##// END OF EJS Templates
snapshot resynchronisation modified, correction is multiplied by 2 when above 1...
paul -
r274:4b39bb5ceb61 R3a
parent child
Show More
@@ -1,1312 +1,1310
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //***************
12 //***************
13 // waveform rings
13 // waveform rings
14 // F0
14 // F0
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 ring_node *current_ring_node_f0;
16 ring_node *current_ring_node_f0;
17 ring_node *ring_node_to_send_swf_f0;
17 ring_node *ring_node_to_send_swf_f0;
18 // F1
18 // F1
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 ring_node *current_ring_node_f1;
20 ring_node *current_ring_node_f1;
21 ring_node *ring_node_to_send_swf_f1;
21 ring_node *ring_node_to_send_swf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
22 ring_node *ring_node_to_send_cwf_f1;
23 // F2
23 // F2
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 ring_node *current_ring_node_f2;
25 ring_node *current_ring_node_f2;
26 ring_node *ring_node_to_send_swf_f2;
26 ring_node *ring_node_to_send_swf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
27 ring_node *ring_node_to_send_cwf_f2;
28 // F3
28 // F3
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node *current_ring_node_f3;
30 ring_node *current_ring_node_f3;
31 ring_node *ring_node_to_send_cwf_f3;
31 ring_node *ring_node_to_send_cwf_f3;
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33
33
34 bool extractSWF1 = false;
34 bool extractSWF1 = false;
35 bool extractSWF2 = false;
35 bool extractSWF2 = false;
36 bool swf0_ready_flag_f1 = false;
36 bool swf0_ready_flag_f1 = false;
37 bool swf0_ready_flag_f2 = false;
37 bool swf0_ready_flag_f2 = false;
38 bool swf1_ready = false;
38 bool swf1_ready = false;
39 bool swf2_ready = false;
39 bool swf2_ready = false;
40
40
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 ring_node ring_node_swf1_extracted;
43 ring_node ring_node_swf1_extracted;
44 ring_node ring_node_swf2_extracted;
44 ring_node ring_node_swf2_extracted;
45
45
46 typedef enum resynchro_state_t
46 typedef enum resynchro_state_t
47 {
47 {
48 MEASURE,
48 MEASURE,
49 CORRECTION
49 CORRECTION
50 } resynchro_state;
50 } resynchro_state;
51
51
52 //*********************
52 //*********************
53 // Interrupt SubRoutine
53 // Interrupt SubRoutine
54
54
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 {
56 {
57 ring_node *node;
57 ring_node *node;
58
58
59 node = NULL;
59 node = NULL;
60 switch ( frequencyChannel ) {
60 switch ( frequencyChannel ) {
61 case 1:
61 case 1:
62 node = ring_node_to_send_cwf_f1;
62 node = ring_node_to_send_cwf_f1;
63 break;
63 break;
64 case 2:
64 case 2:
65 node = ring_node_to_send_cwf_f2;
65 node = ring_node_to_send_cwf_f2;
66 break;
66 break;
67 case 3:
67 case 3:
68 node = ring_node_to_send_cwf_f3;
68 node = ring_node_to_send_cwf_f3;
69 break;
69 break;
70 default:
70 default:
71 break;
71 break;
72 }
72 }
73
73
74 return node;
74 return node;
75 }
75 }
76
76
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 {
78 {
79 ring_node *node;
79 ring_node *node;
80
80
81 node = NULL;
81 node = NULL;
82 switch ( frequencyChannel ) {
82 switch ( frequencyChannel ) {
83 case 0:
83 case 0:
84 node = ring_node_to_send_swf_f0;
84 node = ring_node_to_send_swf_f0;
85 break;
85 break;
86 case 1:
86 case 1:
87 node = ring_node_to_send_swf_f1;
87 node = ring_node_to_send_swf_f1;
88 break;
88 break;
89 case 2:
89 case 2:
90 node = ring_node_to_send_swf_f2;
90 node = ring_node_to_send_swf_f2;
91 break;
91 break;
92 default:
92 default:
93 break;
93 break;
94 }
94 }
95
95
96 return node;
96 return node;
97 }
97 }
98
98
99 void reset_extractSWF( void )
99 void reset_extractSWF( void )
100 {
100 {
101 extractSWF1 = false;
101 extractSWF1 = false;
102 extractSWF2 = false;
102 extractSWF2 = false;
103 swf0_ready_flag_f1 = false;
103 swf0_ready_flag_f1 = false;
104 swf0_ready_flag_f2 = false;
104 swf0_ready_flag_f2 = false;
105 swf1_ready = false;
105 swf1_ready = false;
106 swf2_ready = false;
106 swf2_ready = false;
107 }
107 }
108
108
109 inline void waveforms_isr_f3( void )
109 inline void waveforms_isr_f3( void )
110 {
110 {
111 rtems_status_code spare_status;
111 rtems_status_code spare_status;
112
112
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 //***
116 //***
117 // F3
117 // F3
118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 current_ring_node_f3 = current_ring_node_f3->next;
120 current_ring_node_f3 = current_ring_node_f3->next;
121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
126 }
126 }
127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
132 }
132 }
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 }
135 }
136 }
136 }
137 }
137 }
138 }
138 }
139
139
140 inline void waveforms_isr_burst( void )
140 inline void waveforms_isr_burst( void )
141 {
141 {
142 unsigned char status;
142 unsigned char status;
143 rtems_status_code spare_status;
143 rtems_status_code spare_status;
144
144
145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
146
146
147
147
148 switch(status)
148 switch(status)
149 {
149 {
150 case 1:
150 case 1:
151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
155 current_ring_node_f2 = current_ring_node_f2->next;
155 current_ring_node_f2 = current_ring_node_f2->next;
156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
159 }
159 }
160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
161 break;
161 break;
162 case 2:
162 case 2:
163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
167 current_ring_node_f2 = current_ring_node_f2->next;
167 current_ring_node_f2 = current_ring_node_f2->next;
168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
171 }
171 }
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
173 break;
173 break;
174 default:
174 default:
175 break;
175 break;
176 }
176 }
177 }
177 }
178
178
179 inline void waveform_isr_normal_sbm1_sbm2( void )
179 inline void waveform_isr_normal_sbm1_sbm2( void )
180 {
180 {
181 rtems_status_code status;
181 rtems_status_code status;
182
182
183 //***
183 //***
184 // F0
184 // F0
185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
186 {
186 {
187 swf0_ready_flag_f1 = true;
187 swf0_ready_flag_f1 = true;
188 swf0_ready_flag_f2 = true;
188 swf0_ready_flag_f2 = true;
189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
190 current_ring_node_f0 = current_ring_node_f0->next;
190 current_ring_node_f0 = current_ring_node_f0->next;
191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
192 {
192 {
193
193
194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
198 }
198 }
199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
200 {
200 {
201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
205 }
205 }
206 // send an event to the WFRM task for resynchro activities
206 // send an event to the WFRM task for resynchro activities
207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
208 }
208 }
209
209
210 //***
210 //***
211 // F1
211 // F1
212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
213 // (1) change the receiving buffer for the waveform picker
213 // (1) change the receiving buffer for the waveform picker
214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
215 current_ring_node_f1 = current_ring_node_f1->next;
215 current_ring_node_f1 = current_ring_node_f1->next;
216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
217 {
217 {
218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
222 }
222 }
223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
224 {
224 {
225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
229 }
229 }
230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
232 }
232 }
233
233
234 //***
234 //***
235 // F2
235 // F2
236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
237 // (1) change the receiving buffer for the waveform picker
237 // (1) change the receiving buffer for the waveform picker
238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
240 current_ring_node_f2 = current_ring_node_f2->next;
240 current_ring_node_f2 = current_ring_node_f2->next;
241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
242 {
242 {
243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
247 }
247 }
248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
249 {
249 {
250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
254 }
254 }
255 // (2) send an event for the waveforms transmission
255 // (2) send an event for the waveforms transmission
256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
257 }
257 }
258 }
258 }
259
259
260 rtems_isr waveforms_isr( rtems_vector_number vector )
260 rtems_isr waveforms_isr( rtems_vector_number vector )
261 {
261 {
262 /** This is the interrupt sub routine called by the waveform picker core.
