##// END OF EJS Templates
3.2.0.11...
paul -
r361:3e73a8516099 R3++ draft
parent child
Show More
@@ -1,165 +1,169
1 #ifndef FSW_MISC_H_INCLUDED
1 #ifndef FSW_MISC_H_INCLUDED
2 #define FSW_MISC_H_INCLUDED
2 #define FSW_MISC_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6 #include <grspw.h>
6 #include <grspw.h>
7 #include <grlib_regs.h>
7 #include <grlib_regs.h>
8
8
9 #include "fsw_params.h"
9 #include "fsw_params.h"
10 #include "fsw_spacewire.h"
10 #include "fsw_spacewire.h"
11 #include "lfr_cpu_usage_report.h"
11 #include "lfr_cpu_usage_report.h"
12
12
13 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
13 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
14 #define WATCHDOG_LOOP_PRINTF 10
14 #define WATCHDOG_LOOP_PRINTF 10
15 #define WATCHDOG_LOOP_DEBUG 3
15 #define WATCHDOG_LOOP_DEBUG 3
16
16
17 #define DUMB_MESSAGE_NB 15
17 #define DUMB_MESSAGE_NB 15
18 #define NB_RTEMS_EVENTS 32
18 #define NB_RTEMS_EVENTS 32
19 #define EVENT_12 12
19 #define EVENT_12 12
20 #define EVENT_13 13
20 #define EVENT_13 13
21 #define EVENT_14 14
21 #define EVENT_14 14
22 #define DUMB_MESSAGE_0 "in DUMB *** default"
22 #define DUMB_MESSAGE_0 "in DUMB *** default"
23 #define DUMB_MESSAGE_1 "in DUMB *** timecode_irq_handler"
23 #define DUMB_MESSAGE_1 "in DUMB *** timecode_irq_handler"
24 #define DUMB_MESSAGE_2 "in DUMB *** f3 buffer changed"
24 #define DUMB_MESSAGE_2 "in DUMB *** f3 buffer changed"
25 #define DUMB_MESSAGE_3 "in DUMB *** in SMIQ *** Error sending event to AVF0"
25 #define DUMB_MESSAGE_3 "in DUMB *** in SMIQ *** Error sending event to AVF0"
26 #define DUMB_MESSAGE_4 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ"
26 #define DUMB_MESSAGE_4 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ"
27 #define DUMB_MESSAGE_5 "in DUMB *** waveforms_simulator_isr"
27 #define DUMB_MESSAGE_5 "in DUMB *** waveforms_simulator_isr"
28 #define DUMB_MESSAGE_6 "VHDL SM *** two buffers f0 ready"
28 #define DUMB_MESSAGE_6 "VHDL SM *** two buffers f0 ready"
29 #define DUMB_MESSAGE_7 "ready for dump"
29 #define DUMB_MESSAGE_7 "ready for dump"
30 #define DUMB_MESSAGE_8 "VHDL ERR *** spectral matrix"
30 #define DUMB_MESSAGE_8 "VHDL ERR *** spectral matrix"
31 #define DUMB_MESSAGE_9 "tick"
31 #define DUMB_MESSAGE_9 "tick"
32 #define DUMB_MESSAGE_10 "VHDL ERR *** waveform picker"
32 #define DUMB_MESSAGE_10 "VHDL ERR *** waveform picker"
33 #define DUMB_MESSAGE_11 "VHDL ERR *** unexpected ready matrix values"
33 #define DUMB_MESSAGE_11 "VHDL ERR *** unexpected ready matrix values"
34 #define DUMB_MESSAGE_12 "WATCHDOG timer"
34 #define DUMB_MESSAGE_12 "WATCHDOG timer"
35 #define DUMB_MESSAGE_13 "TIMECODE timer"
35 #define DUMB_MESSAGE_13 "TIMECODE timer"
36 #define DUMB_MESSAGE_14 "TIMECODE ISR"
36 #define DUMB_MESSAGE_14 "TIMECODE ISR"
37
37
38 enum lfr_reset_cause_t{
38 enum lfr_reset_cause_t{
39 UNKNOWN_CAUSE,
39 UNKNOWN_CAUSE,
40 POWER_ON,
40 POWER_ON,
41 TC_RESET,
41 TC_RESET,
42 WATCHDOG,
42 WATCHDOG,
43 ERROR_RESET,
43 ERROR_RESET,
44 UNEXP_RESET
44 UNEXP_RESET
45 };
45 };
46
46
47 typedef struct{
47 typedef struct{
48 unsigned char dpu_spw_parity;
48 unsigned char dpu_spw_parity;
49 unsigned char dpu_spw_disconnect;
49 unsigned char dpu_spw_disconnect;
50 unsigned char dpu_spw_escape;
50 unsigned char dpu_spw_escape;
51 unsigned char dpu_spw_credit;
51 unsigned char dpu_spw_credit;
52 unsigned char dpu_spw_write_sync;
52 unsigned char dpu_spw_write_sync;
53 unsigned char timecode_erroneous;
53 unsigned char timecode_erroneous;
54 unsigned char timecode_missing;
54 unsigned char timecode_missing;
55 unsigned char timecode_invalid;
55 unsigned char timecode_invalid;
56 unsigned char time_timecode_it;
56 unsigned char time_timecode_it;
57 unsigned char time_not_synchro;
57 unsigned char time_not_synchro;
58 unsigned char time_timecode_ctr;
58 unsigned char time_timecode_ctr;
59 unsigned char ahb_correctable;
59 unsigned char ahb_correctable;
60 } hk_lfr_le_t;
60 } hk_lfr_le_t;
61
61
62 typedef struct{
62 typedef struct{
63 unsigned char dpu_spw_early_eop;
63 unsigned char dpu_spw_early_eop;
64 unsigned char dpu_spw_invalid_addr;
64 unsigned char dpu_spw_invalid_addr;
65 unsigned char dpu_spw_eep;
65 unsigned char dpu_spw_eep;
66 unsigned char dpu_spw_rx_too_big;
66 unsigned char dpu_spw_rx_too_big;
67 } hk_lfr_me_t;
67 } hk_lfr_me_t;
68
68
69 #define B00 23
69 #define B00 65
70 #define B01 23
70 #define B01 65
71 #define B02 0
71 #define B02 0
72 #define B10 1024
72 #define B10 2048
73 #define B11 -1771
73 #define B11 -3817
74 #define B12 1024
74 #define B12 2048
75 #define B20 1024
75 #define B20 2048
76 #define B21 -1937
76 #define B21 -3987
77 #define B22 1024
77 #define B22 2048
78
78
79 #define A00 1
79 #define A00 1
80 #define A01 -28324
80 #define A01 -1850
81 #define A02 0
81 #define A02 0
82 #define A10 1
82 #define A10 1
83 #define A11 -1828
83 #define A11 -3787
84 #define A12 822
84 #define A12 1758
85 #define A20 1
85 #define A20 1
86 #define A21 -1956
86 #define A21 -3974
87 #define A22 950
87 #define A22 1943
88
88
89 #define G0 15
89 #define GAIN_B0 17
90 #define G1 10
90 #define GAIN_B1 11
91 #define G2 10
91 #define GAIN_B2 11
92
93 #define GAIN_A0 11
94 #define GAIN_A1 11
95 #define GAIN_A2 11
92
96
93 #define NB_COEFFS 3
97 #define NB_COEFFS 3
94 #define COEFF0 0
98 #define COEFF0 0
95 #define COEFF1 1
99 #define COEFF1 1
96 #define COEFF2 2
100 #define COEFF2 2
97
101
98 typedef struct filter_ctx
102 typedef struct filter_ctx
99 {
103 {
100 int W[NB_COEFFS][NB_COEFFS];
104 int W[NB_COEFFS][NB_COEFFS];
101 }filter_ctx;
105 }filter_ctx;
102
106
103 extern gptimer_regs_t *gptimer_regs;
107 extern gptimer_regs_t *gptimer_regs;
104 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
108 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
105 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
109 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
106
110
107 extern rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
111 extern rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
108 extern rtems_id HK_id;// id of the HK rate monotonic period
112 extern rtems_id HK_id;// id of the HK rate monotonic period
109 extern rtems_name name_avgv_rate_monotonic; // name of the AVGV rate monotonic
113 extern rtems_name name_avgv_rate_monotonic; // name of the AVGV rate monotonic
110 extern rtems_id AVGV_id;// id of the AVGV rate monotonic period
114 extern rtems_id AVGV_id;// id of the AVGV rate monotonic period
111
115
112 void timer_configure( unsigned char timer, unsigned int clock_divider,
116 void timer_configure( unsigned char timer, unsigned int clock_divider,
113 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
