75 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
75 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
76 }
76 }
77
77
78 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
78 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
79 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
79 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
80 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
80 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
81 {
81 {
82 spacewire_compute_stats_offsets();
82 spacewire_compute_stats_offsets();
83 status = spacewire_reset_link( );
83 status = spacewire_reset_link( );
84 }
84 }
85 else // [2.b] in run state, start the link
85 else // [2.b] in run state, start the link
86 {
86 {
87 status = spacewire_stop_and_start_link( fdSPW ); // start the link
87 status = spacewire_stop_and_start_link( fdSPW ); // start the link
88 if ( status != RTEMS_SUCCESSFUL)
88 if ( status != RTEMS_SUCCESSFUL)
89 {
89 {
90 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
90 PRINTF1("in SPIQ *** ERR spacewire_start_link %d\n", status)
91 }
91 }
92 }
92 }
93
93
94 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
94 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
95 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
95 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
96 {
96 {
97 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
97 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
98 if ( status != RTEMS_SUCCESSFUL ) {
98 if ( status != RTEMS_SUCCESSFUL ) {
99 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
99 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
100 }
100 }
101 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
101 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
102 if ( status != RTEMS_SUCCESSFUL ) {
102 if ( status != RTEMS_SUCCESSFUL ) {
103 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
103 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
104 }
104 }
105 }
105 }
106 else // [3.b] the link is not in run state, go in STANDBY mode
106 else // [3.b] the link is not in run state, go in STANDBY mode
107 {
107 {
108 status = stop_current_mode();
108 status = stop_current_mode();
109 if ( status != RTEMS_SUCCESSFUL ) {
109 if ( status != RTEMS_SUCCESSFUL ) {
110 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
110 PRINTF1("in SPIQ *** ERR stop_current_mode *** code %d\n", status)
111 }
111 }
112 status = enter_mode( LFR_MODE_STANDBY, 0 );
112 status = enter_mode( LFR_MODE_STANDBY, 0 );
113 if ( status != RTEMS_SUCCESSFUL ) {
113 if ( status != RTEMS_SUCCESSFUL ) {
114 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
114 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
115 }
115 }
116 // wake the WTDG task up to wait for the link recovery
116 // wake the WTDG task up to wait for the link recovery
117 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
117 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
118 status = rtems_task_suspend( RTEMS_SELF );
118 status = rtems_task_suspend( RTEMS_SELF );
119 }
119 }
120 }
120 }
121 }
121 }
122
122
123 rtems_task recv_task( rtems_task_argument unused )
123 rtems_task recv_task( rtems_task_argument unused )
124 {
124 {
125 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
125 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
126 *
126 *
127 * @param unused is the starting argument of the RTEMS task
127 * @param unused is the starting argument of the RTEMS task
128 *
128 *
129 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
129 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
130 * 1. It reads the incoming data.
130 * 1. It reads the incoming data.
131 * 2. Launches the acceptance procedure.
131 * 2. Launches the acceptance procedure.
132 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
132 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
133 *
133 *
134 */
134 */
135
135
136 int len;
136 int len;
137 ccsdsTelecommandPacket_t currentTC;
137 ccsdsTelecommandPacket_t currentTC;
138 unsigned char computed_CRC[ 2 ];
138 unsigned char computed_CRC[ 2 ];
139 unsigned char currentTC_LEN_RCV[ 2 ];
139 unsigned char currentTC_LEN_RCV[ 2 ];
140 unsigned char destinationID;
140 unsigned char destinationID;
141 unsigned int estimatedPacketLength;
141 unsigned int estimatedPacketLength;
142 unsigned int parserCode;
142 unsigned int parserCode;
143 rtems_status_code status;
143 rtems_status_code status;
144 rtems_id queue_recv_id;
144 rtems_id queue_recv_id;
145 rtems_id queue_send_id;
145 rtems_id queue_send_id;
146
146
147 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
147 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
148
148
149 status = get_message_queue_id_recv( &queue_recv_id );
149 status = get_message_queue_id_recv( &queue_recv_id );
150 if (status != RTEMS_SUCCESSFUL)
150 if (status != RTEMS_SUCCESSFUL)
151 {
151 {
152 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
152 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
153 }
153 }
154
154
155 status = get_message_queue_id_send( &queue_send_id );
155 status = get_message_queue_id_send( &queue_send_id );
156 if (status != RTEMS_SUCCESSFUL)
156 if (status != RTEMS_SUCCESSFUL)
157 {
157 {
158 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
158 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
159 }
159 }
160
160
161 BOOT_PRINTF("in RECV *** \n")
161 BOOT_PRINTF("in RECV *** \n")
162
162
163 while(1)
163 while(1)
164 {
164 {
165 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
165 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
166 if (len == -1){ // error during the read call
166 if (len == -1){ // error during the read call
167 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
167 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
168 }
168 }
169 else {
169 else {
170 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
170 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
171 PRINTF("in RECV *** packet lenght too short\n")
171 PRINTF("in RECV *** packet lenght too short\n")
172 }
172 }
173 else {
173 else {
174 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
174 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
175 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
175 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
176 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
176 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
177 // CHECK THE TC
177 // CHECK THE TC
178 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
178 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
179 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
179 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
180 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
180 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
181 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
181 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
182 || (parserCode == WRONG_SRC_ID) )
182 || (parserCode == WRONG_SRC_ID) )
183 { // send TM_LFR_TC_EXE_CORRUPTED
183 { // send TM_LFR_TC_EXE_CORRUPTED
184 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
184 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
185 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
185 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
186 &&
186 &&
187 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
187 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
188 )
188 )
189 {
189 {
190 if ( parserCode == WRONG_SRC_ID )
190 if ( parserCode == WRONG_SRC_ID )
191 {
191 {
192 destinationID = SID_TC_GROUND;
192 destinationID = SID_TC_GROUND;
193 }
193 }
194 else
194 else
195 {
195 {
196 destinationID = currentTC.sourceID;
196 destinationID = currentTC.sourceID;
197 }
197 }
198 }
198 }
199 }
199 }
200 else
200 else
201 { // send valid TC to the action launcher
201 { // send valid TC to the action launcher
202 status = rtems_message_queue_send( queue_recv_id, &currentTC,
202 status = rtems_message_queue_send( queue_recv_id, &currentTC,
203 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
203 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
204 }
204 }
205 }
205 }
206 }
206 }
207 }
207 }
208 }
208 }
209
209
210 rtems_task send_task( rtems_task_argument argument)
210 rtems_task send_task( rtems_task_argument argument)
211 {
211 {
212 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
212 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
213 *
213 *
214 * @param unused is the starting argument of the RTEMS task
214 * @param unused is the starting argument of the RTEMS task
215 *
215 *
216 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
216 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
217 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
217 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
218 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
218 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
219 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
219 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
220 * data it contains.