262 /** This is the interrupt sub routine called by the waveform picker core.
263 *
263 *
264 * This ISR launch different actions depending mainly on two pieces of information:
264 * This ISR launch different actions depending mainly on two pieces of information:
265 * 1. the values read in the registers of the waveform picker.
265 * 1. the values read in the registers of the waveform picker.
266 * 2. the current LFR mode.
266 * 2. the current LFR mode.
267 *
267 *
268 */
268 */
269
269
270 // STATUS
270 // STATUS
271 // new error error buffer full
271 // new error error buffer full
272 // 15 14 13 12 11 10 9 8
272 // 15 14 13 12 11 10 9 8
273 // f3 f2 f1 f0 f3 f2 f1 f0
273 // f3 f2 f1 f0 f3 f2 f1 f0
274 //
274 //
275 // ready buffer
275 // ready buffer
276 // 7 6 5 4 3 2 1 0
276 // 7 6 5 4 3 2 1 0
277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
278
278
279 rtems_status_code spare_status;
279 rtems_status_code spare_status;
280
280
281 waveforms_isr_f3();
281 waveforms_isr_f3();
282
282
283 //*************************************************
283 //*************************************************
284 // copy the status bits in the housekeeping packets
284 // copy the status bits in the housekeeping packets
285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
287
287
288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
289 {
289 {
290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
291 }
291 }
292
292
293 switch(lfrCurrentMode)
293 switch(lfrCurrentMode)
294 {
294 {
295 //********
295 //********
296 // STANDBY
296 // STANDBY
297 case LFR_MODE_STANDBY:
297 case LFR_MODE_STANDBY:
298 break;
298 break;
299 //**************************
299 //**************************
300 // LFR NORMAL, SBM1 and SBM2
300 // LFR NORMAL, SBM1 and SBM2
301 case LFR_MODE_NORMAL:
301 case LFR_MODE_NORMAL:
302 case LFR_MODE_SBM1:
302 case LFR_MODE_SBM1:
303 case LFR_MODE_SBM2:
303 case LFR_MODE_SBM2:
304 waveform_isr_normal_sbm1_sbm2();
304 waveform_isr_normal_sbm1_sbm2();
305 break;
305 break;
306 //******
306 //******
307 // BURST
307 // BURST
308 case LFR_MODE_BURST:
308 case LFR_MODE_BURST:
309 waveforms_isr_burst();
309 waveforms_isr_burst();
310 break;
310 break;
311 //********
311 //********
312 // DEFAULT
312 // DEFAULT
313 default:
313 default:
314 break;
314 break;
315 }
315 }
316 }
316 }
317
317
318 //************
318 //************
319 // RTEMS TASKS
319 // RTEMS TASKS
320
320
321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
322 {
322 {
323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
324 *
324 *
325 * @param unused is the starting argument of the RTEMS task
325 * @param unused is the starting argument of the RTEMS task
326 *
326 *
327 * The following data packets are sent by this task:
327 * The following data packets are sent by this task:
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
331 *
331 *
332 */
332 */
333
333
334 rtems_event_set event_out;
334 rtems_event_set event_out;
335 rtems_id queue_id;
335 rtems_id queue_id;
336 rtems_status_code status;
336 rtems_status_code status;
337 ring_node *ring_node_swf1_extracted_ptr;
337 ring_node *ring_node_swf1_extracted_ptr;
338 ring_node *ring_node_swf2_extracted_ptr;
338 ring_node *ring_node_swf2_extracted_ptr;
339
339
340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
342
342
343 status = get_message_queue_id_send( &queue_id );
343 status = get_message_queue_id_send( &queue_id );
344 if (status != RTEMS_SUCCESSFUL)
344 if (status != RTEMS_SUCCESSFUL)
345 {
345 {
346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
347 }
347 }
348
348
349 BOOT_PRINTF("in WFRM ***\n");
349 BOOT_PRINTF("in WFRM ***\n");
350
350
351 while(1){
351 while(1){
352 // wait for an RTEMS_EVENT
352 // wait for an RTEMS_EVENT
353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
355
355
356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
357 {
357 {
358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
365 }
365 }
366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
367 {
367 {
368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
369 }
369 }
370 }
370 }
371 }
371 }
372
372
373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
374 {
374 {
375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
376 *
376 *
377 * @param unused is the starting argument of the RTEMS task
377 * @param unused is the starting argument of the RTEMS task
378 *
378 *
379 * The following data packet is sent by this task:
379 * The following data packet is sent by this task:
380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
381 *
381 *
382 */
382 */
383
383
384 rtems_event_set event_out;
384 rtems_event_set event_out;
385 rtems_id queue_id;
385 rtems_id queue_id;
386 rtems_status_code status;
386 rtems_status_code status;
387 ring_node ring_node_cwf3_light;
387 ring_node ring_node_cwf3_light;
388 ring_node *ring_node_to_send_cwf;
388 ring_node *ring_node_to_send_cwf;
389
389
390 status = get_message_queue_id_send( &queue_id );
390 status = get_message_queue_id_send( &queue_id );
391 if (status != RTEMS_SUCCESSFUL)
391 if (status != RTEMS_SUCCESSFUL)
392 {
392 {
393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
394 }
394 }
395
395
396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
397
397
398 // init the ring_node_cwf3_light structure
398 // init the ring_node_cwf3_light structure
399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
400 ring_node_cwf3_light.coarseTime = 0x00;
400 ring_node_cwf3_light.coarseTime = 0x00;
401 ring_node_cwf3_light.fineTime = 0x00;
401 ring_node_cwf3_light.fineTime = 0x00;
402 ring_node_cwf3_light.next = NULL;
402 ring_node_cwf3_light.next = NULL;
403 ring_node_cwf3_light.previous = NULL;
403 ring_node_cwf3_light.previous = NULL;
404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
405 ring_node_cwf3_light.status = 0x00;
405 ring_node_cwf3_light.status = 0x00;
406
406
407 BOOT_PRINTF("in CWF3 ***\n")
407 BOOT_PRINTF("in CWF3 ***\n")
408
408
409 while(1){
409 while(1){
410 // wait for an RTEMS_EVENT
410 // wait for an RTEMS_EVENT
411 rtems_event_receive( RTEMS_EVENT_0,
411 rtems_event_receive( RTEMS_EVENT_0,
412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
415 {
415 {
416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
418 {
418 {
419 PRINTF("send CWF_LONG_F3\n")
419 PRINTF("send CWF_LONG_F3\n")
420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
422 }
422 }
423 else
423 else
424 {
424 {
425 PRINTF("send CWF_F3 (light)\n")
425 PRINTF("send CWF_F3 (light)\n")
426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
427 }
427 }
428
428
429 }
429 }
430 else
430 else
431 {
431 {
432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
433 }
433 }
434 }
434 }
435 }
435 }
436
436
437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
438 {
438 {
439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
440 *
440 *
441 * @param unused is the starting argument of the RTEMS task
441 * @param unused is the starting argument of the RTEMS task
442 *
442 *
443 * The following data packet is sent by this function:
443 * The following data packet is sent by this function:
444 * - TM_LFR_SCIENCE_BURST_CWF_F2
444 * - TM_LFR_SCIENCE_BURST_CWF_F2
445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
446 *
446 *
447 */
447 */
448
448
449 rtems_event_set event_out;
449 rtems_event_set event_out;
450 rtems_id queue_id;
450 rtems_id queue_id;
451 rtems_status_code status;
451 rtems_status_code status;
452 ring_node *ring_node_to_send;
452 ring_node *ring_node_to_send;
453 unsigned long long int acquisitionTimeF0_asLong;
453 unsigned long long int acquisitionTimeF0_asLong;
454
454
455 acquisitionTimeF0_asLong = 0x00;
455 acquisitionTimeF0_asLong = 0x00;
456
456
457 status = get_message_queue_id_send( &queue_id );
457 status = get_message_queue_id_send( &queue_id );
458 if (status != RTEMS_SUCCESSFUL)
458 if (status != RTEMS_SUCCESSFUL)
459 {
459 {
460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
461 }
461 }
462
462
463 BOOT_PRINTF("in CWF2 ***\n")
463 BOOT_PRINTF("in CWF2 ***\n")
464
464
465 while(1){
465 while(1){