117 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
114 void timer_start( unsigned char timer );
118 void timer_start( unsigned char timer );
115 void timer_stop( unsigned char timer );
119 void timer_stop( unsigned char timer );
116 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
120 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
117
121
118 // WATCHDOG
122 // WATCHDOG
119 rtems_isr watchdog_isr( rtems_vector_number vector );
123 rtems_isr watchdog_isr( rtems_vector_number vector );
120 void watchdog_configure(void);
124 void watchdog_configure(void);
121 void watchdog_stop(void);
125 void watchdog_stop(void);
122 void watchdog_reload(void);
126 void watchdog_reload(void);
123 void watchdog_start(void);
127 void watchdog_start(void);
124
128
125 // SERIAL LINK
129 // SERIAL LINK
126 int send_console_outputs_on_apbuart_port( void );
130 int send_console_outputs_on_apbuart_port( void );
127 int enable_apbuart_transmitter( void );
131 int enable_apbuart_transmitter( void );
128 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
132 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
129
133
130 // RTEMS TASKS
134 // RTEMS TASKS
131 rtems_task load_task( rtems_task_argument argument );
135 rtems_task load_task( rtems_task_argument argument );
132 rtems_task hous_task( rtems_task_argument argument );
136 rtems_task hous_task( rtems_task_argument argument );
133 rtems_task avgv_task( rtems_task_argument argument );
137 rtems_task avgv_task( rtems_task_argument argument );
134 rtems_task dumb_task( rtems_task_argument unused );
138 rtems_task dumb_task( rtems_task_argument unused );
135
139
136 void init_housekeeping_parameters( void );
140 void init_housekeeping_parameters( void );
137 void increment_seq_counter(unsigned short *packetSequenceControl);
141 void increment_seq_counter(unsigned short *packetSequenceControl);
138 void getTime( unsigned char *time);
142 void getTime( unsigned char *time);
139 unsigned long long int getTimeAsUnsignedLongLongInt( );
143 unsigned long long int getTimeAsUnsignedLongLongInt( );
140 void send_dumb_hk( void );
144 void send_dumb_hk( void );
141 void get_temperatures( unsigned char *temperatures );
145 void get_temperatures( unsigned char *temperatures );
142 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
146 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
143 void get_cpu_load( unsigned char *resource_statistics );
147 void get_cpu_load( unsigned char *resource_statistics );
144 void set_hk_lfr_sc_potential_flag( bool state );
148 void set_hk_lfr_sc_potential_flag( bool state );
145 void set_sy_lfr_pas_filter_enabled( bool state );
149 void set_sy_lfr_pas_filter_enabled( bool state );
146 void set_sy_lfr_watchdog_enabled( bool state );
150 void set_sy_lfr_watchdog_enabled( bool state );
147 void set_hk_lfr_calib_enable( bool state );
151 void set_hk_lfr_calib_enable( bool state );
148 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
152 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
149 void hk_lfr_le_me_he_update();
153 void hk_lfr_le_me_he_update();
150 void set_hk_lfr_time_not_synchro();
154 void set_hk_lfr_time_not_synchro();
151
155
152 extern int sched_yield( void );
156 extern int sched_yield( void );
153 extern void rtems_cpu_usage_reset();
157 extern void rtems_cpu_usage_reset();
154 extern ring_node *current_ring_node_f3;
158 extern ring_node *current_ring_node_f3;
155 extern ring_node *ring_node_to_send_cwf_f3;
159 extern ring_node *ring_node_to_send_cwf_f3;
156 extern ring_node waveform_ring_f3[];
160 extern ring_node waveform_ring_f3[];
157 extern unsigned short sequenceCounterHK;
161 extern unsigned short sequenceCounterHK;
158
162
159 extern unsigned char hk_lfr_q_sd_fifo_size_max;
163 extern unsigned char hk_lfr_q_sd_fifo_size_max;
160 extern unsigned char hk_lfr_q_rv_fifo_size_max;
164 extern unsigned char hk_lfr_q_rv_fifo_size_max;
161 extern unsigned char hk_lfr_q_p0_fifo_size_max;
165 extern unsigned char hk_lfr_q_p0_fifo_size_max;
162 extern unsigned char hk_lfr_q_p1_fifo_size_max;
166 extern unsigned char hk_lfr_q_p1_fifo_size_max;
163 extern unsigned char hk_lfr_q_p2_fifo_size_max;
167 extern unsigned char hk_lfr_q_p2_fifo_size_max;
164
168
165 #endif // FSW_MISC_H_INCLUDED
169 #endif // FSW_MISC_H_INCLUDED
@@ -1,107 +1,107
1 cmake_minimum_required (VERSION 2.6)
1 cmake_minimum_required (VERSION 2.6)
2 project (fsw)
2 project (fsw)
3
3
4 include(sparc-rtems)
4 include(sparc-rtems)
5 include(cppcheck)
5 include(cppcheck)
6
6
7 include_directories("../header"
7 include_directories("../header"
8 "../header/lfr_common_headers"
8 "../header/lfr_common_headers"
9 "../header/processing"
9 "../header/processing"
10 "../LFR_basic-parameters"
10 "../LFR_basic-parameters"
11 "../src")
11 "../src")
12
12
13 set(SOURCES wf_handler.c
13 set(SOURCES wf_handler.c
14 tc_handler.c
14 tc_handler.c
15 fsw_misc.c
15 fsw_misc.c
16 fsw_init.c
16 fsw_init.c
17 fsw_globals.c
17 fsw_globals.c
18 fsw_spacewire.c
18 fsw_spacewire.c
19 tc_load_dump_parameters.c
19 tc_load_dump_parameters.c
20 tm_lfr_tc_exe.c
20 tm_lfr_tc_exe.c
21 tc_acceptance.c
21 tc_acceptance.c
22 processing/fsw_processing.c
22 processing/fsw_processing.c
23 processing/avf0_prc0.c
23 processing/avf0_prc0.c
24 processing/avf1_prc1.c
24 processing/avf1_prc1.c
25 processing/avf2_prc2.c
25 processing/avf2_prc2.c
26 lfr_cpu_usage_report.c
26 lfr_cpu_usage_report.c
27 ${LFR_BP_SRC}
27 ${LFR_BP_SRC}
28 ../header/wf_handler.h
28 ../header/wf_handler.h
29 ../header/tc_handler.h
29 ../header/tc_handler.h
30 ../header/grlib_regs.h
30 ../header/grlib_regs.h
31 ../header/fsw_misc.h
31 ../header/fsw_misc.h
32 ../header/fsw_init.h
32 ../header/fsw_init.h
33 ../header/fsw_spacewire.h
33 ../header/fsw_spacewire.h
34 ../header/tc_load_dump_parameters.h
34 ../header/tc_load_dump_parameters.h
35 ../header/tm_lfr_tc_exe.h
35 ../header/tm_lfr_tc_exe.h
36 ../header/tc_acceptance.h
36 ../header/tc_acceptance.h
37 ../header/processing/fsw_processing.h
37 ../header/processing/fsw_processing.h
38 ../header/processing/avf0_prc0.h
38 ../header/processing/avf0_prc0.h
39 ../header/processing/avf1_prc1.h
39 ../header/processing/avf1_prc1.h
40 ../header/processing/avf2_prc2.h
40 ../header/processing/avf2_prc2.h
41 ../header/fsw_params_wf_handler.h
41 ../header/fsw_params_wf_handler.h
42 ../header/lfr_cpu_usage_report.h
42 ../header/lfr_cpu_usage_report.h
43 ../header/lfr_common_headers/ccsds_types.h
43 ../header/lfr_common_headers/ccsds_types.h
44 ../header/lfr_common_headers/fsw_params.h
44 ../header/lfr_common_headers/fsw_params.h
45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