220 * data it contains.
221 *
221 *
222 */
222 */
223
223
224 rtems_status_code status; // RTEMS status code
224 rtems_status_code status; // RTEMS status code
225 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
225 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
226 spw_ioctl_pkt_send *spw_ioctl_send;
226 spw_ioctl_pkt_send *spw_ioctl_send;
227 size_t size; // size of the incoming TC packet
227 size_t size; // size of the incoming TC packet
228 u_int32_t count;
228 u_int32_t count;
229 rtems_id queue_id;
229 rtems_id queue_id;
230
230
231 status = get_message_queue_id_send( &queue_id );
231 status = get_message_queue_id_send( &queue_id );
232 if (status != RTEMS_SUCCESSFUL)
232 if (status != RTEMS_SUCCESSFUL)
233 {
233 {
234 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
234 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
235 }
235 }
236
236
237 BOOT_PRINTF("in SEND *** \n")
237 BOOT_PRINTF("in SEND *** \n")
238
238
239 while(1)
239 while(1)
240 {
240 {
241 status = rtems_message_queue_receive( queue_id, incomingData, &size,
241 status = rtems_message_queue_receive( queue_id, incomingData, &size,
242 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
242 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
243
243
244 if (status!=RTEMS_SUCCESSFUL)
244 if (status!=RTEMS_SUCCESSFUL)
245 {
245 {
246 PRINTF1("in SEND *** (1) ERR = %d\n", status)
246 PRINTF1("in SEND *** (1) ERR = %d\n", status)
247 }
247 }
248 else
248 else
249 {
249 {
250 if ((incomingData[0] == CCSDS_DESTINATION_ID) || (incomingData[0] == (char) 0xfe)) // the incoming message is a ccsds packet
250 if ((incomingData[0] == CCSDS_DESTINATION_ID) || (incomingData[0] == (char) 0xfe)) // the incoming message is a ccsds packet
251 {
251 {
252 status = write( fdSPW, incomingData, size );
252 status = write( fdSPW, incomingData, size );
253 if (status == -1){
253 if (status == -1){
254 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
254 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
255 }
255 }
256 }
256 }
257 else // the incoming message is a spw_ioctl_pkt_send structure
257 else // the incoming message is a spw_ioctl_pkt_send structure
258 {
258 {
259 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
259 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
260 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
260 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
261 if (status == -1){
261 if (status == -1){
262 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
262 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
263 }
263 }
264 }
264 }
265 }
265 }
266
266
267 status = rtems_message_queue_get_number_pending( queue_id, &count );
267 status = rtems_message_queue_get_number_pending( queue_id, &count );
268 if (status != RTEMS_SUCCESSFUL)
268 if (status != RTEMS_SUCCESSFUL)
269 {
269 {
270 PRINTF1("in SEND *** (3) ERR = %d\n", status)
270 PRINTF1("in SEND *** (3) ERR = %d\n", status)
271 }
271 }
272 else
272 else
273 {
273 {
274 if (count > maxCount)
274 if (count > maxCount)
275 {
275 {
276 maxCount = count;
276 maxCount = count;
277 }
277 }
278 }
278 }
279 }
279 }
280 }
280 }
281
281
282 rtems_task wtdg_task( rtems_task_argument argument )
282 rtems_task wtdg_task( rtems_task_argument argument )
283 {
283 {
284 rtems_event_set event_out;
284 rtems_event_set event_out;
285 rtems_status_code status;
285 rtems_status_code status;
286 int linkStatus;
286 int linkStatus;
287
287
288 BOOT_PRINTF("in WTDG ***\n")
288 BOOT_PRINTF("in WTDG ***\n")
289
289
290 while(1)
290 while(1)
291 {
291 {
292 // wait for an RTEMS_EVENT
292 // wait for an RTEMS_EVENT
293 rtems_event_receive( RTEMS_EVENT_0,
293 rtems_event_receive( RTEMS_EVENT_0,
294 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
294 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
295 PRINTF("in WTDG *** wait for the link\n")
295 PRINTF("in WTDG *** wait for the link\n")
296 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
296 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
297 while( linkStatus != 5) // wait for the link
297 while( linkStatus != 5) // wait for the link
298 {
298 {
299 rtems_task_wake_after( 10 );
299 rtems_task_wake_after( 10 );
300 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
300 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
301 }
301 }
302
302
303 status = spacewire_stop_and_start_link( fdSPW );
303 status = spacewire_stop_and_start_link( fdSPW );
304
304
305 if (status != RTEMS_SUCCESSFUL)
305 if (status != RTEMS_SUCCESSFUL)
306 {
306 {
307 PRINTF1("in WTDG *** ERR link not started %d\n", status)
307 PRINTF1("in WTDG *** ERR link not started %d\n", status)
308 }
308 }
309 else
309 else
310 {
310 {
311 PRINTF("in WTDG *** OK link started\n")
311 PRINTF("in WTDG *** OK link started\n")
312 }
312 }
313
313
314 // restart the SPIQ task
314 // restart the SPIQ task
315 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
315 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
316 if ( status != RTEMS_SUCCESSFUL ) {
316 if ( status != RTEMS_SUCCESSFUL ) {
317 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
317 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
318 }
318 }
319
319
320 // restart RECV and SEND
320 // restart RECV and SEND
321 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
321 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
322 if ( status != RTEMS_SUCCESSFUL ) {
322 if ( status != RTEMS_SUCCESSFUL ) {
323 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
323 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
324 }
324 }
325 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
325 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
326 if ( status != RTEMS_SUCCESSFUL ) {
326 if ( status != RTEMS_SUCCESSFUL ) {
327 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
327 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
328 }
328 }
329 }
329 }
330 }
330 }
331
331
332 //****************
332 //****************
333 // OTHER FUNCTIONS
333 // OTHER FUNCTIONS
334 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
334 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
335 {
335 {
336 /** This function opens the SpaceWire link.