466 // wait for an RTEMS_EVENT// send the snapshot when built
466 // wait for an RTEMS_EVENT// send the snapshot when built
467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
470 ring_node_to_send = getRingNodeToSendCWF( 2 );
470 ring_node_to_send = getRingNodeToSendCWF( 2 );
471 if (event_out == RTEMS_EVENT_MODE_BURST)
471 if (event_out == RTEMS_EVENT_MODE_BURST)
472 {
472 {
473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
474 }
474 }
475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
476 {
476 {
477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
478 {
478 {
479 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
479 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
480 }
480 }
481 // launch snapshot extraction if needed
481 // launch snapshot extraction if needed
482 if (extractSWF2 == true)
482 if (extractSWF2 == true)
483 {
483 {
484 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
484 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
485 // extract the snapshot
485 // extract the snapshot
486 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
486 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
487 &ring_node_swf2_extracted, swf2_extracted );
487 &ring_node_swf2_extracted, swf2_extracted );
488 extractSWF2 = false;
488 extractSWF2 = false;
489 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
489 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
490 }
490 }
491 if (swf0_ready_flag_f2 == true)
491 if (swf0_ready_flag_f2 == true)
492 {
492 {
493 extractSWF2 = true;
493 extractSWF2 = true;
494 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
494 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
495 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
495 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
496 swf0_ready_flag_f2 = false;
496 swf0_ready_flag_f2 = false;
497 }
497 }
498 }
498 }
499 }
499 }
500 }
500 }
501
501
502 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
502 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
503 {
503 {
504 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
504 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
505 *
505 *
506 * @param unused is the starting argument of the RTEMS task
506 * @param unused is the starting argument of the RTEMS task
507 *
507 *
508 * The following data packet is sent by this function:
508 * The following data packet is sent by this function:
509 * - TM_LFR_SCIENCE_SBM1_CWF_F1
509 * - TM_LFR_SCIENCE_SBM1_CWF_F1
510 *
510 *
511 */
511 */
512
512
513 rtems_event_set event_out;
513 rtems_event_set event_out;
514 rtems_id queue_id;
514 rtems_id queue_id;
515 rtems_status_code status;
515 rtems_status_code status;
516
516
517 ring_node *ring_node_to_send_cwf;
517 ring_node *ring_node_to_send_cwf;
518
518
519 status = get_message_queue_id_send( &queue_id );
519 status = get_message_queue_id_send( &queue_id );
520 if (status != RTEMS_SUCCESSFUL)
520 if (status != RTEMS_SUCCESSFUL)
521 {
521 {
522 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
522 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
523 }
523 }
524
524
525 BOOT_PRINTF("in CWF1 ***\n");
525 BOOT_PRINTF("in CWF1 ***\n");
526
526
527 while(1){
527 while(1){
528 // wait for an RTEMS_EVENT
528 // wait for an RTEMS_EVENT
529 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
529 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
530 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
530 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
531 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
531 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
532 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
532 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
533 if (lfrCurrentMode == LFR_MODE_SBM1)
533 if (lfrCurrentMode == LFR_MODE_SBM1)
534 {
534 {
535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
535 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
536 if (status != 0)
536 if (status != 0)
537 {
537 {
538 PRINTF("cwf sending failed\n")
538 PRINTF("cwf sending failed\n")
539 }
539 }
540 }
540 }
541 // launch snapshot extraction if needed
541 // launch snapshot extraction if needed
542 if (extractSWF1 == true)
542 if (extractSWF1 == true)
543 {
543 {
544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
544 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
545 // launch the snapshot extraction
545 // launch the snapshot extraction
546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
546 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
547 extractSWF1 = false;
547 extractSWF1 = false;
548 }
548 }
549 if (swf0_ready_flag_f1 == true)
549 if (swf0_ready_flag_f1 == true)
550 {
550 {
551 extractSWF1 = true;
551 extractSWF1 = true;
552 swf0_ready_flag_f1 = false; // this step shall be executed only one time
552 swf0_ready_flag_f1 = false; // this step shall be executed only one time
553 }
553 }
554 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
554 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
555 {
555 {
556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
556 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
557 swf1_ready = false;
557 swf1_ready = false;
558 swf2_ready = false;
558 swf2_ready = false;
559 }
559 }
560 }
560 }
561 }
561 }
562
562
563 rtems_task swbd_task(rtems_task_argument argument)
563 rtems_task swbd_task(rtems_task_argument argument)
564 {
564 {
565 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
565 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
566 *
566 *
567 * @param unused is the starting argument of the RTEMS task
567 * @param unused is the starting argument of the RTEMS task
568 *
568 *
569 */
569 */
570
570
571 rtems_event_set event_out;
571 rtems_event_set event_out;
572 unsigned long long int acquisitionTimeF0_asLong;
572 unsigned long long int acquisitionTimeF0_asLong;
573
573
574 acquisitionTimeF0_asLong = 0x00;
574 acquisitionTimeF0_asLong = 0x00;
575
575
576 BOOT_PRINTF("in SWBD ***\n")
576 BOOT_PRINTF("in SWBD ***\n")
577
577
578 while(1){
578 while(1){
579 // wait for an RTEMS_EVENT
579 // wait for an RTEMS_EVENT
580 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
580 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
581 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
581 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
582 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
582 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
583 {
583 {
584 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
584 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
585 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
586 &ring_node_swf1_extracted, swf1_extracted );
586 &ring_node_swf1_extracted, swf1_extracted );
587 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
587 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
588 }
588 }
589 else
589 else
590 {
590 {
591 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
591 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
592 }
592 }
593 }
593 }
594 }
594 }
595
595
596 //******************
596 //******************
597 // general functions
597 // general functions
598
598
599 void WFP_init_rings( void )
599 void WFP_init_rings( void )
600 {
600 {
601 // F0 RING
601 // F0 RING
602 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
602 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
603 // F1 RING
603 // F1 RING
604 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
604 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
605 // F2 RING
605 // F2 RING
606 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
606 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
607 // F3 RING
607 // F3 RING
608 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
608 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
609
609
610 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
610 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
611 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
611 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
612
612
