##// END OF EJS Templates
Bug 796 Don_Initialisation_P1
paul -
r321:0d3dfc6f1f08 R3_plus draft
parent child
Show More
@@ -1,131 +1,131
1 #ifndef FSW_MISC_H_INCLUDED
1 #ifndef FSW_MISC_H_INCLUDED
2 #define FSW_MISC_H_INCLUDED
2 #define FSW_MISC_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <stdio.h>
5 #include <stdio.h>
6 #include <grspw.h>
6 #include <grspw.h>
7 #include <grlib_regs.h>
7 #include <grlib_regs.h>
8
8
9 #include "fsw_params.h"
9 #include "fsw_params.h"
10 #include "fsw_spacewire.h"
10 #include "fsw_spacewire.h"
11 #include "lfr_cpu_usage_report.h"
11 #include "lfr_cpu_usage_report.h"
12
12
13 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
13 #define LFR_RESET_CAUSE_UNKNOWN_CAUSE 0
14 #define WATCHDOG_LOOP_PRINTF 10
14 #define WATCHDOG_LOOP_PRINTF 10
15 #define WATCHDOG_LOOP_DEBUG 3
15 #define WATCHDOG_LOOP_DEBUG 3
16
16
17 #define DUMB_MESSAGE_NB 15
17 #define DUMB_MESSAGE_NB 15
18 #define NB_RTEMS_EVENTS 32
18 #define NB_RTEMS_EVENTS 32
19 #define EVENT_12 12
19 #define EVENT_12 12
20 #define EVENT_13 13
20 #define EVENT_13 13
21 #define EVENT_14 14
21 #define EVENT_14 14
22 #define DUMB_MESSAGE_0 "in DUMB *** default"
22 #define DUMB_MESSAGE_0 "in DUMB *** default"
23 #define DUMB_MESSAGE_1 "in DUMB *** timecode_irq_handler"
23 #define DUMB_MESSAGE_1 "in DUMB *** timecode_irq_handler"
24 #define DUMB_MESSAGE_2 "in DUMB *** f3 buffer changed"
24 #define DUMB_MESSAGE_2 "in DUMB *** f3 buffer changed"
25 #define DUMB_MESSAGE_3 "in DUMB *** in SMIQ *** Error sending event to AVF0"
25 #define DUMB_MESSAGE_3 "in DUMB *** in SMIQ *** Error sending event to AVF0"
26 #define DUMB_MESSAGE_4 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ"
26 #define DUMB_MESSAGE_4 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ"
27 #define DUMB_MESSAGE_5 "in DUMB *** waveforms_simulator_isr"
27 #define DUMB_MESSAGE_5 "in DUMB *** waveforms_simulator_isr"
28 #define DUMB_MESSAGE_6 "VHDL SM *** two buffers f0 ready"
28 #define DUMB_MESSAGE_6 "VHDL SM *** two buffers f0 ready"
29 #define DUMB_MESSAGE_7 "ready for dump"
29 #define DUMB_MESSAGE_7 "ready for dump"
30 #define DUMB_MESSAGE_8 "VHDL ERR *** spectral matrix"
30 #define DUMB_MESSAGE_8 "VHDL ERR *** spectral matrix"
31 #define DUMB_MESSAGE_9 "tick"
31 #define DUMB_MESSAGE_9 "tick"
32 #define DUMB_MESSAGE_10 "VHDL ERR *** waveform picker"
32 #define DUMB_MESSAGE_10 "VHDL ERR *** waveform picker"
33 #define DUMB_MESSAGE_11 "VHDL ERR *** unexpected ready matrix values"
33 #define DUMB_MESSAGE_11 "VHDL ERR *** unexpected ready matrix values"
34 #define DUMB_MESSAGE_12 "WATCHDOG timer"
34 #define DUMB_MESSAGE_12 "WATCHDOG timer"
35 #define DUMB_MESSAGE_13 "TIMECODE timer"
35 #define DUMB_MESSAGE_13 "TIMECODE timer"
36 #define DUMB_MESSAGE_14 "TIMECODE ISR"
36 #define DUMB_MESSAGE_14 "TIMECODE ISR"
37
37
38 enum lfr_reset_cause_t{
38 enum lfr_reset_cause_t{
39 UNKNOWN_CAUSE,
39 UNKNOWN_CAUSE,
40 POWER_ON,
40 POWER_ON,
41 TC_RESET,
41 TC_RESET,
42 WATCHDOG,
42 WATCHDOG,
43 ERROR_RESET,
43 ERROR_RESET,
44 UNEXP_RESET
44 UNEXP_RESET
45 };
45 };
46
46
47 typedef struct{
47 typedef struct{
48 unsigned char dpu_spw_parity;
48 unsigned char dpu_spw_parity;
49 unsigned char dpu_spw_disconnect;
49 unsigned char dpu_spw_disconnect;
50 unsigned char dpu_spw_escape;
50 unsigned char dpu_spw_escape;
51 unsigned char dpu_spw_credit;
51 unsigned char dpu_spw_credit;
52 unsigned char dpu_spw_write_sync;
52 unsigned char dpu_spw_write_sync;
53 unsigned char timecode_erroneous;
53 unsigned char timecode_erroneous;
54 unsigned char timecode_missing;
54 unsigned char timecode_missing;
55 unsigned char timecode_invalid;
55 unsigned char timecode_invalid;
56 unsigned char time_timecode_it;
56 unsigned char time_timecode_it;
57 unsigned char time_not_synchro;
57 unsigned char time_not_synchro;
58 unsigned char time_timecode_ctr;
58 unsigned char time_timecode_ctr;
59 unsigned char ahb_correctable;
59 unsigned char ahb_correctable;
60 } hk_lfr_le_t;
60 } hk_lfr_le_t;
61
61
62 typedef struct{
62 typedef struct{
63 unsigned char dpu_spw_early_eop;
63 unsigned char dpu_spw_early_eop;
64 unsigned char dpu_spw_invalid_addr;
64 unsigned char dpu_spw_invalid_addr;
65 unsigned char dpu_spw_eep;
65 unsigned char dpu_spw_eep;
66 unsigned char dpu_spw_rx_too_big;
66 unsigned char dpu_spw_rx_too_big;
67 } hk_lfr_me_t;
67 } hk_lfr_me_t;
68
68
69 extern gptimer_regs_t *gptimer_regs;
69 extern gptimer_regs_t *gptimer_regs;
70 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
70 extern void ASR16_get_FPRF_IURF_ErrorCounters( unsigned int*, unsigned int* );
71 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
71 extern void CCR_getInstructionAndDataErrorCounters( unsigned int*, unsigned int* );
72
72
73 rtems_name name_hk_rate_monotonic; // name of the HK rate monotonic
73 rtems_name name_hk_rate_monotonic = 0; // name of the HK rate monotonic
74 rtems_id HK_id; // id of the HK rate monotonic period
74 rtems_id HK_id = RTEMS_ID_NONE;// id of the HK rate monotonic period
75 rtems_name name_avgv_rate_monotonic; // name of the AVGV rate monotonic
75 rtems_name name_avgv_rate_monotonic = 0; // name of the AVGV rate monotonic
76 rtems_id AVGV_id; // id of the AVGV rate monotonic period
76 rtems_id AVGV_id = RTEMS_ID_NONE;// id of the AVGV rate monotonic period
77
77
78 void timer_configure( unsigned char timer, unsigned int clock_divider,
78 void timer_configure( unsigned char timer, unsigned int clock_divider,
79 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
79 unsigned char interrupt_level, rtems_isr (*timer_isr)() );
80 void timer_start( unsigned char timer );
80 void timer_start( unsigned char timer );
81 void timer_stop( unsigned char timer );
81 void timer_stop( unsigned char timer );
82 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
82 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider);
83
83
84 // WATCHDOG
84 // WATCHDOG
85 rtems_isr watchdog_isr( rtems_vector_number vector );
85 rtems_isr watchdog_isr( rtems_vector_number vector );
86 void watchdog_configure(void);
86 void watchdog_configure(void);
87 void watchdog_stop(void);
87 void watchdog_stop(void);
88 void watchdog_reload(void);
88 void watchdog_reload(void);
89 void watchdog_start(void);
89 void watchdog_start(void);
90
90
91 // SERIAL LINK
91 // SERIAL LINK
92 int send_console_outputs_on_apbuart_port( void );
92 int send_console_outputs_on_apbuart_port( void );
93 int enable_apbuart_transmitter( void );
93 int enable_apbuart_transmitter( void );
94 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
94 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value);
95
95
96 // RTEMS TASKS
96 // RTEMS TASKS
97 rtems_task load_task( rtems_task_argument argument );
97 rtems_task load_task( rtems_task_argument argument );
98 rtems_task hous_task( rtems_task_argument argument );
98 rtems_task hous_task( rtems_task_argument argument );
99 rtems_task avgv_task( rtems_task_argument argument );
99 rtems_task avgv_task( rtems_task_argument argument );
100 rtems_task dumb_task( rtems_task_argument unused );
100 rtems_task dumb_task( rtems_task_argument unused );
101
101
102 void init_housekeeping_parameters( void );
102 void init_housekeeping_parameters( void );
103 void increment_seq_counter(unsigned short *packetSequenceControl);
103 void increment_seq_counter(unsigned short *packetSequenceControl);
104 void getTime( unsigned char *time);
104 void getTime( unsigned char *time);
105 unsigned long long int getTimeAsUnsignedLongLongInt( );
105 unsigned long long int getTimeAsUnsignedLongLongInt( );
106 void send_dumb_hk( void );
106 void send_dumb_hk( void );
107 void get_temperatures( unsigned char *temperatures );
107 void get_temperatures( unsigned char *temperatures );
108 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
108 void get_v_e1_e2_f3( unsigned char *spacecraft_potential );
109 void get_cpu_load( unsigned char *resource_statistics );
109 void get_cpu_load( unsigned char *resource_statistics );
110 void set_hk_lfr_sc_potential_flag( bool state );
110 void set_hk_lfr_sc_potential_flag( bool state );
111 void set_sy_lfr_pas_filter_enabled( bool state );
111 void set_sy_lfr_pas_filter_enabled( bool state );
112 void set_sy_lfr_watchdog_enabled( bool state );
112 void set_sy_lfr_watchdog_enabled( bool state );
113 void set_hk_lfr_calib_enable( bool state );
113 void set_hk_lfr_calib_enable( bool state );
114 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
114 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause );
115 void hk_lfr_le_me_he_update();
115 void hk_lfr_le_me_he_update();
116 void set_hk_lfr_time_not_synchro();
116 void set_hk_lfr_time_not_synchro();
117
117
118 extern int sched_yield( void );
118 extern int sched_yield( void );
119 extern void rtems_cpu_usage_reset();
119 extern void rtems_cpu_usage_reset();
120 extern ring_node *current_ring_node_f3;
120 extern ring_node *current_ring_node_f3;
121 extern ring_node *ring_node_to_send_cwf_f3;
121 extern ring_node *ring_node_to_send_cwf_f3;
122 extern ring_node waveform_ring_f3[];
122 extern ring_node waveform_ring_f3[];
123 extern unsigned short sequenceCounterHK;
123 extern unsigned short sequenceCounterHK;
124
124
125 extern unsigned char hk_lfr_q_sd_fifo_size_max;
125 extern unsigned char hk_lfr_q_sd_fifo_size_max;
126 extern unsigned char hk_lfr_q_rv_fifo_size_max;
126 extern unsigned char hk_lfr_q_rv_fifo_size_max;
127 extern unsigned char hk_lfr_q_p0_fifo_size_max;
127 extern unsigned char hk_lfr_q_p0_fifo_size_max;
128 extern unsigned char hk_lfr_q_p1_fifo_size_max;
128 extern unsigned char hk_lfr_q_p1_fifo_size_max;
129 extern unsigned char hk_lfr_q_p2_fifo_size_max;
129 extern unsigned char hk_lfr_q_p2_fifo_size_max;
130
130
131 #endif // FSW_MISC_H_INCLUDED
131 #endif // FSW_MISC_H_INCLUDED
@@ -1,102 +1,102
1 /** Global variables of the LFR flight software.
1 /** Global variables of the LFR flight software.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * Among global variables, there are:
6 * Among global variables, there are:
7 * - RTEMS names and id.
7 * - RTEMS names and id.
8 * - APB configuration registers.
8 * - APB configuration registers.
9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
9 * - waveforms global buffers, used by the waveform picker hardware module to store data.
10 * - spectral matrices buffesr, used by the hardware module to store data.
10 * - spectral matrices buffesr, used by the hardware module to store data.
11 * - variable related to LFR modes parameters.
11 * - variable related to LFR modes parameters.
12 * - the global HK packet buffer.
12 * - the global HK packet buffer.
13 * - the global dump parameter buffer.
13 * - the global dump parameter buffer.
14 *
14 *
15 */
15 */
16
16
17 #include <rtems.h>
17 #include <rtems.h>
18 #include <grspw.h>
18 #include <grspw.h>
19
19
20 #include "ccsds_types.h"
20 #include "ccsds_types.h"
21 #include "grlib_regs.h"
21 #include "grlib_regs.h"
22 #include "fsw_params.h"
22 #include "fsw_params.h"
23 #include "fsw_params_wf_handler.h"
23 #include "fsw_params_wf_handler.h"
24
24
25 #define NB_OF_TASKS 20
25 #define NB_OF_TASKS 20
26 #define NB_OF_MISC_NAMES 5
26 #define NB_OF_MISC_NAMES 5
27
27
28 // RTEMS GLOBAL VARIABLES
28 // RTEMS GLOBAL VARIABLES
29 rtems_name misc_name[NB_OF_MISC_NAMES];
29 rtems_name misc_name[NB_OF_MISC_NAMES] = {0};
30 rtems_name Task_name[NB_OF_TASKS]; /* array of task names */
30 rtems_name Task_name[NB_OF_TASKS] = {0}; /* array of task names */
31 rtems_id Task_id[NB_OF_TASKS]; /* array of task ids */
31 rtems_id Task_id[NB_OF_TASKS] = {0}; /* array of task ids */
32 rtems_name timecode_timer_name;
32 rtems_name timecode_timer_name = {0};
33 rtems_id timecode_timer_id;
33 rtems_id timecode_timer_id = {0};
34 int fdSPW = 0;
34 int fdSPW = 0;
35 int fdUART = 0;
35 int fdUART = 0;
36 unsigned char lfrCurrentMode;
36 unsigned char lfrCurrentMode = 0;
37 unsigned char pa_bia_status_info;
37 unsigned char pa_bia_status_info = 0;
38 unsigned char thisIsAnASMRestart = 0;
38 unsigned char thisIsAnASMRestart = 0;
39 unsigned char oneTcLfrUpdateTimeReceived = 0;
39 unsigned char oneTcLfrUpdateTimeReceived = 0;
40
40
41 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
41 // WAVEFORMS GLOBAL VARIABLES // 2048 * 3 * 4 + 2 * 4 = 24576 + 8 bytes = 24584
42 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
42 // 97 * 256 = 24832 => delta = 248 bytes = 62 words
43 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
43 // WAVEFORMS GLOBAL VARIABLES // 2688 * 3 * 4 + 2 * 4 = 32256 + 8 bytes = 32264
44 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
44 // 127 * 256 = 32512 => delta = 248 bytes = 62 words
45 // F0 F1 F2 F3
45 // F0 F1 F2 F3
46 volatile int wf_buffer_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
46 volatile int wf_buffer_f0[ NB_RING_NODES_F0 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
47 volatile int wf_buffer_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
47 volatile int wf_buffer_f1[ NB_RING_NODES_F1 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
48 volatile int wf_buffer_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
48 volatile int wf_buffer_f2[ NB_RING_NODES_F2 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
49 volatile int wf_buffer_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100)));
49 volatile int wf_buffer_f3[ NB_RING_NODES_F3 * WFRM_BUFFER ] __attribute__((aligned(0x100))) = {0};
50
50
51 //***********************************
51 //***********************************
52 // SPECTRAL MATRICES GLOBAL VARIABLES
52 // SPECTRAL MATRICES GLOBAL VARIABLES
53
53
54 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
54 // alignment constraints for the spectral matrices buffers => the first data after the time (8 bytes) shall be aligned on 0x00
55 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
55 volatile int sm_f0[ NB_RING_NODES_SM_F0 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
56 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
56 volatile int sm_f1[ NB_RING_NODES_SM_F1 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
57 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100)));
57 volatile int sm_f2[ NB_RING_NODES_SM_F2 * TOTAL_SIZE_SM ] __attribute__((aligned(0x100))) = {0};
58
58
59 // APB CONFIGURATION REGISTERS
59 // APB CONFIGURATION REGISTERS
60 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
60 time_management_regs_t *time_management_regs = (time_management_regs_t*) REGS_ADDR_TIME_MANAGEMENT;
61 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
61 gptimer_regs_t *gptimer_regs = (gptimer_regs_t *) REGS_ADDR_GPTIMER;
62 waveform_picker_regs_0_1_18_t *waveform_picker_regs = (waveform_picker_regs_0_1_18_t*) REGS_ADDR_WAVEFORM_PICKER;
62 waveform_picker_regs_0_1_18_t *waveform_picker_regs = (waveform_picker_regs_0_1_18_t*) REGS_ADDR_WAVEFORM_PICKER;
63 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
63 spectral_matrix_regs_t *spectral_matrix_regs = (spectral_matrix_regs_t*) REGS_ADDR_SPECTRAL_MATRIX;
64
64
65 // MODE PARAMETERS
65 // MODE PARAMETERS
66 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet;
66 Packet_TM_LFR_PARAMETER_DUMP_t parameter_dump_packet = {0};
67 struct param_local_str param_local;
67 struct param_local_str param_local = {0};
68 unsigned int lastValidEnterModeTime;
68 unsigned int lastValidEnterModeTime = {0};
69
69
70 // HK PACKETS
70 // HK PACKETS
71 Packet_TM_LFR_HK_t housekeeping_packet;
71 Packet_TM_LFR_HK_t housekeeping_packet = {0};
72 unsigned char cp_rpw_sc_rw_f_flags;
72 unsigned char cp_rpw_sc_rw_f_flags = 0;
73 // message queues occupancy
73 // message queues occupancy
74 unsigned char hk_lfr_q_sd_fifo_size_max;
74 unsigned char hk_lfr_q_sd_fifo_size_max = 0;
75 unsigned char hk_lfr_q_rv_fifo_size_max;
75 unsigned char hk_lfr_q_rv_fifo_size_max = 0;
76 unsigned char hk_lfr_q_p0_fifo_size_max;
76 unsigned char hk_lfr_q_p0_fifo_size_max = 0;
77 unsigned char hk_lfr_q_p1_fifo_size_max;
77 unsigned char hk_lfr_q_p1_fifo_size_max = 0;
78 unsigned char hk_lfr_q_p2_fifo_size_max;
78 unsigned char hk_lfr_q_p2_fifo_size_max = 0;
79 // sequence counters are incremented by APID (PID + CAT) and destination ID
79 // sequence counters are incremented by APID (PID + CAT) and destination ID
80 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST;
80 unsigned short sequenceCounters_SCIENCE_NORMAL_BURST = 0;
81 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2;
81 unsigned short sequenceCounters_SCIENCE_SBM1_SBM2 = 0;
82 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID];
82 unsigned short sequenceCounters_TC_EXE[SEQ_CNT_NB_DEST_ID] = {0};
83 unsigned short sequenceCounters_TM_DUMP[SEQ_CNT_NB_DEST_ID];
83 unsigned short sequenceCounters_TM_DUMP[SEQ_CNT_NB_DEST_ID] = {0};
84 unsigned short sequenceCounterHK;
84 unsigned short sequenceCounterHK;
85 spw_stats grspw_stats;
85 spw_stats grspw_stats = {0};
86
86
87 // TC_LFR_UPDATE_INFO
87 // TC_LFR_UPDATE_INFO
88 float cp_rpw_sc_rw1_f1;
88 float cp_rpw_sc_rw1_f1 = INIT_FLOAT;
89 float cp_rpw_sc_rw1_f2;
89 float cp_rpw_sc_rw1_f2 = INIT_FLOAT;
90 float cp_rpw_sc_rw2_f1;
90 float cp_rpw_sc_rw2_f1 = INIT_FLOAT;
91 float cp_rpw_sc_rw2_f2;
91 float cp_rpw_sc_rw2_f2 = INIT_FLOAT;
92 float cp_rpw_sc_rw3_f1;
92 float cp_rpw_sc_rw3_f1 = INIT_FLOAT;
93 float cp_rpw_sc_rw3_f2;
93 float cp_rpw_sc_rw3_f2 = INIT_FLOAT;
94 float cp_rpw_sc_rw4_f1;
94 float cp_rpw_sc_rw4_f1 = INIT_FLOAT;
95 float cp_rpw_sc_rw4_f2;
95 float cp_rpw_sc_rw4_f2 = INIT_FLOAT;
96
96
97 // TC_LFR_LOAD_FILTER_PAR
97 // TC_LFR_LOAD_FILTER_PAR
98 filterPar_t filterPar;
98 filterPar_t filterPar = {0};
99
99
100 fbins_masks_t fbins_masks;
100 fbins_masks_t fbins_masks = {0};
101 unsigned int acquisitionDurations[NB_ACQUISITION_DURATION]
101 unsigned int acquisitionDurations[NB_ACQUISITION_DURATION]
102 = {ACQUISITION_DURATION_F0, ACQUISITION_DURATION_F1, ACQUISITION_DURATION_F2};
102 = {ACQUISITION_DURATION_F0, ACQUISITION_DURATION_F1, ACQUISITION_DURATION_F2};
@@ -1,1631 +1,1631
1 /** Functions related to the SpaceWire interface.
1 /** Functions related to the SpaceWire interface.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle SpaceWire transmissions:
6 * A group of functions to handle SpaceWire transmissions:
7 * - configuration of the SpaceWire link
7 * - configuration of the SpaceWire link
8 * - SpaceWire related interruption requests processing
8 * - SpaceWire related interruption requests processing
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
11 *
11 *
12 */
12 */
13
13
14 #include "fsw_spacewire.h"
14 #include "fsw_spacewire.h"
15
15
16 rtems_name semq_name;
16 rtems_name semq_name = 0;
17 rtems_id semq_id;
17 rtems_id semq_id = RTEMS_ID_NONE;
18
18
19 //*****************
19 //*****************
20 // waveform headers
20 // waveform headers
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF = {0};
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSW = {0};
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM = {0};
24
24
25 unsigned char previousTimecodeCtr = 0;
25 unsigned char previousTimecodeCtr = 0;
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27
27
28 //***********
28 //***********
29 // RTEMS TASK
29 // RTEMS TASK
30 rtems_task spiq_task(rtems_task_argument unused)
30 rtems_task spiq_task(rtems_task_argument unused)
31 {
31 {
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 *
33 *
34 * @param unused is the starting argument of the RTEMS task
34 * @param unused is the starting argument of the RTEMS task
35 *
35 *
36 */
36 */
37
37
38 rtems_event_set event_out;
38 rtems_event_set event_out;
39 rtems_status_code status;
39 rtems_status_code status;
40 int linkStatus;
40 int linkStatus;
41
41
42 event_out = EVENT_SETS_NONE_PENDING;
42 event_out = EVENT_SETS_NONE_PENDING;
43 linkStatus = 0;
43 linkStatus = 0;
44
44
45 BOOT_PRINTF("in SPIQ *** \n")
45 BOOT_PRINTF("in SPIQ *** \n")
46
46
47 while(true){
47 while(true){
48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
48 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
49 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
50
50
51 // [0] SUSPEND RECV AND SEND TASKS
51 // [0] SUSPEND RECV AND SEND TASKS
52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
52 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
53 if ( status != RTEMS_SUCCESSFUL ) {
53 if ( status != RTEMS_SUCCESSFUL ) {
54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
54 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
55 }
55 }
56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
56 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
57 if ( status != RTEMS_SUCCESSFUL ) {
57 if ( status != RTEMS_SUCCESSFUL ) {
58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
58 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
59 }
59 }
60
60
61 // [1] CHECK THE LINK
61 // [1] CHECK THE LINK
62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
62 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
63 if ( linkStatus != SPW_LINK_OK) {
63 if ( linkStatus != SPW_LINK_OK) {
64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
64 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
65 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
66 }
66 }
67
67
68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
68 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
69 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
70 if ( linkStatus != SPW_LINK_OK ) // [2.a] not in run state, reset the link
71 {
71 {
72 spacewire_read_statistics();
72 spacewire_read_statistics();
73 status = spacewire_several_connect_attemps( );
73 status = spacewire_several_connect_attemps( );
74 }
74 }
75 else // [2.b] in run state, start the link
75 else // [2.b] in run state, start the link
76 {
76 {
77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
77 status = spacewire_stop_and_start_link( fdSPW ); // start the link
78 if ( status != RTEMS_SUCCESSFUL)
78 if ( status != RTEMS_SUCCESSFUL)
79 {
79 {
80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
80 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
81 }
81 }
82 }
82 }
83
83
84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
84 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
85 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
86 {
86 {
87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
87 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
88 if ( status != RTEMS_SUCCESSFUL ) {
88 if ( status != RTEMS_SUCCESSFUL ) {
89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
89 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
90 }
90 }
91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
91 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
92 if ( status != RTEMS_SUCCESSFUL ) {
92 if ( status != RTEMS_SUCCESSFUL ) {
93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
93 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
94 }
94 }
95 }
95 }
96 else // [3.b] the link is not in run state, go in STANDBY mode
96 else // [3.b] the link is not in run state, go in STANDBY mode
97 {
97 {
98 status = enter_mode_standby();
98 status = enter_mode_standby();
99 if ( status != RTEMS_SUCCESSFUL )
99 if ( status != RTEMS_SUCCESSFUL )
100 {
100 {
101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
101 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
102 }
102 }
103 {
103 {
104 updateLFRCurrentMode( LFR_MODE_STANDBY );
104 updateLFRCurrentMode( LFR_MODE_STANDBY );
105 }
105 }
106 // wake the LINK task up to wait for the link recovery
106 // wake the LINK task up to wait for the link recovery
107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
107 status = rtems_event_send ( Task_id[TASKID_LINK], RTEMS_EVENT_0 );
108 status = rtems_task_suspend( RTEMS_SELF );
108 status = rtems_task_suspend( RTEMS_SELF );
109 }
109 }
110 }
110 }
111 }
111 }
112
112
113 rtems_task recv_task( rtems_task_argument unused )
113 rtems_task recv_task( rtems_task_argument unused )
114 {
114 {
115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
115 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
116 *
116 *
117 * @param unused is the starting argument of the RTEMS task
117 * @param unused is the starting argument of the RTEMS task
118 *
118 *
119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
119 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
120 * 1. It reads the incoming data.