45 ../header/lfr_common_headers/fsw_params_nb_bytes.h
46 ../header/lfr_common_headers/fsw_params_processing.h
46 ../header/lfr_common_headers/fsw_params_processing.h
47 ../header/lfr_common_headers/tm_byte_positions.h
47 ../header/lfr_common_headers/tm_byte_positions.h
48 ../LFR_basic-parameters/basic_parameters.h
48 ../LFR_basic-parameters/basic_parameters.h
49 ../LFR_basic-parameters/basic_parameters_params.h
49 ../LFR_basic-parameters/basic_parameters_params.h
50 ../header/GscMemoryLPP.hpp
50 ../header/GscMemoryLPP.hpp
51 )
51 )
52
52
53
53
54 option(FSW_verbose "Enable verbose LFR" OFF)
54 option(FSW_verbose "Enable verbose LFR" OFF)
55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
55 option(FSW_boot_messages "Enable LFR boot messages" OFF)
56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
56 option(FSW_debug_messages "Enable LFR debug messages" OFF)
57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
57 option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF)
58 option(FSW_stack_report "Enable LFR stack report" OFF)
58 option(FSW_stack_report "Enable LFR stack report" OFF)
59 option(FSW_vhdl_dev "?" OFF)
59 option(FSW_vhdl_dev "?" OFF)
60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
60 option(FSW_lpp_dpu_destid "Set to debug at LPP" ON)
61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
61 option(FSW_debug_watchdog "Enable debug watchdog" OFF)
62 option(FSW_debug_tch "?" OFF)
62 option(FSW_debug_tch "?" OFF)
63
63
64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
64 set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE)
65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
65 set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE)
66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
66 set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE)
67 set(SW_VERSION_N4 "10" CACHE STRING "Choose N4 FSW Version." FORCE)
67 set(SW_VERSION_N4 "11" CACHE STRING "Choose N4 FSW Version." FORCE)
68
68
69 if(FSW_verbose)
69 if(FSW_verbose)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
70 add_definitions(-DPRINT_MESSAGES_ON_CONSOLE)
71 endif()
71 endif()
72 if(FSW_boot_messages)
72 if(FSW_boot_messages)
73 add_definitions(-DBOOT_MESSAGES)
73 add_definitions(-DBOOT_MESSAGES)
74 endif()
74 endif()
75 if(FSW_debug_messages)
75 if(FSW_debug_messages)
76 add_definitions(-DDEBUG_MESSAGES)
76 add_definitions(-DDEBUG_MESSAGES)
77 endif()
77 endif()
78 if(FSW_cpu_usage_report)
78 if(FSW_cpu_usage_report)
79 add_definitions(-DPRINT_TASK_STATISTICS)
79 add_definitions(-DPRINT_TASK_STATISTICS)
80 endif()
80 endif()
81 if(FSW_stack_report)
81 if(FSW_stack_report)
82 add_definitions(-DPRINT_STACK_REPORT)
82 add_definitions(-DPRINT_STACK_REPORT)
83 endif()
83 endif()
84 if(FSW_vhdl_dev)
84 if(FSW_vhdl_dev)
85 add_definitions(-DVHDL_DEV)
85 add_definitions(-DVHDL_DEV)
86 endif()
86 endif()
87 if(FSW_lpp_dpu_destid)
87 if(FSW_lpp_dpu_destid)
88 add_definitions(-DLPP_DPU_DESTID)
88 add_definitions(-DLPP_DPU_DESTID)
89 endif()
89 endif()
90 if(FSW_debug_watchdog)
90 if(FSW_debug_watchdog)
91 add_definitions(-DDEBUG_WATCHDOG)
91 add_definitions(-DDEBUG_WATCHDOG)
92 endif()
92 endif()
93 if(FSW_debug_tch)
93 if(FSW_debug_tch)
94 add_definitions(-DDEBUG_TCH)
94 add_definitions(-DDEBUG_TCH)
95 endif()
95 endif()
96
96
97 add_definitions(-DMSB_FIRST_TCH)
97 add_definitions(-DMSB_FIRST_TCH)
98
98
99 add_definitions(-DSWVERSION=-1-0)
99 add_definitions(-DSWVERSION=-1-0)
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
100 add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
101 add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
102 add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
103 add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4})
104
104
105 add_executable(fsw ${SOURCES})
105 add_executable(fsw ${SOURCES})
106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
106 add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE)
107
107
@@ -1,1035 +1,1036
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13
13
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 {
16 {
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 *
18 *
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 * @param interrupt_level is the interrupt level that the timer drives.
22 * @param interrupt_level is the interrupt level that the timer drives.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 *
24 *
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 *
26 *
27 */
27 */
28
28
29 rtems_status_code status;
29 rtems_status_code status;
30 rtems_isr_entry old_isr_handler;
30 rtems_isr_entry old_isr_handler;
31
31
32 old_isr_handler = NULL;
32 old_isr_handler = NULL;
33
33
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35
35
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 if (status!=RTEMS_SUCCESSFUL)
37 if (status!=RTEMS_SUCCESSFUL)
38 {
38 {
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 }
40 }
41
41
42 timer_set_clock_divider( timer, clock_divider);
42 timer_set_clock_divider( timer, clock_divider);
43 }
43 }
44
44
45 void timer_start(unsigned char timer)
45 void timer_start(unsigned char timer)
46 {
46 {
47 /** This function starts a GPTIMER timer.
47 /** This function starts a GPTIMER timer.
48 *
48 *
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 *
51 *
52 */
52 */
53
53
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 }
59 }
60
60
61 void timer_stop(unsigned char timer)
61 void timer_stop(unsigned char timer)
62 {
62 {
63 /** This function stops a GPTIMER timer.
63 /** This function stops a GPTIMER timer.
64 *
64 *
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 *
67 *
68 */
68 */
69
69
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 }
73 }
74
74
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 {
76 {
77 /** This function sets the clock divider of a GPTIMER timer.
77 /** This function sets the clock divider of a GPTIMER timer.
78 *
78 *
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 *
82 *
83 */
83 */
84
84
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 }
86 }
87
87
88 // WATCHDOG
88 // WATCHDOG
89
89
90 rtems_isr watchdog_isr( rtems_vector_number vector )
90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 {
91 {
92 rtems_status_code status_code;
92 rtems_status_code status_code;
93
93
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95
95
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97
97
98 exit(0);
98 exit(0);
99 }
99 }
100
100
101 void watchdog_configure(void)
101 void watchdog_configure(void)
102 {
102 {
103 /** This function configure the watchdog.
103 /** This function configure the watchdog.