613 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
613 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
614 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
614 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
615 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
615 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
616 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
616 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
617 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
617 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
618 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
618 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
619 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
619 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
620 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
620 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
621
621
622 }
622 }
623
623
624 void WFP_reset_current_ring_nodes( void )
624 void WFP_reset_current_ring_nodes( void )
625 {
625 {
626 current_ring_node_f0 = waveform_ring_f0[0].next;
626 current_ring_node_f0 = waveform_ring_f0[0].next;
627 current_ring_node_f1 = waveform_ring_f1[0].next;
627 current_ring_node_f1 = waveform_ring_f1[0].next;
628 current_ring_node_f2 = waveform_ring_f2[0].next;
628 current_ring_node_f2 = waveform_ring_f2[0].next;
629 current_ring_node_f3 = waveform_ring_f3[0].next;
629 current_ring_node_f3 = waveform_ring_f3[0].next;
630
630
631 ring_node_to_send_swf_f0 = waveform_ring_f0;
631 ring_node_to_send_swf_f0 = waveform_ring_f0;
632 ring_node_to_send_swf_f1 = waveform_ring_f1;
632 ring_node_to_send_swf_f1 = waveform_ring_f1;
633 ring_node_to_send_swf_f2 = waveform_ring_f2;
633 ring_node_to_send_swf_f2 = waveform_ring_f2;
634
634
635 ring_node_to_send_cwf_f1 = waveform_ring_f1;
635 ring_node_to_send_cwf_f1 = waveform_ring_f1;
636 ring_node_to_send_cwf_f2 = waveform_ring_f2;
636 ring_node_to_send_cwf_f2 = waveform_ring_f2;
637 ring_node_to_send_cwf_f3 = waveform_ring_f3;
637 ring_node_to_send_cwf_f3 = waveform_ring_f3;
638 }
638 }
639
639
640 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
640 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
641 {
641 {
642 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
642 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
643 *
643 *
644 * @param waveform points to the buffer containing the data that will be send.
644 * @param waveform points to the buffer containing the data that will be send.
645 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
645 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
646 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
646 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
647 * contain information to setup the transmission of the data packets.
647 * contain information to setup the transmission of the data packets.
648 *
648 *
649 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
649 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
650 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
650 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
651 *
651 *
652 */
652 */
653
653
654 unsigned int i;
654 unsigned int i;
655 int ret;
655 int ret;
656 rtems_status_code status;
656 rtems_status_code status;
657
657
658 char *sample;
658 char *sample;
659 int *dataPtr;
659 int *dataPtr;
660
660
661 ret = LFR_DEFAULT;
661 ret = LFR_DEFAULT;
662
662
663 dataPtr = (int*) ring_node_to_send->buffer_address;
663 dataPtr = (int*) ring_node_to_send->buffer_address;
664
664
665 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
665 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
666 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
666 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
667
667
668 //**********************
668 //**********************
669 // BUILD CWF3_light DATA
669 // BUILD CWF3_light DATA
670 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
670 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
671 {
671 {
672 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
672 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
673 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
673 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
674 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
674 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
675 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
675 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
676 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
676 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
679 }
679 }
680
680
681 // SEND PACKET
681 // SEND PACKET
682 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
682 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
683 if (status != RTEMS_SUCCESSFUL) {
683 if (status != RTEMS_SUCCESSFUL) {
684 ret = LFR_DEFAULT;
684 ret = LFR_DEFAULT;
685 }
685 }
686
686
687 return ret;
687 return ret;
688 }
688 }
689
689
690 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
690 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
691 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
691 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
692 {
692 {
693 unsigned long long int acquisitionTimeAsLong;
693 unsigned long long int acquisitionTimeAsLong;
694 unsigned char localAcquisitionTime[6];
694 unsigned char localAcquisitionTime[6];
695 double deltaT;
695 double deltaT;
696
696
697 deltaT = 0.;
697 deltaT = 0.;
698
698
699 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
699 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
700 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
700 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
701 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
701 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
702 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
702 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
703 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
703 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
704 localAcquisitionTime[5] = (unsigned char) ( fineTime );
704 localAcquisitionTime[5] = (unsigned char) ( fineTime );
705
705
706 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
706 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
707 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
707 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
708 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
708 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
709 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
709 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
710 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
710 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
711 + ( (unsigned long long int) localAcquisitionTime[5] );
711 + ( (unsigned long long int) localAcquisitionTime[5] );
712
712
713 switch( sid )
713 switch( sid )
714 {
714 {
715 case SID_NORM_SWF_F0:
715 case SID_NORM_SWF_F0:
716 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
716 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
717 break;
717 break;
718
718
719 case SID_NORM_SWF_F1:
719 case SID_NORM_SWF_F1:
720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
721 break;
721 break;
722
722
723 case SID_NORM_SWF_F2:
723 case SID_NORM_SWF_F2:
724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
725 break;
725 break;
726
726
727 case SID_SBM1_CWF_F1:
727 case SID_SBM1_CWF_F1:
728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
729 break;
729 break;
730
730
731 case SID_SBM2_CWF_F2:
731 case SID_SBM2_CWF_F2:
732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
733 break;
733 break;
734
734
735 case SID_BURST_CWF_F2:
735 case SID_BURST_CWF_F2:
736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
737 break;
737 break;
738
738
739 case SID_NORM_CWF_F3:
739 case SID_NORM_CWF_F3:
740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
741 break;
741 break;
742
742
743 case SID_NORM_CWF_LONG_F3:
743 case SID_NORM_CWF_LONG_F3:
744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