120 * 1. It reads the incoming data.
121 * 2. Launches the acceptance procedure.
121 * 2. Launches the acceptance procedure.
122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
122 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
123 *
123 *
124 */
124 */
125
125
126 int len;
126 int len;
127 ccsdsTelecommandPacket_t currentTC;
127 ccsdsTelecommandPacket_t currentTC;
128 unsigned char computed_CRC[ BYTES_PER_CRC ];
128 unsigned char computed_CRC[ BYTES_PER_CRC ];
129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
129 unsigned char currentTC_LEN_RCV[ BYTES_PER_PKT_LEN ];
130 unsigned char destinationID;
130 unsigned char destinationID;
131 unsigned int estimatedPacketLength;
131 unsigned int estimatedPacketLength;
132 unsigned int parserCode;
132 unsigned int parserCode;
133 rtems_status_code status;
133 rtems_status_code status;
134 rtems_id queue_recv_id;
134 rtems_id queue_recv_id;
135 rtems_id queue_send_id;
135 rtems_id queue_send_id;
136
136
137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
137 memset( &currentTC, 0, sizeof(ccsdsTelecommandPacket_t) );
138 destinationID = 0;
138 destinationID = 0;
139 queue_recv_id = RTEMS_ID_NONE;
139 queue_recv_id = RTEMS_ID_NONE;
140 queue_send_id = RTEMS_ID_NONE;
140 queue_send_id = RTEMS_ID_NONE;
141
141
142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
142 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
143
143
144 status = get_message_queue_id_recv( &queue_recv_id );
144 status = get_message_queue_id_recv( &queue_recv_id );
145 if (status != RTEMS_SUCCESSFUL)
145 if (status != RTEMS_SUCCESSFUL)
146 {
146 {
147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
147 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
148 }
148 }
149
149
150 status = get_message_queue_id_send( &queue_send_id );
150 status = get_message_queue_id_send( &queue_send_id );
151 if (status != RTEMS_SUCCESSFUL)
151 if (status != RTEMS_SUCCESSFUL)
152 {
152 {
153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
153 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
154 }
154 }
155
155
156 BOOT_PRINTF("in RECV *** \n")
156 BOOT_PRINTF("in RECV *** \n")
157
157
158 while(1)
158 while(1)
159 {
159 {
160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
160 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
161 if (len == -1){ // error during the read call
161 if (len == -1){ // error during the read call
162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
162 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
163 }
163 }
164 else {
164 else {
165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
165 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
166 PRINTF("in RECV *** packet lenght too short\n")
166 PRINTF("in RECV *** packet lenght too short\n")
167 }
167 }
168 else {
168 else {
169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
169 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - PROTID_RES_APP); // => -3 is for Prot ID, Reserved and User App bytes
170 //PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
170 //PRINTF1("incoming TC with Length (byte): %d\n", len - 3);
171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
171 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> SHIFT_1_BYTE);
172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
172 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
173 // CHECK THE TC
173 // CHECK THE TC
174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
174 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
175 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
176 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
177 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
178 || (parserCode == WRONG_SRC_ID) )
178 || (parserCode == WRONG_SRC_ID) )
179 { // send TM_LFR_TC_EXE_CORRUPTED
179 { // send TM_LFR_TC_EXE_CORRUPTED
180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
180 PRINTF1("TC corrupted received, with code: %d\n", parserCode);
181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
181 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
182 &&
182 &&
183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
183 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
184 )
184 )
185 {
185 {
186 if ( parserCode == WRONG_SRC_ID )
186 if ( parserCode == WRONG_SRC_ID )
187 {
187 {
188 destinationID = SID_TC_GROUND;
188 destinationID = SID_TC_GROUND;
189 }
189 }
190 else
190 else
191 {
191 {
192 destinationID = currentTC.sourceID;
192 destinationID = currentTC.sourceID;
193 }
193 }
194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
194 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
195 computed_CRC, currentTC_LEN_RCV,
195 computed_CRC, currentTC_LEN_RCV,
196 destinationID );
196 destinationID );
197 }
197 }
198 }
198 }
199 else
199 else
200 { // send valid TC to the action launcher
200 { // send valid TC to the action launcher
201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
201 status = rtems_message_queue_send( queue_recv_id, &currentTC,
202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
202 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + PROTID_RES_APP);
203 }
203 }
204 }
204 }
205 }
205 }
206
206
207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
207 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
208
208
209 }
209 }
210 }
210 }
211
211
212 rtems_task send_task( rtems_task_argument argument)
212 rtems_task send_task( rtems_task_argument argument)
213 {
213 {
214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
214 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
215 *
215 *
216 * @param unused is the starting argument of the RTEMS task
216 * @param unused is the starting argument of the RTEMS task
217 *
217 *
218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
218 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
219 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
220 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
221 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
222 * data it contains.
222 * data it contains.
223 *
223 *
224 */
224 */
225
225
226 rtems_status_code status; // RTEMS status code
226 rtems_status_code status; // RTEMS status code
227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
227 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
228 ring_node *incomingRingNodePtr;
228 ring_node *incomingRingNodePtr;
229 int ring_node_address;
229 int ring_node_address;
230 char *charPtr;
230 char *charPtr;
231 spw_ioctl_pkt_send *spw_ioctl_send;
231 spw_ioctl_pkt_send *spw_ioctl_send;
232 size_t size; // size of the incoming TC packet
232 size_t size; // size of the incoming TC packet
233 rtems_id queue_send_id;
233 rtems_id queue_send_id;
234 unsigned int sid;
234 unsigned int sid;
235 unsigned char sidAsUnsignedChar;
235 unsigned char sidAsUnsignedChar;
236 unsigned char type;
236 unsigned char type;
237
237
238 incomingRingNodePtr = NULL;
238 incomingRingNodePtr = NULL;
239 ring_node_address = 0;
239 ring_node_address = 0;
240 charPtr = (char *) &ring_node_address;
240 charPtr = (char *) &ring_node_address;
241 size = 0;
241 size = 0;
242 queue_send_id = RTEMS_ID_NONE;
242 queue_send_id = RTEMS_ID_NONE;
243 sid = 0;
243 sid = 0;
244 sidAsUnsignedChar = 0;
244 sidAsUnsignedChar = 0;
245
245
246 init_header_cwf( &headerCWF );
246 init_header_cwf( &headerCWF );
247 init_header_swf( &headerSWF );
247 init_header_swf( &headerSWF );
248 init_header_asm( &headerASM );
248 init_header_asm( &headerASM );
249
249
250 status = get_message_queue_id_send( &queue_send_id );
250 status = get_message_queue_id_send( &queue_send_id );
251 if (status != RTEMS_SUCCESSFUL)
251 if (status != RTEMS_SUCCESSFUL)
252 {
252 {
253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
253 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
254 }
254 }
255
255
256 BOOT_PRINTF("in SEND *** \n")
256 BOOT_PRINTF("in SEND *** \n")
257
257
258 while(1)
258 while(1)
259 {
259 {
260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
260 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
261 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
262
262
263 if (status!=RTEMS_SUCCESSFUL)
263 if (status!=RTEMS_SUCCESSFUL)
264 {
264 {
265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
265 PRINTF1("in SEND *** (1) ERR = %d\n", status)
266 }
266 }
267 else
267 else
268 {
268 {
269 if ( size == sizeof(ring_node*) )
269 if ( size == sizeof(ring_node*) )
270 {
270 {
271 charPtr[0] = incomingData[0];
271 charPtr[0] = incomingData[0];
272 charPtr[1] = incomingData[1];
272 charPtr[1] = incomingData[1];
273 charPtr[BYTE_2] = incomingData[BYTE_2];
273 charPtr[BYTE_2] = incomingData[BYTE_2];
274 charPtr[BYTE_3] = incomingData[BYTE_3];
274 charPtr[BYTE_3] = incomingData[BYTE_3];
275 incomingRingNodePtr = (ring_node*) ring_node_address;
275 incomingRingNodePtr = (ring_node*) ring_node_address;
276 sid = incomingRingNodePtr->sid;
276 sid = incomingRingNodePtr->sid;
277 if ( (sid==SID_NORM_CWF_LONG_F3)
277 if ( (sid==SID_NORM_CWF_LONG_F3)
278 || (sid==SID_BURST_CWF_F2 )
278 || (sid==SID_BURST_CWF_F2 )
279 || (sid==SID_SBM1_CWF_F1 )
279 || (sid==SID_SBM1_CWF_F1 )
280 || (sid==SID_SBM2_CWF_F2 ))
280 || (sid==SID_SBM2_CWF_F2 ))
281 {
281 {
282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
282 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
283 }
283 }
284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
284 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
285 {
285 {
286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
286 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
287 }
287 }
288 else if ( (sid==SID_NORM_CWF_F3) )
288 else if ( (sid==SID_NORM_CWF_F3) )
289 {
289 {
290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
290 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
291 }
291 }
292 else if (sid==SID_NORM_ASM_F0)
292 else if (sid==SID_NORM_ASM_F0)
293 {
293 {
294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
294 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
295 }
295 }
296 else if (sid==SID_NORM_ASM_F1)
296 else if (sid==SID_NORM_ASM_F1)
297 {
297 {
298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
298 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
299 }
299 }
300 else if (sid==SID_NORM_ASM_F2)
300 else if (sid==SID_NORM_ASM_F2)
301 {
301 {
302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
302 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
303 }
303 }
304 else if ( sid==TM_CODE_K_DUMP )
304 else if ( sid==TM_CODE_K_DUMP )
305 {
305 {
306 spw_send_k_dump( incomingRingNodePtr );
306 spw_send_k_dump( incomingRingNodePtr );
307 }
307 }
308 else
308 else
309 {
309 {
310 PRINTF1("unexpected sid = %d\n", sid);
310 PRINTF1("unexpected sid = %d\n", sid);
311 }
311 }
312 }
312 }
313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
313 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
314 {
314 {
315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
315 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
316 sid = sidAsUnsignedChar;
316 sid = sidAsUnsignedChar;
317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
317 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
318 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
319 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
320 {
320 {
321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
321 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
322 }
322 }
323
323
324 status = write( fdSPW, incomingData, size );
324 status = write( fdSPW, incomingData, size );
325 if (status == -1){
325 if (status == -1){
326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
326 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
327 }
327 }
328 }
328 }
329 else // the incoming message is a spw_ioctl_pkt_send structure
329 else // the incoming message is a spw_ioctl_pkt_send structure
330 {
330 {
331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
331 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
332 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
333 if (status == -1){
333 if (status == -1){
334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
334 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
335 }
335 }
336 }
336 }
337 }
337 }
338
338
339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
339 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
340
340
341 }
341 }
342 }
342 }
343
343
344 rtems_task link_task( rtems_task_argument argument )
344 rtems_task link_task( rtems_task_argument argument )
345 {
345 {
346 rtems_event_set event_out;
346 rtems_event_set event_out;
347 rtems_status_code status;
347 rtems_status_code status;
348 int linkStatus;
348 int linkStatus;
349
349
350 event_out = EVENT_SETS_NONE_PENDING;
350 event_out = EVENT_SETS_NONE_PENDING;
351 linkStatus = 0;
351 linkStatus = 0;
352
352
353 BOOT_PRINTF("in LINK ***\n")
353 BOOT_PRINTF("in LINK ***\n")
354
354
355 while(1)
355 while(1)
356 {
356 {
357 // wait for an RTEMS_EVENT
357 // wait for an RTEMS_EVENT
358 rtems_event_receive( RTEMS_EVENT_0,
358 rtems_event_receive( RTEMS_EVENT_0,
359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
359 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
360 PRINTF("in LINK *** wait for the link\n")
360 PRINTF("in LINK *** wait for the link\n")
361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
361 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
362 while( linkStatus != SPW_LINK_OK) // wait for the link
362 while( linkStatus != SPW_LINK_OK) // wait for the link
363 {
363 {
364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
364 status = rtems_task_wake_after( SPW_LINK_WAIT ); // monitor the link each 100ms
365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
365 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
366 watchdog_reload();
366 watchdog_reload();
367 }
367 }
368
368
369 spacewire_read_statistics();
369 spacewire_read_statistics();
370 status = spacewire_stop_and_start_link( fdSPW );
370 status = spacewire_stop_and_start_link( fdSPW );
371
371
372 if (status != RTEMS_SUCCESSFUL)
372 if (status != RTEMS_SUCCESSFUL)
373 {
373 {
374 PRINTF1("in LINK *** ERR link not started %d\n", status)
374 PRINTF1("in LINK *** ERR link not started %d\n", status)
375 }
375 }
376 else
376 else
377 {
377 {
378 PRINTF("in LINK *** OK link started\n")
378 PRINTF("in LINK *** OK link started\n")
379 }
379 }
380
380
381 // restart the SPIQ task
381 // restart the SPIQ task
382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
382 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
383 if ( status != RTEMS_SUCCESSFUL ) {
383 if ( status != RTEMS_SUCCESSFUL ) {
384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
384 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
385 }
385 }
386
386
387 // restart RECV and SEND
387 // restart RECV and SEND
388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
388 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
389 if ( status != RTEMS_SUCCESSFUL ) {
389 if ( status != RTEMS_SUCCESSFUL ) {
390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
390 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
391 }
391 }
392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
392 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
393 if ( status != RTEMS_SUCCESSFUL ) {
393 if ( status != RTEMS_SUCCESSFUL ) {
394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
394 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
395 }
395 }
396 }
396 }
397 }
397 }
398
398
399 //****************
399 //****************
400 // OTHER FUNCTIONS
400 // OTHER FUNCTIONS
401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
401 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
402 {
402 {
403 /** This function opens the SpaceWire link.
403 /** This function opens the SpaceWire link.
404 *
404 *
405 * @return a valid file descriptor in case of success, -1 in case of a failure
405 * @return a valid file descriptor in case of success, -1 in case of a failure
406 *
406 *
407 */
407 */
408 rtems_status_code status;
408 rtems_status_code status;
409
409
410 status = RTEMS_SUCCESSFUL;
410 status = RTEMS_SUCCESSFUL;
411
411
412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
412 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
413 if ( fdSPW < 0 ) {
413 if ( fdSPW < 0 ) {
414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
414 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
415 }
415 }
416 else
416 else
417 {
417 {
418 status = RTEMS_SUCCESSFUL;
418 status = RTEMS_SUCCESSFUL;
419 }
419 }
420
420
421 return status;
421 return status;
422 }
422 }
423
423
424 int spacewire_start_link( int fd )
424 int spacewire_start_link( int fd )
425 {
425 {
426 rtems_status_code status;
426 rtems_status_code status;
427
427
428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
428 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
429 // -1 default hardcoded driver timeout
429 // -1 default hardcoded driver timeout
430
430
431 return status;
431 return status;
432 }
432 }
433
433
434 int spacewire_stop_and_start_link( int fd )
434 int spacewire_stop_and_start_link( int fd )
435 {
435 {
436 rtems_status_code status;
436 rtems_status_code status;
437
437
438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
438 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
439 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
440 // -1 default hardcoded driver timeout
440 // -1 default hardcoded driver timeout
441
441
442 return status;
442 return status;
443 }
443 }
444
444
445 int spacewire_configure_link( int fd )
445 int spacewire_configure_link( int fd )
446 {
446 {
447 /** This function configures the SpaceWire link.
447 /** This function configures the SpaceWire link.
448 *
448 *
449 * @return GR-RTEMS-DRIVER directive status codes:
449 * @return GR-RTEMS-DRIVER directive status codes:
450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
450 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
451 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
452 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
453 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
454 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
455 * - 5 EIO - Error when writing to grswp hardware registers.
455 * - 5 EIO - Error when writing to grswp hardware registers.
456 * - 2 ENOENT - No such file or directory
456 * - 2 ENOENT - No such file or directory
457 */
457 */
458
458
459 rtems_status_code status;
459 rtems_status_code status;
460
460
461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
461 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
462 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
463 spw_ioctl_packetsize packetsize;
463 spw_ioctl_packetsize packetsize;
464
464
465 packetsize.rxsize = SPW_RXSIZE;
465 packetsize.rxsize = SPW_RXSIZE;
466 packetsize.txdsize = SPW_TXDSIZE;
466 packetsize.txdsize = SPW_TXDSIZE;
467 packetsize.txhsize = SPW_TXHSIZE;
467 packetsize.txhsize = SPW_TXHSIZE;
468
468
469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
469 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
470 if (status!=RTEMS_SUCCESSFUL) {
470 if (status!=RTEMS_SUCCESSFUL) {
471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
471 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
472 }
472 }
473 //
473 //
474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
474 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
475 if (status!=RTEMS_SUCCESSFUL) {
475 if (status!=RTEMS_SUCCESSFUL) {
476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
476 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
477 }
477 }
478 //
478 //
479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
479 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
480 if (status!=RTEMS_SUCCESSFUL) {
480 if (status!=RTEMS_SUCCESSFUL) {
481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
481 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
482 }
482 }
483 //
483 //
484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
484 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
485 if (status!=RTEMS_SUCCESSFUL) {
485 if (status!=RTEMS_SUCCESSFUL) {
486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
486 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
487 }
487 }
488 //
488 //
489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
489 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
490 if (status!=RTEMS_SUCCESSFUL) {
490 if (status!=RTEMS_SUCCESSFUL) {
491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
491 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
492 }
492 }
493 //
493 //
494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
494 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
495 if (status!=RTEMS_SUCCESSFUL) {
495 if (status!=RTEMS_SUCCESSFUL) {
496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
496 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
497 }
497 }
498 //
498 //
499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
499 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, CONF_TCODE_CTRL); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
500 if (status!=RTEMS_SUCCESSFUL) {
500 if (status!=RTEMS_SUCCESSFUL) {
501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
501 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
502 }
502 }
503 //
503 //
504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
504 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_PACKETSIZE, packetsize); // set rxsize, txdsize and txhsize
505 if (status!=RTEMS_SUCCESSFUL) {
505 if (status!=RTEMS_SUCCESSFUL) {
506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
506 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_PACKETSIZE,\n")
507 }
507 }
508
508
509 return status;
509 return status;
510 }
510 }
511
511
512 int spacewire_several_connect_attemps( void )
512 int spacewire_several_connect_attemps( void )
513 {
513 {
514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
514 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
515 *
515 *
516 * @return RTEMS directive status code:
516 * @return RTEMS directive status code:
517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
517 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
518 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
519 *
519 *
520 */
520 */
521
521
522 rtems_status_code status_spw;
522 rtems_status_code status_spw;
523 rtems_status_code status;
523 rtems_status_code status;
524 int i;
524 int i;
525
525
526 status_spw = RTEMS_SUCCESSFUL;
526 status_spw = RTEMS_SUCCESSFUL;
527
527
528 i = 0;
528 i = 0;
529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
529 while (i < SY_LFR_DPU_CONNECT_ATTEMPT)
530 {
530 {
531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
531 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
532
532
533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
533 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
534
534
535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
535 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
536
536
537 status_spw = spacewire_stop_and_start_link( fdSPW );
537 status_spw = spacewire_stop_and_start_link( fdSPW );
538
538
539 if ( status_spw != RTEMS_SUCCESSFUL )
539 if ( status_spw != RTEMS_SUCCESSFUL )
540 {
540 {
541 i = i + 1;
541 i = i + 1;
542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
542 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw);
543 }
543 }
544 else
544 else
545 {
545 {
546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
546 i = SY_LFR_DPU_CONNECT_ATTEMPT;
547 }
547 }
548 }
548 }
549
549
550 return status_spw;
550 return status_spw;
551 }
551 }
552
552
553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
553 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
554 {
554 {
555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
555 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
556 *
556 *
557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
557 * @param val is the value, 0 or 1, used to set the value of the NP bit.
558 * @param regAddr is the address of the GRSPW control register.
558 * @param regAddr is the address of the GRSPW control register.
559 *
559 *
560 * NP is the bit 20 of the GRSPW control register.
560 * NP is the bit 20 of the GRSPW control register.
561 *
561 *
562 */
562 */
563
563
564 unsigned int *spwptr = (unsigned int*) regAddr;
564 unsigned int *spwptr = (unsigned int*) regAddr;
565
565
566 if (val == 1) {
566 if (val == 1) {
567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
567 *spwptr = *spwptr | SPW_BIT_NP; // [NP] set the No port force bit
568 }
568 }
569 if (val== 0) {
569 if (val== 0) {
570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
570 *spwptr = *spwptr & SPW_BIT_NP_MASK;
571 }
571 }
572 }
572 }
573
573
574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
574 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
575 {
575 {
576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
576 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
577 *
577 *
578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
578 * @param val is the value, 0 or 1, used to set the value of the RE bit.
579 * @param regAddr is the address of the GRSPW control register.
579 * @param regAddr is the address of the GRSPW control register.
580 *
580 *
581 * RE is the bit 16 of the GRSPW control register.
581 * RE is the bit 16 of the GRSPW control register.
582 *
582 *
583 */
583 */
584
584
585 unsigned int *spwptr = (unsigned int*) regAddr;
585 unsigned int *spwptr = (unsigned int*) regAddr;
586
586
587 if (val == 1)
587 if (val == 1)
588 {
588 {
589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
589 *spwptr = *spwptr | SPW_BIT_RE; // [RE] set the RMAP Enable bit
590 }
590 }
591 if (val== 0)
591 if (val== 0)
592 {
592 {
593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
593 *spwptr = *spwptr & SPW_BIT_RE_MASK;
594 }
594 }
595 }
595 }
596
596
597 void spacewire_read_statistics( void )
597 void spacewire_read_statistics( void )
598 {
598 {
599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
599 /** This function reads the SpaceWire statistics from the grspw RTEMS driver.
600 *
600 *
601 * @param void
601 * @param void
602 *
602 *
603 * @return void
603 * @return void
604 *
604 *
605 * Once they are read, the counters are stored in a global variable used during the building of the
605 * Once they are read, the counters are stored in a global variable used during the building of the
606 * HK packets.
606 * HK packets.