104 *
104 *
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 *
107 *
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 *
109 *
110 */
110 */
111
111
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113
113
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115
115
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 }
117 }
118
118
119 void watchdog_stop(void)
119 void watchdog_stop(void)
120 {
120 {
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 timer_stop( TIMER_WATCHDOG );
122 timer_stop( TIMER_WATCHDOG );
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 }
124 }
125
125
126 void watchdog_reload(void)
126 void watchdog_reload(void)
127 {
127 {
128 /** This function reloads the watchdog timer counter with the timer reload value.
128 /** This function reloads the watchdog timer counter with the timer reload value.
129 *
129 *
130 * @param void
130 * @param void
131 *
131 *
132 * @return void
132 * @return void
133 *
133 *
134 */
134 */
135
135
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 }
137 }
138
138
139 void watchdog_start(void)
139 void watchdog_start(void)
140 {
140 {
141 /** This function starts the watchdog timer.
141 /** This function starts the watchdog timer.
142 *
142 *
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 *
145 *
146 */
146 */
147
147
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149
149
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154
154
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156
156
157 }
157 }
158
158
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 {
160 {
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162
162
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164
164
165 return 0;
165 return 0;
166 }
166 }
167
167
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 {
169 {
170 /** This function sets the scaler reload register of the apbuart module
170 /** This function sets the scaler reload register of the apbuart module
171 *
171 *
172 * @param regs is the address of the apbuart registers in memory
172 * @param regs is the address of the apbuart registers in memory
173 * @param value is the value that will be stored in the scaler register
173 * @param value is the value that will be stored in the scaler register
174 *
174 *
175 * The value shall be set by the software to get data on the serial interface.
175 * The value shall be set by the software to get data on the serial interface.
176 *
176 *
177 */
177 */
178
178
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180
180
181 apbuart_regs->scaler = value;
181 apbuart_regs->scaler = value;
182
182
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 }
184 }
185
185
186 //************
186 //************
187 // RTEMS TASKS
187 // RTEMS TASKS
188
188
189 rtems_task load_task(rtems_task_argument argument)
189 rtems_task load_task(rtems_task_argument argument)
190 {
190 {
191 BOOT_PRINTF("in LOAD *** \n")
191 BOOT_PRINTF("in LOAD *** \n")
192
192
193 rtems_status_code status;
193 rtems_status_code status;
194 unsigned int i;
194 unsigned int i;
195 unsigned int j;
195 unsigned int j;
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198
198
199 watchdog_period_id = RTEMS_ID_NONE;
199 watchdog_period_id = RTEMS_ID_NONE;
200
200
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202
202
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 if( status != RTEMS_SUCCESSFUL ) {
204 if( status != RTEMS_SUCCESSFUL ) {
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 }
206 }
207
207
208 i = 0;
208 i = 0;
209 j = 0;
209 j = 0;
210
210
211 watchdog_configure();
211 watchdog_configure();
212
212
213 watchdog_start();
213 watchdog_start();
214
214
215 set_sy_lfr_watchdog_enabled( true );
215 set_sy_lfr_watchdog_enabled( true );
216
216
217 while(1){
217 while(1){
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 watchdog_reload();
219 watchdog_reload();
220 i = i + 1;
220 i = i + 1;
221 if ( i == WATCHDOG_LOOP_PRINTF )
221 if ( i == WATCHDOG_LOOP_PRINTF )
222 {
222 {
223 i = 0;
223 i = 0;
224 j = j + 1;
224 j = j + 1;
225 PRINTF1("%d\n", j)
225 PRINTF1("%d\n", j)
226 }
226 }
227 #ifdef DEBUG_WATCHDOG
227 #ifdef DEBUG_WATCHDOG
228 if (j == WATCHDOG_LOOP_DEBUG )
228 if (j == WATCHDOG_LOOP_DEBUG )
229 {
229 {
230 status = rtems_task_delete(RTEMS_SELF);
230 status = rtems_task_delete(RTEMS_SELF);
231 }
231 }
232 #endif
232 #endif
233 }
233 }
234 }
234 }
235
235
236 rtems_task hous_task(rtems_task_argument argument)
236 rtems_task hous_task(rtems_task_argument argument)
237 {
237 {
238 rtems_status_code status;
238 rtems_status_code status;
239 rtems_status_code spare_status;
239 rtems_status_code spare_status;
240 rtems_id queue_id;
240 rtems_id queue_id;
241 rtems_rate_monotonic_period_status period_status;
241 rtems_rate_monotonic_period_status period_status;
242 bool isSynchronized;
242 bool isSynchronized;
243
243
244 queue_id = RTEMS_ID_NONE;
244 queue_id = RTEMS_ID_NONE;
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 isSynchronized = false;
246 isSynchronized = false;
247
247
248 status = get_message_queue_id_send( &queue_id );
248 status = get_message_queue_id_send( &queue_id );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253
253
254 BOOT_PRINTF("in HOUS ***\n");
254 BOOT_PRINTF("in HOUS ***\n");
255
255
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 if( status != RTEMS_SUCCESSFUL ) {
258 if( status != RTEMS_SUCCESSFUL ) {
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 }
260 }
261 }
261 }
262
262
263 status = rtems_rate_monotonic_cancel(HK_id);
263 status = rtems_rate_monotonic_cancel(HK_id);
264 if( status != RTEMS_SUCCESSFUL ) {
264 if( status != RTEMS_SUCCESSFUL ) {
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 }
266 }
267 else {
267 else {
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 }
269 }
270
270
271 // startup phase
271 // startup phase
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 {
277 {
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 {
279 {
280 isSynchronized = true;
280 isSynchronized = true;
281 }
281 }
282 else
282 else
283 {
283 {
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285
285
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 }
287 }
288 }
288 }
289 status = rtems_rate_monotonic_cancel(HK_id);
289 status = rtems_rate_monotonic_cancel(HK_id);
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291
291
292 set_hk_lfr_reset_cause( POWER_ON );
292 set_hk_lfr_reset_cause( POWER_ON );
293
293
294 while(1){ // launch the rate monotonic task
294 while(1){ // launch the rate monotonic task
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 if ( status != RTEMS_SUCCESSFUL ) {
296 if ( status != RTEMS_SUCCESSFUL ) {
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 }
299 }
300 else {
300 else {
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
304
304
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311
311
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313
313
314 spacewire_read_statistics();
314 spacewire_read_statistics();
315
315
316 update_hk_with_grspw_stats();
316 update_hk_with_grspw_stats();
317
317
318 set_hk_lfr_time_not_synchro();
318 set_hk_lfr_time_not_synchro();
319
319
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325
325
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331
331
332 hk_lfr_le_me_he_update();
332 hk_lfr_le_me_he_update();
333
333
334 // SEND PACKET
334 // SEND PACKET
335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
335 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
336 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
337 if (status != RTEMS_SUCCESSFUL) {
337 if (status != RTEMS_SUCCESSFUL) {
338 PRINTF1("in HOUS *** ERR send: %d\n", status)
338 PRINTF1("in HOUS *** ERR send: %d\n", status)
339 }
339 }
340 }
340 }
341 }
341 }
342
342
343 PRINTF("in HOUS *** deleting task\n")
343 PRINTF("in HOUS *** deleting task\n")
344
344
345 status = rtems_task_delete( RTEMS_SELF ); // should not return
345 status = rtems_task_delete( RTEMS_SELF ); // should not return
346
346
347 return;
347 return;
348 }
348 }
349
349
350 int filter( int x, filter_ctx* ctx )
350 int filter( int x, filter_ctx* ctx )
351 {
351 {
352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
352 static const int b[NB_COEFFS][NB_COEFFS]={ {B00, B01, B02}, {B10, B11, B12}, {B20, B21, B22} };