336 /** This function opens the SpaceWire link.
337 *
337 *
338 * @return a valid file descriptor in case of success, -1 in case of a failure
338 * @return a valid file descriptor in case of success, -1 in case of a failure
339 *
339 *
340 */
340 */
341 rtems_status_code status;
341 rtems_status_code status;
342
342
343 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
343 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
344 if ( fdSPW < 0 ) {
344 if ( fdSPW < 0 ) {
345 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
345 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
346 }
346 }
347 else
347 else
348 {
348 {
349 status = RTEMS_SUCCESSFUL;
349 status = RTEMS_SUCCESSFUL;
350 }
350 }
351
351
352 return status;
352 return status;
353 }
353 }
354
354
355 int spacewire_start_link( int fd )
355 int spacewire_start_link( int fd )
356 {
356 {
357 rtems_status_code status;
357 rtems_status_code status;
358
358
359 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
359 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
360 // -1 default hardcoded driver timeout
360 // -1 default hardcoded driver timeout
361
361
362 return status;
362 return status;
363 }
363 }
364
364
365 int spacewire_stop_and_start_link( int fd )
365 int spacewire_stop_and_start_link( int fd )
366 {
366 {
367 rtems_status_code status;
367 rtems_status_code status;
368
368
369 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
369 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
370 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
370 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
371 // -1 default hardcoded driver timeout
371 // -1 default hardcoded driver timeout
372
372
373 return status;
373 return status;
374 }
374 }
375
375
376 int spacewire_configure_link( int fd )
376 int spacewire_configure_link( int fd )
377 {
377 {
378 /** This function configures the SpaceWire link.
378 /** This function configures the SpaceWire link.
379 *
379 *
380 * @return GR-RTEMS-DRIVER directive status codes:
380 * @return GR-RTEMS-DRIVER directive status codes:
381 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
381 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
382 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
382 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
383 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
383 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
384 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
384 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
385 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
385 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
386 * - 5 EIO - Error when writing to grswp hardware registers.
386 * - 5 EIO - Error when writing to grswp hardware registers.
387 * - 2 ENOENT - No such file or directory
387 * - 2 ENOENT - No such file or directory
388 */
388 */
389
389
390 rtems_status_code status;
390 rtems_status_code status;
391
391
392 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
392 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
393 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
393 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
394
394
395 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
395 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
396 if (status!=RTEMS_SUCCESSFUL) {
396 if (status!=RTEMS_SUCCESSFUL) {
397 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
397 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
398 }
398 }
399 //
399 //
400 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
400 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
401 if (status!=RTEMS_SUCCESSFUL) {
401 if (status!=RTEMS_SUCCESSFUL) {
402 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
402 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
403 }
403 }
404 //
404 //
405 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
405 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
406 if (status!=RTEMS_SUCCESSFUL) {
406 if (status!=RTEMS_SUCCESSFUL) {
407 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
407 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
408 }
408 }
409 //
409 //
410 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
410 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
411 if (status!=RTEMS_SUCCESSFUL) {
411 if (status!=RTEMS_SUCCESSFUL) {
412 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
412 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
413 }
413 }
414 //
414 //
415 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
415 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 0); // transmission blocks
416 if (status!=RTEMS_SUCCESSFUL) {
416 if (status!=RTEMS_SUCCESSFUL) {
417 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
417 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
418 }
418 }
419 //
419 //
420 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
420 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
421 if (status!=RTEMS_SUCCESSFUL) {
421 if (status!=RTEMS_SUCCESSFUL) {
422 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
422 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
423 }
423 }
424 //
424 //
425 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
425 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
426 if (status!=RTEMS_SUCCESSFUL) {
426 if (status!=RTEMS_SUCCESSFUL) {
427 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
427 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
428 }
428 }
429
429
430 return status;
430 return status;
431 }
431 }
432
432
433 int spacewire_reset_link( void )
433 int spacewire_reset_link( void )
434 {
434 {
435 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
435 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
436 *
436 *
437 * @return RTEMS directive status code:
437 * @return RTEMS directive status code:
438 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
438 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
439 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
439 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
440 *
440 *
441 */
441 */
442
442
443 rtems_status_code status_spw;
443 rtems_status_code status_spw;
444 int i;
444 int i;
445
445
446 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
446 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
447 {
447 {
448 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
448 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
449
449
450 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
450 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
451
451
452 status_spw = spacewire_stop_and_start_link( fdSPW );
452 status_spw = spacewire_stop_and_start_link( fdSPW );
453 if ( status_spw != RTEMS_SUCCESSFUL )
453 if ( status_spw != RTEMS_SUCCESSFUL )
454 {
454 {
455 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
455 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
456 }
456 }
457
457
458 if ( status_spw == RTEMS_SUCCESSFUL)
458 if ( status_spw == RTEMS_SUCCESSFUL)
459 {
459 {
460 break;
460 break;
461 }
461 }
462 }
462 }
463
463
464 return status_spw;
464 return status_spw;
465 }
465 }
466
466
467 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
467 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
468 {
468 {
469 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
469 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
470 *
470 *
471 * @param val is the value, 0 or 1, used to set the value of the NP bit.
471 * @param val is the value, 0 or 1, used to set the value of the NP bit.
472 * @param regAddr is the address of the GRSPW control register.
472 * @param regAddr is the address of the GRSPW control register.
473 *
473 *
474 * NP is the bit 20 of the GRSPW control register.
474 * NP is the bit 20 of the GRSPW control register.
475 *
475 *
476 */
476 */
477
477
478 unsigned int *spwptr = (unsigned int*) regAddr;
478 unsigned int *spwptr = (unsigned int*) regAddr;
479
479
480 if (val == 1) {
480 if (val == 1) {
481 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
481 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
482 }
482 }
483 if (val== 0) {
483 if (val== 0) {
484 *spwptr = *spwptr & 0xffdfffff;
484 *spwptr = *spwptr & 0xffdfffff;
485 }
485 }
486 }
486 }
487
487
488 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
488 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
489 {
489 {
490 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
490 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
491 *
491 *
492 * @param val is the value, 0 or 1, used to set the value of the RE bit.
492 * @param val is the value, 0 or 1, used to set the value of the RE bit.