607 *
607 *
608 */
608 */
609
609
610 rtems_status_code status;
610 rtems_status_code status;
611 spw_stats current;
611 spw_stats current;
612
612
613 memset(&current, 0, sizeof(spw_stats));
613 memset(&current, 0, sizeof(spw_stats));
614
614
615 spacewire_get_last_error();
615 spacewire_get_last_error();
616
616
617 // read the current statistics
617 // read the current statistics
618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
618 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
619
619
620 // clear the counters
620 // clear the counters
621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
621 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_CLR_STATISTICS );
622
622
623 // typedef struct {
623 // typedef struct {
624 // unsigned int tx_link_err; // NOT IN HK
624 // unsigned int tx_link_err; // NOT IN HK
625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
625 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
626 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
627 // unsigned int rx_eep_err;
627 // unsigned int rx_eep_err;
628 // unsigned int rx_truncated;
628 // unsigned int rx_truncated;
629 // unsigned int parity_err;
629 // unsigned int parity_err;
630 // unsigned int escape_err;
630 // unsigned int escape_err;
631 // unsigned int credit_err;
631 // unsigned int credit_err;
632 // unsigned int write_sync_err;
632 // unsigned int write_sync_err;
633 // unsigned int disconnect_err;
633 // unsigned int disconnect_err;
634 // unsigned int early_ep;
634 // unsigned int early_ep;
635 // unsigned int invalid_address;
635 // unsigned int invalid_address;
636 // unsigned int packets_sent;
636 // unsigned int packets_sent;
637 // unsigned int packets_received;
637 // unsigned int packets_received;
638 // } spw_stats;
638 // } spw_stats;
639
639
640 // rx_eep_err
640 // rx_eep_err
641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
641 grspw_stats.rx_eep_err = grspw_stats.rx_eep_err + current.rx_eep_err;
642 // rx_truncated
642 // rx_truncated
643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
643 grspw_stats.rx_truncated = grspw_stats.rx_truncated + current.rx_truncated;
644 // parity_err
644 // parity_err
645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
645 grspw_stats.parity_err = grspw_stats.parity_err + current.parity_err;
646 // escape_err
646 // escape_err
647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
647 grspw_stats.escape_err = grspw_stats.escape_err + current.escape_err;
648 // credit_err
648 // credit_err
649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
649 grspw_stats.credit_err = grspw_stats.credit_err + current.credit_err;
650 // write_sync_err
650 // write_sync_err
651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
651 grspw_stats.write_sync_err = grspw_stats.write_sync_err + current.write_sync_err;
652 // disconnect_err
652 // disconnect_err
653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
653 grspw_stats.disconnect_err = grspw_stats.disconnect_err + current.disconnect_err;
654 // early_ep
654 // early_ep
655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
655 grspw_stats.early_ep = grspw_stats.early_ep + current.early_ep;
656 // invalid_address
656 // invalid_address
657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
657 grspw_stats.invalid_address = grspw_stats.invalid_address + current.invalid_address;
658 // packets_sent
658 // packets_sent
659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
659 grspw_stats.packets_sent = grspw_stats.packets_sent + current.packets_sent;
660 // packets_received
660 // packets_received
661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
661 grspw_stats.packets_received= grspw_stats.packets_received + current.packets_received;
662
662
663 }
663 }
664
664
665 void spacewire_get_last_error( void )
665 void spacewire_get_last_error( void )
666 {
666 {
667 static spw_stats previous = {0};
667 static spw_stats previous = {0};
668 spw_stats current;
668 spw_stats current;
669 rtems_status_code status;
669 rtems_status_code status;
670
670
671 unsigned int hk_lfr_last_er_rid;
671 unsigned int hk_lfr_last_er_rid;
672 unsigned char hk_lfr_last_er_code;
672 unsigned char hk_lfr_last_er_code;
673 int coarseTime;
673 int coarseTime;
674 int fineTime;
674 int fineTime;
675 unsigned char update_hk_lfr_last_er;
675 unsigned char update_hk_lfr_last_er;
676
676
677 memset(&current, 0, sizeof(spw_stats));
677 memset(&current, 0, sizeof(spw_stats));
678 update_hk_lfr_last_er = 0;
678 update_hk_lfr_last_er = 0;
679
679
680 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
680 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &current );
681
681
682 // get current time
682 // get current time
683 coarseTime = time_management_regs->coarse_time;
683 coarseTime = time_management_regs->coarse_time;
684 fineTime = time_management_regs->fine_time;
684 fineTime = time_management_regs->fine_time;
685
685
686 // typedef struct {
686 // typedef struct {
687 // unsigned int tx_link_err; // NOT IN HK
687 // unsigned int tx_link_err; // NOT IN HK
688 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
688 // unsigned int rx_rmap_header_crc_err; // NOT IN HK
689 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
689 // unsigned int rx_rmap_data_crc_err; // NOT IN HK
690 // unsigned int rx_eep_err;
690 // unsigned int rx_eep_err;
691 // unsigned int rx_truncated;
691 // unsigned int rx_truncated;
692 // unsigned int parity_err;
692 // unsigned int parity_err;
693 // unsigned int escape_err;
693 // unsigned int escape_err;
694 // unsigned int credit_err;
694 // unsigned int credit_err;
695 // unsigned int write_sync_err;
695 // unsigned int write_sync_err;
696 // unsigned int disconnect_err;
696 // unsigned int disconnect_err;
697 // unsigned int early_ep;
697 // unsigned int early_ep;
698 // unsigned int invalid_address;
698 // unsigned int invalid_address;
699 // unsigned int packets_sent;
699 // unsigned int packets_sent;
700 // unsigned int packets_received;
700 // unsigned int packets_received;
701 // } spw_stats;
701 // } spw_stats;
702
702
703 // tx_link_err *** no code associated to this field
703 // tx_link_err *** no code associated to this field
704 // rx_rmap_header_crc_err *** LE *** in HK
704 // rx_rmap_header_crc_err *** LE *** in HK
705 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
705 if (previous.rx_rmap_header_crc_err != current.rx_rmap_header_crc_err)
706 {
706 {
707 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
707 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
708 hk_lfr_last_er_code = CODE_HEADER_CRC;
708 hk_lfr_last_er_code = CODE_HEADER_CRC;
709 update_hk_lfr_last_er = 1;
709 update_hk_lfr_last_er = 1;
710 }
710 }
711 // rx_rmap_data_crc_err *** LE *** NOT IN HK
711 // rx_rmap_data_crc_err *** LE *** NOT IN HK
712 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
712 if (previous.rx_rmap_data_crc_err != current.rx_rmap_data_crc_err)
713 {
713 {
714 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
714 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
715 hk_lfr_last_er_code = CODE_DATA_CRC;
715 hk_lfr_last_er_code = CODE_DATA_CRC;
716 update_hk_lfr_last_er = 1;
716 update_hk_lfr_last_er = 1;
717 }
717 }
718 // rx_eep_err
718 // rx_eep_err
719 if (previous.rx_eep_err != current.rx_eep_err)
719 if (previous.rx_eep_err != current.rx_eep_err)
720 {
720 {
721 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
721 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
722 hk_lfr_last_er_code = CODE_EEP;
722 hk_lfr_last_er_code = CODE_EEP;
723 update_hk_lfr_last_er = 1;
723 update_hk_lfr_last_er = 1;
724 }
724 }
725 // rx_truncated
725 // rx_truncated
726 if (previous.rx_truncated != current.rx_truncated)
726 if (previous.rx_truncated != current.rx_truncated)
727 {
727 {
728 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
728 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
729 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
729 hk_lfr_last_er_code = CODE_RX_TOO_BIG;
730 update_hk_lfr_last_er = 1;
730 update_hk_lfr_last_er = 1;
731 }
731 }
732 // parity_err
732 // parity_err
733 if (previous.parity_err != current.parity_err)
733 if (previous.parity_err != current.parity_err)
734 {
734 {
735 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
735 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
736 hk_lfr_last_er_code = CODE_PARITY;
736 hk_lfr_last_er_code = CODE_PARITY;
737 update_hk_lfr_last_er = 1;
737 update_hk_lfr_last_er = 1;
738 }
738 }
739 // escape_err
739 // escape_err
740 if (previous.parity_err != current.parity_err)
740 if (previous.parity_err != current.parity_err)
741 {
741 {
742 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
742 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
743 hk_lfr_last_er_code = CODE_ESCAPE;
743 hk_lfr_last_er_code = CODE_ESCAPE;
744 update_hk_lfr_last_er = 1;
744 update_hk_lfr_last_er = 1;
745 }
745 }
746 // credit_err
746 // credit_err
747 if (previous.credit_err != current.credit_err)
747 if (previous.credit_err != current.credit_err)
748 {
748 {
749 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
749 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
750 hk_lfr_last_er_code = CODE_CREDIT;
750 hk_lfr_last_er_code = CODE_CREDIT;
751 update_hk_lfr_last_er = 1;
751 update_hk_lfr_last_er = 1;
752 }
752 }
753 // write_sync_err
753 // write_sync_err
754 if (previous.write_sync_err != current.write_sync_err)
754 if (previous.write_sync_err != current.write_sync_err)
755 {
755 {
756 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
756 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
757 hk_lfr_last_er_code = CODE_WRITE_SYNC;
757 hk_lfr_last_er_code = CODE_WRITE_SYNC;
758 update_hk_lfr_last_er = 1;
758 update_hk_lfr_last_er = 1;
759 }
759 }
760 // disconnect_err
760 // disconnect_err
761 if (previous.disconnect_err != current.disconnect_err)
761 if (previous.disconnect_err != current.disconnect_err)
762 {
762 {
763 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
763 hk_lfr_last_er_rid = RID_LE_LFR_DPU_SPW;
764 hk_lfr_last_er_code = CODE_DISCONNECT;
764 hk_lfr_last_er_code = CODE_DISCONNECT;
765 update_hk_lfr_last_er = 1;
765 update_hk_lfr_last_er = 1;
766 }
766 }
767 // early_ep
767 // early_ep
768 if (previous.early_ep != current.early_ep)
768 if (previous.early_ep != current.early_ep)
769 {
769 {
770 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
770 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
771 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
771 hk_lfr_last_er_code = CODE_EARLY_EOP_EEP;
772 update_hk_lfr_last_er = 1;
772 update_hk_lfr_last_er = 1;
773 }
773 }
774 // invalid_address
774 // invalid_address
775 if (previous.invalid_address != current.invalid_address)
775 if (previous.invalid_address != current.invalid_address)
776 {
776 {
777 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
777 hk_lfr_last_er_rid = RID_ME_LFR_DPU_SPW;
778 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
778 hk_lfr_last_er_code = CODE_INVALID_ADDRESS;
779 update_hk_lfr_last_er = 1;
779 update_hk_lfr_last_er = 1;
780 }
780 }
781
781
782 // if a field has changed, update the hk_last_er fields
782 // if a field has changed, update the hk_last_er fields
783 if (update_hk_lfr_last_er == 1)
783 if (update_hk_lfr_last_er == 1)
784 {
784 {
785 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
785 update_hk_lfr_last_er_fields( hk_lfr_last_er_rid, hk_lfr_last_er_code );
786 }
786 }
787
787
788 previous = current;
788 previous = current;
789 }
789 }
790
790
791 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
791 void update_hk_lfr_last_er_fields(unsigned int rid, unsigned char code)
792 {
792 {
793 unsigned char *coarseTimePtr;
793 unsigned char *coarseTimePtr;
794 unsigned char *fineTimePtr;
794 unsigned char *fineTimePtr;
795
795
796 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
796 coarseTimePtr = (unsigned char*) &time_management_regs->coarse_time;
797 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
797 fineTimePtr = (unsigned char*) &time_management_regs->fine_time;
798
798
799 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
799 housekeeping_packet.hk_lfr_last_er_rid[0] = (unsigned char) ((rid & BYTE0_MASK) >> SHIFT_1_BYTE );
800 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
800 housekeeping_packet.hk_lfr_last_er_rid[1] = (unsigned char) (rid & BYTE1_MASK);
801 housekeeping_packet.hk_lfr_last_er_code = code;
801 housekeeping_packet.hk_lfr_last_er_code = code;
802 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
802 housekeeping_packet.hk_lfr_last_er_time[0] = coarseTimePtr[0];
803 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
803 housekeeping_packet.hk_lfr_last_er_time[1] = coarseTimePtr[1];
804 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
804 housekeeping_packet.hk_lfr_last_er_time[BYTE_2] = coarseTimePtr[BYTE_2];
805 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
805 housekeeping_packet.hk_lfr_last_er_time[BYTE_3] = coarseTimePtr[BYTE_3];
806 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
806 housekeeping_packet.hk_lfr_last_er_time[BYTE_4] = fineTimePtr[BYTE_2];
807 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
807 housekeeping_packet.hk_lfr_last_er_time[BYTE_5] = fineTimePtr[BYTE_3];
808 }
808 }
809
809
810 void update_hk_with_grspw_stats( void )
810 void update_hk_with_grspw_stats( void )
811 {
811 {
812 //****************************
812 //****************************
813 // DPU_SPACEWIRE_IF_STATISTICS
813 // DPU_SPACEWIRE_IF_STATISTICS
814 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
814 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (grspw_stats.packets_received >> SHIFT_1_BYTE);
815 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
815 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (grspw_stats.packets_received);
816 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
816 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (grspw_stats.packets_sent >> SHIFT_1_BYTE);
817 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
817 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (grspw_stats.packets_sent);
818
818
819 //******************************************
819 //******************************************
820 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
820 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
821 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
821 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) grspw_stats.parity_err;
822 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
822 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) grspw_stats.disconnect_err;
823 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
823 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) grspw_stats.escape_err;
824 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
824 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) grspw_stats.credit_err;
825 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
825 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) grspw_stats.write_sync_err;
826
826
827 //*********************************************
827 //*********************************************
828 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
828 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
829 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
829 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) grspw_stats.early_ep;
830 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
830 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) grspw_stats.invalid_address;
831 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
831 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) grspw_stats.rx_eep_err;
832 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
832 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) grspw_stats.rx_truncated;
833 }
833 }
834
834
835 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
835 void spacewire_update_hk_lfr_link_state( unsigned char *hk_lfr_status_word_0 )
836 {
836 {
837 unsigned int *statusRegisterPtr;
837 unsigned int *statusRegisterPtr;
838 unsigned char linkState;
838 unsigned char linkState;
839
839
840 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
840 statusRegisterPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_STATUS_REGISTER);
841 linkState =
841 linkState =
842 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
842 (unsigned char) ( ( (*statusRegisterPtr) >> SPW_LINK_STAT_POS) & STATUS_WORD_LINK_STATE_BITS); // [0000 0111]
843
843
844 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
844 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 & STATUS_WORD_LINK_STATE_MASK; // [1111 1000] set link state to 0
845
845
846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
846 *hk_lfr_status_word_0 = *hk_lfr_status_word_0 | linkState; // update hk_lfr_dpu_spw_link_state
847 }
847 }
848
848
849 void increase_unsigned_char_counter( unsigned char *counter )
849 void increase_unsigned_char_counter( unsigned char *counter )
850 {
850 {
851 // update the number of valid timecodes that have been received
851 // update the number of valid timecodes that have been received
852 if (*counter == UINT8_MAX)
852 if (*counter == UINT8_MAX)
853 {
853 {
854 *counter = 0;
854 *counter = 0;
855 }
855 }
856 else
856 else
857 {
857 {
858 *counter = *counter + 1;
858 *counter = *counter + 1;
859 }
859 }
860 }
860 }
861
861
862 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
862 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
863 {
863 {
864 /** This function checks the coherency between the incoming timecode and the last valid timecode.
864 /** This function checks the coherency between the incoming timecode and the last valid timecode.
865 *
865 *
866 * @param currentTimecodeCtr is the incoming timecode
866 * @param currentTimecodeCtr is the incoming timecode
867 *
867 *
868 * @return returned codes::
868 * @return returned codes::
869 * - LFR_DEFAULT
869 * - LFR_DEFAULT
870 * - LFR_SUCCESSFUL
870 * - LFR_SUCCESSFUL
871 *
871 *
872 */
872 */
873
873
874 static unsigned char firstTickout = 1;
874 static unsigned char firstTickout = 1;
875 unsigned char ret;
875 unsigned char ret;
876
876
877 ret = LFR_DEFAULT;
877 ret = LFR_DEFAULT;
878
878
879 if (firstTickout == 0)
879 if (firstTickout == 0)
880 {
880 {
881 if (currentTimecodeCtr == 0)
881 if (currentTimecodeCtr == 0)
882 {
882 {
883 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
883 if (previousTimecodeCtr == SPW_TIMECODE_MAX)
884 {
884 {
885 ret = LFR_SUCCESSFUL;
885 ret = LFR_SUCCESSFUL;
886 }
886 }
887 else
887 else
888 {
888 {
889 ret = LFR_DEFAULT;
889 ret = LFR_DEFAULT;
890 }
890 }
891 }
891 }
892 else
892 else
893 {
893 {
894 if (currentTimecodeCtr == (previousTimecodeCtr +1))
894 if (currentTimecodeCtr == (previousTimecodeCtr +1))
895 {
895 {
896 ret = LFR_SUCCESSFUL;
896 ret = LFR_SUCCESSFUL;
897 }
897 }
898 else
898 else
899 {
899 {
900 ret = LFR_DEFAULT;
900 ret = LFR_DEFAULT;
901 }
901 }
902 }
902 }
903 }
903 }
904 else
904 else
905 {
905 {
906 firstTickout = 0;
906 firstTickout = 0;
907 ret = LFR_SUCCESSFUL;
907 ret = LFR_SUCCESSFUL;
908 }
908 }
909
909
910 return ret;
910 return ret;
911 }
911 }
912
912
913 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
913 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
914 {
914 {
915 unsigned int ret;
915 unsigned int ret;
916
916
917 ret = LFR_DEFAULT;
917 ret = LFR_DEFAULT;
918
918
919 if (timecode == internalTime)
919 if (timecode == internalTime)
920 {
920 {
921 ret = LFR_SUCCESSFUL;
921 ret = LFR_SUCCESSFUL;
922 }
922 }
923 else
923 else
924 {
924 {
925 ret = LFR_DEFAULT;
925 ret = LFR_DEFAULT;
926 }
926 }
927
927
928 return ret;
928 return ret;
929 }
929 }
930
930
931 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
931 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
932 {
932 {
933 // a tickout has been emitted, perform actions on the incoming timecode
933 // a tickout has been emitted, perform actions on the incoming timecode
934
934
935 unsigned char incomingTimecode;
935 unsigned char incomingTimecode;
936 unsigned char updateTime;
936 unsigned char updateTime;
937 unsigned char internalTime;
937 unsigned char internalTime;
938 rtems_status_code status;
938 rtems_status_code status;
939
939
940 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
940 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
941 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
941 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
942 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
942 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
943
943
944 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
944 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
945
945
946 // update the number of tickout that have been generated
946 // update the number of tickout that have been generated
947 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
947 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
948
948
949 //**************************
949 //**************************
950 // HK_LFR_TIMECODE_ERRONEOUS
950 // HK_LFR_TIMECODE_ERRONEOUS
951 // MISSING and INVALID are handled by the timecode_timer_routine service routine
951 // MISSING and INVALID are handled by the timecode_timer_routine service routine
952 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
952 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
953 {
953 {
954 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
954 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
955 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
955 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
956 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
956 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_ERRONEOUS );
957 }
957 }
958
958
959 //************************
959 //************************
960 // HK_LFR_TIME_TIMECODE_IT
960 // HK_LFR_TIME_TIMECODE_IT
961 // check the coherency between the SpaceWire timecode and the Internal Time
961 // check the coherency between the SpaceWire timecode and the Internal Time
962 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
962 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
963 {
963 {
964 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
964 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
965 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
965 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_IT );
966 }
966 }
967
967
968 //********************
968 //********************
969 // HK_LFR_TIMECODE_CTR
969 // HK_LFR_TIMECODE_CTR
970 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
970 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
971 if (oneTcLfrUpdateTimeReceived == 1)
971 if (oneTcLfrUpdateTimeReceived == 1)
972 {
972 {
973 if ( incomingTimecode != updateTime )
973 if ( incomingTimecode != updateTime )
974 {
974 {
975 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
975 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
976 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
976 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_TIMECODE_CTR );
977 }
977 }
978 }
978 }
979
979
980 // launch the timecode timer to detect missing or invalid timecodes
980 // launch the timecode timer to detect missing or invalid timecodes
981 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
981 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
982 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
982 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
983 if (status != RTEMS_SUCCESSFUL)
983 if (status != RTEMS_SUCCESSFUL)
984 {
984 {
985 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
985 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_14 );
986 }
986 }
987 }
987 }
988
988
989 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
989 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
990 {
990 {
991 static unsigned char initStep = 1;
991 static unsigned char initStep = 1;
992
992
993 unsigned char currentTimecodeCtr;
993 unsigned char currentTimecodeCtr;
994
994
995 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
995 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
996
996
997 if (initStep == 1)
997 if (initStep == 1)
998 {
998 {
999 if (currentTimecodeCtr == previousTimecodeCtr)
999 if (currentTimecodeCtr == previousTimecodeCtr)
1000 {
1000 {
1001 //************************
1001 //************************
1002 // HK_LFR_TIMECODE_MISSING
1002 // HK_LFR_TIMECODE_MISSING
1003 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1003 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
1004 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1004 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1005 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1005 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1006 }
1006 }
1007 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1007 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
1008 {
1008 {
1009 // the timecode value has changed and the value is valid, this is unexpected because
1009 // the timecode value has changed and the value is valid, this is unexpected because
1010 // the timer should not have fired, the timecode_irq_handler should have been raised
1010 // the timer should not have fired, the timecode_irq_handler should have been raised
1011 }
1011 }
1012 else
1012 else
1013 {
1013 {
1014 //************************
1014 //************************
1015 // HK_LFR_TIMECODE_INVALID
1015 // HK_LFR_TIMECODE_INVALID
1016 // the timecode value has changed and the value is not valid, no tickout has been generated
1016 // the timecode value has changed and the value is not valid, no tickout has been generated
1017 // this is why the timer has fired
1017 // this is why the timer has fired
1018 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1018 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
1019 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1019 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_INVALID );
1020 }
1020 }
1021 }
1021 }
1022 else
1022 else
1023 {
1023 {
1024 initStep = 1;
1024 initStep = 1;
1025 //************************
1025 //************************
1026 // HK_LFR_TIMECODE_MISSING
1026 // HK_LFR_TIMECODE_MISSING
1027 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1027 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
1028 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1028 update_hk_lfr_last_er_fields( RID_LE_LFR_TIMEC, CODE_MISSING );
1029 }
1029 }
1030
1030
1031 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1031 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
1032 }
1032 }
1033
1033
1034 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1034 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
1035 {
1035 {
1036 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1036 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1037 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1037 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1038 header->reserved = DEFAULT_RESERVED;
1038 header->reserved = DEFAULT_RESERVED;
1039 header->userApplication = CCSDS_USER_APP;
1039 header->userApplication = CCSDS_USER_APP;
1040 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1040 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
1041 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1041 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
1042 header->packetLength[0] = INIT_CHAR;
1042 header->packetLength[0] = INIT_CHAR;
1043 header->packetLength[1] = INIT_CHAR;
1043 header->packetLength[1] = INIT_CHAR;
1044 // DATA FIELD HEADER
1044 // DATA FIELD HEADER
1045 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1045 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1046 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1046 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1047 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1047 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1048 header->destinationID = TM_DESTINATION_ID_GROUND;
1048 header->destinationID = TM_DESTINATION_ID_GROUND;
1049 header->time[BYTE_0] = INIT_CHAR;
1049 header->time[BYTE_0] = INIT_CHAR;
1050 header->time[BYTE_1] = INIT_CHAR;
1050 header->time[BYTE_1] = INIT_CHAR;
1051 header->time[BYTE_2] = INIT_CHAR;
1051 header->time[BYTE_2] = INIT_CHAR;
1052 header->time[BYTE_3] = INIT_CHAR;
1052 header->time[BYTE_3] = INIT_CHAR;
1053 header->time[BYTE_4] = INIT_CHAR;
1053 header->time[BYTE_4] = INIT_CHAR;
1054 header->time[BYTE_5] = INIT_CHAR;
1054 header->time[BYTE_5] = INIT_CHAR;
1055 // AUXILIARY DATA HEADER
1055 // AUXILIARY DATA HEADER
1056 header->sid = INIT_CHAR;
1056 header->sid = INIT_CHAR;
1057 header->pa_bia_status_info = DEFAULT_HKBIA;
1057 header->pa_bia_status_info = DEFAULT_HKBIA;
1058 header->blkNr[0] = INIT_CHAR;
1058 header->blkNr[0] = INIT_CHAR;
1059 header->blkNr[1] = INIT_CHAR;
1059 header->blkNr[1] = INIT_CHAR;
1060 }
1060 }
1061
1061
1062 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1062 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
1063 {
1063 {
1064 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1064 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1065 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1065 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1066 header->reserved = DEFAULT_RESERVED;
1066 header->reserved = DEFAULT_RESERVED;
1067 header->userApplication = CCSDS_USER_APP;
1067 header->userApplication = CCSDS_USER_APP;
1068 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1068 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1069 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1069 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1070 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1070 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1071 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1071 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1072 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1072 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1073 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1073 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1074 // DATA FIELD HEADER
1074 // DATA FIELD HEADER
1075 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1075 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1076 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1076 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1077 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1077 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
1078 header->destinationID = TM_DESTINATION_ID_GROUND;
1078 header->destinationID = TM_DESTINATION_ID_GROUND;
1079 header->time[BYTE_0] = INIT_CHAR;
1079 header->time[BYTE_0] = INIT_CHAR;
1080 header->time[BYTE_1] = INIT_CHAR;
1080 header->time[BYTE_1] = INIT_CHAR;
1081 header->time[BYTE_2] = INIT_CHAR;
1081 header->time[BYTE_2] = INIT_CHAR;
1082 header->time[BYTE_3] = INIT_CHAR;
1082 header->time[BYTE_3] = INIT_CHAR;
1083 header->time[BYTE_4] = INIT_CHAR;
1083 header->time[BYTE_4] = INIT_CHAR;
1084 header->time[BYTE_5] = INIT_CHAR;
1084 header->time[BYTE_5] = INIT_CHAR;
1085 // AUXILIARY DATA HEADER
1085 // AUXILIARY DATA HEADER
1086 header->sid = INIT_CHAR;
1086 header->sid = INIT_CHAR;
1087 header->pa_bia_status_info = DEFAULT_HKBIA;
1087 header->pa_bia_status_info = DEFAULT_HKBIA;
1088 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1088 header->pktCnt = PKTCNT_SWF; // PKT_CNT
1089 header->pktNr = INIT_CHAR;
1089 header->pktNr = INIT_CHAR;
1090 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1090 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1091 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1091 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1092 }
1092 }
1093
1093
1094 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1094 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
1095 {
1095 {
1096 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1096 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
1097 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1097 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1098 header->reserved = DEFAULT_RESERVED;
1098 header->reserved = DEFAULT_RESERVED;
1099 header->userApplication = CCSDS_USER_APP;
1099 header->userApplication = CCSDS_USER_APP;
1100 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1100 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1101 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1101 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1102 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1102 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1103 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1103 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1104 header->packetLength[0] = INIT_CHAR;
1104 header->packetLength[0] = INIT_CHAR;
1105 header->packetLength[1] = INIT_CHAR;
1105 header->packetLength[1] = INIT_CHAR;
1106 // DATA FIELD HEADER
1106 // DATA FIELD HEADER
1107 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1107 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
1108 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1108 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
1109 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1109 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
1110 header->destinationID = TM_DESTINATION_ID_GROUND;
1110 header->destinationID = TM_DESTINATION_ID_GROUND;
1111 header->time[BYTE_0] = INIT_CHAR;
1111 header->time[BYTE_0] = INIT_CHAR;
1112 header->time[BYTE_1] = INIT_CHAR;
1112 header->time[BYTE_1] = INIT_CHAR;
1113 header->time[BYTE_2] = INIT_CHAR;
1113 header->time[BYTE_2] = INIT_CHAR;
1114 header->time[BYTE_3] = INIT_CHAR;
1114 header->time[BYTE_3] = INIT_CHAR;
1115 header->time[BYTE_4] = INIT_CHAR;
1115 header->time[BYTE_4] = INIT_CHAR;
1116 header->time[BYTE_5] = INIT_CHAR;
1116 header->time[BYTE_5] = INIT_CHAR;
1117 // AUXILIARY DATA HEADER
1117 // AUXILIARY DATA HEADER
1118 header->sid = INIT_CHAR;
1118 header->sid = INIT_CHAR;
1119 header->pa_bia_status_info = INIT_CHAR;
1119 header->pa_bia_status_info = INIT_CHAR;
1120 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1120 header->pa_lfr_pkt_cnt_asm = INIT_CHAR;
1121 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1121 header->pa_lfr_pkt_nr_asm = INIT_CHAR;
1122 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1122 header->pa_lfr_asm_blk_nr[0] = INIT_CHAR;
1123 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1123 header->pa_lfr_asm_blk_nr[1] = INIT_CHAR;
1124 }
1124 }
1125
1125
1126 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1126 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
1127 Header_TM_LFR_SCIENCE_CWF_t *header )
1127 Header_TM_LFR_SCIENCE_CWF_t *header )
1128 {
1128 {
1129 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1129 /** This function sends CWF CCSDS packets (F2, F1 or F0).