353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
353 static const int a[NB_COEFFS][NB_COEFFS]={ {A00, A01, A02}, {A10, A11, A12}, {A20, A21, A22} };
354 static const int g_pow2[NB_COEFFS]={G0, G1, G2};
354 static const int b_gain[NB_COEFFS]={GAIN_B0, GAIN_B1, GAIN_B2};
355 static const int a_gain[NB_COEFFS]={GAIN_A0, GAIN_A1, GAIN_A2};
355
356
356 int W;
357 int_fast32_t W;
357 int i;
358 int i;
358
359
359 W = INIT_INT;
360 W = INIT_INT;
360 i = INIT_INT;
361 i = INIT_INT;
361
362
362 //Direct-Form-II
363 //Direct-Form-II
363 for ( i = 0; i < NB_COEFFS; i++ )
364 for ( i = 0; i < NB_COEFFS; i++ )
364 {
365 {
365 x = x << g_pow2[ i ];
366 x = x << a_gain[i];
366 W = ( x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
367 W = (x - ( a[i][COEFF1] * ctx->W[i][COEFF0] )
367 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> g_pow2[ i ];
368 - ( a[i][COEFF2] * ctx->W[i][COEFF1] ) ) >> a_gain[i];
368 x = ( b[i][COEFF0] * W )
369 x = ( b[i][COEFF0] * W )
369 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
370 + ( b[i][COEFF1] * ctx->W[i][COEFF0] )
370 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
371 + ( b[i][COEFF2] * ctx->W[i][COEFF1] );
371 x =- ( x >> g_pow2[i] );
372 x = x >> b_gain[i];
372 ctx->W[i][COEFF1] = ctx->W[i][COEFF0];
373 ctx->W[i][1] = ctx->W[i][0];
373 ctx->W[i][COEFF0] = W;
374 ctx->W[i][0] = W;
374 }
375 }
375 return x;
376 return x;
376 }
377 }
377
378
378 rtems_task avgv_task(rtems_task_argument argument)
379 rtems_task avgv_task(rtems_task_argument argument)
379 {
380 {
380 #define MOVING_AVERAGE 16
381 #define MOVING_AVERAGE 16
381 rtems_status_code status;
382 rtems_status_code status;
382 static int32_t v[MOVING_AVERAGE] = {0};
383 static int32_t v[MOVING_AVERAGE] = {0};
383 static int32_t e1[MOVING_AVERAGE] = {0};
384 static int32_t e1[MOVING_AVERAGE] = {0};
384 static int32_t e2[MOVING_AVERAGE] = {0};
385 static int32_t e2[MOVING_AVERAGE] = {0};
385 static int old_v = 0;
386 static int old_v = 0;
386 static int old_e1 = 0;
387 static int old_e1 = 0;
387 static int old_e2 = 0;
388 static int old_e2 = 0;
388 int32_t current_v;
389 int32_t current_v;
389 int32_t current_e1;
390 int32_t current_e1;
390 int32_t current_e2;
391 int32_t current_e2;
391 int32_t average_v;
392 int32_t average_v;
392 int32_t average_e1;
393 int32_t average_e1;
393 int32_t average_e2;
394 int32_t average_e2;
394 int32_t newValue_v;
395 int32_t newValue_v;
395 int32_t newValue_e1;
396 int32_t newValue_e1;
396 int32_t newValue_e2;
397 int32_t newValue_e2;
397 unsigned char k;
398 unsigned char k;
398 unsigned char indexOfOldValue;
399 unsigned char indexOfOldValue;
399
400
400 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
401 static filter_ctx ctx_v = { { {0,0,0}, {0,0,0}, {0,0,0} } };
401 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 static filter_ctx ctx_e1 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
402 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403 static filter_ctx ctx_e2 = { { {0,0,0}, {0,0,0}, {0,0,0} } };
403
404
404 BOOT_PRINTF("in AVGV ***\n");
405 BOOT_PRINTF("in AVGV ***\n");
405
406
406 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
407 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &AVGV_id) != RTEMS_SUCCESSFUL) {
407 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
408 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
408 if( status != RTEMS_SUCCESSFUL ) {
409 if( status != RTEMS_SUCCESSFUL ) {
409 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
410 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
410 }
411 }
411 }
412 }
412
413
413 status = rtems_rate_monotonic_cancel(AVGV_id);
414 status = rtems_rate_monotonic_cancel(AVGV_id);
414 if( status != RTEMS_SUCCESSFUL ) {
415 if( status != RTEMS_SUCCESSFUL ) {
415 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
416 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
416 }
417 }
417 else {
418 else {
418 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
419 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
419 }
420 }
420
421
421 // initialize values
422 // initialize values
422 indexOfOldValue = MOVING_AVERAGE - 1;
423 indexOfOldValue = MOVING_AVERAGE - 1;
423 current_v = 0;
424 current_v = 0;
424 current_e1 = 0;
425 current_e1 = 0;
425 current_e2 = 0;
426 current_e2 = 0;
426 average_v = 0;
427 average_v = 0;
427 average_e1 = 0;
428 average_e1 = 0;
428 average_e2 = 0;
429 average_e2 = 0;
429 newValue_v = 0;
430 newValue_v = 0;
430 newValue_e1 = 0;
431 newValue_e1 = 0;
431 newValue_e2 = 0;
432 newValue_e2 = 0;
432
433
433 k = INIT_CHAR;
434 k = INIT_CHAR;
434
435
435 while(1)
436 while(1)
436 { // launch the rate monotonic task
437 { // launch the rate monotonic task
437 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
438 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
438 if ( status != RTEMS_SUCCESSFUL )
439 if ( status != RTEMS_SUCCESSFUL )
439 {
440 {
440 PRINTF1( "in AVGV *** ERR period: %d\n", status);
441 PRINTF1( "in AVGV *** ERR period: %d\n", status);
441 }
442 }
442 else
443 else
443 {
444 {
444 current_v = waveform_picker_regs->v;
445 current_v = waveform_picker_regs->v;
445 current_e1 = waveform_picker_regs->e1;
446 current_e1 = waveform_picker_regs->e1;
446 current_e2 = waveform_picker_regs->e2;
447 current_e2 = waveform_picker_regs->e2;
447 if ( (current_v != old_v)
448 if ( (current_v != old_v)
448 || (current_e1 != old_e1)
449 || (current_e1 != old_e1)
449 || (current_e2 != old_e2))
450 || (current_e2 != old_e2))
450 {
451 {
451 average_v = filter( current_v, &ctx_v );
452 average_v = filter( current_v, &ctx_v );
452 average_e1 = filter( current_e1, &ctx_e1 );
453 average_e1 = filter( current_e1, &ctx_e1 );
453 average_e2 = filter( current_e2, &ctx_e2 );
454 average_e2 = filter( current_e2, &ctx_e2 );
454
455
455 //update int16 values
456 //update int16 values
456 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / MOVING_AVERAGE );
457 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / MOVING_AVERAGE );
457 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / MOVING_AVERAGE );
458 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / MOVING_AVERAGE );
458 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / MOVING_AVERAGE );
459 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / MOVING_AVERAGE );
459 }
460 }
460 old_v = current_v;
461 old_v = current_v;
461 old_e1 = current_e1;
462 old_e1 = current_e1;
462 old_e2 = current_e2;
463 old_e2 = current_e2;
463 }
464 }
464 }
465 }
465
466
466 PRINTF("in AVGV *** deleting task\n");
467 PRINTF("in AVGV *** deleting task\n");
467
468
468 status = rtems_task_delete( RTEMS_SELF ); // should not return
469 status = rtems_task_delete( RTEMS_SELF ); // should not return
469
470
470 return;
471 return;
471 }
472 }
472
473
473 rtems_task dumb_task( rtems_task_argument unused )
474 rtems_task dumb_task( rtems_task_argument unused )
474 {
475 {
475 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
476 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
476 *
477 *
477 * @param unused is the starting argument of the RTEMS task
478 * @param unused is the starting argument of the RTEMS task
478 *
479 *
479 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
480 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
480 *
481 *
481 */
482 */
482
483
483 unsigned int i;
484 unsigned int i;
484 unsigned int intEventOut;
485 unsigned int intEventOut;
485 unsigned int coarse_time = 0;
486 unsigned int coarse_time = 0;
486 unsigned int fine_time = 0;
487 unsigned int fine_time = 0;
487 rtems_event_set event_out;
488 rtems_event_set event_out;
488
489
489 event_out = EVENT_SETS_NONE_PENDING;
490 event_out = EVENT_SETS_NONE_PENDING;
490
491
491 BOOT_PRINTF("in DUMB *** \n")
492 BOOT_PRINTF("in DUMB *** \n")
492
493
493 while(1){
494 while(1){
494 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
495 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
495 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
496 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
496 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
497 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
497 | RTEMS_EVENT_14,
498 | RTEMS_EVENT_14,
498 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