493 * @param regAddr is the address of the GRSPW control register.
493 * @param regAddr is the address of the GRSPW control register.
494 *
494 *
495 * RE is the bit 16 of the GRSPW control register.
495 * RE is the bit 16 of the GRSPW control register.
496 *
496 *
497 */
497 */
498
498
499 unsigned int *spwptr = (unsigned int*) regAddr;
499 unsigned int *spwptr = (unsigned int*) regAddr;
500
500
501 if (val == 1)
501 if (val == 1)
502 {
502 {
503 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
503 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
504 }
504 }
505 if (val== 0)
505 if (val== 0)
506 {
506 {
507 *spwptr = *spwptr & 0xfffdffff;
507 *spwptr = *spwptr & 0xfffdffff;
508 }
508 }
509 }
509 }
510
510
511 void spacewire_compute_stats_offsets( void )
511 void spacewire_compute_stats_offsets( void )
512 {
512 {
513 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
513 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
514 *
514 *
515 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
515 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
516 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
516 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
517 * during the open systel call).
517 * during the open systel call).
518 *
518 *
519 */
519 */
520
520
521 spw_stats spacewire_stats_grspw;
521 spw_stats spacewire_stats_grspw;
522 rtems_status_code status;
522 rtems_status_code status;
523
523
524 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
524 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
525
525
526 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
526 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
527 + spacewire_stats.packets_received;
527 + spacewire_stats.packets_received;
528 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
528 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
529 + spacewire_stats.packets_sent;
529 + spacewire_stats.packets_sent;
530 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
530 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
531 + spacewire_stats.parity_err;
531 + spacewire_stats.parity_err;
532 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
532 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
533 + spacewire_stats.disconnect_err;
533 + spacewire_stats.disconnect_err;
534 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
534 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
535 + spacewire_stats.escape_err;
535 + spacewire_stats.escape_err;
536 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
536 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
537 + spacewire_stats.credit_err;
537 + spacewire_stats.credit_err;
538 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
538 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
539 + spacewire_stats.write_sync_err;
539 + spacewire_stats.write_sync_err;
540 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
540 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
541 + spacewire_stats.rx_rmap_header_crc_err;
541 + spacewire_stats.rx_rmap_header_crc_err;
542 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
542 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
543 + spacewire_stats.rx_rmap_data_crc_err;
543 + spacewire_stats.rx_rmap_data_crc_err;
544 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
544 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
545 + spacewire_stats.early_ep;
545 + spacewire_stats.early_ep;
546 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
546 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
547 + spacewire_stats.invalid_address;
547 + spacewire_stats.invalid_address;
548 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
548 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
549 + spacewire_stats.rx_eep_err;
549 + spacewire_stats.rx_eep_err;
550 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
550 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
551 + spacewire_stats.rx_truncated;
551 + spacewire_stats.rx_truncated;
552 }
552 }
553
553
554 void spacewire_update_statistics( void )
554 void spacewire_update_statistics( void )
555 {
555 {
556 rtems_status_code status;
556 rtems_status_code status;
557 spw_stats spacewire_stats_grspw;
557 spw_stats spacewire_stats_grspw;
558
558
559 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
559 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
560
560
561 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
561 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
562 + spacewire_stats_grspw.packets_received;
562 + spacewire_stats_grspw.packets_received;
563 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
563 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
564 + spacewire_stats_grspw.packets_sent;
564 + spacewire_stats_grspw.packets_sent;
565 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
565 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
566 + spacewire_stats_grspw.parity_err;
566 + spacewire_stats_grspw.parity_err;
567 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
567 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
568 + spacewire_stats_grspw.disconnect_err;
568 + spacewire_stats_grspw.disconnect_err;
569 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
569 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
570 + spacewire_stats_grspw.escape_err;
570 + spacewire_stats_grspw.escape_err;
571 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
571 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
572 + spacewire_stats_grspw.credit_err;
572 + spacewire_stats_grspw.credit_err;
573 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
573 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
574 + spacewire_stats_grspw.write_sync_err;
574 + spacewire_stats_grspw.write_sync_err;
575 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
575 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
576 + spacewire_stats_grspw.rx_rmap_header_crc_err;
576 + spacewire_stats_grspw.rx_rmap_header_crc_err;
577 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
577 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
578 + spacewire_stats_grspw.rx_rmap_data_crc_err;
578 + spacewire_stats_grspw.rx_rmap_data_crc_err;
579 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
579 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
580 + spacewire_stats_grspw.early_ep;