1130 *
1130 *
1131 * @param waveform points to the buffer containing the data that will be send.
1131 * @param waveform points to the buffer containing the data that will be send.
1132 * @param sid is the source identifier of the data that will be sent.
1132 * @param sid is the source identifier of the data that will be sent.
1133 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1133 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1134 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1134 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1135 * contain information to setup the transmission of the data packets.
1135 * contain information to setup the transmission of the data packets.
1136 *
1136 *
1137 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1137 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1138 *
1138 *
1139 */
1139 */
1140
1140
1141 unsigned int i;
1141 unsigned int i;
1142 int ret;
1142 int ret;
1143 unsigned int coarseTime;
1143 unsigned int coarseTime;
1144 unsigned int fineTime;
1144 unsigned int fineTime;
1145 rtems_status_code status;
1145 rtems_status_code status;
1146 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1146 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1147 int *dataPtr;
1147 int *dataPtr;
1148 unsigned char sid;
1148 unsigned char sid;
1149
1149
1150 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1150 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1151 spw_ioctl_send_CWF.options = 0;
1151 spw_ioctl_send_CWF.options = 0;
1152
1152
1153 ret = LFR_DEFAULT;
1153 ret = LFR_DEFAULT;
1154 sid = (unsigned char) ring_node_to_send->sid;
1154 sid = (unsigned char) ring_node_to_send->sid;
1155
1155
1156 coarseTime = ring_node_to_send->coarseTime;
1156 coarseTime = ring_node_to_send->coarseTime;
1157 fineTime = ring_node_to_send->fineTime;
1157 fineTime = ring_node_to_send->fineTime;
1158 dataPtr = (int*) ring_node_to_send->buffer_address;
1158 dataPtr = (int*) ring_node_to_send->buffer_address;
1159
1159
1160 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1160 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> SHIFT_1_BYTE);
1161 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1161 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
1162 header->pa_bia_status_info = pa_bia_status_info;
1162 header->pa_bia_status_info = pa_bia_status_info;
1163 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1163 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1164 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1164 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> SHIFT_1_BYTE);
1165 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1165 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
1166
1166
1167 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1167 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
1168 {
1168 {
1169 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1169 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
1170 spw_ioctl_send_CWF.hdr = (char*) header;
1170 spw_ioctl_send_CWF.hdr = (char*) header;
1171 // BUILD THE DATA
1171 // BUILD THE DATA
1172 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1172 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
1173
1173
1174 // SET PACKET SEQUENCE CONTROL
1174 // SET PACKET SEQUENCE CONTROL
1175 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1175 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1176
1176
1177 // SET SID
1177 // SET SID
1178 header->sid = sid;
1178 header->sid = sid;
1179
1179
1180 // SET PACKET TIME
1180 // SET PACKET TIME
1181 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1181 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
1182 //
1182 //
1183 header->time[0] = header->acquisitionTime[0];
1183 header->time[0] = header->acquisitionTime[0];
1184 header->time[1] = header->acquisitionTime[1];
1184 header->time[1] = header->acquisitionTime[1];
1185 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1185 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1186 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1186 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1187 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1187 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1188 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1188 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1189
1189
1190 // SET PACKET ID
1190 // SET PACKET ID
1191 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1191 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
1192 {
1192 {
1193 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1193 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> SHIFT_1_BYTE);
1194 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1194 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
1195 }
1195 }
1196 else
1196 else
1197 {
1197 {
1198 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1198 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1199 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1199 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1200 }
1200 }
1201
1201
1202 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1202 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1203 if (status != RTEMS_SUCCESSFUL) {
1203 if (status != RTEMS_SUCCESSFUL) {
1204 ret = LFR_DEFAULT;
1204 ret = LFR_DEFAULT;
1205 }
1205 }
1206 }
1206 }
1207
1207
1208 return ret;
1208 return ret;
1209 }
1209 }
1210
1210
1211 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1211 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1212 Header_TM_LFR_SCIENCE_SWF_t *header )
1212 Header_TM_LFR_SCIENCE_SWF_t *header )
1213 {
1213 {
1214 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1214 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1215 *
1215 *
1216 * @param waveform points to the buffer containing the data that will be send.
1216 * @param waveform points to the buffer containing the data that will be send.
1217 * @param sid is the source identifier of the data that will be sent.
1217 * @param sid is the source identifier of the data that will be sent.
1218 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1218 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1219 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1219 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1220 * contain information to setup the transmission of the data packets.
1220 * contain information to setup the transmission of the data packets.
1221 *
1221 *
1222 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1222 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1223 *
1223 *
1224 */
1224 */
1225
1225
1226 unsigned int i;
1226 unsigned int i;
1227 int ret;
1227 int ret;
1228 unsigned int coarseTime;
1228 unsigned int coarseTime;
1229 unsigned int fineTime;
1229 unsigned int fineTime;
1230 rtems_status_code status;
1230 rtems_status_code status;
1231 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1231 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1232 int *dataPtr;
1232 int *dataPtr;
1233 unsigned char sid;
1233 unsigned char sid;
1234
1234
1235 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1235 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1236 spw_ioctl_send_SWF.options = 0;
1236 spw_ioctl_send_SWF.options = 0;
1237
1237
1238 ret = LFR_DEFAULT;
1238 ret = LFR_DEFAULT;
1239
1239
1240 coarseTime = ring_node_to_send->coarseTime;
1240 coarseTime = ring_node_to_send->coarseTime;
1241 fineTime = ring_node_to_send->fineTime;
1241 fineTime = ring_node_to_send->fineTime;
1242 dataPtr = (int*) ring_node_to_send->buffer_address;
1242 dataPtr = (int*) ring_node_to_send->buffer_address;
1243 sid = ring_node_to_send->sid;
1243 sid = ring_node_to_send->sid;
1244
1244
1245 header->pa_bia_status_info = pa_bia_status_info;
1245 header->pa_bia_status_info = pa_bia_status_info;
1246 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1246 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1247
1247
1248 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1248 for (i=0; i<PKTCNT_SWF; i++) // send waveform
1249 {
1249 {
1250 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1250 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1251 spw_ioctl_send_SWF.hdr = (char*) header;
1251 spw_ioctl_send_SWF.hdr = (char*) header;
1252
1252
1253 // SET PACKET SEQUENCE CONTROL
1253 // SET PACKET SEQUENCE CONTROL
1254 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1254 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1255
1255
1256 // SET PACKET LENGTH AND BLKNR
1256 // SET PACKET LENGTH AND BLKNR
1257 if (i == (PKTCNT_SWF-1))
1257 if (i == (PKTCNT_SWF-1))
1258 {
1258 {
1259 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1259 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1260 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1260 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> SHIFT_1_BYTE);
1261 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1261 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1262 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1262 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> SHIFT_1_BYTE);
1263 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1263 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1264 }
1264 }
1265 else
1265 else
1266 {
1266 {
1267 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1267 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1268 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1268 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> SHIFT_1_BYTE);
1269 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1269 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1270 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1270 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> SHIFT_1_BYTE);
1271 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1271 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1272 }
1272 }
1273
1273
1274 // SET PACKET TIME
1274 // SET PACKET TIME
1275 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1275 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1276 //
1276 //
1277 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1277 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1278 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1278 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1279 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1279 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1280 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1280 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1281 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1281 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1282 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1282 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1283
1283
1284 // SET SID
1284 // SET SID
1285 header->sid = sid;
1285 header->sid = sid;
1286
1286
1287 // SET PKTNR
1287 // SET PKTNR
1288 header->pktNr = i+1; // PKT_NR
1288 header->pktNr = i+1; // PKT_NR
1289
1289
1290 // SEND PACKET
1290 // SEND PACKET
1291 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1291 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1292 if (status != RTEMS_SUCCESSFUL) {
1292 if (status != RTEMS_SUCCESSFUL) {
1293 ret = LFR_DEFAULT;
1293 ret = LFR_DEFAULT;
1294 }
1294 }
1295 }
1295 }
1296
1296
1297 return ret;
1297 return ret;
1298 }
1298 }
1299
1299
1300 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1300 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1301 Header_TM_LFR_SCIENCE_CWF_t *header )
1301 Header_TM_LFR_SCIENCE_CWF_t *header )
1302 {
1302 {
1303 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1303 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1304 *
1304 *
1305 * @param waveform points to the buffer containing the data that will be send.
1305 * @param waveform points to the buffer containing the data that will be send.
1306 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1306 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1307 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1307 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1308 * contain information to setup the transmission of the data packets.
1308 * contain information to setup the transmission of the data packets.
1309 *
1309 *
1310 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1310 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1311 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1311 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1312 *
1312 *
1313 */
1313 */
1314
1314
1315 unsigned int i;
1315 unsigned int i;
1316 int ret;
1316 int ret;
1317 unsigned int coarseTime;
1317 unsigned int coarseTime;
1318 unsigned int fineTime;
1318 unsigned int fineTime;
1319 rtems_status_code status;
1319 rtems_status_code status;
1320 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1320 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1321 char *dataPtr;
1321 char *dataPtr;
1322 unsigned char sid;
1322 unsigned char sid;
1323
1323
1324 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1324 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1325 spw_ioctl_send_CWF.options = 0;
1325 spw_ioctl_send_CWF.options = 0;
1326
1326
1327 ret = LFR_DEFAULT;
1327 ret = LFR_DEFAULT;
1328 sid = ring_node_to_send->sid;
1328 sid = ring_node_to_send->sid;
1329
1329
1330 coarseTime = ring_node_to_send->coarseTime;
1330 coarseTime = ring_node_to_send->coarseTime;
1331 fineTime = ring_node_to_send->fineTime;
1331 fineTime = ring_node_to_send->fineTime;
1332 dataPtr = (char*) ring_node_to_send->buffer_address;
1332 dataPtr = (char*) ring_node_to_send->buffer_address;
1333
1333
1334 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1334 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> SHIFT_1_BYTE);
1335 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1335 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1336 header->pa_bia_status_info = pa_bia_status_info;
1336 header->pa_bia_status_info = pa_bia_status_info;
1337 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1337 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1338 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1338 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> SHIFT_1_BYTE);
1339 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1339 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1340
1340
1341 //*********************
1341 //*********************
1342 // SEND CWF3_light DATA
1342 // SEND CWF3_light DATA
1343 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1343 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1344 {
1344 {
1345 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1345 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1346 spw_ioctl_send_CWF.hdr = (char*) header;
1346 spw_ioctl_send_CWF.hdr = (char*) header;
1347 // BUILD THE DATA
1347 // BUILD THE DATA
1348 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1348 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1349
1349
1350 // SET PACKET SEQUENCE COUNTER
1350 // SET PACKET SEQUENCE COUNTER
1351 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1351 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1352
1352
1353 // SET SID
1353 // SET SID
1354 header->sid = sid;
1354 header->sid = sid;
1355
1355
1356 // SET PACKET TIME
1356 // SET PACKET TIME
1357 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1357 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1358 //
1358 //
1359 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1359 header->time[BYTE_0] = header->acquisitionTime[BYTE_0];
1360 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1360 header->time[BYTE_1] = header->acquisitionTime[BYTE_1];
1361 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1361 header->time[BYTE_2] = header->acquisitionTime[BYTE_2];
1362 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1362 header->time[BYTE_3] = header->acquisitionTime[BYTE_3];
1363 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1363 header->time[BYTE_4] = header->acquisitionTime[BYTE_4];
1364 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1364 header->time[BYTE_5] = header->acquisitionTime[BYTE_5];
1365
1365
1366 // SET PACKET ID
1366 // SET PACKET ID
1367 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1367 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> SHIFT_1_BYTE);
1368 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1368 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1369
1369
1370 // SEND PACKET
1370 // SEND PACKET
1371 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1371 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1372 if (status != RTEMS_SUCCESSFUL) {
1372 if (status != RTEMS_SUCCESSFUL) {
1373 ret = LFR_DEFAULT;
1373 ret = LFR_DEFAULT;
1374 }
1374 }
1375 }
1375 }
1376
1376
1377 return ret;
1377 return ret;
1378 }
1378 }
1379
1379
1380 void spw_send_asm_f0( ring_node *ring_node_to_send,
1380 void spw_send_asm_f0( ring_node *ring_node_to_send,
1381 Header_TM_LFR_SCIENCE_ASM_t *header )
1381 Header_TM_LFR_SCIENCE_ASM_t *header )
1382 {
1382 {
1383 unsigned int i;
1383 unsigned int i;
1384 unsigned int length = 0;
1384 unsigned int length = 0;
1385 rtems_status_code status;
1385 rtems_status_code status;
1386 unsigned int sid;
1386 unsigned int sid;
1387 float *spectral_matrix;
1387 float *spectral_matrix;
1388 int coarseTime;
1388 int coarseTime;
1389 int fineTime;
1389 int fineTime;
1390 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1390 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1391
1391
1392 sid = ring_node_to_send->sid;
1392 sid = ring_node_to_send->sid;
1393 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1393 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1394 coarseTime = ring_node_to_send->coarseTime;
1394 coarseTime = ring_node_to_send->coarseTime;
1395 fineTime = ring_node_to_send->fineTime;
1395 fineTime = ring_node_to_send->fineTime;
1396
1396
1397 header->pa_bia_status_info = pa_bia_status_info;
1397 header->pa_bia_status_info = pa_bia_status_info;
1398 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1398 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1399
1399
1400 for (i=0; i<PKTCNT_ASM; i++)
1400 for (i=0; i<PKTCNT_ASM; i++)
1401 {
1401 {
1402 if ((i==0) || (i==1))
1402 if ((i==0) || (i==1))
1403 {
1403 {
1404 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1404 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1405 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1405 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1406 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1406 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1407 ];
1407 ];
1408 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1408 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1409 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1409 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1410 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1410 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1411 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1411 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1412 }
1412 }
1413 else
1413 else
1414 {
1414 {
1415 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1415 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1416 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1416 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1417 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1417 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1418 ];
1418 ];
1419 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1419 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1420 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1420 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1421 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1421 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1422 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1422 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1423 }
1423 }
1424
1424
1425 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1425 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1426 spw_ioctl_send_ASM.hdr = (char *) header;
1426 spw_ioctl_send_ASM.hdr = (char *) header;
1427 spw_ioctl_send_ASM.options = 0;
1427 spw_ioctl_send_ASM.options = 0;
1428
1428
1429 // (2) BUILD THE HEADER
1429 // (2) BUILD THE HEADER
1430 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1430 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1431 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1431 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1432 header->packetLength[1] = (unsigned char) (length);
1432 header->packetLength[1] = (unsigned char) (length);
1433 header->sid = (unsigned char) sid; // SID
1433 header->sid = (unsigned char) sid; // SID
1434 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1434 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1435 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1435 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1436
1436
1437 // (3) SET PACKET TIME
1437 // (3) SET PACKET TIME
1438 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1438 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1439 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1439 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1440 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1440 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1441 header->time[BYTE_3] = (unsigned char) (coarseTime);
1441 header->time[BYTE_3] = (unsigned char) (coarseTime);
1442 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1442 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1443 header->time[BYTE_5] = (unsigned char) (fineTime);
1443 header->time[BYTE_5] = (unsigned char) (fineTime);
1444 //
1444 //
1445 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1445 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1446 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1446 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1447 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1447 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1448 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1448 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1449 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1449 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1450 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1450 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1451
1451
1452 // (4) SEND PACKET
1452 // (4) SEND PACKET
1453 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1453 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1454 if (status != RTEMS_SUCCESSFUL) {
1454 if (status != RTEMS_SUCCESSFUL) {
1455 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1455 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1456 }
1456 }
1457 }
1457 }
1458 }
1458 }
1459
1459
1460 void spw_send_asm_f1( ring_node *ring_node_to_send,
1460 void spw_send_asm_f1( ring_node *ring_node_to_send,
1461 Header_TM_LFR_SCIENCE_ASM_t *header )
1461 Header_TM_LFR_SCIENCE_ASM_t *header )
1462 {
1462 {
1463 unsigned int i;
1463 unsigned int i;
1464 unsigned int length = 0;
1464 unsigned int length = 0;
1465 rtems_status_code status;
1465 rtems_status_code status;
1466 unsigned int sid;
1466 unsigned int sid;
1467 float *spectral_matrix;
1467 float *spectral_matrix;
1468 int coarseTime;
1468 int coarseTime;
1469 int fineTime;
1469 int fineTime;
1470 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1470 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1471
1471
1472 sid = ring_node_to_send->sid;
1472 sid = ring_node_to_send->sid;
1473 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1473 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1474 coarseTime = ring_node_to_send->coarseTime;
1474 coarseTime = ring_node_to_send->coarseTime;
1475 fineTime = ring_node_to_send->fineTime;
1475 fineTime = ring_node_to_send->fineTime;
1476
1476
1477 header->pa_bia_status_info = pa_bia_status_info;
1477 header->pa_bia_status_info = pa_bia_status_info;
1478 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1478 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1479
1479
1480 for (i=0; i<PKTCNT_ASM; i++)
1480 for (i=0; i<PKTCNT_ASM; i++)
1481 {
1481 {
1482 if ((i==0) || (i==1))
1482 if ((i==0) || (i==1))
1483 {
1483 {
1484 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1484 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1485 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1485 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1486 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1486 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1487 ];
1487 ];
1488 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1488 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1489 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1489 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1490 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1490 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> SHIFT_1_BYTE ); // BLK_NR MSB
1491 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1491 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1492 }
1492 }
1493 else
1493 else
1494 {
1494 {
1495 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1495 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1496 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1496 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1497 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1497 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1498 ];
1498 ];
1499 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1499 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1500 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1500 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1501 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1501 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1502 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1502 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1503 }
1503 }
1504
1504
1505 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1505 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1506 spw_ioctl_send_ASM.hdr = (char *) header;
1506 spw_ioctl_send_ASM.hdr = (char *) header;
1507 spw_ioctl_send_ASM.options = 0;
1507 spw_ioctl_send_ASM.options = 0;
1508
1508
1509 // (2) BUILD THE HEADER
1509 // (2) BUILD THE HEADER
1510 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1510 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1511 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1511 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1512 header->packetLength[1] = (unsigned char) (length);
1512 header->packetLength[1] = (unsigned char) (length);
1513 header->sid = (unsigned char) sid; // SID
1513 header->sid = (unsigned char) sid; // SID
1514 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1514 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1515 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1515 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1516
1516
1517 // (3) SET PACKET TIME
1517 // (3) SET PACKET TIME
1518 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1518 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1519 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1519 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1520 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1520 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1521 header->time[BYTE_3] = (unsigned char) (coarseTime);
1521 header->time[BYTE_3] = (unsigned char) (coarseTime);
1522 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1522 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1523 header->time[BYTE_5] = (unsigned char) (fineTime);
1523 header->time[BYTE_5] = (unsigned char) (fineTime);
1524 //
1524 //
1525 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1525 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1526 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1526 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1527 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1527 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1528 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1528 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1529 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1529 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1530 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1530 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1531
1531
1532 // (4) SEND PACKET
1532 // (4) SEND PACKET
1533 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1533 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1534 if (status != RTEMS_SUCCESSFUL) {
1534 if (status != RTEMS_SUCCESSFUL) {
1535 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1535 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1536 }
1536 }
1537 }
1537 }
1538 }
1538 }
1539
1539
1540 void spw_send_asm_f2( ring_node *ring_node_to_send,
1540 void spw_send_asm_f2( ring_node *ring_node_to_send,
1541 Header_TM_LFR_SCIENCE_ASM_t *header )
1541 Header_TM_LFR_SCIENCE_ASM_t *header )
1542 {
1542 {
1543 unsigned int i;
1543 unsigned int i;
1544 unsigned int length = 0;
1544 unsigned int length = 0;
1545 rtems_status_code status;
1545 rtems_status_code status;
1546 unsigned int sid;
1546 unsigned int sid;
1547 float *spectral_matrix;
1547 float *spectral_matrix;
1548 int coarseTime;
1548 int coarseTime;
1549 int fineTime;
1549 int fineTime;
1550 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1550 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1551
1551
1552 sid = ring_node_to_send->sid;
1552 sid = ring_node_to_send->sid;
1553 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1553 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1554 coarseTime = ring_node_to_send->coarseTime;
1554 coarseTime = ring_node_to_send->coarseTime;
1555 fineTime = ring_node_to_send->fineTime;
1555 fineTime = ring_node_to_send->fineTime;
1556
1556
1557 header->pa_bia_status_info = pa_bia_status_info;
1557 header->pa_bia_status_info = pa_bia_status_info;
1558 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1558 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1559
1559
1560 for (i=0; i<PKTCNT_ASM; i++)
1560 for (i=0; i<PKTCNT_ASM; i++)
1561 {
1561 {
1562
1562
1563 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1563 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1564 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1564 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1565 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1565 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1566 ];
1566 ];
1567 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1567 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1568 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1568 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1569 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1569 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> SHIFT_1_BYTE ); // BLK_NR MSB
1570 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1570 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1571
1571
1572 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1572 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1573 spw_ioctl_send_ASM.hdr = (char *) header;
1573 spw_ioctl_send_ASM.hdr = (char *) header;
1574 spw_ioctl_send_ASM.options = 0;
1574 spw_ioctl_send_ASM.options = 0;
1575
1575
1576 // (2) BUILD THE HEADER
1576 // (2) BUILD THE HEADER
1577 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1577 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1578 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1578 header->packetLength[0] = (unsigned char) (length >> SHIFT_1_BYTE);
1579 header->packetLength[1] = (unsigned char) (length);
1579 header->packetLength[1] = (unsigned char) (length);
1580 header->sid = (unsigned char) sid; // SID
1580 header->sid = (unsigned char) sid; // SID
1581 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1581 header->pa_lfr_pkt_cnt_asm = PKTCNT_ASM;
1582 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1582 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1583
1583
1584 // (3) SET PACKET TIME
1584 // (3) SET PACKET TIME
1585 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1585 header->time[BYTE_0] = (unsigned char) (coarseTime >> SHIFT_3_BYTES);
1586 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1586 header->time[BYTE_1] = (unsigned char) (coarseTime >> SHIFT_2_BYTES);
1587 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1587 header->time[BYTE_2] = (unsigned char) (coarseTime >> SHIFT_1_BYTE);
1588 header->time[BYTE_3] = (unsigned char) (coarseTime);
1588 header->time[BYTE_3] = (unsigned char) (coarseTime);
1589 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1589 header->time[BYTE_4] = (unsigned char) (fineTime >> SHIFT_1_BYTE);
1590 header->time[BYTE_5] = (unsigned char) (fineTime);
1590 header->time[BYTE_5] = (unsigned char) (fineTime);
1591 //
1591 //