499 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
499 intEventOut = (unsigned int) event_out;
500 intEventOut = (unsigned int) event_out;
500 for ( i=0; i<NB_RTEMS_EVENTS; i++)
501 for ( i=0; i<NB_RTEMS_EVENTS; i++)
501 {
502 {
502 if ( ((intEventOut >> i) & 1) != 0)
503 if ( ((intEventOut >> i) & 1) != 0)
503 {
504 {
504 coarse_time = time_management_regs->coarse_time;
505 coarse_time = time_management_regs->coarse_time;
505 fine_time = time_management_regs->fine_time;
506 fine_time = time_management_regs->fine_time;
506 if (i==EVENT_12)
507 if (i==EVENT_12)
507 {
508 {
508 PRINTF1("%s\n", DUMB_MESSAGE_12)
509 PRINTF1("%s\n", DUMB_MESSAGE_12)
509 }
510 }
510 if (i==EVENT_13)
511 if (i==EVENT_13)
511 {
512 {
512 PRINTF1("%s\n", DUMB_MESSAGE_13)
513 PRINTF1("%s\n", DUMB_MESSAGE_13)
513 }
514 }
514 if (i==EVENT_14)
515 if (i==EVENT_14)
515 {
516 {
516 PRINTF1("%s\n", DUMB_MESSAGE_1)
517 PRINTF1("%s\n", DUMB_MESSAGE_1)
517 }
518 }
518 }
519 }
519 }
520 }
520 }
521 }
521 }
522 }
522
523
523 //*****************************
524 //*****************************
524 // init housekeeping parameters
525 // init housekeeping parameters
525
526
526 void init_housekeeping_parameters( void )
527 void init_housekeeping_parameters( void )
527 {
528 {
528 /** This function initialize the housekeeping_packet global variable with default values.
529 /** This function initialize the housekeeping_packet global variable with default values.
529 *
530 *
530 */
531 */
531
532
532 unsigned int i = 0;
533 unsigned int i = 0;
533 unsigned char *parameters;
534 unsigned char *parameters;
534 unsigned char sizeOfHK;
535 unsigned char sizeOfHK;
535
536
536 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
537 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
537
538
538 parameters = (unsigned char*) &housekeeping_packet;
539 parameters = (unsigned char*) &housekeeping_packet;
539
540
540 for(i = 0; i< sizeOfHK; i++)
541 for(i = 0; i< sizeOfHK; i++)
541 {
542 {
542 parameters[i] = INIT_CHAR;
543 parameters[i] = INIT_CHAR;
543 }
544 }
544
545
545 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
546 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
546 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
547 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
547 housekeeping_packet.reserved = DEFAULT_RESERVED;
548 housekeeping_packet.reserved = DEFAULT_RESERVED;
548 housekeeping_packet.userApplication = CCSDS_USER_APP;
549 housekeeping_packet.userApplication = CCSDS_USER_APP;
549 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
550 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
550 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
551 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
551 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
552 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
552 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
553 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
553 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
554 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
554 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
555 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
555 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
556 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
556 housekeeping_packet.serviceType = TM_TYPE_HK;
557 housekeeping_packet.serviceType = TM_TYPE_HK;
557 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
558 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
558 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
559 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
559 housekeeping_packet.sid = SID_HK;
560 housekeeping_packet.sid = SID_HK;
560
561
561 // init status word
562 // init status word
562 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
563 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
563 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
564 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
564 // init software version
565 // init software version
565 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
566 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
566 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
567 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
567 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
568 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
568 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
569 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
569 // init fpga version
570 // init fpga version
570 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
571 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
571 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
572 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
572 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
573 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
573 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
574 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
574
575
575 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
576 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
576 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
577 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
577 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
578 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
578 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
579 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
579 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
580 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
580 }
581 }
581
582
582 void increment_seq_counter( unsigned short *packetSequenceControl )
583 void increment_seq_counter( unsigned short *packetSequenceControl )
583 {
584 {
584 /** This function increment the sequence counter passes in argument.
585 /** This function increment the sequence counter passes in argument.
585 *
586 *
586 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
587 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
587 *
588 *
588 */
589 */
589
590
590 unsigned short segmentation_grouping_flag;
591 unsigned short segmentation_grouping_flag;
591 unsigned short sequence_cnt;
592 unsigned short sequence_cnt;
592
593
593 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
594 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
594 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
595 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
595
596
596 if ( sequence_cnt < SEQ_CNT_MAX)
597 if ( sequence_cnt < SEQ_CNT_MAX)
597 {
598 {
598 sequence_cnt = sequence_cnt + 1;
599 sequence_cnt = sequence_cnt + 1;
599 }
600 }
600 else
601 else
601 {
602 {
602 sequence_cnt = 0;
603 sequence_cnt = 0;
603 }
604 }
604
605
605 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
606 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
606 }
607 }
607
608
608 void getTime( unsigned char *time)
609 void getTime( unsigned char *time)
609 {
610 {
610 /** This function write the current local time in the time buffer passed in argument.
611 /** This function write the current local time in the time buffer passed in argument.
611 *
612 *
612 */
613 */
613
614
614 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
615 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
615 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
616 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
616 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
617 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
617 time[3] = (unsigned char) (time_management_regs->coarse_time);
618 time[3] = (unsigned char) (time_management_regs->coarse_time);
618 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
619 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
619 time[5] = (unsigned char) (time_management_regs->fine_time);
620 time[5] = (unsigned char) (time_management_regs->fine_time);
620 }
621 }
621
622
622 unsigned long long int getTimeAsUnsignedLongLongInt( )
623 unsigned long long int getTimeAsUnsignedLongLongInt( )
623 {
624 {
624 /** This function write the current local time in the time buffer passed in argument.
625 /** This function write the current local time in the time buffer passed in argument.