580 + spacewire_stats_grspw.early_ep;
581 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
581 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
582 + spacewire_stats_grspw.invalid_address;
582 + spacewire_stats_grspw.invalid_address;
583 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
583 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
584 + spacewire_stats_grspw.rx_eep_err;
584 + spacewire_stats_grspw.rx_eep_err;
585 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
585 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
586 + spacewire_stats_grspw.rx_truncated;
586 + spacewire_stats_grspw.rx_truncated;
587 //spacewire_stats.tx_link_err;
587 //spacewire_stats.tx_link_err;
588
588
589 //****************************
589 //****************************
590 // DPU_SPACEWIRE_IF_STATISTICS
590 // DPU_SPACEWIRE_IF_STATISTICS
591 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
591 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
592 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
592 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
593 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
593 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
594 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
594 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
595 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
595 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
596 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
596 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
597
597
598 //******************************************
598 //******************************************
599 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
599 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
600 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
600 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
601 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
601 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
602 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
602 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
603 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
603 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
604 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
604 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
605
605
606 //*********************************************
606 //*********************************************
607 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
607 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
608 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
608 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
609 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
609 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
610 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
610 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
611 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
611 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
612 }
612 }
613
613
614 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
614 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
615 {
615 {
616 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
616 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
617
617
618 incrementLocalCoarseTime();
619
618 //*******
620 //*******
619 // GPIO 2
621 // GPIO 2
620 if ( get_transitionCoarseTime() == getLocalCoarseTime() )
622 if ( get_transitionCoarseTime() == getLocalCoarseTime() )
621 {
623 {
622 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x04; // [0000 0100]
624 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x04; // [0000 0100]
623 }
625 }
624 else
626 else
625 {
627 {
626 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfb; // [1111 1011]
628 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfb; // [1111 1011]
627 }
629 }
628
630
629 //*******
631 //*******
630 // GPIO 3
632 // GPIO 3
631 if ( (grgpio_regs->io_port_output_register & 0x08) == 0x08 )
633 if ( (grgpio_regs->io_port_output_register & 0x08) == 0x08 )
632 {
634 {
633 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xf7; // [1111 0111]
635 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xf7; // [1111 0111]
634 }
636 }
635 else
637 else
636 {
638 {
637 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x08; // [0000 1000]
639 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x08; // [0000 1000]
638 }
640 }
639
641
640 rtems_event_send( rtems_task_id_updt, RTEMS_EVENT_0);
642 rtems_event_send( rtems_task_id_updt, RTEMS_EVENT_0);
641 }
643 }
642
644
643 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
645 rtems_timer_service_routine user_routine( rtems_id timer_id, void *user_data )
644 {
646 {
645 int linkStatus;
647 int linkStatus;
646 rtems_status_code status;
648 rtems_status_code status;
647
649
648 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
650 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
649
651
650 if ( linkStatus == 5) {
652 if ( linkStatus == 5) {
651 PRINTF("in spacewire_reset_link *** link is running\n")
653 PRINTF("in spacewire_reset_link *** link is running\n")
652 status = RTEMS_SUCCESSFUL;
654 status = RTEMS_SUCCESSFUL;
653 }
655 }
654 }
656 }
655
657
656 rtems_task updt_task(rtems_task_argument unused)
658 rtems_task updt_task(rtems_task_argument unused)
657 {
659 {
658
660
659 rtems_event_set event_out;
661 rtems_event_set event_out;
660 rtems_status_code status;
662 rtems_status_code status;
661 rtems_id queue_id;
663 rtems_id queue_id;
664 unsigned int coarseTimeToSend;
662
665
663 Packet_TC_LFR_UPDATE_TIME_WITH_HEADER_t update_time_packet;
666 Packet_TC_LFR_UPDATE_TIME_WITH_HEADER_t update_time_packet;
664
667
665 resetLocalCoarseTime();
668 resetLocalCoarseTime();
666 reset_transitionCoarseTime();
669 reset_transitionCoarseTime();
667
670
668 status = get_message_queue_id_send( &queue_id );
671 status = get_message_queue_id_send( &queue_id );
669 if (status != RTEMS_SUCCESSFUL)
672 if (status != RTEMS_SUCCESSFUL)
670 {
673 {
671 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
674 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
672 }
675 }
673
676
674 update_time_packet.targetLogicalAddress = 0xfe;
677 update_time_packet.targetLogicalAddress = 0xfe;
675 update_time_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