1592 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1592 header->acquisitionTime[BYTE_0] = header->time[BYTE_0];
1593 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1593 header->acquisitionTime[BYTE_1] = header->time[BYTE_1];
1594 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1594 header->acquisitionTime[BYTE_2] = header->time[BYTE_2];
1595 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1595 header->acquisitionTime[BYTE_3] = header->time[BYTE_3];
1596 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1596 header->acquisitionTime[BYTE_4] = header->time[BYTE_4];
1597 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1597 header->acquisitionTime[BYTE_5] = header->time[BYTE_5];
1598
1598
1599 // (4) SEND PACKET
1599 // (4) SEND PACKET
1600 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1600 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1601 if (status != RTEMS_SUCCESSFUL) {
1601 if (status != RTEMS_SUCCESSFUL) {
1602 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1602 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1603 }
1603 }
1604 }
1604 }
1605 }
1605 }
1606
1606
1607 void spw_send_k_dump( ring_node *ring_node_to_send )
1607 void spw_send_k_dump( ring_node *ring_node_to_send )
1608 {
1608 {
1609 rtems_status_code status;
1609 rtems_status_code status;
1610 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1610 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1611 unsigned int packetLength;
1611 unsigned int packetLength;
1612 unsigned int size;
1612 unsigned int size;
1613
1613
1614 PRINTF("spw_send_k_dump\n")
1614 PRINTF("spw_send_k_dump\n")
1615
1615
1616 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1616 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1617
1617
1618 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1618 packetLength = (kcoefficients_dump->packetLength[0] * CONST_256) + kcoefficients_dump->packetLength[1];
1619
1619
1620 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1620 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1621
1621
1622 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1622 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1623
1623
1624 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1624 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1625
1625
1626 if (status == -1){
1626 if (status == -1){
1627 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1627 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1628 }
1628 }
1629
1629
1630 ring_node_to_send->status = INIT_CHAR;
1630 ring_node_to_send->status = INIT_CHAR;
1631 }
1631 }
@@ -1,424 +1,423
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf0_prc0.h"
10 #include "avf0_prc0.h"
11 #include "fsw_processing.h"
12
11
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
12 nb_sm_before_bp_asm_f0 nb_sm_before_f0 = {0};
14
13
15 //***
14 //***
16 // F0
15 // F0
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
16 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ] = {0};
18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
17 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ] = {0};
19
18
20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
19 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ] = {0};
21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
20 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ] = {0};
22
21
23 float asm_f0_patched_norm [ TOTAL_SIZE_SM ];
22 float asm_f0_patched_norm [ TOTAL_SIZE_SM ] = {0};
24 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ];
23 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ] = {0};
25 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
24 float asm_f0_reorganized [ TOTAL_SIZE_SM ] = {0};
26
25
27 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
26 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0] = {0};
28 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
27 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ] = {0};
29
28
30 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
29 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ] = {0}; // 11 * 32 = 352
31 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
30 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ] = {0}; // 22 * 32 = 704
32
31
33 //************
32 //************
34 // RTEMS TASKS
33 // RTEMS TASKS
35
34
36 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
35 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
37 {
36 {
38 int i;
37 int i;
39
38
40 rtems_event_set event_out;
39 rtems_event_set event_out;
41 rtems_status_code status;
40 rtems_status_code status;
42 rtems_id queue_id_prc0;
41 rtems_id queue_id_prc0;
43 asm_msg msgForPRC;
42 asm_msg msgForPRC;
44 ring_node *nodeForAveraging;
43 ring_node *nodeForAveraging;
45 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
46 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
45 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
47 ring_node_asm *current_ring_node_asm_norm_f0;
46 ring_node_asm *current_ring_node_asm_norm_f0;
48
47
49 unsigned int nb_norm_bp1;
48 unsigned int nb_norm_bp1;
50 unsigned int nb_norm_bp2;
49 unsigned int nb_norm_bp2;
51 unsigned int nb_norm_asm;
50 unsigned int nb_norm_asm;
52 unsigned int nb_sbm_bp1;
51 unsigned int nb_sbm_bp1;
53 unsigned int nb_sbm_bp2;
52 unsigned int nb_sbm_bp2;
54
53
55 nb_norm_bp1 = 0;
54 nb_norm_bp1 = 0;
56 nb_norm_bp2 = 0;
55 nb_norm_bp2 = 0;
57 nb_norm_asm = 0;
56 nb_norm_asm = 0;
58 nb_sbm_bp1 = 0;
57 nb_sbm_bp1 = 0;
59 nb_sbm_bp2 = 0;
58 nb_sbm_bp2 = 0;
60 event_out = EVENT_SETS_NONE_PENDING;
59 event_out = EVENT_SETS_NONE_PENDING;
61 queue_id_prc0 = RTEMS_ID_NONE;
60 queue_id_prc0 = RTEMS_ID_NONE;
62
61
63 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
64 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
65 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
66 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
67 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
68
67
69 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode);
68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode);
70
69
71 status = get_message_queue_id_prc0( &queue_id_prc0 );
70 status = get_message_queue_id_prc0( &queue_id_prc0 );
72 if (status != RTEMS_SUCCESSFUL)
71 if (status != RTEMS_SUCCESSFUL)
73 {
72 {
74 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
75 }
74 }
76
75
77 while(1){
76 while(1){
78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
79
78
80 //****************************************
79 //****************************************
81 // initialize the mesage for the MATR task
80 // initialize the mesage for the MATR task
82 msgForPRC.norm = current_ring_node_asm_norm_f0;
81 msgForPRC.norm = current_ring_node_asm_norm_f0;
83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
82 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
84 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC0 task
83 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC0 task
85 //
84 //
86 //****************************************
85 //****************************************
87
86
88 nodeForAveraging = getRingNodeForAveraging( 0 );
87 nodeForAveraging = getRingNodeForAveraging( 0 );
89
88
90 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
89 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
91 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
90 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
92 {
91 {
93 nodeForAveraging = nodeForAveraging->previous;
92 nodeForAveraging = nodeForAveraging->previous;
94 ring_node_tab[NB_SM_BEFORE_AVF0_F1-i] = nodeForAveraging;
93 ring_node_tab[NB_SM_BEFORE_AVF0_F1-i] = nodeForAveraging;
95 }
94 }
96
95
97 // compute the average and store it in the averaged_sm_f1 buffer
96 // compute the average and store it in the averaged_sm_f1 buffer
98 SM_average( current_ring_node_asm_norm_f0->matrix,
97 SM_average( current_ring_node_asm_norm_f0->matrix,
99 current_ring_node_asm_burst_sbm_f0->matrix,
98 current_ring_node_asm_burst_sbm_f0->matrix,
100 ring_node_tab,
99 ring_node_tab,
101 nb_norm_bp1, nb_sbm_bp1,
100 nb_norm_bp1, nb_sbm_bp1,
102 &msgForPRC, 0 ); // 0 => frequency channel 0
101 &msgForPRC, 0 ); // 0 => frequency channel 0
103
102
104 // update nb_average
103 // update nb_average
105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
110
109
111 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
112 {
111 {
113 nb_sbm_bp1 = 0;
112 nb_sbm_bp1 = 0;
114 // set another ring for the ASM storage
113 // set another ring for the ASM storage
115 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
116 if ( lfrCurrentMode == LFR_MODE_BURST )
115 if ( lfrCurrentMode == LFR_MODE_BURST )
117 {
116 {
118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
119 }
118 }
120 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
121 {
120 {
122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
121 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
123 }
122 }
124 }
123 }
125
124
126 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
127 {
126 {
128 nb_sbm_bp2 = 0;
127 nb_sbm_bp2 = 0;
129 if ( lfrCurrentMode == LFR_MODE_BURST )
128 if ( lfrCurrentMode == LFR_MODE_BURST )
130 {
129 {
131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
130 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
132 }
131 }
133 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
134 {
133 {
135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
134 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
136 }
135 }
137 }
136 }
138
137
139 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
140 {
139 {
141 nb_norm_bp1 = 0;
140 nb_norm_bp1 = 0;
142 // set another ring for the ASM storage
141 // set another ring for the ASM storage
143 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
146 {
145 {
147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
146 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
148 }
147 }
149 }
148 }
150
149
151 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
152 {
151 {
153 nb_norm_bp2 = 0;
152 nb_norm_bp2 = 0;
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
156 {
155 {
157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
156 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
158 }
157 }
159 }
158 }
160
159
161 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
162 {
161 {
163 nb_norm_asm = 0;
162 nb_norm_asm = 0;
164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
166 {
165 {
167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
166 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
168 }
167 }
169 }
168 }
170
169
171 //*************************
170 //*************************
172 // send the message to PRC
171 // send the message to PRC
173 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
172 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
174 {
173 {
175 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
176 }
175 }
177
176
178 if (status != RTEMS_SUCCESSFUL) {
177 if (status != RTEMS_SUCCESSFUL) {
179 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
178 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
180 }
179 }
181 }
180 }
182 }
181 }
183
182
184 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
185 {
184 {
186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
187 size_t size; // size of the incoming TC packet
186 size_t size; // size of the incoming TC packet
188 asm_msg *incomingMsg;
187 asm_msg *incomingMsg;
189 //
188 //
190 unsigned char sid;
189 unsigned char sid;
191 rtems_status_code status;
190 rtems_status_code status;
192 rtems_id queue_id;
191 rtems_id queue_id;
193 rtems_id queue_id_q_p0;
192 rtems_id queue_id_q_p0;
194 bp_packet_with_spare packet_norm_bp1;
193 bp_packet_with_spare packet_norm_bp1;
195 bp_packet packet_norm_bp2;
194 bp_packet packet_norm_bp2;
196 bp_packet packet_sbm_bp1;
195 bp_packet packet_sbm_bp1;
197 bp_packet packet_sbm_bp2;
196 bp_packet packet_sbm_bp2;
198 ring_node *current_ring_node_to_send_asm_f0;
197 ring_node *current_ring_node_to_send_asm_f0;
199 float nbSMInASMNORM;
198 float nbSMInASMNORM;
200 float nbSMInASMSBM;
199 float nbSMInASMSBM;
201
200
202 size = 0;
201 size = 0;
203 queue_id = RTEMS_ID_NONE;
202 queue_id = RTEMS_ID_NONE;
204 queue_id_q_p0 = RTEMS_ID_NONE;
203 queue_id_q_p0 = RTEMS_ID_NONE;
205 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
204 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
206 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
205 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
207 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
206 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
208 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
207 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
209
208
210 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
209 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
211 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
210 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
212 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
211 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
213
212
214 //*************
213 //*************
215 // NORM headers
214 // NORM headers
216 BP_init_header_with_spare( &packet_norm_bp1,
215 BP_init_header_with_spare( &packet_norm_bp1,
217 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
216 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
218 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
217 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
219 BP_init_header( &packet_norm_bp2,
218 BP_init_header( &packet_norm_bp2,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
219 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
221 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
220 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
222
221
223 //****************************
222 //****************************
224 // BURST SBM1 and SBM2 headers
223 // BURST SBM1 and SBM2 headers
225 if ( lfrRequestedMode == LFR_MODE_BURST )
224 if ( lfrRequestedMode == LFR_MODE_BURST )
226 {
225 {
227 BP_init_header( &packet_sbm_bp1,
226 BP_init_header( &packet_sbm_bp1,
228 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
227 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
228 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
230 BP_init_header( &packet_sbm_bp2,
229 BP_init_header( &packet_sbm_bp2,
231 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
230 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
231 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
233 }
232 }
234 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
233 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
235 {
234 {
236 BP_init_header( &packet_sbm_bp1,
235 BP_init_header( &packet_sbm_bp1,
237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
236 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
237 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
239 BP_init_header( &packet_sbm_bp2,
238 BP_init_header( &packet_sbm_bp2,
240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
239 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
240 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
242 }
241 }
243 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
242 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
244 {
243 {
245 BP_init_header( &packet_sbm_bp1,
244 BP_init_header( &packet_sbm_bp1,
246 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
245 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
247 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
246 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
248 BP_init_header( &packet_sbm_bp2,
247 BP_init_header( &packet_sbm_bp2,
249 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
248 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
250 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
249 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
251 }
250 }
252 else
251 else
253 {
252 {
254 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
253 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
255 }
254 }
256
255
257 status = get_message_queue_id_send( &queue_id );
256 status = get_message_queue_id_send( &queue_id );
258 if (status != RTEMS_SUCCESSFUL)
257 if (status != RTEMS_SUCCESSFUL)
259 {
258 {
260 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
259 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
261 }
260 }
262 status = get_message_queue_id_prc0( &queue_id_q_p0);
261 status = get_message_queue_id_prc0( &queue_id_q_p0);
263 if (status != RTEMS_SUCCESSFUL)
262 if (status != RTEMS_SUCCESSFUL)
264 {
263 {
265 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
264 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
266 }
265 }
267
266
268 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
267 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
269
268
270 while(1){
269 while(1){
271 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
270 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
272 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
271 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
273
272
274 incomingMsg = (asm_msg*) incomingData;
273 incomingMsg = (asm_msg*) incomingData;
275
274
276 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
275 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
277 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
276 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
278
277
279 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
278 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
280 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
279 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
281
280
282 //****************
281 //****************
283 //****************
282 //****************
284 // BURST SBM1 SBM2
283 // BURST SBM1 SBM2
285 //****************
284 //****************
286 //****************
285 //****************
287 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
286 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
288 {
287 {
289 sid = getSID( incomingMsg->event );
288 sid = getSID( incomingMsg->event );
290 // 1) compress the matrix for Basic Parameters calculation
289 // 1) compress the matrix for Basic Parameters calculation
291 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
290 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
292 nbSMInASMSBM,
291 nbSMInASMSBM,
293 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
292 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
294 ASM_F0_INDICE_START, CHANNELF0);
293 ASM_F0_INDICE_START, CHANNELF0);
295 // 2) compute the BP1 set
294 // 2) compute the BP1 set
296 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
295 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
297 // 3) send the BP1 set
296 // 3) send the BP1 set
298 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
297 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
299 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
298 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
300 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
299 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
301 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
300 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
302 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
301 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
303 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
302 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
304 sid);
303 sid);
305 // 4) compute the BP2 set if needed
304 // 4) compute the BP2 set if needed
306 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
305 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
307 {
306 {
308 // 1) compute the BP2 set
307 // 1) compute the BP2 set
309 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
308 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
310 // 2) send the BP2 set
309 // 2) send the BP2 set
311 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
310 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
312 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
311 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
313 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
312 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
314 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
313 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
315 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
314 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
316 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
315 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
317 sid);
316 sid);
318 }
317 }
319 }
318 }
320
319
321 //*****
320 //*****
322 //*****
321 //*****
323 // NORM
322 // NORM
324 //*****
323 //*****
325 //*****
324 //*****
326 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
325 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
327 {
326 {
328 // 1) compress the matrix for Basic Parameters calculation
327 // 1) compress the matrix for Basic Parameters calculation
329 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
328 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
330 nbSMInASMNORM,
329 nbSMInASMNORM,
331 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
330 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
332 ASM_F0_INDICE_START, CHANNELF0 );
331 ASM_F0_INDICE_START, CHANNELF0 );
333 // 2) compute the BP1 set
332 // 2) compute the BP1 set
334 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
333 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
335 // 3) send the BP1 set
334 // 3) send the BP1 set
336 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
335 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
337 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
336 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
338 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
337 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
339 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
338 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
340 BP_send( (char *) &packet_norm_bp1, queue_id,
339 BP_send( (char *) &packet_norm_bp1, queue_id,
341 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
340 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
342 SID_NORM_BP1_F0 );
341 SID_NORM_BP1_F0 );
343 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
342 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
344 {
343 {
345 // 1) compute the BP2 set using the same ASM as the one used for BP1
344 // 1) compute the BP2 set using the same ASM as the one used for BP1
346 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
345 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
347 // 2) send the BP2 set
346 // 2) send the BP2 set
348 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
347 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
349 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
348 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
350 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
349 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
351 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
350 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
352 BP_send( (char *) &packet_norm_bp2, queue_id,
351 BP_send( (char *) &packet_norm_bp2, queue_id,
353 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
352 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
354 SID_NORM_BP2_F0);
353 SID_NORM_BP2_F0);
355 }
354 }
356 }
355 }
357
356
358 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
357 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
359 {
358 {
360 // 1) reorganize the ASM and divide
359 // 1) reorganize the ASM and divide
361 ASM_reorganize_and_divide( asm_f0_patched_norm,
360 ASM_reorganize_and_divide( asm_f0_patched_norm,
362 (float*) current_ring_node_to_send_asm_f0->buffer_address,
361 (float*) current_ring_node_to_send_asm_f0->buffer_address,
363 nbSMInASMNORM );
362 nbSMInASMNORM );
364 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
363 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
365 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
364 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
366 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
365 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
367
366
368 // 3) send the spectral matrix packets
367 // 3) send the spectral matrix packets
369 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
368 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
370
369
371 // change asm ring node
370 // change asm ring node
372 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
371 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
373 }
372 }
374
373
375 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
374 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
376
375
377 }
376 }
378 }
377 }
379
378
380 //**********
379 //**********
381 // FUNCTIONS
380 // FUNCTIONS
382
381
383 void reset_nb_sm_f0( unsigned char lfrMode )
382 void reset_nb_sm_f0( unsigned char lfrMode )
384 {
383 {
385 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F0;
384 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F0;
386 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F0;
385 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F0;
387 nb_sm_before_f0.norm_asm =
386 nb_sm_before_f0.norm_asm =
388 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F0;
387 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F0;
389 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * NB_SM_PER_S1_BP_P0; // 0.25 s per digit
388 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * NB_SM_PER_S1_BP_P0; // 0.25 s per digit
390 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * NB_SM_PER_S_F0;
389 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * NB_SM_PER_S_F0;
391 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F0;
390 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F0;
392 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F0;
391 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F0;
393 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F0;
392 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F0;
394 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F0;
393 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F0;
395
394
396 if (lfrMode == LFR_MODE_SBM1)
395 if (lfrMode == LFR_MODE_SBM1)
397 {
396 {
398 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
397 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
399 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
398 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
400 }
399 }
401 else if (lfrMode == LFR_MODE_SBM2)
400 else if (lfrMode == LFR_MODE_SBM2)
402 {
401 {
403 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
402 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
404 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
403 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
405 }
404 }
406 else if (lfrMode == LFR_MODE_BURST)
405 else if (lfrMode == LFR_MODE_BURST)
407 {
406 {
408 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
407 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
409 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
408 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
410 }
409 }
411 else
410 else
412 {
411 {
413 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
412 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
414 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
413 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
415 }
414 }
416 }
415 }
417
416
418 void init_k_coefficients_prc0( void )
417 void init_k_coefficients_prc0( void )
419 {
418 {
420 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
419 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
421
420
422 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
421 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
423 }
422 }
424
423
@@ -1,409 +1,407
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf1_prc1.h"
10 #include "avf1_prc1.h"
11
11
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
12 nb_sm_before_bp_asm_f1 nb_sm_before_f1 = {0};
13
14 extern ring_node sm_ring_f1[ ];
15
13
16 //***
14 //***
17 // F1
15 // F1
18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
16 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ] = {0};
19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
17 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ] = {0};
20
18
21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
19 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ] = {0};
22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
20 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ] = {0};
23
21
24 float asm_f1_patched_norm [ TOTAL_SIZE_SM ];
22 float asm_f1_patched_norm [ TOTAL_SIZE_SM ] = {0};
25 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ];
23 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ] = {0};
26 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
24 float asm_f1_reorganized [ TOTAL_SIZE_SM ] = {0};
27
25
28 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
26 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1] = {0};
29 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
27 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ] = {0};
30
28
31 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
29 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ] = {0}; // 13 * 32 = 416
32 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
30 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ] = {0}; // 26 * 32 = 832
33
31
34 //************
32 //************
35 // RTEMS TASKS
33 // RTEMS TASKS
36
34
37 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
35 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
38 {
36 {
39 int i;
37 int i;
40
38
41 rtems_event_set event_out;
39 rtems_event_set event_out;
42 rtems_status_code status;
40 rtems_status_code status;
43 rtems_id queue_id_prc1;
41 rtems_id queue_id_prc1;
44 asm_msg msgForPRC;
42 asm_msg msgForPRC;
45 ring_node *nodeForAveraging;
43 ring_node *nodeForAveraging;
46 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
44 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0_F1];
47 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
45 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
48 ring_node_asm *current_ring_node_asm_norm_f1;
46 ring_node_asm *current_ring_node_asm_norm_f1;
49
47
50 unsigned int nb_norm_bp1;
48 unsigned int nb_norm_bp1;
51 unsigned int nb_norm_bp2;
49 unsigned int nb_norm_bp2;
52 unsigned int nb_norm_asm;
50 unsigned int nb_norm_asm;
53 unsigned int nb_sbm_bp1;
51 unsigned int nb_sbm_bp1;
54 unsigned int nb_sbm_bp2;
52 unsigned int nb_sbm_bp2;
55
53
56 event_out = EVENT_SETS_NONE_PENDING;
54 event_out = EVENT_SETS_NONE_PENDING;
57 queue_id_prc1 = RTEMS_ID_NONE;
55 queue_id_prc1 = RTEMS_ID_NONE;
58
56
59 nb_norm_bp1 = 0;
57 nb_norm_bp1 = 0;
60 nb_norm_bp2 = 0;
58 nb_norm_bp2 = 0;
61 nb_norm_asm = 0;
59 nb_norm_asm = 0;
62 nb_sbm_bp1 = 0;
60 nb_sbm_bp1 = 0;
63 nb_sbm_bp2 = 0;
61 nb_sbm_bp2 = 0;
64
62
65 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
66 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
67 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
68 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
69 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
70
68
71 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
72
70
73 status = get_message_queue_id_prc1( &queue_id_prc1 );
71 status = get_message_queue_id_prc1( &queue_id_prc1 );
74 if (status != RTEMS_SUCCESSFUL)
72 if (status != RTEMS_SUCCESSFUL)
75 {
73 {
76 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
77 }
75 }
78
76
79 while(1){
77 while(1){
80 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
81
79
82 //****************************************
80 //****************************************
83 // initialize the mesage for the MATR task
81 // initialize the mesage for the MATR task
84 msgForPRC.norm = current_ring_node_asm_norm_f1;
82 msgForPRC.norm = current_ring_node_asm_norm_f1;
85 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
86 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC1 task
84 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC1 task
87 //
85 //
88 //****************************************
86 //****************************************
89
87
90 nodeForAveraging = getRingNodeForAveraging( 1 );
88 nodeForAveraging = getRingNodeForAveraging( 1 );
91
89
92 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
90 ring_node_tab[NB_SM_BEFORE_AVF0_F1-1] = nodeForAveraging;
93 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
91 for ( i = 1; i < (NB_SM_BEFORE_AVF0_F1); i++ )
94 {
92 {
95 nodeForAveraging = nodeForAveraging->previous;
93 nodeForAveraging = nodeForAveraging->previous;
96 ring_node_tab[NB_SM_BEFORE_AVF0_F1-i] = nodeForAveraging;
94 ring_node_tab[NB_SM_BEFORE_AVF0_F1-i] = nodeForAveraging;
97 }
95 }
98
96
99 // compute the average and store it in the averaged_sm_f1 buffer
97 // compute the average and store it in the averaged_sm_f1 buffer