625 *
626 *
626 */
627 */
627 unsigned long long int time;
628 unsigned long long int time;
628
629
629 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
630 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
630 + time_management_regs->fine_time;
631 + time_management_regs->fine_time;
631
632
632 return time;
633 return time;
633 }
634 }
634
635
635 void send_dumb_hk( void )
636 void send_dumb_hk( void )
636 {
637 {
637 Packet_TM_LFR_HK_t dummy_hk_packet;
638 Packet_TM_LFR_HK_t dummy_hk_packet;
638 unsigned char *parameters;
639 unsigned char *parameters;
639 unsigned int i;
640 unsigned int i;
640 rtems_id queue_id;
641 rtems_id queue_id;
641
642
642 queue_id = RTEMS_ID_NONE;
643 queue_id = RTEMS_ID_NONE;
643
644
644 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
645 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
645 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
646 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
646 dummy_hk_packet.reserved = DEFAULT_RESERVED;
647 dummy_hk_packet.reserved = DEFAULT_RESERVED;
647 dummy_hk_packet.userApplication = CCSDS_USER_APP;
648 dummy_hk_packet.userApplication = CCSDS_USER_APP;
648 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
649 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
649 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
650 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
650 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
651 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
651 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
652 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
652 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
653 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
653 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
654 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
654 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
655 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
655 dummy_hk_packet.serviceType = TM_TYPE_HK;
656 dummy_hk_packet.serviceType = TM_TYPE_HK;
656 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
657 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
657 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
658 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
658 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
659 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
659 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
660 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
660 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
661 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
661 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
662 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
662 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
663 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
663 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
664 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
664 dummy_hk_packet.sid = SID_HK;
665 dummy_hk_packet.sid = SID_HK;
665
666
666 // init status word
667 // init status word
667 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
668 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
668 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
669 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
669 // init software version
670 // init software version
670 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
671 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
671 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
672 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
672 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
673 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
673 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
674 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
674 // init fpga version
675 // init fpga version
675 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
676 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
676 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
677 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
677 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
678 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
678 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
679 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
679
680
680 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
681 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
681
682
682 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
683 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
683 {
684 {
684 parameters[i] = INT8_ALL_F;
685 parameters[i] = INT8_ALL_F;
685 }
686 }
686
687
687 get_message_queue_id_send( &queue_id );
688 get_message_queue_id_send( &queue_id );
688
689
689 rtems_message_queue_send( queue_id, &dummy_hk_packet,
690 rtems_message_queue_send( queue_id, &dummy_hk_packet,
690 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
691 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
691 }
692 }
692
693
693 void get_temperatures( unsigned char *temperatures )
694 void get_temperatures( unsigned char *temperatures )
694 {
695 {
695 unsigned char* temp_scm_ptr;
696 unsigned char* temp_scm_ptr;
696 unsigned char* temp_pcb_ptr;
697 unsigned char* temp_pcb_ptr;
697 unsigned char* temp_fpga_ptr;
698 unsigned char* temp_fpga_ptr;
698
699
699 // SEL1 SEL0
700 // SEL1 SEL0
700 // 0 0 => PCB
701 // 0 0 => PCB
701 // 0 1 => FPGA
702 // 0 1 => FPGA
702 // 1 0 => SCM
703 // 1 0 => SCM
703
704
704 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
705 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
705 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
706 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
706 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
707 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
707
708
708 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
709 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
709 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
710 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
710 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
711 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
711 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
712 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
712 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
713 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
713 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
714 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
714 }
715 }
715
716
716 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
717 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
717 {
718 {
718 unsigned char* v_ptr;
719 unsigned char* v_ptr;
719 unsigned char* e1_ptr;
720 unsigned char* e1_ptr;
720 unsigned char* e2_ptr;
721 unsigned char* e2_ptr;
721
722
722 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
723 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
723 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
724 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
724 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
725 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
725
726
726 spacecraft_potential[BYTE_0] = v_ptr[0];
727 spacecraft_potential[BYTE_0] = v_ptr[0];
727 spacecraft_potential[BYTE_1] = v_ptr[1];
728 spacecraft_potential[BYTE_1] = v_ptr[1];
728 spacecraft_potential[BYTE_2] = e1_ptr[0];
729 spacecraft_potential[BYTE_2] = e1_ptr[0];
729 spacecraft_potential[BYTE_3] = e1_ptr[1];
730 spacecraft_potential[BYTE_3] = e1_ptr[1];
730 spacecraft_potential[BYTE_4] = e2_ptr[0];
731 spacecraft_potential[BYTE_4] = e2_ptr[0];
731 spacecraft_potential[BYTE_5] = e2_ptr[1];
732 spacecraft_potential[BYTE_5] = e2_ptr[1];
732 }
733 }
733
734
734 void get_cpu_load( unsigned char *resource_statistics )
735 void get_cpu_load( unsigned char *resource_statistics )
735 {
736 {
736 unsigned char cpu_load;
737 unsigned char cpu_load;
737
738
738 cpu_load = lfr_rtems_cpu_usage_report();
739 cpu_load = lfr_rtems_cpu_usage_report();
739
740
740 // HK_LFR_CPU_LOAD
741 // HK_LFR_CPU_LOAD
741 resource_statistics[0] = cpu_load;
742 resource_statistics[0] = cpu_load;
742
743
743 // HK_LFR_CPU_LOAD_MAX
744 // HK_LFR_CPU_LOAD_MAX
744 if (cpu_load > resource_statistics[1])
745 if (cpu_load > resource_statistics[1])
745 {
746 {
746 resource_statistics[1] = cpu_load;
747 resource_statistics[1] = cpu_load;
747 }
748 }
748
749
749 // CPU_LOAD_AVE
750 // CPU_LOAD_AVE
750 resource_statistics[BYTE_2] = 0;
751 resource_statistics[BYTE_2] = 0;
751
752
752 #ifndef PRINT_TASK_STATISTICS
753 #ifndef PRINT_TASK_STATISTICS
753 rtems_cpu_usage_reset();
754 rtems_cpu_usage_reset();
754 #endif
755 #endif
755
756
756 }
757 }
757
758
758 void set_hk_lfr_sc_potential_flag( bool state )
759 void set_hk_lfr_sc_potential_flag( bool state )
759 {
760 {
760 if (state == true)
761 if (state == true)
761 {
762 {
762 housekeeping_packet.lfr_status_word[1] =
763 housekeeping_packet.lfr_status_word[1] =
763 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
764 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
764 }
765 }
765 else
766 else
766 {
767 {
767 housekeeping_packet.lfr_status_word[1] =
768 housekeeping_packet.lfr_status_word[1] =
768 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
769 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
769 }
770 }
770 }
771 }
771
772
772 void set_sy_lfr_pas_filter_enabled( bool state )
773 void set_sy_lfr_pas_filter_enabled( bool state )
773 {
774 {
774 if (state == true)
775 if (state == true)
775 {
776 {
776 housekeeping_packet.lfr_status_word[1] =
777 housekeeping_packet.lfr_status_word[1] =
777 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
778 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
778 }
779 }
779 else
780 else
780 {
781 {
781 housekeeping_packet.lfr_status_word[1] =
782 housekeeping_packet.lfr_status_word[1] =
782 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
783 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
783 }
784 }
784 }
785 }
785
786
786 void set_sy_lfr_watchdog_enabled( bool state )
787 void set_sy_lfr_watchdog_enabled( bool state )
787 {
788 {
788 if (state == true)
789 if (state == true)
789 {
790 {
790 housekeeping_packet.lfr_status_word[1] =
791 housekeeping_packet.lfr_status_word[1] =
791 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
792 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
792 }
793 }
793 else
794 else
794 {
795 {
795 housekeeping_packet.lfr_status_word[1] =
796 housekeeping_packet.lfr_status_word[1] =
796 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
797 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
797 }
798 }
798 }
799 }
799
800
800 void set_hk_lfr_calib_enable( bool state )
801 void set_hk_lfr_calib_enable( bool state )
801 {
802 {
802 if (state == true)
803 if (state == true)
803 {
804 {
804 housekeeping_packet.lfr_status_word[1] =
805 housekeeping_packet.lfr_status_word[1] =
805 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
806 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
806 }
807 }
807 else
808 else
808 {
809 {
809 housekeeping_packet.lfr_status_word[1] =
810 housekeeping_packet.lfr_status_word[1] =
810 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
811 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
811 }
812 }
812 }
813 }
813
814
814 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
815 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
815 {
816 {
816 housekeeping_packet.lfr_status_word[1] =
817 housekeeping_packet.lfr_status_word[1] =
817 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
818 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
818
819
819 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
820 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
820 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
821 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
821
822
822 }
823 }
823
824
824 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
825 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
825 {
826 {
826 int delta;
827 int delta;
827
828
828 delta = 0;
829 delta = 0;
829
830
830 if (newValue >= oldValue)
831 if (newValue >= oldValue)
831 {
832 {
832 delta = newValue - oldValue;
833 delta = newValue - oldValue;
833 }
834 }
834 else
835 else
835 {
836 {
836 delta = (CONST_256 - oldValue) + newValue;
837 delta = (CONST_256 - oldValue) + newValue;
837 }
838 }
838
839
839 *counter = *counter + delta;
840 *counter = *counter + delta;
840 }
841 }
841
842
842 void hk_lfr_le_update( void )
843 void hk_lfr_le_update( void )
843 {
844 {
844 static hk_lfr_le_t old_hk_lfr_le = {0};