678 update_time_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
676 update_time_packet.reserved = DEFAULT_RESERVED;
679 update_time_packet.reserved = DEFAULT_RESERVED;
677 update_time_packet.userApplication = CCSDS_USER_APP;
680 update_time_packet.userApplication = CCSDS_USER_APP;
678 update_time_packet.packetID[0] = (unsigned char) (TC_LFR_PACKET_ID >> 8);
681 update_time_packet.packetID[0] = (unsigned char) (TC_LFR_PACKET_ID >> 8);
679 update_time_packet.packetID[1] = (unsigned char) (TC_LFR_PACKET_ID );
682 update_time_packet.packetID[1] = (unsigned char) (TC_LFR_PACKET_ID );
680 update_time_packet.packetSequenceControl[0] = (unsigned char) (TC_LFR_PACKET_SEQUENCE_CONTROL >> 8);
683 update_time_packet.packetSequenceControl[0] = (unsigned char) (TC_LFR_PACKET_SEQUENCE_CONTROL >> 8);
681 update_time_packet.packetSequenceControl[1] = (unsigned char) (TC_LFR_PACKET_SEQUENCE_CONTROL );
684 update_time_packet.packetSequenceControl[1] = (unsigned char) (TC_LFR_PACKET_SEQUENCE_CONTROL );
682 update_time_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_LFR_UPDATE_TIME >> 8);
685 update_time_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_TC_LFR_UPDATE_TIME >> 8);
683 update_time_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_LFR_UPDATE_TIME );
686 update_time_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_TC_LFR_UPDATE_TIME );
684
687
685 update_time_packet.ccsdsSecHeaderFlag_pusVersion_ack = 0x19;
688 update_time_packet.ccsdsSecHeaderFlag_pusVersion_ack = 0x19;
686 update_time_packet.serviceType = TC_TYPE_LFR_UPDATE_TIME;
689 update_time_packet.serviceType = TC_TYPE_LFR_UPDATE_TIME;
687 update_time_packet.serviceSubType = TC_SUBTYPE_UPDATE_TIME;
690 update_time_packet.serviceSubType = TC_SUBTYPE_UPDATE_TIME;
688 update_time_packet.sourceID = SID_TC_RPW_INTERNAL;
691 update_time_packet.sourceID = SID_TC_RPW_INTERNAL;
689
692
690 BOOT_PRINTF("in UPDT *** \n")
693 BOOT_PRINTF("in UPDT *** \n")
691
694
692 while(true){
695 while(true){
693 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
696 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
694
697
695 incrementLocalCoarseTime();
698 coarseTimeToSend = getLocalCoarseTime() + 1;
696 updateTimePacket( getLocalCoarseTime() , &update_time_packet);
699 updateTimePacket( coarseTimeToSend, &update_time_packet);
697 printf("UPDT will send %x as coarse time in 700 ms\n", getLocalCoarseTime());
700 printf("UPDT will send %x as coarse time in 700 ms\n", coarseTimeToSend);
698
701
699 rtems_task_wake_after( 70 ); // 70 => 700 ms
702 rtems_task_wake_after( 70 ); // 70 => 700 ms
700
703
701 status = rtems_message_queue_urgent( queue_id, &update_time_packet,
704 status = rtems_message_queue_urgent( queue_id, &update_time_packet,
702 PACKET_LENGTH_TC_LFR_UPDATE_TIME + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES
705 PACKET_LENGTH_TC_LFR_UPDATE_TIME + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES
703 + 0); // 1 is for the star dundee extra byte
706 + 0); // 1 is for the star dundee extra byte
704 if (status != RTEMS_SUCCESSFUL) {
707 if (status != RTEMS_SUCCESSFUL) {
705 PRINTF1("in HOUS *** ERR send: %d\n", status)
708 PRINTF1("in HOUS *** ERR send: %d\n", status)
706 }
709 }
707 }
710 }
708 }
711 }
709
712
710 void updateTimePacket(unsigned int time, Packet_TC_LFR_UPDATE_TIME_WITH_HEADER_t *packet)
713 void updateTimePacket(unsigned int time, Packet_TC_LFR_UPDATE_TIME_WITH_HEADER_t *packet)
711 {
714 {
712 unsigned char crcAsTwoBytes[2];
715 unsigned char crcAsTwoBytes[2];
713
716
714 packet->cp_rpw_time[0] = (unsigned char) (time >> 24);
717 packet->cp_rpw_time[0] = (unsigned char) (time >> 24);
715 packet->cp_rpw_time[1] = (unsigned char) (time >> 16);
718 packet->cp_rpw_time[1] = (unsigned char) (time >> 16);
716 packet->cp_rpw_time[2] = (unsigned char) (time >> 8);
719 packet->cp_rpw_time[2] = (unsigned char) (time >> 8);
717 packet->cp_rpw_time[3] = (unsigned char) (time);
720 packet->cp_rpw_time[3] = (unsigned char) (time);
718 packet->cp_rpw_time[4] = 0; // fine time MSB
721 packet->cp_rpw_time[4] = 0; // fine time MSB
719 packet->cp_rpw_time[5] = 0; // fine time LSB
722 packet->cp_rpw_time[5] = 0; // fine time LSB
720
723
721 GetCRCAsTwoBytes((unsigned char*) &packet->packetID, crcAsTwoBytes,
724 GetCRCAsTwoBytes((unsigned char*) &packet->packetID, crcAsTwoBytes,
722 PACKET_LENGTH_TC_LFR_UPDATE_TIME + CCSDS_TC_TM_PACKET_OFFSET - 2);
725 PACKET_LENGTH_TC_LFR_UPDATE_TIME + CCSDS_TC_TM_PACKET_OFFSET - 2);
723 packet->crc[0] = crcAsTwoBytes[0];
726 packet->crc[0] = crcAsTwoBytes[0];
724 packet->crc[1] = crcAsTwoBytes[1];
727 packet->crc[1] = crcAsTwoBytes[1];
725 }
728 }
@@ -1,248 +1,250
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14
14
15 //***********
15 //***********
16 // RTEMS TASK
16 // RTEMS TASK
17
17
18 unsigned int incomingTransitionCoarseTime;
18 unsigned int incomingTransitionCoarseTime;
19
19
20 void reset_transitionCoarseTime( void )
20 void reset_transitionCoarseTime( void )
21 {
21 {
22 incomingTransitionCoarseTime = 0xffffffff;
22 incomingTransitionCoarseTime = 0xffffffff;
23 }
23 }
24
24
25 void set_transitionCoarseTime( unsigned int value )
25 void set_transitionCoarseTime( unsigned int value )
26 {
26 {
27 incomingTransitionCoarseTime = value;
27 incomingTransitionCoarseTime = value;
28 }
28 }
29
29
30 unsigned int get_transitionCoarseTime( void )
30 unsigned int get_transitionCoarseTime( void )
31 {
31 {
32 return incomingTransitionCoarseTime;
32 return incomingTransitionCoarseTime;
33 }
33 }
34
34
35 rtems_task actn_task( rtems_task_argument unused )
35 rtems_task actn_task( rtems_task_argument unused )
36 {
36 {
37 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
37 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
38 *
38 *
39 * @param unused is the starting argument of the RTEMS task
39 * @param unused is the starting argument of the RTEMS task
40 *
40 *
41 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
41 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
42 * on the incoming TeleCommand.
42 * on the incoming TeleCommand.
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 rtems_status_code status; // RTEMS status code
47 rtems_status_code status; // RTEMS status code
48 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
48 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
49 size_t size; // size of the incoming TC packet
49 size_t size; // size of the incoming TC packet