100 SM_average( current_ring_node_asm_norm_f1->matrix,
98 SM_average( current_ring_node_asm_norm_f1->matrix,
101 current_ring_node_asm_burst_sbm_f1->matrix,
99 current_ring_node_asm_burst_sbm_f1->matrix,
102 ring_node_tab,
100 ring_node_tab,
103 nb_norm_bp1, nb_sbm_bp1,
101 nb_norm_bp1, nb_sbm_bp1,
104 &msgForPRC, 1 ); // 1 => frequency channel 1
102 &msgForPRC, 1 ); // 1 => frequency channel 1
105
103
106 // update nb_average
104 // update nb_average
107 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0_F1;
108 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0_F1;
109 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0_F1;
110 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0_F1;
111 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0_F1;
112
110
113 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
114 {
112 {
115 nb_sbm_bp1 = 0;
113 nb_sbm_bp1 = 0;
116 // set another ring for the ASM storage
114 // set another ring for the ASM storage
117 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
118 if ( lfrCurrentMode == LFR_MODE_BURST )
116 if ( lfrCurrentMode == LFR_MODE_BURST )
119 {
117 {
120 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
121 }
119 }
122 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
123 {
121 {
124 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
125 }
123 }
126 }
124 }
127
125
128 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
129 {
127 {
130 nb_sbm_bp2 = 0;
128 nb_sbm_bp2 = 0;
131 if ( lfrCurrentMode == LFR_MODE_BURST )
129 if ( lfrCurrentMode == LFR_MODE_BURST )
132 {
130 {
133 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
134 }
132 }
135 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
136 {
134 {
137 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
138 }
136 }
139 }
137 }
140
138
141 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
142 {
140 {
143 nb_norm_bp1 = 0;
141 nb_norm_bp1 = 0;
144 // set another ring for the ASM storage
142 // set another ring for the ASM storage
145 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
146 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
147 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
148 {
146 {
149 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
150 }
148 }
151 }
149 }
152
150
153 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
154 {
152 {
155 nb_norm_bp2 = 0;
153 nb_norm_bp2 = 0;
156 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
157 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
158 {
156 {
159 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
160 }
158 }
161 }
159 }
162
160
163 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
164 {
162 {
165 nb_norm_asm = 0;
163 nb_norm_asm = 0;
166 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
167 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
168 {
166 {
169 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
170 }
168 }
171 }
169 }
172
170
173 //*************************
171 //*************************
174 // send the message to PRC
172 // send the message to PRC
175 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
173 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
176 {
174 {
177 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
178 }
176 }
179
177
180 if (status != RTEMS_SUCCESSFUL) {
178 if (status != RTEMS_SUCCESSFUL) {
181 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
179 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
182 }
180 }
183 }
181 }
184 }
182 }
185
183
186 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
187 {
185 {
188 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
189 size_t size; // size of the incoming TC packet
187 size_t size; // size of the incoming TC packet
190 asm_msg *incomingMsg;
188 asm_msg *incomingMsg;
191 //
189 //
192 unsigned char sid;
190 unsigned char sid;
193 rtems_status_code status;
191 rtems_status_code status;
194 rtems_id queue_id_send;
192 rtems_id queue_id_send;
195 rtems_id queue_id_q_p1;
193 rtems_id queue_id_q_p1;
196 bp_packet_with_spare packet_norm_bp1;
194 bp_packet_with_spare packet_norm_bp1;
197 bp_packet packet_norm_bp2;
195 bp_packet packet_norm_bp2;
198 bp_packet packet_sbm_bp1;
196 bp_packet packet_sbm_bp1;
199 bp_packet packet_sbm_bp2;
197 bp_packet packet_sbm_bp2;
200 ring_node *current_ring_node_to_send_asm_f1;
198 ring_node *current_ring_node_to_send_asm_f1;
201 float nbSMInASMNORM;
199 float nbSMInASMNORM;
202 float nbSMInASMSBM;
200 float nbSMInASMSBM;
203
201
204 size = 0;
202 size = 0;
205 queue_id_send = RTEMS_ID_NONE;
203 queue_id_send = RTEMS_ID_NONE;
206 queue_id_q_p1 = RTEMS_ID_NONE;
204 queue_id_q_p1 = RTEMS_ID_NONE;
207 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
205 memset( &packet_norm_bp1, 0, sizeof(bp_packet_with_spare) );
208 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
206 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
209 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
207 memset( &packet_sbm_bp1, 0, sizeof(bp_packet) );
210 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
208 memset( &packet_sbm_bp2, 0, sizeof(bp_packet) );
211
209
212 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
210 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
213 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
211 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
214 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
212 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
215
213
216 //*************
214 //*************
217 // NORM headers
215 // NORM headers
218 BP_init_header_with_spare( &packet_norm_bp1,
216 BP_init_header_with_spare( &packet_norm_bp1,
219 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
217 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
220 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
218 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
221 BP_init_header( &packet_norm_bp2,
219 BP_init_header( &packet_norm_bp2,
222 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
220 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
223 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
221 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
224
222
225 //***********************
223 //***********************
226 // BURST and SBM2 headers
224 // BURST and SBM2 headers
227 if ( lfrRequestedMode == LFR_MODE_BURST )
225 if ( lfrRequestedMode == LFR_MODE_BURST )
228 {
226 {
229 BP_init_header( &packet_sbm_bp1,
227 BP_init_header( &packet_sbm_bp1,
230 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
228 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
231 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
232 BP_init_header( &packet_sbm_bp2,
230 BP_init_header( &packet_sbm_bp2,
233 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
231 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
234 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
235 }
233 }
236 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
234 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
237 {
235 {
238 BP_init_header( &packet_sbm_bp1,
236 BP_init_header( &packet_sbm_bp1,
239 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
240 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
241 BP_init_header( &packet_sbm_bp2,
239 BP_init_header( &packet_sbm_bp2,
242 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
243 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
244 }
242 }
245 else
243 else
246 {
244 {
247 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
245 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
248 }
246 }
249
247
250 status = get_message_queue_id_send( &queue_id_send );
248 status = get_message_queue_id_send( &queue_id_send );
251 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
252 {
250 {
253 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
254 }
252 }
255 status = get_message_queue_id_prc1( &queue_id_q_p1);
253 status = get_message_queue_id_prc1( &queue_id_q_p1);
256 if (status != RTEMS_SUCCESSFUL)
254 if (status != RTEMS_SUCCESSFUL)
257 {
255 {
258 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
256 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
259 }
257 }
260
258
261 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
259 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
262
260
263 while(1){
261 while(1){
264 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
262 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
265 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
263 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
266
264
267 incomingMsg = (asm_msg*) incomingData;
265 incomingMsg = (asm_msg*) incomingData;
268
266
269 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
267 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
270 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
268 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
271
269
272 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
270 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
273 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
271 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
274
272
275 //***********
273 //***********
276 //***********
274 //***********
277 // BURST SBM2
275 // BURST SBM2
278 //***********
276 //***********
279 //***********
277 //***********
280 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
278 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
281 {
279 {
282 sid = getSID( incomingMsg->event );
280 sid = getSID( incomingMsg->event );
283 // 1) compress the matrix for Basic Parameters calculation
281 // 1) compress the matrix for Basic Parameters calculation
284 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
282 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
285 nbSMInASMSBM,
283 nbSMInASMSBM,
286 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
284 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
287 ASM_F1_INDICE_START, CHANNELF1);
285 ASM_F1_INDICE_START, CHANNELF1);
288 // 2) compute the BP1 set
286 // 2) compute the BP1 set
289 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
287 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
290 // 3) send the BP1 set
288 // 3) send the BP1 set
291 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
289 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
292 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
290 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
293 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
291 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
294 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
292 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
295 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
293 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
296 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
294 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
297 sid );
295 sid );
298 // 4) compute the BP2 set if needed
296 // 4) compute the BP2 set if needed
299 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
297 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
300 {
298 {
301 // 1) compute the BP2 set
299 // 1) compute the BP2 set
302 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
300 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
303 // 2) send the BP2 set
301 // 2) send the BP2 set
304 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
302 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
305 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
303 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
306 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
304 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
307 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
305 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
308 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
306 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
309 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
307 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
310 sid );
308 sid );
311 }
309 }
312 }
310 }
313
311
314 //*****
312 //*****
315 //*****
313 //*****
316 // NORM
314 // NORM
317 //*****
315 //*****
318 //*****
316 //*****
319 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
317 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
320 {
318 {
321 // 1) compress the matrix for Basic Parameters calculation
319 // 1) compress the matrix for Basic Parameters calculation
322 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
320 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
323 nbSMInASMNORM,
321 nbSMInASMNORM,
324 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
322 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
325 ASM_F1_INDICE_START, CHANNELF1 );
323 ASM_F1_INDICE_START, CHANNELF1 );
326 // 2) compute the BP1 set
324 // 2) compute the BP1 set
327 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
325 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
328 // 3) send the BP1 set
326 // 3) send the BP1 set
329 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
327 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
330 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
328 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
331 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
329 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
332 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
330 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
333 BP_send( (char *) &packet_norm_bp1, queue_id_send,
331 BP_send( (char *) &packet_norm_bp1, queue_id_send,
334 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
332 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
335 SID_NORM_BP1_F1 );
333 SID_NORM_BP1_F1 );
336 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
334 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
337 {
335 {
338 // 1) compute the BP2 set
336 // 1) compute the BP2 set
339 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
337 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
340 // 2) send the BP2 set
338 // 2) send the BP2 set
341 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
339 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
342 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
340 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
343 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
341 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
344 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
342 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
345 BP_send( (char *) &packet_norm_bp2, queue_id_send,
343 BP_send( (char *) &packet_norm_bp2, queue_id_send,
346 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
344 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
347 SID_NORM_BP2_F1 );
345 SID_NORM_BP2_F1 );
348 }
346 }
349 }
347 }
350
348
351 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
349 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
352 {
350 {
353 // 1) reorganize the ASM and divide
351 // 1) reorganize the ASM and divide
354 ASM_reorganize_and_divide( asm_f1_patched_norm,
352 ASM_reorganize_and_divide( asm_f1_patched_norm,
355 (float*) current_ring_node_to_send_asm_f1->buffer_address,
353 (float*) current_ring_node_to_send_asm_f1->buffer_address,
356 nbSMInASMNORM );
354 nbSMInASMNORM );
357 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
355 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
358 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
356 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
359 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
357 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
360
358
361 // 3) send the spectral matrix packets
359 // 3) send the spectral matrix packets
362 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
360 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
363
361
364 // change asm ring node
362 // change asm ring node
365 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
363 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
366 }
364 }
367
365
368 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
366 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
369
367
370 }
368 }
371 }
369 }
372
370
373 //**********
371 //**********
374 // FUNCTIONS
372 // FUNCTIONS
375
373
376 void reset_nb_sm_f1( unsigned char lfrMode )
374 void reset_nb_sm_f1( unsigned char lfrMode )
377 {
375 {
378 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F1;
376 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * NB_SM_PER_S_F1;
379 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F1;
377 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * NB_SM_PER_S_F1;
380 nb_sm_before_f1.norm_asm =
378 nb_sm_before_f1.norm_asm =
381 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F1;
379 ( (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256) + parameter_dump_packet.sy_lfr_n_asm_p[1]) * NB_SM_PER_S_F1;
382 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F1;
380 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * NB_SM_PER_S_F1;
383 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F1;
381 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * NB_SM_PER_S_F1;
384 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F1;
382 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * NB_SM_PER_S_F1;
385 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F1;
383 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * NB_SM_PER_S_F1;
386
384
387 if (lfrMode == LFR_MODE_SBM2)
385 if (lfrMode == LFR_MODE_SBM2)
388 {
386 {
389 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
387 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
390 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
388 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
391 }
389 }
392 else if (lfrMode == LFR_MODE_BURST)
390 else if (lfrMode == LFR_MODE_BURST)
393 {
391 {
394 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
392 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
395 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
393 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
396 }
394 }
397 else
395 else
398 {
396 {
399 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
397 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
400 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
398 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
401 }
399 }
402 }
400 }
403
401
404 void init_k_coefficients_prc1( void )
402 void init_k_coefficients_prc1( void )
405 {
403 {
406 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
404 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
407
405
408 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
406 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
409 }
407 }
@@ -1,334 +1,332
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf2_prc2.h"
10 #include "avf2_prc2.h"
11
11
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
12 nb_sm_before_bp_asm_f2 nb_sm_before_f2 = {0};
13
14 extern ring_node sm_ring_f2[ ];
15
13
16 //***
14 //***
17 // F2
15 // F2
18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
16 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ] = {0};
19
17
20 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
18 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ] = {0};
21 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
19 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ] = {0};
22
20
23 float asm_f2_patched_norm [ TOTAL_SIZE_SM ];
21 float asm_f2_patched_norm [ TOTAL_SIZE_SM ] = {0};
24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
22 float asm_f2_reorganized [ TOTAL_SIZE_SM ] = {0};
25
23
26 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
24 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2] = {0};
27
25
28 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
26 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ] = {0}; // 12 * 32 = 384
29
27
30 //************
28 //************
31 // RTEMS TASKS
29 // RTEMS TASKS
32
30
33 //***
31 //***
34 // F2
32 // F2
35 rtems_task avf2_task( rtems_task_argument argument )
33 rtems_task avf2_task( rtems_task_argument argument )
36 {
34 {
37 rtems_event_set event_out;
35 rtems_event_set event_out;
38 rtems_status_code status;
36 rtems_status_code status;
39 rtems_id queue_id_prc2;
37 rtems_id queue_id_prc2;
40 asm_msg msgForPRC;
38 asm_msg msgForPRC;
41 ring_node *nodeForAveraging;
39 ring_node *nodeForAveraging;
42 ring_node_asm *current_ring_node_asm_norm_f2;
40 ring_node_asm *current_ring_node_asm_norm_f2;
43
41
44 unsigned int nb_norm_bp1;
42 unsigned int nb_norm_bp1;
45 unsigned int nb_norm_bp2;
43 unsigned int nb_norm_bp2;
46 unsigned int nb_norm_asm;
44 unsigned int nb_norm_asm;
47
45
48 event_out = EVENT_SETS_NONE_PENDING;
46 event_out = EVENT_SETS_NONE_PENDING;
49 queue_id_prc2 = RTEMS_ID_NONE;
47 queue_id_prc2 = RTEMS_ID_NONE;
50 nb_norm_bp1 = 0;
48 nb_norm_bp1 = 0;
51 nb_norm_bp2 = 0;
49 nb_norm_bp2 = 0;
52 nb_norm_asm = 0;
50 nb_norm_asm = 0;
53
51
54 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
52 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
55 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
53 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
56 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
54 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
57
55
58 BOOT_PRINTF("in AVF2 ***\n")
56 BOOT_PRINTF("in AVF2 ***\n")
59
57
60 status = get_message_queue_id_prc2( &queue_id_prc2 );
58 status = get_message_queue_id_prc2( &queue_id_prc2 );
61 if (status != RTEMS_SUCCESSFUL)
59 if (status != RTEMS_SUCCESSFUL)
62 {
60 {
63 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
61 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
64 }
62 }
65
63
66 while(1){
64 while(1){
67 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
65 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
68
66
69 //****************************************
67 //****************************************
70 // initialize the mesage for the MATR task
68 // initialize the mesage for the MATR task
71 msgForPRC.norm = current_ring_node_asm_norm_f2;
69 msgForPRC.norm = current_ring_node_asm_norm_f2;
72 msgForPRC.burst_sbm = NULL;
70 msgForPRC.burst_sbm = NULL;
73 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC2 task
71 msgForPRC.event = EVENT_SETS_NONE_PENDING; // this composite event will be sent to the PRC2 task
74 //
72 //
75 //****************************************
73 //****************************************
76
74
77 nodeForAveraging = getRingNodeForAveraging( CHANNELF2 );
75 nodeForAveraging = getRingNodeForAveraging( CHANNELF2 );
78
76
79 // compute the average and store it in the averaged_sm_f2 buffer
77 // compute the average and store it in the averaged_sm_f2 buffer
80 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
78 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
81 nodeForAveraging,
79 nodeForAveraging,
82 nb_norm_bp1,
80 nb_norm_bp1,
83 &msgForPRC );
81 &msgForPRC );
84
82
85 // update nb_average
83 // update nb_average
86 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
87 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
88 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
89
87
90 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
88 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
91 {
89 {
92 nb_norm_bp1 = 0;
90 nb_norm_bp1 = 0;
93 // set another ring for the ASM storage
91 // set another ring for the ASM storage
94 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
92 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
95 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
93 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
96 || (lfrCurrentMode == LFR_MODE_SBM2) )
94 || (lfrCurrentMode == LFR_MODE_SBM2) )
97 {
95 {
98 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
96 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
99 }
97 }
100 }
98 }
101
99
102 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
100 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
103 {
101 {
104 nb_norm_bp2 = 0;
102 nb_norm_bp2 = 0;
105 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
103 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
106 || (lfrCurrentMode == LFR_MODE_SBM2) )
104 || (lfrCurrentMode == LFR_MODE_SBM2) )
107 {
105 {
108 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
106 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
109 }
107 }
110 }
108 }
111
109
112 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
110 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
113 {
111 {
114 nb_norm_asm = 0;
112 nb_norm_asm = 0;
115 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
116 || (lfrCurrentMode == LFR_MODE_SBM2) )
114 || (lfrCurrentMode == LFR_MODE_SBM2) )
117 {
115 {
118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
116 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
119 }
117 }
120 }
118 }
121
119
122 //*************************
120 //*************************
123 // send the message to PRC2
121 // send the message to PRC2
124 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
122 if (msgForPRC.event != EVENT_SETS_NONE_PENDING)
125 {
123 {
126 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
124 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
127 }
125 }
128
126
129 if (status != RTEMS_SUCCESSFUL) {
127 if (status != RTEMS_SUCCESSFUL) {
130 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
128 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
131 }
129 }
132 }
130 }
133 }
131 }
134
132
135 rtems_task prc2_task( rtems_task_argument argument )
133 rtems_task prc2_task( rtems_task_argument argument )
136 {
134 {
137 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
135 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
138 size_t size; // size of the incoming TC packet
136 size_t size; // size of the incoming TC packet
139 asm_msg *incomingMsg;
137 asm_msg *incomingMsg;
140 //
138 //
141 rtems_status_code status;
139 rtems_status_code status;
142 rtems_id queue_id_send;
140 rtems_id queue_id_send;
143 rtems_id queue_id_q_p2;
141 rtems_id queue_id_q_p2;
144 bp_packet packet_norm_bp1;
142 bp_packet packet_norm_bp1;
145 bp_packet packet_norm_bp2;
143 bp_packet packet_norm_bp2;
146 ring_node *current_ring_node_to_send_asm_f2;
144 ring_node *current_ring_node_to_send_asm_f2;
147 float nbSMInASMNORM;
145 float nbSMInASMNORM;
148
146
149 unsigned long long int localTime;
147 unsigned long long int localTime;
150
148
151 size = 0;
149 size = 0;
152 queue_id_send = RTEMS_ID_NONE;
150 queue_id_send = RTEMS_ID_NONE;
153 queue_id_q_p2 = RTEMS_ID_NONE;
151 queue_id_q_p2 = RTEMS_ID_NONE;
154 memset( &packet_norm_bp1, 0, sizeof(bp_packet) );
152 memset( &packet_norm_bp1, 0, sizeof(bp_packet) );
155 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
153 memset( &packet_norm_bp2, 0, sizeof(bp_packet) );
156
154
157 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
155 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
158 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
156 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
159 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
157 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
160
158
161 //*************
159 //*************
162 // NORM headers
160 // NORM headers
163 BP_init_header( &packet_norm_bp1,
161 BP_init_header( &packet_norm_bp1,
164 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
162 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
165 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
163 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
166 BP_init_header( &packet_norm_bp2,
164 BP_init_header( &packet_norm_bp2,
167 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
165 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
168 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
166 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
169
167
170 status = get_message_queue_id_send( &queue_id_send );
168 status = get_message_queue_id_send( &queue_id_send );
171 if (status != RTEMS_SUCCESSFUL)
169 if (status != RTEMS_SUCCESSFUL)
172 {
170 {
173 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
171 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
174 }
172 }
175 status = get_message_queue_id_prc2( &queue_id_q_p2);
173 status = get_message_queue_id_prc2( &queue_id_q_p2);
176 if (status != RTEMS_SUCCESSFUL)
174 if (status != RTEMS_SUCCESSFUL)
177 {
175 {
178 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
176 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
179 }
177 }
180
178
181 BOOT_PRINTF("in PRC2 ***\n")
179 BOOT_PRINTF("in PRC2 ***\n")
182
180
183 while(1){
181 while(1){
184 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
182 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
185 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
183 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
186
184
187 incomingMsg = (asm_msg*) incomingData;
185 incomingMsg = (asm_msg*) incomingData;
188
186
189 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
187 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
190
188
191 localTime = getTimeAsUnsignedLongLongInt( );
189 localTime = getTimeAsUnsignedLongLongInt( );
192
190
193 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
191 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
194
192
195 //*****
193 //*****
196 //*****
194 //*****
197 // NORM
195 // NORM
198 //*****
196 //*****
199 //*****
197 //*****
200 // 1) compress the matrix for Basic Parameters calculation
198 // 1) compress the matrix for Basic Parameters calculation
201 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
199 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
202 nbSMInASMNORM,
200 nbSMInASMNORM,
203 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
201 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
204 ASM_F2_INDICE_START, CHANNELF2 );
202 ASM_F2_INDICE_START, CHANNELF2 );
205 // BP1_F2
203 // BP1_F2
206 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
204 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
207 {
205 {
208 // 1) compute the BP1 set
206 // 1) compute the BP1 set
209 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
207 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
210 // 2) send the BP1 set
208 // 2) send the BP1 set
211 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
209 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
212 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
210 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
213 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
211 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
214 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
212 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
215 BP_send( (char *) &packet_norm_bp1, queue_id_send,
213 BP_send( (char *) &packet_norm_bp1, queue_id_send,
216 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
214 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
217 SID_NORM_BP1_F2 );
215 SID_NORM_BP1_F2 );
218 }
216 }
219 // BP2_F2
217 // BP2_F2
220 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
218 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
221 {
219 {
222 // 1) compute the BP2 set
220 // 1) compute the BP2 set
223 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
221 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
224 // 2) send the BP2 set
222 // 2) send the BP2 set
225 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
223 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
226 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
224 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
227 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
225 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
228 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
226 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
229 BP_send( (char *) &packet_norm_bp2, queue_id_send,
227 BP_send( (char *) &packet_norm_bp2, queue_id_send,
230 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
228 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
231 SID_NORM_BP2_F2 );
229 SID_NORM_BP2_F2 );
232 }
230 }
233
231
234 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
232 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
235 {
233 {
236 // 1) reorganize the ASM and divide
234 // 1) reorganize the ASM and divide
237 ASM_reorganize_and_divide( asm_f2_patched_norm,
235 ASM_reorganize_and_divide( asm_f2_patched_norm,
238 (float*) current_ring_node_to_send_asm_f2->buffer_address,
236 (float*) current_ring_node_to_send_asm_f2->buffer_address,
239 nb_sm_before_f2.norm_bp1 );
237 nb_sm_before_f2.norm_bp1 );
240 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
238 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
241 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
239 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
242 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
240 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
243
241