845 static hk_lfr_le_t old_hk_lfr_le = {0};
845 hk_lfr_le_t new_hk_lfr_le;
846 hk_lfr_le_t new_hk_lfr_le;
846 unsigned int counter;
847 unsigned int counter;
847
848
848 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
849 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
849
850
850 // DPU
851 // DPU
851 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
852 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
852 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
853 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
853 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
854 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
854 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
855 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
855 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
856 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
856 // TIMECODE
857 // TIMECODE
857 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
858 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
858 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
859 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
859 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
860 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
860 // TIME
861 // TIME
861 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
862 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
862 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
863 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
863 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
864 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
864 //AHB
865 //AHB
865 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
866 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
866 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
867 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
867 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
868 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
868
869
869 // update the le counter
870 // update the le counter
870 // DPU
871 // DPU
871 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
872 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
872 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
873 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
873 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
874 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
874 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
875 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
875 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
876 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
876 // TIMECODE
877 // TIMECODE
877 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
878 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
878 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
879 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
879 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
880 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
880 // TIME
881 // TIME
881 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
882 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
882 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
883 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
883 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
884 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
884 // AHB
885 // AHB
885 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
886 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
886
887
887 // DPU
888 // DPU
888 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
889 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
889 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
890 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
890 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
891 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
891 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
892 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
892 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
893 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
893 // TIMECODE
894 // TIMECODE
894 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
895 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
895 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
896 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
896 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
897 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
897 // TIME
898 // TIME
898 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
899 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
899 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
900 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
900 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
901 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
901 //AHB
902 //AHB
902 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
903 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
903 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
904 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
904 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
905 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
905
906
906 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
907 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
907 // LE
908 // LE
908 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
909 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
909 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
910 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
910 }
911 }
911
912
912 void hk_lfr_me_update( void )
913 void hk_lfr_me_update( void )
913 {
914 {
914 static hk_lfr_me_t old_hk_lfr_me = {0};
915 static hk_lfr_me_t old_hk_lfr_me = {0};
915 hk_lfr_me_t new_hk_lfr_me;
916 hk_lfr_me_t new_hk_lfr_me;
916 unsigned int counter;
917 unsigned int counter;
917
918
918 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
919 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
919
920
920 // get the current values
921 // get the current values
921 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
922 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
922 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
923 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
923 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
924 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
924 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
925 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
925
926
926 // update the me counter
927 // update the me counter
927 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
928 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
928 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
929 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
929 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
930 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
930 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
931 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
931
932
932 // store the counters for the next time
933 // store the counters for the next time
933 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
934 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
934 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
935 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
935 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
936 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
936 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
937 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
937
938
938 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
939 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
939 // ME
940 // ME
940 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
941 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
941 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
942 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
942 }
943 }
943
944
944 void hk_lfr_le_me_he_update()
945 void hk_lfr_le_me_he_update()
945 {
946 {
946
947
947 unsigned int hk_lfr_he_cnt;
948 unsigned int hk_lfr_he_cnt;
948
949
949 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
950 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
950
951
951 //update the low severity error counter
952 //update the low severity error counter
952 hk_lfr_le_update( );
953 hk_lfr_le_update( );
953
954
954 //update the medium severity error counter
955 //update the medium severity error counter
955 hk_lfr_me_update();
956 hk_lfr_me_update();
956
957
957 //update the high severity error counter
958 //update the high severity error counter
958 hk_lfr_he_cnt = 0;
959 hk_lfr_he_cnt = 0;
959
960
960 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
961 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
961 // HE
962 // HE
962 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
963 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
963 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
964 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
964
965
965 }
966 }
966
967
967 void set_hk_lfr_time_not_synchro()
968 void set_hk_lfr_time_not_synchro()
968 {
969 {
969 static unsigned char synchroLost = 1;
970 static unsigned char synchroLost = 1;
970 int synchronizationBit;
971 int synchronizationBit;
971
972
972 // get the synchronization bit
973 // get the synchronization bit
973 synchronizationBit =
974 synchronizationBit =
974 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
975 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
975
976
976 switch (synchronizationBit)
977 switch (synchronizationBit)
977 {
978 {
978 case 0:
979 case 0:
979 if (synchroLost == 1)
980 if (synchroLost == 1)
980 {
981 {
981 synchroLost = 0;
982 synchroLost = 0;
982 }
983 }
983 break;
984 break;
984 case 1:
985 case 1:
985 if (synchroLost == 0 )
986 if (synchroLost == 0 )
986 {
987 {
987 synchroLost = 1;
988 synchroLost = 1;
988 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
989 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
989 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
990 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
990 }
991 }
991 break;
992 break;
992 default:
993 default:
993 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
994 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
994 break;
995 break;
995 }
996 }
996
997
997 }
998 }
998
999
999 void set_hk_lfr_ahb_correctable() // CRITICITY L
1000 void set_hk_lfr_ahb_correctable() // CRITICITY L
1000 {
1001 {
1001 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1002 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
1002 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1003 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
1003 * detected errors in the cache, in the integer unit and in the floating point unit.
1004 * detected errors in the cache, in the integer unit and in the floating point unit.
1004 *
1005 *
1005 * @param void
1006 * @param void
1006 *
1007 *
1007 * @return void
1008 * @return void
1008 *
1009 *
1009 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1010 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
1010 *
1011 *
1011 */
1012 */
1012
1013
1013 unsigned int ahb_correctable;
1014 unsigned int ahb_correctable;
1014 unsigned int instructionErrorCounter;
1015 unsigned int instructionErrorCounter;
1015 unsigned int dataErrorCounter;
1016 unsigned int dataErrorCounter;
1016 unsigned int fprfErrorCounter;
1017 unsigned int fprfErrorCounter;
1017 unsigned int iurfErrorCounter;
1018 unsigned int iurfErrorCounter;
1018
1019
1019 instructionErrorCounter = 0;
1020 instructionErrorCounter = 0;
1020 dataErrorCounter = 0;
1021 dataErrorCounter = 0;
1021 fprfErrorCounter = 0;
1022 fprfErrorCounter = 0;
1022 iurfErrorCounter = 0;
1023 iurfErrorCounter = 0;
1023
1024
1024 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1025 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
1025 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1026 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
1026
1027
1027 ahb_correctable = instructionErrorCounter
1028 ahb_correctable = instructionErrorCounter
1028 + dataErrorCounter
1029 + dataErrorCounter
1029 + fprfErrorCounter
1030 + fprfErrorCounter
1030 + iurfErrorCounter
1031 + iurfErrorCounter
1031 + housekeeping_packet.hk_lfr_ahb_correctable;
1032 + housekeeping_packet.hk_lfr_ahb_correctable;
1032
1033
1033 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1034 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1034
1035
1035 }
1036 }
General Comments 0
You need to be logged in to leave comments. Login now