745 break;
745 break;
746
746
747 default:
747 default:
748 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
748 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
749 deltaT = 0.;
749 deltaT = 0.;
750 break;
750 break;
751 }
751 }
752
752
753 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
753 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
754 //
754 //
755 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
755 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
756 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
756 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
757 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
757 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
758 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
758 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
759 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
759 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
760 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
760 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
761
761
762 }
762 }
763
763
764 void build_snapshot_from_ring( ring_node *ring_node_to_send,
764 void build_snapshot_from_ring( ring_node *ring_node_to_send,
765 unsigned char frequencyChannel,
765 unsigned char frequencyChannel,
766 unsigned long long int acquisitionTimeF0_asLong,
766 unsigned long long int acquisitionTimeF0_asLong,
767 ring_node *ring_node_swf_extracted,
767 ring_node *ring_node_swf_extracted,
768 int *swf_extracted)
768 int *swf_extracted)
769 {
769 {
770 unsigned int i;
770 unsigned int i;
771 unsigned long long int centerTime_asLong;
771 unsigned long long int centerTime_asLong;
772 unsigned long long int acquisitionTime_asLong;
772 unsigned long long int acquisitionTime_asLong;
773 unsigned long long int bufferAcquisitionTime_asLong;
773 unsigned long long int bufferAcquisitionTime_asLong;
774 unsigned char *ptr1;
774 unsigned char *ptr1;
775 unsigned char *ptr2;
775 unsigned char *ptr2;
776 unsigned char *timeCharPtr;
776 unsigned char *timeCharPtr;
777 unsigned char nb_ring_nodes;
777 unsigned char nb_ring_nodes;
778 unsigned long long int frequency_asLong;
778 unsigned long long int frequency_asLong;
779 unsigned long long int nbTicksPerSample_asLong;
779 unsigned long long int nbTicksPerSample_asLong;
780 unsigned long long int nbSamplesPart1_asLong;
780 unsigned long long int nbSamplesPart1_asLong;
781 unsigned long long int sampleOffset_asLong;
781 unsigned long long int sampleOffset_asLong;
782
782
783 unsigned int deltaT_F0;
783 unsigned int deltaT_F0;
784 unsigned int deltaT_F1;
784 unsigned int deltaT_F1;
785 unsigned long long int deltaT_F2;
785 unsigned long long int deltaT_F2;
786
786
787 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
787 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
788 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
788 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
789 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
789 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
790 sampleOffset_asLong = 0x00;
790 sampleOffset_asLong = 0x00;
791
791
792 // (1) get the f0 acquisition time => the value is passed in argument
792 // (1) get the f0 acquisition time => the value is passed in argument
793
793
794 // (2) compute the central reference time
794 // (2) compute the central reference time
795 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
795 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
796
796
797 // (3) compute the acquisition time of the current snapshot
797 // (3) compute the acquisition time of the current snapshot
798 switch(frequencyChannel)
798 switch(frequencyChannel)
799 {
799 {
800 case 1: // 1 is for F1 = 4096 Hz
800 case 1: // 1 is for F1 = 4096 Hz
801 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
801 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
802 nb_ring_nodes = NB_RING_NODES_F1;
802 nb_ring_nodes = NB_RING_NODES_F1;
803 frequency_asLong = 4096;
803 frequency_asLong = 4096;
804 nbTicksPerSample_asLong = 16; // 65536 / 4096;
804 nbTicksPerSample_asLong = 16; // 65536 / 4096;
805 break;
805 break;
806 case 2: // 2 is for F2 = 256 Hz
806 case 2: // 2 is for F2 = 256 Hz
807 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
807 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
808 nb_ring_nodes = NB_RING_NODES_F2;
808 nb_ring_nodes = NB_RING_NODES_F2;
809 frequency_asLong = 256;
809 frequency_asLong = 256;
810 nbTicksPerSample_asLong = 256; // 65536 / 256;
810 nbTicksPerSample_asLong = 256; // 65536 / 256;
811 break;
811 break;
812 default:
812 default:
813 acquisitionTime_asLong = centerTime_asLong;
813 acquisitionTime_asLong = centerTime_asLong;
814 frequency_asLong = 256;
814 frequency_asLong = 256;
815 nbTicksPerSample_asLong = 256;
815 nbTicksPerSample_asLong = 256;
816 break;
816 break;
817 }
817 }
818
818
819 //****************************************************************************
819 //****************************************************************************
820 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
820 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
821 for (i=0; i<nb_ring_nodes; i++)
821 for (i=0; i<nb_ring_nodes; i++)
822 {
822 {
823 //PRINTF1("%d ... ", i);
823 //PRINTF1("%d ... ", i);
824 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
824 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
825 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
825 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
826 {
826 {
827 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
827 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
828 break;
828 break;
829 }
829 }
830 ring_node_to_send = ring_node_to_send->previous;
830 ring_node_to_send = ring_node_to_send->previous;
831 }
831 }
832
832
833 // (5) compute the number of samples to take in the current buffer
833 // (5) compute the number of samples to take in the current buffer
834 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
834 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
835 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
835 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
836 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
836 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
837
837
838 // (6) compute the final acquisition time
838 // (6) compute the final acquisition time
839 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
839 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
840 sampleOffset_asLong * nbTicksPerSample_asLong;
840 sampleOffset_asLong * nbTicksPerSample_asLong;
841
841
842 // (7) copy the acquisition time at the beginning of the extrated snapshot
842 // (7) copy the acquisition time at the beginning of the extrated snapshot
843 ptr1 = (unsigned char*) &acquisitionTime_asLong;
843 ptr1 = (unsigned char*) &acquisitionTime_asLong;
844 // fine time
844 // fine time
845 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
845 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
846 ptr2[2] = ptr1[ 4 + 2 ];
846 ptr2[2] = ptr1[ 4 + 2 ];
847 ptr2[3] = ptr1[ 5 + 2 ];
847 ptr2[3] = ptr1[ 5 + 2 ];
848 // coarse time
848 // coarse time
849 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
849 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
850 ptr2[0] = ptr1[ 0 + 2 ];
850 ptr2[0] = ptr1[ 0 + 2 ];
851 ptr2[1] = ptr1[ 1 + 2 ];
851 ptr2[1] = ptr1[ 1 + 2 ];
852 ptr2[2] = ptr1[ 2 + 2 ];
852 ptr2[2] = ptr1[ 2 + 2 ];
853 ptr2[3] = ptr1[ 3 + 2 ];
853 ptr2[3] = ptr1[ 3 + 2 ];
854
854
855 // re set the synchronization bit
855 // re set the synchronization bit
856 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
856 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
857 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
857 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
858
858
859 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
859 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
860 {
860 {
861 nbSamplesPart1_asLong = 0;
861 nbSamplesPart1_asLong = 0;
862 }
862 }