244 // 3) send the spectral matrix packets
242 // 3) send the spectral matrix packets
245 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
243 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
246
244
247 // change asm ring node
245 // change asm ring node
248 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
246 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
249 }
247 }
250
248
251 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
249 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
252
250
253 }
251 }
254 }
252 }
255
253
256 //**********
254 //**********
257 // FUNCTIONS
255 // FUNCTIONS
258
256
259 void reset_nb_sm_f2( void )
257 void reset_nb_sm_f2( void )
260 {
258 {
261 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
259 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
262 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
260 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
263 nb_sm_before_f2.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_asm_p[1];
261 nb_sm_before_f2.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_asm_p[1];
264 }
262 }
265
263
266 void SM_average_f2( float *averaged_spec_mat_f2,
264 void SM_average_f2( float *averaged_spec_mat_f2,
267 ring_node *ring_node,
265 ring_node *ring_node,
268 unsigned int nbAverageNormF2,
266 unsigned int nbAverageNormF2,
269 asm_msg *msgForMATR )
267 asm_msg *msgForMATR )
270 {
268 {
271 float sum;
269 float sum;
272 unsigned int i;
270 unsigned int i;
273 unsigned char keepMatrix;
271 unsigned char keepMatrix;
274
272
275 // test acquisitionTime validity
273 // test acquisitionTime validity
276 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, CHANNELF2 );
274 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, CHANNELF2 );
277
275
278 for(i=0; i<TOTAL_SIZE_SM; i++)
276 for(i=0; i<TOTAL_SIZE_SM; i++)
279 {
277 {
280 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
278 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
281 if ( (nbAverageNormF2 == 0) ) // average initialization
279 if ( (nbAverageNormF2 == 0) ) // average initialization
282 {
280 {
283 if (keepMatrix == 1) // keep the matrix and add it to the average
281 if (keepMatrix == 1) // keep the matrix and add it to the average
284 {
282 {
285 averaged_spec_mat_f2[ i ] = sum;
283 averaged_spec_mat_f2[ i ] = sum;
286 }
284 }
287 else // drop the matrix and initialize the average
285 else // drop the matrix and initialize the average
288 {
286 {
289 averaged_spec_mat_f2[ i ] = INIT_FLOAT;
287 averaged_spec_mat_f2[ i ] = INIT_FLOAT;
290 }
288 }
291 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
289 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
292 msgForMATR->fineTimeNORM = ring_node->fineTime;
290 msgForMATR->fineTimeNORM = ring_node->fineTime;
293 }
291 }
294 else
292 else
295 {
293 {
296 if (keepMatrix == 1) // keep the matrix and add it to the average
294 if (keepMatrix == 1) // keep the matrix and add it to the average
297 {
295 {
298 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
296 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
299 }
297 }
300 else
298 else
301 {
299 {
302 // nothing to do, the matrix is not valid
300 // nothing to do, the matrix is not valid
303 }
301 }
304 }
302 }
305 }
303 }
306
304
307 if (keepMatrix == 1)
305 if (keepMatrix == 1)
308 {
306 {
309 if ( (nbAverageNormF2 == 0) )
307 if ( (nbAverageNormF2 == 0) )
310 {
308 {
311 msgForMATR->numberOfSMInASMNORM = 1;
309 msgForMATR->numberOfSMInASMNORM = 1;
312 }
310 }
313 else
311 else
314 {
312 {
315 msgForMATR->numberOfSMInASMNORM++;
313 msgForMATR->numberOfSMInASMNORM++;
316 }
314 }
317 }
315 }
318 else
316 else
319 {
317 {
320 if ( (nbAverageNormF2 == 0) )
318 if ( (nbAverageNormF2 == 0) )
321 {
319 {
322 msgForMATR->numberOfSMInASMNORM = 0;
320 msgForMATR->numberOfSMInASMNORM = 0;
323 }
321 }
324 else
322 else
325 {
323 {
326 // nothing to do
324 // nothing to do
327 }
325 }
328 }
326 }
329 }
327 }
330
328
331 void init_k_coefficients_prc2( void )
329 void init_k_coefficients_prc2( void )
332 {
330 {
333 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
331 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
334 }
332 }
@@ -1,802 +1,802
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "fsw_processing.h"
10 #include "fsw_processing.h"
11 #include "fsw_processing_globals.c"
11 #include "fsw_processing_globals.c"
12 #include "fsw_init.h"
12 #include "fsw_init.h"
13
13
14 unsigned int nb_sm_f0;
14 unsigned int nb_sm_f0 = 0;
15 unsigned int nb_sm_f0_aux_f1;
15 unsigned int nb_sm_f0_aux_f1= 0;
16 unsigned int nb_sm_f1;
16 unsigned int nb_sm_f1 = 0;
17 unsigned int nb_sm_f0_aux_f2;
17 unsigned int nb_sm_f0_aux_f2= 0;
18
18
19 typedef enum restartState_t
19 typedef enum restartState_t
20 {
20 {
21 WAIT_FOR_F2,
21 WAIT_FOR_F2,
22 WAIT_FOR_F1,
22 WAIT_FOR_F1,
23 WAIT_FOR_F0
23 WAIT_FOR_F0
24 } restartState;
24 } restartState;
25
25
26 //************************
26 //************************
27 // spectral matrices rings
27 // spectral matrices rings
28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ];
28 ring_node sm_ring_f0[ NB_RING_NODES_SM_F0 ] = {0};
29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ];
29 ring_node sm_ring_f1[ NB_RING_NODES_SM_F1 ] = {0};
30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ];
30 ring_node sm_ring_f2[ NB_RING_NODES_SM_F2 ] = {0};
31 ring_node *current_ring_node_sm_f0;
31 ring_node *current_ring_node_sm_f0 = NULL;
32 ring_node *current_ring_node_sm_f1;
32 ring_node *current_ring_node_sm_f1 = NULL;
33 ring_node *current_ring_node_sm_f2;
33 ring_node *current_ring_node_sm_f2 = NULL;
34 ring_node *ring_node_for_averaging_sm_f0;
34 ring_node *ring_node_for_averaging_sm_f0= NULL;
35 ring_node *ring_node_for_averaging_sm_f1;
35 ring_node *ring_node_for_averaging_sm_f1= NULL;
36 ring_node *ring_node_for_averaging_sm_f2;
36 ring_node *ring_node_for_averaging_sm_f2= NULL;
37
37
38 //
38 //
39 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
39 ring_node * getRingNodeForAveraging( unsigned char frequencyChannel)
40 {
40 {
41 ring_node *node;
41 ring_node *node;
42
42
43 node = NULL;
43 node = NULL;
44 switch ( frequencyChannel ) {
44 switch ( frequencyChannel ) {
45 case CHANNELF0:
45 case CHANNELF0:
46 node = ring_node_for_averaging_sm_f0;
46 node = ring_node_for_averaging_sm_f0;
47 break;
47 break;
48 case CHANNELF1:
48 case CHANNELF1:
49 node = ring_node_for_averaging_sm_f1;
49 node = ring_node_for_averaging_sm_f1;
50 break;
50 break;
51 case CHANNELF2:
51 case CHANNELF2:
52 node = ring_node_for_averaging_sm_f2;
52 node = ring_node_for_averaging_sm_f2;
53 break;
53 break;
54 default:
54 default:
55 break;
55 break;
56 }
56 }
57
57
58 return node;
58 return node;
59 }
59 }
60
60
61 //***********************************************************
61 //***********************************************************
62 // Interrupt Service Routine for spectral matrices processing
62 // Interrupt Service Routine for spectral matrices processing
63
63
64 void spectral_matrices_isr_f0( int statusReg )
64 void spectral_matrices_isr_f0( int statusReg )
65 {
65 {
66 unsigned char status;
66 unsigned char status;
67 rtems_status_code status_code;
67 rtems_status_code status_code;
68 ring_node *full_ring_node;
68 ring_node *full_ring_node;
69
69
70 status = (unsigned char) (statusReg & BITS_STATUS_F0); // [0011] get the status_ready_matrix_f0_x bits
70 status = (unsigned char) (statusReg & BITS_STATUS_F0); // [0011] get the status_ready_matrix_f0_x bits
71
71
72 switch(status)
72 switch(status)
73 {
73 {
74 case 0:
74 case 0:
75 break;
75 break;
76 case BIT_READY_0_1:
76 case BIT_READY_0_1:
77 // UNEXPECTED VALUE
77 // UNEXPECTED VALUE
78 spectral_matrix_regs->status = BIT_READY_0_1; // [0011]
78 spectral_matrix_regs->status = BIT_READY_0_1; // [0011]
79 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
79 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
80 break;
80 break;
81 case BIT_READY_0:
81 case BIT_READY_0:
82 full_ring_node = current_ring_node_sm_f0->previous;
82 full_ring_node = current_ring_node_sm_f0->previous;
83 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
83 full_ring_node->coarseTime = spectral_matrix_regs->f0_0_coarse_time;
84 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
84 full_ring_node->fineTime = spectral_matrix_regs->f0_0_fine_time;
85 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
85 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
86 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
86 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->buffer_address;
87 // if there are enough ring nodes ready, wake up an AVFx task
87 // if there are enough ring nodes ready, wake up an AVFx task
88 nb_sm_f0 = nb_sm_f0 + 1;
88 nb_sm_f0 = nb_sm_f0 + 1;
89 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
89 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
90 {
90 {
91 ring_node_for_averaging_sm_f0 = full_ring_node;
91 ring_node_for_averaging_sm_f0 = full_ring_node;
92 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
92 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
93 {
93 {
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
95 }
95 }
96 nb_sm_f0 = 0;
96 nb_sm_f0 = 0;
97 }
97 }
98 spectral_matrix_regs->status = BIT_READY_0; // [0000 0001]
98 spectral_matrix_regs->status = BIT_READY_0; // [0000 0001]
99 break;
99 break;
100 case BIT_READY_1:
100 case BIT_READY_1:
101 full_ring_node = current_ring_node_sm_f0->previous;
101 full_ring_node = current_ring_node_sm_f0->previous;
102 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
102 full_ring_node->coarseTime = spectral_matrix_regs->f0_1_coarse_time;
103 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
103 full_ring_node->fineTime = spectral_matrix_regs->f0_1_fine_time;
104 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
104 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
105 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
105 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
106 // if there are enough ring nodes ready, wake up an AVFx task
106 // if there are enough ring nodes ready, wake up an AVFx task
107 nb_sm_f0 = nb_sm_f0 + 1;
107 nb_sm_f0 = nb_sm_f0 + 1;
108 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
108 if (nb_sm_f0 == NB_SM_BEFORE_AVF0_F1)
109 {
109 {
110 ring_node_for_averaging_sm_f0 = full_ring_node;
110 ring_node_for_averaging_sm_f0 = full_ring_node;
111 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
111 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
112 {
112 {
113 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
113 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
114 }
114 }
115 nb_sm_f0 = 0;
115 nb_sm_f0 = 0;
116 }
116 }
117 spectral_matrix_regs->status = BIT_READY_1; // [0000 0010]
117 spectral_matrix_regs->status = BIT_READY_1; // [0000 0010]
118 break;
118 break;
119 default:
119 default:
120 break;
120 break;
121 }
121 }
122 }
122 }
123
123
124 void spectral_matrices_isr_f1( int statusReg )
124 void spectral_matrices_isr_f1( int statusReg )
125 {
125 {
126 rtems_status_code status_code;
126 rtems_status_code status_code;
127 unsigned char status;
127 unsigned char status;
128 ring_node *full_ring_node;
128 ring_node *full_ring_node;
129
129
130 status = (unsigned char) ((statusReg & BITS_STATUS_F1) >> SHIFT_2_BITS); // [1100] get the status_ready_matrix_f1_x bits
130 status = (unsigned char) ((statusReg & BITS_STATUS_F1) >> SHIFT_2_BITS); // [1100] get the status_ready_matrix_f1_x bits
131
131
132 switch(status)
132 switch(status)
133 {
133 {
134 case 0:
134 case 0:
135 break;
135 break;
136 case BIT_READY_0_1:
136 case BIT_READY_0_1:
137 // UNEXPECTED VALUE
137 // UNEXPECTED VALUE
138 spectral_matrix_regs->status = BITS_STATUS_F1; // [1100]
138 spectral_matrix_regs->status = BITS_STATUS_F1; // [1100]
139 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
139 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
140 break;
140 break;
141 case BIT_READY_0:
141 case BIT_READY_0:
142 full_ring_node = current_ring_node_sm_f1->previous;
142 full_ring_node = current_ring_node_sm_f1->previous;
143 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
143 full_ring_node->coarseTime = spectral_matrix_regs->f1_0_coarse_time;
144 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
144 full_ring_node->fineTime = spectral_matrix_regs->f1_0_fine_time;
145 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
145 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
146 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
146 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->buffer_address;
147 // if there are enough ring nodes ready, wake up an AVFx task
147 // if there are enough ring nodes ready, wake up an AVFx task
148 nb_sm_f1 = nb_sm_f1 + 1;
148 nb_sm_f1 = nb_sm_f1 + 1;
149 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
149 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
150 {
150 {
151 ring_node_for_averaging_sm_f1 = full_ring_node;
151 ring_node_for_averaging_sm_f1 = full_ring_node;
152 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
152 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
153 {
153 {
154 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
154 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
155 }
155 }
156 nb_sm_f1 = 0;
156 nb_sm_f1 = 0;
157 }
157 }
158 spectral_matrix_regs->status = BIT_STATUS_F1_0; // [0000 0100]
158 spectral_matrix_regs->status = BIT_STATUS_F1_0; // [0000 0100]
159 break;
159 break;
160 case BIT_READY_1:
160 case BIT_READY_1:
161 full_ring_node = current_ring_node_sm_f1->previous;
161 full_ring_node = current_ring_node_sm_f1->previous;
162 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
162 full_ring_node->coarseTime = spectral_matrix_regs->f1_1_coarse_time;
163 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
163 full_ring_node->fineTime = spectral_matrix_regs->f1_1_fine_time;
164 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
164 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
165 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
165 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
166 // if there are enough ring nodes ready, wake up an AVFx task
166 // if there are enough ring nodes ready, wake up an AVFx task
167 nb_sm_f1 = nb_sm_f1 + 1;
167 nb_sm_f1 = nb_sm_f1 + 1;
168 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
168 if (nb_sm_f1 == NB_SM_BEFORE_AVF0_F1)
169 {
169 {
170 ring_node_for_averaging_sm_f1 = full_ring_node;
170 ring_node_for_averaging_sm_f1 = full_ring_node;
171 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
171 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
172 {
172 {
173 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
173 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
174 }
174 }
175 nb_sm_f1 = 0;
175 nb_sm_f1 = 0;
176 }
176 }
177 spectral_matrix_regs->status = BIT_STATUS_F1_1; // [1000 0000]
177 spectral_matrix_regs->status = BIT_STATUS_F1_1; // [1000 0000]
178 break;
178 break;
179 default:
179 default:
180 break;
180 break;
181 }
181 }
182 }
182 }
183
183
184 void spectral_matrices_isr_f2( int statusReg )
184 void spectral_matrices_isr_f2( int statusReg )
185 {
185 {
186 unsigned char status;
186 unsigned char status;
187 rtems_status_code status_code;
187 rtems_status_code status_code;
188
188
189 status = (unsigned char) ((statusReg & BITS_STATUS_F2) >> SHIFT_4_BITS); // [0011 0000] get the status_ready_matrix_f2_x bits
189 status = (unsigned char) ((statusReg & BITS_STATUS_F2) >> SHIFT_4_BITS); // [0011 0000] get the status_ready_matrix_f2_x bits
190
190
191 switch(status)
191 switch(status)
192 {
192 {
193 case 0:
193 case 0:
194 break;
194 break;
195 case BIT_READY_0_1:
195 case BIT_READY_0_1:
196 // UNEXPECTED VALUE
196 // UNEXPECTED VALUE
197 spectral_matrix_regs->status = BITS_STATUS_F2; // [0011 0000]
197 spectral_matrix_regs->status = BITS_STATUS_F2; // [0011 0000]
198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
198 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_11 );
199 break;
199 break;
200 case BIT_READY_0:
200 case BIT_READY_0:
201 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
201 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
202 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
202 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
203 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
203 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_0_coarse_time;
204 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
204 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_0_fine_time;
205 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
205 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->buffer_address;
206 spectral_matrix_regs->status = BIT_STATUS_F2_0; // [0001 0000]
206 spectral_matrix_regs->status = BIT_STATUS_F2_0; // [0001 0000]
207 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
207 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
208 {
208 {
209 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
209 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
210 }
210 }
211 break;
211 break;
212 case BIT_READY_1:
212 case BIT_READY_1:
213 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
213 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2->previous;
214 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
214 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
215 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
215 ring_node_for_averaging_sm_f2->coarseTime = spectral_matrix_regs->f2_1_coarse_time;
216 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
216 ring_node_for_averaging_sm_f2->fineTime = spectral_matrix_regs->f2_1_fine_time;
217 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
217 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
218 spectral_matrix_regs->status = BIT_STATUS_F2_1; // [0010 0000]
218 spectral_matrix_regs->status = BIT_STATUS_F2_1; // [0010 0000]
219 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
219 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
220 {
220 {
221 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
221 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
222 }
222 }
223 break;
223 break;
224 default:
224 default:
225 break;
225 break;
226 }
226 }
227 }
227 }
228
228
229 void spectral_matrix_isr_error_handler( int statusReg )
229 void spectral_matrix_isr_error_handler( int statusReg )
230 {
230 {
231 // STATUS REGISTER
231 // STATUS REGISTER
232 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
232 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
233 // 10 9 8
233 // 10 9 8
234 // buffer_full ** [bad_component_err] ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
234 // buffer_full ** [bad_component_err] ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
235 // 7 6 5 4 3 2 1 0
235 // 7 6 5 4 3 2 1 0
236 // [bad_component_err] not defined in the last version of the VHDL code
236 // [bad_component_err] not defined in the last version of the VHDL code
237
237
238 rtems_status_code status_code;
238 rtems_status_code status_code;
239
239
240 //***************************************************
240 //***************************************************
241 // the ASM status register is copied in the HK packet
241 // the ASM status register is copied in the HK packet
242 housekeeping_packet.hk_lfr_vhdl_aa_sm = (unsigned char) ((statusReg & BITS_HK_AA_SM) >> SHIFT_7_BITS); // [0111 1000 0000]
242 housekeeping_packet.hk_lfr_vhdl_aa_sm = (unsigned char) ((statusReg & BITS_HK_AA_SM) >> SHIFT_7_BITS); // [0111 1000 0000]
243
243
244 if (statusReg & BITS_SM_ERR) // [0111 1100 0000]
244 if (statusReg & BITS_SM_ERR) // [0111 1100 0000]
245 {
245 {
246 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
246 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
247 }
247 }
248
248
249 spectral_matrix_regs->status = spectral_matrix_regs->status & BITS_SM_ERR;
249 spectral_matrix_regs->status = spectral_matrix_regs->status & BITS_SM_ERR;
250
250
251 }
251 }
252
252
253 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
253 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
254 {
254 {
255 // STATUS REGISTER
255 // STATUS REGISTER
256 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
256 // input_fifo_write(2) *** input_fifo_write(1) *** input_fifo_write(0)
257 // 10 9 8
257 // 10 9 8
258 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
258 // buffer_full ** bad_component_err ** f2_1 ** f2_0 ** f1_1 ** f1_0 ** f0_1 ** f0_0
259 // 7 6 5 4 3 2 1 0
259 // 7 6 5 4 3 2 1 0
260
260
261 int statusReg;
261 int statusReg;
262
262
263 static restartState state = WAIT_FOR_F2;
263 static restartState state = WAIT_FOR_F2;
264
264
265 statusReg = spectral_matrix_regs->status;
265 statusReg = spectral_matrix_regs->status;
266
266
267 if (thisIsAnASMRestart == 0)
267 if (thisIsAnASMRestart == 0)
268 { // this is not a restart sequence, process incoming matrices normally
268 { // this is not a restart sequence, process incoming matrices normally
269 spectral_matrices_isr_f0( statusReg );
269 spectral_matrices_isr_f0( statusReg );
270
270
271 spectral_matrices_isr_f1( statusReg );
271 spectral_matrices_isr_f1( statusReg );
272
272
273 spectral_matrices_isr_f2( statusReg );
273 spectral_matrices_isr_f2( statusReg );
274 }
274 }
275 else
275 else
276 { // a restart sequence has to be launched
276 { // a restart sequence has to be launched
277 switch (state) {
277 switch (state) {
278 case WAIT_FOR_F2:
278 case WAIT_FOR_F2:
279 if ((statusReg & BITS_STATUS_F2) != INIT_CHAR) // [0011 0000] check the status_ready_matrix_f2_x bits
279 if ((statusReg & BITS_STATUS_F2) != INIT_CHAR) // [0011 0000] check the status_ready_matrix_f2_x bits
280 {
280 {
281 state = WAIT_FOR_F1;
281 state = WAIT_FOR_F1;
282 }
282 }
283 break;
283 break;
284 case WAIT_FOR_F1:
284 case WAIT_FOR_F1:
285 if ((statusReg & BITS_STATUS_F1) != INIT_CHAR) // [0000 1100] check the status_ready_matrix_f1_x bits
285 if ((statusReg & BITS_STATUS_F1) != INIT_CHAR) // [0000 1100] check the status_ready_matrix_f1_x bits
286 {
286 {
287 state = WAIT_FOR_F0;
287 state = WAIT_FOR_F0;
288 }
288 }
289 break;
289 break;
290 case WAIT_FOR_F0:
290 case WAIT_FOR_F0:
291 if ((statusReg & BITS_STATUS_F0) != INIT_CHAR) // [0000 0011] check the status_ready_matrix_f0_x bits
291 if ((statusReg & BITS_STATUS_F0) != INIT_CHAR) // [0000 0011] check the status_ready_matrix_f0_x bits
292 {
292 {
293 state = WAIT_FOR_F2;
293 state = WAIT_FOR_F2;
294 thisIsAnASMRestart = 0;
294 thisIsAnASMRestart = 0;
295 }
295 }
296 break;
296 break;
297 default:
297 default:
298 break;
298 break;
299 }
299 }
300 reset_sm_status();
300 reset_sm_status();
301 }
301 }
302
302
303 spectral_matrix_isr_error_handler( statusReg );
303 spectral_matrix_isr_error_handler( statusReg );
304
304
305 }
305 }
306
306
307 //******************
307 //******************
308 // Spectral Matrices
308 // Spectral Matrices
309
309
310 void reset_nb_sm( void )
310 void reset_nb_sm( void )
311 {
311 {
312 nb_sm_f0 = 0;
312 nb_sm_f0 = 0;
313 nb_sm_f0_aux_f1 = 0;
313 nb_sm_f0_aux_f1 = 0;
314 nb_sm_f0_aux_f2 = 0;
314 nb_sm_f0_aux_f2 = 0;
315
315
316 nb_sm_f1 = 0;
316 nb_sm_f1 = 0;
317 }
317 }
318
318
319 void SM_init_rings( void )
319 void SM_init_rings( void )
320 {
320 {
321 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
321 init_ring( sm_ring_f0, NB_RING_NODES_SM_F0, sm_f0, TOTAL_SIZE_SM );
322 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
322 init_ring( sm_ring_f1, NB_RING_NODES_SM_F1, sm_f1, TOTAL_SIZE_SM );
323 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
323 init_ring( sm_ring_f2, NB_RING_NODES_SM_F2, sm_f2, TOTAL_SIZE_SM );
324
324
325 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
325 DEBUG_PRINTF1("sm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
326 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
326 DEBUG_PRINTF1("sm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
327 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
327 DEBUG_PRINTF1("sm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
328 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
328 DEBUG_PRINTF1("sm_f0 @%x\n", (unsigned int) sm_f0)
329 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
329 DEBUG_PRINTF1("sm_f1 @%x\n", (unsigned int) sm_f1)
330 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
330 DEBUG_PRINTF1("sm_f2 @%x\n", (unsigned int) sm_f2)
331 }
331 }
332
332
333 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
333 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
334 {
334 {
335 unsigned char i;
335 unsigned char i;
336
336
337 ring[ nbNodes - 1 ].next
337 ring[ nbNodes - 1 ].next
338 = (ring_node_asm*) &ring[ 0 ];
338 = (ring_node_asm*) &ring[ 0 ];
339
339
340 for(i=0; i<nbNodes-1; i++)
340 for(i=0; i<nbNodes-1; i++)
341 {
341 {
342 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
342 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
343 }
343 }
344 }
344 }
345
345
346 void SM_reset_current_ring_nodes( void )
346 void SM_reset_current_ring_nodes( void )
347 {
347 {
348 current_ring_node_sm_f0 = sm_ring_f0[0].next;
348 current_ring_node_sm_f0 = sm_ring_f0[0].next;
349 current_ring_node_sm_f1 = sm_ring_f1[0].next;
349 current_ring_node_sm_f1 = sm_ring_f1[0].next;
350 current_ring_node_sm_f2 = sm_ring_f2[0].next;
350 current_ring_node_sm_f2 = sm_ring_f2[0].next;
351
351
352 ring_node_for_averaging_sm_f0 = NULL;
352 ring_node_for_averaging_sm_f0 = NULL;
353 ring_node_for_averaging_sm_f1 = NULL;
353 ring_node_for_averaging_sm_f1 = NULL;
354 ring_node_for_averaging_sm_f2 = NULL;
354 ring_node_for_averaging_sm_f2 = NULL;
355 }
355 }
356
356
357 //*****************
357 //*****************
358 // Basic Parameters
358 // Basic Parameters
359
359
360 void BP_init_header( bp_packet *packet,
360 void BP_init_header( bp_packet *packet,
361 unsigned int apid, unsigned char sid,
361 unsigned int apid, unsigned char sid,
362 unsigned int packetLength, unsigned char blkNr )
362 unsigned int packetLength, unsigned char blkNr )
363 {
363 {
364 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
364 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
365 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
365 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
366 packet->reserved = INIT_CHAR;
366 packet->reserved = INIT_CHAR;
367 packet->userApplication = CCSDS_USER_APP;
367 packet->userApplication = CCSDS_USER_APP;
368 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
368 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
369 packet->packetID[1] = (unsigned char) (apid);
369 packet->packetID[1] = (unsigned char) (apid);
370 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
370 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
371 packet->packetSequenceControl[1] = INIT_CHAR;
371 packet->packetSequenceControl[1] = INIT_CHAR;
372 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
372 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
373 packet->packetLength[1] = (unsigned char) (packetLength);
373 packet->packetLength[1] = (unsigned char) (packetLength);
374 // DATA FIELD HEADER
374 // DATA FIELD HEADER
375 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
375 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
376 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
376 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
377 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
377 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
378 packet->destinationID = TM_DESTINATION_ID_GROUND;
378 packet->destinationID = TM_DESTINATION_ID_GROUND;
379 packet->time[BYTE_0] = INIT_CHAR;
379 packet->time[BYTE_0] = INIT_CHAR;
380 packet->time[BYTE_1] = INIT_CHAR;
380 packet->time[BYTE_1] = INIT_CHAR;
381 packet->time[BYTE_2] = INIT_CHAR;
381 packet->time[BYTE_2] = INIT_CHAR;
382 packet->time[BYTE_3] = INIT_CHAR;
382 packet->time[BYTE_3] = INIT_CHAR;
383 packet->time[BYTE_4] = INIT_CHAR;
383 packet->time[BYTE_4] = INIT_CHAR;
384 packet->time[BYTE_5] = INIT_CHAR;
384 packet->time[BYTE_5] = INIT_CHAR;
385 // AUXILIARY DATA HEADER
385 // AUXILIARY DATA HEADER
386 packet->sid = sid;
386 packet->sid = sid;
387 packet->pa_bia_status_info = INIT_CHAR;
387 packet->pa_bia_status_info = INIT_CHAR;
388 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
388 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
389 packet->sy_lfr_common_parameters = INIT_CHAR;
389 packet->sy_lfr_common_parameters = INIT_CHAR;
390 packet->acquisitionTime[BYTE_0] = INIT_CHAR;
390 packet->acquisitionTime[BYTE_0] = INIT_CHAR;
391 packet->acquisitionTime[BYTE_1] = INIT_CHAR;
391 packet->acquisitionTime[BYTE_1] = INIT_CHAR;
392 packet->acquisitionTime[BYTE_2] = INIT_CHAR;
392 packet->acquisitionTime[BYTE_2] = INIT_CHAR;
393 packet->acquisitionTime[BYTE_3] = INIT_CHAR;
393 packet->acquisitionTime[BYTE_3] = INIT_CHAR;
394 packet->acquisitionTime[BYTE_4] = INIT_CHAR;
394 packet->acquisitionTime[BYTE_4] = INIT_CHAR;
395 packet->acquisitionTime[BYTE_5] = INIT_CHAR;
395 packet->acquisitionTime[BYTE_5] = INIT_CHAR;
396 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
396 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
397 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
397 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
398 }
398 }
399
399
400 void BP_init_header_with_spare( bp_packet_with_spare *packet,
400 void BP_init_header_with_spare( bp_packet_with_spare *packet,
401 unsigned int apid, unsigned char sid,
401 unsigned int apid, unsigned char sid,
402 unsigned int packetLength , unsigned char blkNr)
402 unsigned int packetLength , unsigned char blkNr)
403 {
403 {
404 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
404 packet->targetLogicalAddress = CCSDS_DESTINATION_ID;
405 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
405 packet->protocolIdentifier = CCSDS_PROTOCOLE_ID;
406 packet->reserved = INIT_CHAR;
406 packet->reserved = INIT_CHAR;
407 packet->userApplication = CCSDS_USER_APP;
407 packet->userApplication = CCSDS_USER_APP;
408 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
408 packet->packetID[0] = (unsigned char) (apid >> SHIFT_1_BYTE);
409 packet->packetID[1] = (unsigned char) (apid);
409 packet->packetID[1] = (unsigned char) (apid);
410 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
410 packet->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
411 packet->packetSequenceControl[1] = INIT_CHAR;
411 packet->packetSequenceControl[1] = INIT_CHAR;
412 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
412 packet->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
413 packet->packetLength[1] = (unsigned char) (packetLength);
413 packet->packetLength[1] = (unsigned char) (packetLength);
414 // DATA FIELD HEADER
414 // DATA FIELD HEADER
415 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
415 packet->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
416 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
416 packet->serviceType = TM_TYPE_LFR_SCIENCE; // service type
417 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
417 packet->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
418 packet->destinationID = TM_DESTINATION_ID_GROUND;
418 packet->destinationID = TM_DESTINATION_ID_GROUND;
419 // AUXILIARY DATA HEADER
419 // AUXILIARY DATA HEADER
420 packet->sid = sid;
420 packet->sid = sid;
421 packet->pa_bia_status_info = INIT_CHAR;
421 packet->pa_bia_status_info = INIT_CHAR;
422 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
422 packet->sy_lfr_common_parameters_spare = INIT_CHAR;
423 packet->sy_lfr_common_parameters = INIT_CHAR;
423 packet->sy_lfr_common_parameters = INIT_CHAR;
424 packet->time[BYTE_0] = INIT_CHAR;
424 packet->time[BYTE_0] = INIT_CHAR;
425 packet->time[BYTE_1] = INIT_CHAR;
425 packet->time[BYTE_1] = INIT_CHAR;
426 packet->time[BYTE_2] = INIT_CHAR;
426 packet->time[BYTE_2] = INIT_CHAR;
427 packet->time[BYTE_3] = INIT_CHAR;
427 packet->time[BYTE_3] = INIT_CHAR;
428 packet->time[BYTE_4] = INIT_CHAR;
428 packet->time[BYTE_4] = INIT_CHAR;
429 packet->time[BYTE_5] = INIT_CHAR;
429 packet->time[BYTE_5] = INIT_CHAR;
430 packet->source_data_spare = INIT_CHAR;
430 packet->source_data_spare = INIT_CHAR;
431 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
431 packet->pa_lfr_bp_blk_nr[0] = INIT_CHAR; // BLK_NR MSB
432 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
432 packet->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
433 }
433 }
434
434
435 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
435 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
436 {
436 {
437 rtems_status_code status;
437 rtems_status_code status;
438
438
439 // SEND PACKET
439 // SEND PACKET
440 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
440 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
441 if (status != RTEMS_SUCCESSFUL)
441 if (status != RTEMS_SUCCESSFUL)
442 {
442 {
443 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
443 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
444 }
444 }
445 }
445 }
446
446
447 void BP_send_s1_s2(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
447 void BP_send_s1_s2(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
448 {
448 {
449 /** This function is used to send the BP paquets when needed.