50 unsigned char subtype; // subtype of the current TC packet
50 unsigned char subtype; // subtype of the current TC packet
51 unsigned char time[6];
51 unsigned char time[6];
52 rtems_id queue_rcv_id;
52 rtems_id queue_rcv_id;
53 rtems_id queue_snd_id;
53 rtems_id queue_snd_id;
54
54
55 status = get_message_queue_id_recv( &queue_rcv_id );
55 status = get_message_queue_id_recv( &queue_rcv_id );
56 if (status != RTEMS_SUCCESSFUL)
56 if (status != RTEMS_SUCCESSFUL)
57 {
57 {
58 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
58 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
59 }
59 }
60
60
61 status = get_message_queue_id_send( &queue_snd_id );
61 status = get_message_queue_id_send( &queue_snd_id );
62 if (status != RTEMS_SUCCESSFUL)
62 if (status != RTEMS_SUCCESSFUL)
63 {
63 {
64 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
64 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
65 }
65 }
66
66
67 result = LFR_SUCCESSFUL;
67 result = LFR_SUCCESSFUL;
68 subtype = 0; // subtype of the current TC packet
68 subtype = 0; // subtype of the current TC packet
69
69
70 BOOT_PRINTF("in ACTN *** \n")
70 BOOT_PRINTF("in ACTN *** \n")
71
71
72 while(1)
72 while(1)
73 {
73 {
74 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
74 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
75 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
75 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
76 getTime( time ); // set time to the current time
76 getTime( time ); // set time to the current time
77 if (status!=RTEMS_SUCCESSFUL)
77 if (status!=RTEMS_SUCCESSFUL)
78 {
78 {
79 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
79 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
80 }
80 }
81 else
81 else
82 {
82 {
83 subtype = TC.serviceSubType;
83 subtype = TC.serviceSubType;
84 switch(subtype)
84 switch(subtype)
85 {
85 {
86 case TC_SUBTYPE_ENTER:
86 case TC_SUBTYPE_ENTER:
87 result = action_enter_mode( &TC, queue_snd_id );
87 result = action_enter_mode( &TC, queue_snd_id );
88 break;
88 break;
89 case TC_SUBTYPE_UPDATE_TIME:
89 case TC_SUBTYPE_UPDATE_TIME:
90 result = action_update_time( &TC );
90 result = action_update_time( &TC );
91 break;
91 break;
92 default:
92 default:
93 break;
93 break;
94 }
94 }
95 }
95 }
96 }
96 }
97 }
97 }
98
98
99 //***********
99 //***********
100 // TC ACTIONS
100 // TC ACTIONS
101
101
102 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
102 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
103 {
103 {
104 return LFR_SUCCESSFUL;
104 return LFR_SUCCESSFUL;
105 }
105 }
106
106
107 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
107 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
108 {
108 {
109 unsigned int *transitionCoarseTime_ptr;
109 unsigned int *transitionCoarseTime_ptr;
110 unsigned int transitionCoarseTime;
110 unsigned int transitionCoarseTime;
111 unsigned char * bytePosPtr;
111 unsigned char * bytePosPtr;
112
112
113 bytePosPtr = (unsigned char *) &TC->packetID;
113 bytePosPtr = (unsigned char *) &TC->packetID;
114
114
115 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
115 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
116 transitionCoarseTime = transitionCoarseTime_ptr[0] & 0x7fffffff;
116 transitionCoarseTime = transitionCoarseTime_ptr[0] & 0x7fffffff;
117 printf("local coarse time (without sync bit) = %x, requested transitionCoarseTime = %x\n",
117 printf("local coarse time (without sync bit) = %x, requested transitionCoarseTime = %x\n",
118 getLocalCoarseTime(),
118 getLocalCoarseTime(),
119 transitionCoarseTime);
119 transitionCoarseTime);
120
120
121 set_transitionCoarseTime( transitionCoarseTime );
121 set_transitionCoarseTime( transitionCoarseTime );
122
122
123 return LFR_SUCCESSFUL;
123 return LFR_SUCCESSFUL;
124 }
124 }
125
125
126 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
126 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
127 {
127 {
128 return LFR_SUCCESSFUL;
128 return LFR_SUCCESSFUL;
129 }
129 }
130
130
131 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
131 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
132 {
132 {
133 return LFR_SUCCESSFUL;
133 return LFR_SUCCESSFUL;
134 }
134 }
135
135
136 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
136 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
137 {
137 {
138 return LFR_SUCCESSFUL;
138 return LFR_SUCCESSFUL;
139 }
139 }
140
140
141 int action_update_time(ccsdsTelecommandPacket_t *TC)
141 int action_update_time(ccsdsTelecommandPacket_t *TC)
142 {
142 {
143 unsigned int incomingCoarseTime;
143 unsigned int incomingCoarseTime;
144 unsigned int currentLocalCoarseTime;
144
145
145 incomingCoarseTime = (TC->dataAndCRC[0] << 24)
146 incomingCoarseTime = (TC->dataAndCRC[0] << 24)
146 + (TC->dataAndCRC[1] << 16)
147 + (TC->dataAndCRC[1] << 16)
147 + (TC->dataAndCRC[2] << 8)
148 + (TC->dataAndCRC[2] << 8)
148 + TC->dataAndCRC[3];
149 + TC->dataAndCRC[3];
149
150
151 currentLocalCoarseTime = getLocalCoarseTime();
150 setLocalCoarseTime( incomingCoarseTime );
152 setLocalCoarseTime( incomingCoarseTime );
151 printf( "localCoarseTime set to: %x\n", getLocalCoarseTime() );
153 printf( "currentLocalCoarseTime = %x, localCoarseTime set to: %x\n", currentLocalCoarseTime, getLocalCoarseTime() );
152
154
153 return LFR_SUCCESSFUL;
155 return LFR_SUCCESSFUL;
154 }
156 }
155
157
156 //*******************
158 //*******************
157 // ENTERING THE MODES
159 // ENTERING THE MODES
158 int check_mode_value( unsigned char requestedMode )
160 int check_mode_value( unsigned char requestedMode )
159 {
161 {
160 return LFR_SUCCESSFUL;
162 return LFR_SUCCESSFUL;
161 }
163 }
162
164
163 int check_mode_transition( unsigned char requestedMode )
165 int check_mode_transition( unsigned char requestedMode )
164 {
166 {
165 return LFR_SUCCESSFUL;
167 return LFR_SUCCESSFUL;
166 }
168 }
167
169
168 int check_transition_date( unsigned int transitionCoarseTime )
170 int check_transition_date( unsigned int transitionCoarseTime )
169 {
171 {
170 return LFR_SUCCESSFUL;
172 return LFR_SUCCESSFUL;
171 }
173 }
172
174
173 int stop_current_mode( void )
175 int stop_current_mode( void )
174 {
176 {
175 return LFR_SUCCESSFUL;
177 return LFR_SUCCESSFUL;
176 }
178 }
177
179
178 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
180 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
179 {
181 {
180 return LFR_SUCCESSFUL;
182 return LFR_SUCCESSFUL;
181 }
183 }