863 // copy the part 1 of the snapshot in the extracted buffer
863 // copy the part 1 of the snapshot in the extracted buffer
864 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
864 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
865 {
865 {
866 swf_extracted[i] =
866 swf_extracted[i] =
867 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
867 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
868 }
868 }
869 // copy the part 2 of the snapshot in the extracted buffer
869 // copy the part 2 of the snapshot in the extracted buffer
870 ring_node_to_send = ring_node_to_send->next;
870 ring_node_to_send = ring_node_to_send->next;
871 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
871 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
872 {
872 {
873 swf_extracted[i] =
873 swf_extracted[i] =
874 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
874 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
875 }
875 }
876 }
876 }
877
877
878 double computeCorrection( unsigned char *timePtr )
878 double computeCorrection( unsigned char *timePtr )
879 {
879 {
880 unsigned long long int acquisitionTime;
880 unsigned long long int acquisitionTime;
881 unsigned long long int centerTime;
881 unsigned long long int centerTime;
882 unsigned long long int previousTick;
882 unsigned long long int previousTick;
883 unsigned long long int nextTick;
883 unsigned long long int nextTick;
884 unsigned long long int deltaPreviousTick;
884 unsigned long long int deltaPreviousTick;
885 unsigned long long int deltaNextTick;
885 unsigned long long int deltaNextTick;
886 double deltaPrevious_ms;
886 double deltaPrevious_ms;
887 double deltaNext_ms;
887 double deltaNext_ms;
888 double correctionInF2;
888 double correctionInF2;
889
889
890 // get acquisition time in fine time ticks
890 // get acquisition time in fine time ticks
891 acquisitionTime = get_acquisition_time( timePtr );
891 acquisitionTime = get_acquisition_time( timePtr );
892
892
893 // compute center time
893 // compute center time
894 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
894 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
895 previousTick = centerTime - (centerTime & 0xffff);
895 previousTick = centerTime - (centerTime & 0xffff);
896 nextTick = previousTick + 65536;
896 nextTick = previousTick + 65536;
897
897
898 deltaPreviousTick = centerTime - previousTick;
898 deltaPreviousTick = centerTime - previousTick;
899 deltaNextTick = nextTick - centerTime;
899 deltaNextTick = nextTick - centerTime;
900
900
901 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
901 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
902 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
902 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
903
903
904 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
904 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
905
905
906 // which tick is the closest?
906 // which tick is the closest?
907 if (deltaPreviousTick > deltaNextTick)
907 if (deltaPreviousTick > deltaNextTick)
908 {
908 {
909 // the snapshot center is just before the second => increase delta_snapshot
909 // the snapshot center is just before the second => increase delta_snapshot
910 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
910 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
911 }
911 }
912 else
912 else
913 {
913 {
914 // the snapshot center is just after the second => decrease delta_snapshot
914 // the snapshot center is just after the second => decrease delta_snapshot
915 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
915 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
916 }
916 }
917
917
918 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
918 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
919
919
920 return correctionInF2;
920 return correctionInF2;
921 }
921 }
922
922
923 void applyCorrection( double correction )
923 void applyCorrection( double correction )
924 {
924 {
925 int correctionInt;
925 int correctionInt;
926
926
927 if (correction >= 0.)
927 if (correction >= 0.)
928 {
928 {
929 if ( (1. > correction) && (correction > 0.5) )
929 if ( (1. > correction) && (correction > 0.5) )
930 {
930 {
931 correctionInt = 1;
931 correctionInt = 1;
932 }
932 }
933 else
933 else
934 {
934 {
935 correctionInt = floor(correction);
935 correctionInt = 2 * floor(correction);
936 }
936 }
937 }
937 }
938 else
938 else
939 {
939 {
940 if ( (correction < -1.) && (correction < -0.5) )
940 if ( (correction < -1.) && (correction < -0.5) )
941 {
941 {
942 correctionInt = -1;
942 correctionInt = -1;
943 }
943 }
944 else
944 else
945 {
945 {
946 correctionInt = ceil(correction);
946 correctionInt = 2 * ceil(correction);
947 }
947 }
948 }
948 }
949 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
949 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
950 }
950 }
951
951
952 void snapshot_resynchronization( unsigned char *timePtr )
952 void snapshot_resynchronization( unsigned char *timePtr )
953 {
953 {
954 /** This function compute a correction to apply on delta_snapshot.
954 /** This function compute a correction to apply on delta_snapshot.
955 *
955 *
956 *
956 *
957 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
957 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
958 *
958 *
959 * @return void
959 * @return void
960 *
960 *
961 */
961 */
962
962
963 static double correction = 0.;
963 static double correction = 0.;
964 static resynchro_state state = MEASURE;
964 static resynchro_state state = MEASURE;
965 static unsigned int nbSnapshots = 0;
965 static unsigned int nbSnapshots = 0;
966
966
967 int correctionInt;
967 int correctionInt;
968
968
969 correctionInt = 0;
969 correctionInt = 0;
970
970
971 switch (state)
971 switch (state)
972 {
972 {
973
973
974 case MEASURE:
974 case MEASURE:
975 // ********
975 // ********
976 PRINTF1("MEASURE === %d\n", nbSnapshots);
976 PRINTF1("MEASURE === %d\n", nbSnapshots);
977 state = CORRECTION;
977 state = CORRECTION;
978 correction = computeCorrection( timePtr );
978 correction = computeCorrection( timePtr );
979 PRINTF1("MEASURE === correction = %.2f\n", correction );
979 PRINTF1("MEASURE === correction = %.2f\n", correction );
980 applyCorrection( correction );
980 applyCorrection( correction );
981 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
981 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
982 //****
982 //****
983 break;
983 break;
984
984
985 case CORRECTION:
985 case CORRECTION:
986 //************
986 //************
987 PRINTF1("CORRECTION === %d\n", nbSnapshots);
987 PRINTF1("CORRECTION === %d\n", nbSnapshots);
988 state = MEASURE;
988 state = MEASURE;
989 computeCorrection( timePtr );
989 computeCorrection( timePtr );
990 correction = -correction;
990 set_wfp_delta_snapshot();
991 PRINTF1("CORRECTION === correction = %.2f\n", correction );
992 applyCorrection( correction );
993 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
991 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
994 //****
992 //****
995 break;
993 break;
996
994
997 default:
995 default:
998 break;
996 break;
999
997
1000 }
998 }
1001
999
1002 nbSnapshots++;
1000 nbSnapshots++;
1003 }
1001 }
1004
1002
1005 //**************
1003 //**************
1006 // wfp registers
1004 // wfp registers
1007 void reset_wfp_burst_enable( void )
1005 void reset_wfp_burst_enable( void )
1008 {
1006 {
1009 /** This function resets the waveform picker burst_enable register.
1007 /** This function resets the waveform picker burst_enable register.
1010 *
1008 *
1011 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1009 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1012 *
1010 *
1013 */
1011 */
1014
1012
1015 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1013 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1016 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1014 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1017 }
1015 }
1018
1016
1019 void reset_wfp_status( void )
1017 void reset_wfp_status( void )
1020 {
1018 {
1021 /** This function resets the waveform picker status register.