182
184
183 int restart_science_tasks(unsigned char lfrRequestedMode )
185 int restart_science_tasks(unsigned char lfrRequestedMode )
184 {
186 {
185 return LFR_SUCCESSFUL;
187 return LFR_SUCCESSFUL;
186 }
188 }
187
189
188 int suspend_science_tasks()
190 int suspend_science_tasks()
189 {
191 {
190 return LFR_SUCCESSFUL;
192 return LFR_SUCCESSFUL;
191 }
193 }
192
194
193 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
195 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
194 {
196 {
195 }
197 }
196
198
197 void launch_spectral_matrix( void )
199 void launch_spectral_matrix( void )
198 {
200 {
199 }
201 }
200
202
201 void launch_spectral_matrix_simu( void )
203 void launch_spectral_matrix_simu( void )
202 {
204 {
203 }
205 }
204
206
205 void set_irq_on_new_ready_matrix( unsigned char value )
207 void set_irq_on_new_ready_matrix( unsigned char value )
206 {
208 {
207 }
209 }
208
210
209 void set_run_matrix_spectral( unsigned char value )
211 void set_run_matrix_spectral( unsigned char value )
210 {
212 {
211 }
213 }
212
214
213 //****************
215 //****************
214 // CLOSING ACTIONS
216 // CLOSING ACTIONS
215 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
217 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
216 {
218 {
217 }
219 }
218
220
219 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
221 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
220 {
222 {
221 }
223 }
222
224
223 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
225 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
224 {
226 {
225 }
227 }
226
228
227 //***************************
229 //***************************
228 // Interrupt Service Routines
230 // Interrupt Service Routines
229 rtems_isr commutation_isr1( rtems_vector_number vector )
231 rtems_isr commutation_isr1( rtems_vector_number vector )
230 {
232 {
231 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
233 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
232 printf("In commutation_isr1 *** Error sending event to DUMB\n");
234 printf("In commutation_isr1 *** Error sending event to DUMB\n");
233 }
235 }
234 }
236 }
235
237
236 rtems_isr commutation_isr2( rtems_vector_number vector )
238 rtems_isr commutation_isr2( rtems_vector_number vector )
237 {
239 {
238 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
240 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
239 printf("In commutation_isr2 *** Error sending event to DUMB\n");
241 printf("In commutation_isr2 *** Error sending event to DUMB\n");
240 }
242 }
241 }
243 }
242
244
243 //****************
245 //****************
244 // OTHER FUNCTIONS
246 // OTHER FUNCTIONS
245 void updateLFRCurrentMode()
247 void updateLFRCurrentMode()
246 {
248 {
247 }
249 }
248
250
@@ -1,81 +1,81
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 CONFIG += console verbose
4 CONFIG += console verbose
5 CONFIG -= qt
5 CONFIG -= qt
6
6
7 include(./sparc.pri)
7 include(./sparc.pri)
8
8
9 # flight software version
9 # flight software version
10 SWVERSION=-1-0
10 SWVERSION=-1-0
11 DEFINES += SW_VERSION_N1=0 # major
11 DEFINES += SW_VERSION_N1=0 # major
12 DEFINES += SW_VERSION_N2=0 # minor
12 DEFINES += SW_VERSION_N2=0 # minor
13 DEFINES += SW_VERSION_N3=0 # patch
13 DEFINES += SW_VERSION_N3=0 # patch
14 DEFINES += SW_VERSION_N4=1 # internal
14 DEFINES += SW_VERSION_N4=2 # internal
15
15
16 contains( CONFIG, debug_tch ) {
16 contains( CONFIG, debug_tch ) {
17 DEFINES += DEBUG_TCH
17 DEFINES += DEBUG_TCH
18 }
18 }
19
19
20 contains( CONFIG, vhdl_dev ) {
20 contains( CONFIG, vhdl_dev ) {
21 DEFINES += VHDL_DEV
21 DEFINES += VHDL_DEV
22 }
22 }
23
23
24 contains( CONFIG, verbose ) {
24 contains( CONFIG, verbose ) {
25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 }
26 }
27
27
28 contains( CONFIG, debug_messages ) {
28 contains( CONFIG, debug_messages ) {
29 DEFINES += DEBUG_MESSAGES
29 DEFINES += DEBUG_MESSAGES
30 }
30 }
31
31
32 contains( CONFIG, cpu_usage_report ) {
32 contains( CONFIG, cpu_usage_report ) {
33 DEFINES += PRINT_TASK_STATISTICS
33 DEFINES += PRINT_TASK_STATISTICS
34 }
34 }
35
35
36 contains( CONFIG, stack_report ) {
36 contains( CONFIG, stack_report ) {
37 DEFINES += PRINT_STACK_REPORT
37 DEFINES += PRINT_STACK_REPORT
38 }
38 }
39
39
40 contains( CONFIG, boot_messages ) {
40 contains( CONFIG, boot_messages ) {
41 DEFINES += BOOT_MESSAGES
41 DEFINES += BOOT_MESSAGES
42 }
42 }
43
43
44 #doxygen.target = doxygen
44 #doxygen.target = doxygen
45 #doxygen.commands = doxygen ../doc/Doxyfile
45 #doxygen.commands = doxygen ../doc/Doxyfile
46 #QMAKE_EXTRA_TARGETS += doxygen
46 #QMAKE_EXTRA_TARGETS += doxygen
47
47
48 TARGET = timegen
48 TARGET = timegen
49
49
50 INCLUDEPATH += \
50 INCLUDEPATH += \
51 ./src \
51 ./src \
52 ./header \
52 ./header \
53 ./header/processing \
53 ./header/processing \
54 ./src/LFR_basic-parameters
54 ./src/LFR_basic-parameters
55
55
56 SOURCES += \
56 SOURCES += \
57 ./src/tc_handler.c \
57 ./src/tc_handler.c \
58 ./src/fsw_misc.c \
58 ./src/fsw_misc.c \
59 ./src/fsw_init.c \
59 ./src/fsw_init.c \
60 ./src/fsw_globals.c \
60 ./src/fsw_globals.c \
61 ./src/fsw_spacewire.c \
61 ./src/fsw_spacewire.c \
62 ./src/tc_acceptance.c \
62 ./src/tc_acceptance.c \
63 ./src/LFR_basic-parameters/basic_parameters.c
63 ./src/LFR_basic-parameters/basic_parameters.c
64
64
65 HEADERS += \
65 HEADERS += \
66 ./header/tc_handler.h \
66 ./header/tc_handler.h \
67 ./header/grlib_regs.h \
67 ./header/grlib_regs.h \
68 ./header/fsw_params.h \
68 ./header/fsw_params.h \
69 ./header/fsw_misc.h \
69 ./header/fsw_misc.h \
70 ./header/fsw_init.h \
70 ./header/fsw_init.h \
71 ./header/ccsds_types.h \
71 ./header/ccsds_types.h \
72 ./header/fsw_spacewire.h \
72 ./header/fsw_spacewire.h \
73 ./header/tc_acceptance.h \
73 ./header/tc_acceptance.h \
74 ./header/fsw_params_nb_bytes.h \
74 ./header/fsw_params_nb_bytes.h \
75 ./header/fsw_params_processing.h \
75 ./header/fsw_params_processing.h \
76 ./header/fsw_params_wf_handler.h \
76 ./header/fsw_params_wf_handler.h \
77 ./header/lfr_cpu_usage_report.h \
77 ./header/lfr_cpu_usage_report.h \
78 ./src/LFR_basic-parameters/basic_parameters.h \
78 ./src/LFR_basic-parameters/basic_parameters.h \
79 ./src/LFR_basic-parameters/basic_parameters_params.h \
79 ./src/LFR_basic-parameters/basic_parameters_params.h \
80 ../header/TC_types.h
80 ../header/TC_types.h
81
81
General Comments 0
You need to be logged in to leave comments. Login now