1019 /** This function resets the waveform picker status register.
1022 *
1020 *
1023 * All status bits are set to 0 [new_err full_err full].
1021 * All status bits are set to 0 [new_err full_err full].
1024 *
1022 *
1025 */
1023 */
1026
1024
1027 waveform_picker_regs->status = 0xffff;
1025 waveform_picker_regs->status = 0xffff;
1028 }
1026 }
1029
1027
1030 void reset_wfp_buffer_addresses( void )
1028 void reset_wfp_buffer_addresses( void )
1031 {
1029 {
1032 // F0
1030 // F0
1033 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1031 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1034 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1032 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1035 // F1
1033 // F1
1036 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1034 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1037 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1035 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1038 // F2
1036 // F2
1039 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1037 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1040 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1038 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1041 // F3
1039 // F3
1042 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1040 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1043 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1041 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1044 }
1042 }
1045
1043
1046 void reset_waveform_picker_regs( void )
1044 void reset_waveform_picker_regs( void )
1047 {
1045 {
1048 /** This function resets the waveform picker module registers.
1046 /** This function resets the waveform picker module registers.
1049 *
1047 *
1050 * The registers affected by this function are located at the following offset addresses:
1048 * The registers affected by this function are located at the following offset addresses:
1051 * - 0x00 data_shaping
1049 * - 0x00 data_shaping
1052 * - 0x04 run_burst_enable
1050 * - 0x04 run_burst_enable
1053 * - 0x08 addr_data_f0
1051 * - 0x08 addr_data_f0
1054 * - 0x0C addr_data_f1
1052 * - 0x0C addr_data_f1
1055 * - 0x10 addr_data_f2
1053 * - 0x10 addr_data_f2
1056 * - 0x14 addr_data_f3
1054 * - 0x14 addr_data_f3
1057 * - 0x18 status
1055 * - 0x18 status
1058 * - 0x1C delta_snapshot
1056 * - 0x1C delta_snapshot
1059 * - 0x20 delta_f0
1057 * - 0x20 delta_f0
1060 * - 0x24 delta_f0_2
1058 * - 0x24 delta_f0_2
1061 * - 0x28 delta_f1 (obsolet parameter)
1059 * - 0x28 delta_f1 (obsolet parameter)
1062 * - 0x2c delta_f2
1060 * - 0x2c delta_f2
1063 * - 0x30 nb_data_by_buffer
1061 * - 0x30 nb_data_by_buffer
1064 * - 0x34 nb_snapshot_param
1062 * - 0x34 nb_snapshot_param
1065 * - 0x38 start_date
1063 * - 0x38 start_date
1066 * - 0x3c nb_word_in_buffer
1064 * - 0x3c nb_word_in_buffer
1067 *
1065 *
1068 */
1066 */
1069
1067
1070 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1068 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1071
1069
1072 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1070 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1073
1071
1074 reset_wfp_buffer_addresses();
1072 reset_wfp_buffer_addresses();
1075
1073
1076 reset_wfp_status(); // 0x18
1074 reset_wfp_status(); // 0x18
1077
1075
1078 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1076 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1079
1077
1080 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1078 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1081
1079
1082 //the parameter delta_f1 [0x28] is not used anymore
1080 //the parameter delta_f1 [0x28] is not used anymore
1083
1081
1084 set_wfp_delta_f2(); // 0x2c
1082 set_wfp_delta_f2(); // 0x2c
1085
1083
1086 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1084 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1087 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1085 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1088 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1086 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1089 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1087 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1090 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1088 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1091 // 2688 = 8 * 336
1089 // 2688 = 8 * 336
1092 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1090 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1093 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1091 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1094 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1092 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1095 //
1093 //
1096 // coarse time and fine time registers are not initialized, they are volatile
1094 // coarse time and fine time registers are not initialized, they are volatile
1097 //
1095 //
1098 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1096 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1099 }
1097 }
1100
1098
1101 void set_wfp_data_shaping( void )
1099 void set_wfp_data_shaping( void )
1102 {
1100 {
1103 /** This function sets the data_shaping register of the waveform picker module.
1101 /** This function sets the data_shaping register of the waveform picker module.
1104 *
1102 *
1105 * The value is read from one field of the parameter_dump_packet structure:\n
1103 * The value is read from one field of the parameter_dump_packet structure:\n
1106 * bw_sp0_sp1_r0_r1
1104 * bw_sp0_sp1_r0_r1
1107 *
1105 *
1108 */
1106 */
1109
1107
1110 unsigned char data_shaping;
1108 unsigned char data_shaping;
1111
1109
1112 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1110 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1113 // waveform picker : [R1 R0 SP1 SP0 BW]
1111 // waveform picker : [R1 R0 SP1 SP0 BW]
1114
1112
1115 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1113 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1116
1114
1117 waveform_picker_regs->data_shaping =
1115 waveform_picker_regs->data_shaping =
1118 ( (data_shaping & 0x20) >> 5 ) // BW
1116 ( (data_shaping & 0x20) >> 5 ) // BW
1119 + ( (data_shaping & 0x10) >> 3 ) // SP0
1117 + ( (data_shaping & 0x10) >> 3 ) // SP0
1120 + ( (data_shaping & 0x08) >> 1 ) // SP1
1118 + ( (data_shaping & 0x08) >> 1 ) // SP1
1121 + ( (data_shaping & 0x04) << 1 ) // R0
1119 + ( (data_shaping & 0x04) << 1 ) // R0
1122 + ( (data_shaping & 0x02) << 3 ) // R1
1120 + ( (data_shaping & 0x02) << 3 ) // R1
1123 + ( (data_shaping & 0x01) << 5 ); // R2
1121 + ( (data_shaping & 0x01) << 5 ); // R2
1124 }
1122 }
1125
1123
1126 void set_wfp_burst_enable_register( unsigned char mode )
1124 void set_wfp_burst_enable_register( unsigned char mode )
1127 {
1125 {
1128 /** This function sets the waveform picker burst_enable register depending on the mode.
1126 /** This function sets the waveform picker burst_enable register depending on the mode.
1129 *
1127 *
1130 * @param mode is the LFR mode to launch.
1128 * @param mode is the LFR mode to launch.
1131 *
1129 *
1132 * The burst bits shall be before the enable bits.
1130 * The burst bits shall be before the enable bits.
1133 *
1131 *
1134 */
1132 */
1135
1133
1136 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1134 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1137 // the burst bits shall be set first, before the enable bits
1135 // the burst bits shall be set first, before the enable bits
1138 switch(mode) {
1136 switch(mode) {
1139 case LFR_MODE_NORMAL:
1137 case LFR_MODE_NORMAL:
1140 case LFR_MODE_SBM1:
1138 case LFR_MODE_SBM1:
1141 case LFR_MODE_SBM2:
1139 case LFR_MODE_SBM2:
1142 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1140 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1143 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1141 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1144 break;
1142 break;
1145 case LFR_MODE_BURST:
1143 case LFR_MODE_BURST:
1146 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1144 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1147 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1145 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1148 break;
1146 break;
1149 default:
1147 default:
1150 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1148 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1151 break;
1149 break;
1152 }
1150 }
1153 }
1151 }
1154
1152
1155 void set_wfp_delta_snapshot( void )
1153 void set_wfp_delta_snapshot( void )
1156 {
1154 {
1157 /** This function sets the delta_snapshot register of the waveform picker module.
1155 /** This function sets the delta_snapshot register of the waveform picker module.
1158 *
1156 *
1159 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1157 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1160 * - sy_lfr_n_swf_p[0]
1158 * - sy_lfr_n_swf_p[0]
1161 * - sy_lfr_n_swf_p[1]
1159 * - sy_lfr_n_swf_p[1]
1162 *
1160 *
1163 */
1161 */
1164
1162
1165 unsigned int delta_snapshot;
1163 unsigned int delta_snapshot;
1166 unsigned int delta_snapshot_in_T2;
1164 unsigned int delta_snapshot_in_T2;
1167
1165
1168 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1166 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1169 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1167 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1170
1168
1171 delta_snapshot_in_T2 = delta_snapshot * 256;
1169 delta_snapshot_in_T2 = delta_snapshot * 256;
1172 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1170 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1173 }
1171 }
1174
1172
1175 void set_wfp_delta_f0_f0_2( void )
1173 void set_wfp_delta_f0_f0_2( void )
1176 {
1174 {
1177 unsigned int delta_snapshot;
1175 unsigned int delta_snapshot;
1178 unsigned int nb_samples_per_snapshot;
1176 unsigned int nb_samples_per_snapshot;
1179 float delta_f0_in_float;
1177 float delta_f0_in_float;
1180
1178
1181 delta_snapshot = waveform_picker_regs->delta_snapshot;
1179 delta_snapshot = waveform_picker_regs->delta_snapshot;
1182 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1180 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1183 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1181 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1184
1182
1185 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1183 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1186 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1184 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1187 }
1185 }
1188
1186
1189 void set_wfp_delta_f1( void )
1187 void set_wfp_delta_f1( void )
1190 {
1188 {
1191 /** Sets the value of the delta_f1 parameter
1189 /** Sets the value of the delta_f1 parameter
1192 *
1190 *
1193 * @param void
1191 * @param void
1194 *
1192 *
1195 * @return void
1193 * @return void
1196 *
1194 *
1197 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1195 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1198 *
1196 *
1199 */
1197 */
1200
1198
1201 unsigned int delta_snapshot;
1199 unsigned int delta_snapshot;
1202 unsigned int nb_samples_per_snapshot;
1200 unsigned int nb_samples_per_snapshot;
1203 float delta_f1_in_float;
1201 float delta_f1_in_float;
1204
1202
1205 delta_snapshot = waveform_picker_regs->delta_snapshot;
1203 delta_snapshot = waveform_picker_regs->delta_snapshot;
1206 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1204 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1207 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1205 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1208
1206
1209 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1207 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1210 }
1208 }
1211
1209
1212 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1210 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1213 {
1211 {
1214 /** Sets the value of the delta_f2 parameter
1212 /** Sets the value of the delta_f2 parameter
1215 *
1213 *
1216 * @param void
1214 * @param void
1217 *
1215 *
1218 * @return void
1216 * @return void
1219 *
1217 *
1220 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1218 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1221 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1219 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1222 *
1220 *
1223 */
1221 */
1224
1222
1225 unsigned int delta_snapshot;
1223 unsigned int delta_snapshot;
1226 unsigned int nb_samples_per_snapshot;
1224 unsigned int nb_samples_per_snapshot;
1227
1225
1228 delta_snapshot = waveform_picker_regs->delta_snapshot;
1226 delta_snapshot = waveform_picker_regs->delta_snapshot;
1229 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1227 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1230
1228
1231 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1229 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1232 }
1230 }
1233
1231
1234 //*****************
1232 //*****************
1235 // local parameters
1233 // local parameters
1236
1234
1237 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1235 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1238 {
1236 {
1239 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1237 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1240 *
1238 *
1241 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1239 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1242 * @param sid is the source identifier of the packet being updated.
1240 * @param sid is the source identifier of the packet being updated.
1243 *
1241 *
1244 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1242 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1245 * The sequence counters shall wrap around from 2^14 to zero.
1243 * The sequence counters shall wrap around from 2^14 to zero.
1246 * The sequence counter shall start at zero at startup.
1244 * The sequence counter shall start at zero at startup.
1247 *
1245 *
1248 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1246 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1249 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1247 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1250 *
1248 *
1251 */
1249 */
1252
1250
1253 unsigned short *sequence_cnt;
1251 unsigned short *sequence_cnt;
1254 unsigned short segmentation_grouping_flag;
1252 unsigned short segmentation_grouping_flag;
1255 unsigned short new_packet_sequence_control;
1253 unsigned short new_packet_sequence_control;
1256 rtems_mode initial_mode_set;
1254 rtems_mode initial_mode_set;
1257 rtems_mode current_mode_set;
1255 rtems_mode current_mode_set;
1258 rtems_status_code status;
1256 rtems_status_code status;
1259
1257
1260 //******************************************
1258 //******************************************
1261 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1259 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1262 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1260 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1263
1261
1264 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1262 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1265 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1263 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1266 || (sid == SID_BURST_CWF_F2)
1264 || (sid == SID_BURST_CWF_F2)
1267 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1265 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1268 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1266 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1269 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1267 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1270 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1268 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1271 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1269 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1272 {
1270 {
1273 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1271 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1274 }
1272 }
1275 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1273 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1276 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1274 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1277 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1275 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1278 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1276 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1279 {
1277 {
1280 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1278 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1281 }
1279 }
1282 else
1280 else
1283 {
1281 {
1284 sequence_cnt = (unsigned short *) NULL;
1282 sequence_cnt = (unsigned short *) NULL;
1285 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1283 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1286 }
1284 }
1287
1285
1288 if (sequence_cnt != NULL)
1286 if (sequence_cnt != NULL)
1289 {
1287 {
1290 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1288 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1291 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1289 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1292
1290
1293 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1291 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1294
1292
1295 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1293 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1296 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1294 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1297
1295
1298 // increment the sequence counter
1296 // increment the sequence counter
1299 if ( *sequence_cnt < SEQ_CNT_MAX)
1297 if ( *sequence_cnt < SEQ_CNT_MAX)
1300 {
1298 {
1301 *sequence_cnt = *sequence_cnt + 1;
1299 *sequence_cnt = *sequence_cnt + 1;
1302 }
1300 }
1303 else
1301 else
1304 {
1302 {
1305 *sequence_cnt = 0;
1303 *sequence_cnt = 0;
1306 }
1304 }
1307 }
1305 }
1308
1306
1309 //*************************************
1307 //*************************************
1310 // RESTORE THE MODE OF THE CALLING TASK
1308 // RESTORE THE MODE OF THE CALLING TASK
1311 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1309 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1312 }
1310 }
General Comments 0
You need to be logged in to leave comments. Login now