449 /** This function is used to send the BP paquets when needed.
450 *
450 *
451 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
451 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
452 *
452 *
453 * @return void
453 * @return void
454 *
454 *
455 * SBM1 and SBM2 paquets are sent depending on the type of the LFR mode transition.
455 * SBM1 and SBM2 paquets are sent depending on the type of the LFR mode transition.
456 * BURST paquets are sent everytime.
456 * BURST paquets are sent everytime.
457 *
457 *
458 */
458 */
459
459
460 rtems_status_code status;
460 rtems_status_code status;
461
461
462 // SEND PACKET
462 // SEND PACKET
463 // before lastValidTransitionDate, the data are drops even if they are ready
463 // before lastValidTransitionDate, the data are drops even if they are ready
464 // this guarantees that no SBM packets will be received before the requested enter mode time
464 // this guarantees that no SBM packets will be received before the requested enter mode time
465 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
465 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
466 {
466 {
467 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
467 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
468 if (status != RTEMS_SUCCESSFUL)
468 if (status != RTEMS_SUCCESSFUL)
469 {
469 {
470 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
470 PRINTF1("ERR *** in BP_send *** ERR %d\n", (int) status)
471 }
471 }
472 }
472 }
473 }
473 }
474
474
475 //******************
475 //******************
476 // general functions
476 // general functions
477
477
478 void reset_sm_status( void )
478 void reset_sm_status( void )
479 {
479 {
480 // error
480 // error
481 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
481 // 10 --------------- 9 ---------------- 8 ---------------- 7 ---------
482 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
482 // input_fif0_write_2 input_fifo_write_1 input_fifo_write_0 buffer_full
483 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
483 // ---------- 5 -- 4 -- 3 -- 2 -- 1 -- 0 --
484 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
484 // ready bits f2_1 f2_0 f1_1 f1_1 f0_1 f0_0
485
485
486 spectral_matrix_regs->status = BITS_STATUS_REG; // [0111 1111 1111]
486 spectral_matrix_regs->status = BITS_STATUS_REG; // [0111 1111 1111]
487 }
487 }
488
488
489 void reset_spectral_matrix_regs( void )
489 void reset_spectral_matrix_regs( void )
490 {
490 {
491 /** This function resets the spectral matrices module registers.
491 /** This function resets the spectral matrices module registers.
492 *
492 *
493 * The registers affected by this function are located at the following offset addresses:
493 * The registers affected by this function are located at the following offset addresses:
494 *
494 *
495 * - 0x00 config
495 * - 0x00 config
496 * - 0x04 status
496 * - 0x04 status
497 * - 0x08 matrixF0_Address0
497 * - 0x08 matrixF0_Address0
498 * - 0x10 matrixFO_Address1
498 * - 0x10 matrixFO_Address1
499 * - 0x14 matrixF1_Address
499 * - 0x14 matrixF1_Address
500 * - 0x18 matrixF2_Address
500 * - 0x18 matrixF2_Address
501 *
501 *
502 */
502 */
503
503
504 set_sm_irq_onError( 0 );
504 set_sm_irq_onError( 0 );
505
505
506 set_sm_irq_onNewMatrix( 0 );
506 set_sm_irq_onNewMatrix( 0 );
507
507
508 reset_sm_status();
508 reset_sm_status();
509
509
510 // F1
510 // F1
511 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
511 spectral_matrix_regs->f0_0_address = current_ring_node_sm_f0->previous->buffer_address;
512 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
512 spectral_matrix_regs->f0_1_address = current_ring_node_sm_f0->buffer_address;
513 // F2
513 // F2
514 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
514 spectral_matrix_regs->f1_0_address = current_ring_node_sm_f1->previous->buffer_address;
515 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
515 spectral_matrix_regs->f1_1_address = current_ring_node_sm_f1->buffer_address;
516 // F3
516 // F3
517 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
517 spectral_matrix_regs->f2_0_address = current_ring_node_sm_f2->previous->buffer_address;
518 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
518 spectral_matrix_regs->f2_1_address = current_ring_node_sm_f2->buffer_address;
519
519
520 spectral_matrix_regs->matrix_length = DEFAULT_MATRIX_LENGTH; // 25 * 128 / 16 = 200 = 0xc8
520 spectral_matrix_regs->matrix_length = DEFAULT_MATRIX_LENGTH; // 25 * 128 / 16 = 200 = 0xc8
521 }
521 }
522
522
523 void set_time( unsigned char *time, unsigned char * timeInBuffer )
523 void set_time( unsigned char *time, unsigned char * timeInBuffer )
524 {
524 {
525 time[BYTE_0] = timeInBuffer[BYTE_0];
525 time[BYTE_0] = timeInBuffer[BYTE_0];
526 time[BYTE_1] = timeInBuffer[BYTE_1];
526 time[BYTE_1] = timeInBuffer[BYTE_1];
527 time[BYTE_2] = timeInBuffer[BYTE_2];
527 time[BYTE_2] = timeInBuffer[BYTE_2];
528 time[BYTE_3] = timeInBuffer[BYTE_3];
528 time[BYTE_3] = timeInBuffer[BYTE_3];
529 time[BYTE_4] = timeInBuffer[BYTE_6];
529 time[BYTE_4] = timeInBuffer[BYTE_6];
530 time[BYTE_5] = timeInBuffer[BYTE_7];
530 time[BYTE_5] = timeInBuffer[BYTE_7];
531 }
531 }
532
532
533 unsigned long long int get_acquisition_time( unsigned char *timePtr )
533 unsigned long long int get_acquisition_time( unsigned char *timePtr )
534 {
534 {
535 unsigned long long int acquisitionTimeAslong;
535 unsigned long long int acquisitionTimeAslong;
536 acquisitionTimeAslong = INIT_CHAR;
536 acquisitionTimeAslong = INIT_CHAR;
537 acquisitionTimeAslong =
537 acquisitionTimeAslong =
538 ( (unsigned long long int) (timePtr[BYTE_0] & SYNC_BIT_MASK) << SHIFT_5_BYTES ) // [0111 1111] mask the synchronization bit
538 ( (unsigned long long int) (timePtr[BYTE_0] & SYNC_BIT_MASK) << SHIFT_5_BYTES ) // [0111 1111] mask the synchronization bit
539 + ( (unsigned long long int) timePtr[BYTE_1] << SHIFT_4_BYTES )
539 + ( (unsigned long long int) timePtr[BYTE_1] << SHIFT_4_BYTES )
540 + ( (unsigned long long int) timePtr[BYTE_2] << SHIFT_3_BYTES )
540 + ( (unsigned long long int) timePtr[BYTE_2] << SHIFT_3_BYTES )
541 + ( (unsigned long long int) timePtr[BYTE_3] << SHIFT_2_BYTES )
541 + ( (unsigned long long int) timePtr[BYTE_3] << SHIFT_2_BYTES )
542 + ( (unsigned long long int) timePtr[BYTE_6] << SHIFT_1_BYTE )
542 + ( (unsigned long long int) timePtr[BYTE_6] << SHIFT_1_BYTE )
543 + ( (unsigned long long int) timePtr[BYTE_7] );
543 + ( (unsigned long long int) timePtr[BYTE_7] );
544 return acquisitionTimeAslong;
544 return acquisitionTimeAslong;
545 }
545 }
546
546
547 unsigned char getSID( rtems_event_set event )
547 unsigned char getSID( rtems_event_set event )
548 {
548 {
549 unsigned char sid;
549 unsigned char sid;
550
550
551 rtems_event_set eventSetBURST;
551 rtems_event_set eventSetBURST;
552 rtems_event_set eventSetSBM;
552 rtems_event_set eventSetSBM;
553
553
554 sid = 0;
554 sid = 0;
555
555
556 //******
556 //******
557 // BURST
557 // BURST
558 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
558 eventSetBURST = RTEMS_EVENT_BURST_BP1_F0
559 | RTEMS_EVENT_BURST_BP1_F1
559 | RTEMS_EVENT_BURST_BP1_F1
560 | RTEMS_EVENT_BURST_BP2_F0
560 | RTEMS_EVENT_BURST_BP2_F0
561 | RTEMS_EVENT_BURST_BP2_F1;
561 | RTEMS_EVENT_BURST_BP2_F1;
562
562
563 //****
563 //****
564 // SBM
564 // SBM
565 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
565 eventSetSBM = RTEMS_EVENT_SBM_BP1_F0
566 | RTEMS_EVENT_SBM_BP1_F1
566 | RTEMS_EVENT_SBM_BP1_F1
567 | RTEMS_EVENT_SBM_BP2_F0
567 | RTEMS_EVENT_SBM_BP2_F0
568 | RTEMS_EVENT_SBM_BP2_F1;
568 | RTEMS_EVENT_SBM_BP2_F1;
569
569
570 if (event & eventSetBURST)
570 if (event & eventSetBURST)
571 {
571 {
572 sid = SID_BURST_BP1_F0;
572 sid = SID_BURST_BP1_F0;
573 }
573 }
574 else if (event & eventSetSBM)
574 else if (event & eventSetSBM)
575 {
575 {
576 sid = SID_SBM1_BP1_F0;
576 sid = SID_SBM1_BP1_F0;
577 }
577 }
578 else
578 else
579 {
579 {
580 sid = 0;
580 sid = 0;
581 }
581 }
582
582
583 return sid;
583 return sid;
584 }
584 }
585
585
586 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
586 void extractReImVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
587 {
587 {
588 unsigned int i;
588 unsigned int i;
589 float re;
589 float re;
590 float im;
590 float im;
591
591
592 for (i=0; i<NB_BINS_PER_SM; i++){
592 for (i=0; i<NB_BINS_PER_SM; i++){
593 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) ];
593 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) ];
594 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) + 1];
594 im = inputASM[ (asmComponent*NB_BINS_PER_SM) + (i * SM_BYTES_PER_VAL) + 1];
595 outputASM[ ( asmComponent *NB_BINS_PER_SM) + i] = re;
595 outputASM[ ( asmComponent *NB_BINS_PER_SM) + i] = re;
596 outputASM[ ((asmComponent+1)*NB_BINS_PER_SM) + i] = im;
596 outputASM[ ((asmComponent+1)*NB_BINS_PER_SM) + i] = im;
597 }
597 }
598 }
598 }
599
599
600 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
600 void copyReVectors( float *inputASM, float *outputASM, unsigned int asmComponent )
601 {
601 {
602 unsigned int i;
602 unsigned int i;
603 float re;
603 float re;
604
604
605 for (i=0; i<NB_BINS_PER_SM; i++){
605 for (i=0; i<NB_BINS_PER_SM; i++){
606 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
606 re = inputASM[ (asmComponent*NB_BINS_PER_SM) + i];
607 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
607 outputASM[ (asmComponent*NB_BINS_PER_SM) + i] = re;
608 }
608 }
609 }
609 }
610
610
611 void ASM_patch( float *inputASM, float *outputASM )
611 void ASM_patch( float *inputASM, float *outputASM )
612 {
612 {
613 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B2); // b1b2
613 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B2); // b1b2
614 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B3 ); // b1b3
614 extractReImVectors( inputASM, outputASM, ASM_COMP_B1B3 ); // b1b3
615 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E1 ); // b1e1
615 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E1 ); // b1e1
616 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E2 ); // b1e2
616 extractReImVectors( inputASM, outputASM, ASM_COMP_B1E2 ); // b1e2
617 extractReImVectors( inputASM, outputASM, ASM_COMP_B2B3 ); // b2b3
617 extractReImVectors( inputASM, outputASM, ASM_COMP_B2B3 ); // b2b3
618 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E1 ); // b2e1
618 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E1 ); // b2e1
619 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E2 ); // b2e2
619 extractReImVectors( inputASM, outputASM, ASM_COMP_B2E2 ); // b2e2
620 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E1 ); // b3e1
620 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E1 ); // b3e1
621 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E2 ); // b3e2
621 extractReImVectors( inputASM, outputASM, ASM_COMP_B3E2 ); // b3e2
622 extractReImVectors( inputASM, outputASM, ASM_COMP_E1E2 ); // e1e2
622 extractReImVectors( inputASM, outputASM, ASM_COMP_E1E2 ); // e1e2
623
623
624 copyReVectors(inputASM, outputASM, ASM_COMP_B1B1 ); // b1b1
624 copyReVectors(inputASM, outputASM, ASM_COMP_B1B1 ); // b1b1
625 copyReVectors(inputASM, outputASM, ASM_COMP_B2B2 ); // b2b2
625 copyReVectors(inputASM, outputASM, ASM_COMP_B2B2 ); // b2b2
626 copyReVectors(inputASM, outputASM, ASM_COMP_B3B3); // b3b3
626 copyReVectors(inputASM, outputASM, ASM_COMP_B3B3); // b3b3
627 copyReVectors(inputASM, outputASM, ASM_COMP_E1E1); // e1e1
627 copyReVectors(inputASM, outputASM, ASM_COMP_E1E1); // e1e1
628 copyReVectors(inputASM, outputASM, ASM_COMP_E2E2); // e2e2
628 copyReVectors(inputASM, outputASM, ASM_COMP_E2E2); // e2e2
629 }
629 }
630
630
631 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
631 void ASM_compress_reorganize_and_divide_mask(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
632 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
632 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage,
633 unsigned char ASMIndexStart,
633 unsigned char ASMIndexStart,
634 unsigned char channel )
634 unsigned char channel )
635 {
635 {
636 //*************
636 //*************
637 // input format
637 // input format
638 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
638 // component0[0 .. 127] component1[0 .. 127] .. component24[0 .. 127]
639 //**************
639 //**************
640 // output format
640 // output format
641 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
641 // matr0[0 .. 24] matr1[0 .. 24] .. matr127[0 .. 24]
642 //************
642 //************
643 // compression
643 // compression
644 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
644 // matr0[0 .. 24] matr1[0 .. 24] .. matr11[0 .. 24] => f0 NORM
645 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
645 // matr0[0 .. 24] matr1[0 .. 24] .. matr22[0 .. 24] => f0 BURST, SBM
646
646
647 int frequencyBin;
647 int frequencyBin;
648 int asmComponent;
648 int asmComponent;
649 int offsetASM;
649 int offsetASM;
650 int offsetCompressed;
650 int offsetCompressed;
651 int offsetFBin;
651 int offsetFBin;
652 int fBinMask;
652 int fBinMask;
653 int k;
653 int k;
654
654
655 // BUILD DATA
655 // BUILD DATA
656 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
656 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
657 {
657 {
658 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
658 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
659 {
659 {
660 offsetCompressed = // NO TIME OFFSET
660 offsetCompressed = // NO TIME OFFSET
661 (frequencyBin * NB_VALUES_PER_SM)
661 (frequencyBin * NB_VALUES_PER_SM)
662 + asmComponent;
662 + asmComponent;
663 offsetASM = // NO TIME OFFSET
663 offsetASM = // NO TIME OFFSET
664 (asmComponent * NB_BINS_PER_SM)
664 (asmComponent * NB_BINS_PER_SM)
665 + ASMIndexStart
665 + ASMIndexStart
666 + (frequencyBin * nbBinsToAverage);
666 + (frequencyBin * nbBinsToAverage);
667 offsetFBin = ASMIndexStart
667 offsetFBin = ASMIndexStart
668 + (frequencyBin * nbBinsToAverage);
668 + (frequencyBin * nbBinsToAverage);
669 compressed_spec_mat[ offsetCompressed ] = 0;
669 compressed_spec_mat[ offsetCompressed ] = 0;
670 for ( k = 0; k < nbBinsToAverage; k++ )
670 for ( k = 0; k < nbBinsToAverage; k++ )
671 {
671 {
672 fBinMask = getFBinMask( offsetFBin + k, channel );
672 fBinMask = getFBinMask( offsetFBin + k, channel );
673 compressed_spec_mat[offsetCompressed ] = compressed_spec_mat[ offsetCompressed ]
673 compressed_spec_mat[offsetCompressed ] = compressed_spec_mat[ offsetCompressed ]
674 + (averaged_spec_mat[ offsetASM + k ] * fBinMask);
674 + (averaged_spec_mat[ offsetASM + k ] * fBinMask);
675 }
675 }
676 if (divider != 0)
676 if (divider != 0)
677 {
677 {
678 compressed_spec_mat[ offsetCompressed ] = compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
678 compressed_spec_mat[ offsetCompressed ] = compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
679 }
679 }
680 else
680 else
681 {
681 {
682 compressed_spec_mat[ offsetCompressed ] = INIT_FLOAT;
682 compressed_spec_mat[ offsetCompressed ] = INIT_FLOAT;
683 }
683 }
684 }
684 }
685 }
685 }
686
686
687 }
687 }
688
688
689 int getFBinMask( int index, unsigned char channel )
689 int getFBinMask( int index, unsigned char channel )
690 {
690 {
691 unsigned int indexInChar;
691 unsigned int indexInChar;
692 unsigned int indexInTheChar;
692 unsigned int indexInTheChar;
693 int fbin;
693 int fbin;
694 unsigned char *sy_lfr_fbins_fx_word1;
694 unsigned char *sy_lfr_fbins_fx_word1;
695
695
696 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
696 sy_lfr_fbins_fx_word1 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
697
697
698 switch(channel)
698 switch(channel)
699 {
699 {
700 case CHANNELF0:
700 case CHANNELF0:
701 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f0;
701 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f0;
702 break;
702 break;
703 case CHANNELF1:
703 case CHANNELF1:
704 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f1;
704 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f1;
705 break;
705 break;
706 case CHANNELF2:
706 case CHANNELF2:
707 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f2;
707 sy_lfr_fbins_fx_word1 = fbins_masks.merged_fbins_mask_f2;
708 break;
708 break;
709 default:
709 default:
710 PRINTF("ERR *** in getFBinMask, wrong frequency channel")
710 PRINTF("ERR *** in getFBinMask, wrong frequency channel")
711 }
711 }
712
712
713 indexInChar = index >> SHIFT_3_BITS;
713 indexInChar = index >> SHIFT_3_BITS;
714 indexInTheChar = index - (indexInChar * BITS_PER_BYTE);
714 indexInTheChar = index - (indexInChar * BITS_PER_BYTE);
715
715
716 fbin = (int) ((sy_lfr_fbins_fx_word1[ BYTES_PER_MASK - 1 - indexInChar] >> indexInTheChar) & 1);
716 fbin = (int) ((sy_lfr_fbins_fx_word1[ BYTES_PER_MASK - 1 - indexInChar] >> indexInTheChar) & 1);
717
717
718 return fbin;
718 return fbin;
719 }
719 }
720
720
721 unsigned char acquisitionTimeIsValid( unsigned int coarseTime, unsigned int fineTime, unsigned char channel)
721 unsigned char acquisitionTimeIsValid( unsigned int coarseTime, unsigned int fineTime, unsigned char channel)
722 {
722 {
723 u_int64_t acquisitionTime;
723 u_int64_t acquisitionTime;
724 u_int64_t timecodeReference;
724 u_int64_t timecodeReference;
725 u_int64_t offsetInFineTime;
725 u_int64_t offsetInFineTime;
726 u_int64_t shiftInFineTime;
726 u_int64_t shiftInFineTime;
727 u_int64_t tBadInFineTime;
727 u_int64_t tBadInFineTime;
728 u_int64_t acquisitionTimeRangeMin;
728 u_int64_t acquisitionTimeRangeMin;
729 u_int64_t acquisitionTimeRangeMax;
729 u_int64_t acquisitionTimeRangeMax;
730 unsigned char pasFilteringIsEnabled;
730 unsigned char pasFilteringIsEnabled;
731 unsigned char ret;
731 unsigned char ret;
732
732
733 pasFilteringIsEnabled = (filterPar.spare_sy_lfr_pas_filter_enabled & 1); // [0000 0001]
733 pasFilteringIsEnabled = (filterPar.spare_sy_lfr_pas_filter_enabled & 1); // [0000 0001]
734 ret = 1;
734 ret = 1;
735
735
736 // compute acquisition time from caoarseTime and fineTime
736 // compute acquisition time from caoarseTime and fineTime
737 acquisitionTime = ( ((u_int64_t)coarseTime) << SHIFT_2_BYTES )
737 acquisitionTime = ( ((u_int64_t)coarseTime) << SHIFT_2_BYTES )
738 + (u_int64_t) fineTime;
738 + (u_int64_t) fineTime;
739
739
740 // compute the timecode reference
740 // compute the timecode reference
741 timecodeReference = (u_int64_t) ( (floor( ((double) coarseTime) / ((double) filterPar.sy_lfr_pas_filter_modulus) )
741 timecodeReference = (u_int64_t) ( (floor( ((double) coarseTime) / ((double) filterPar.sy_lfr_pas_filter_modulus) )
742 * ((double) filterPar.sy_lfr_pas_filter_modulus)) * CONST_65536 );
742 * ((double) filterPar.sy_lfr_pas_filter_modulus)) * CONST_65536 );
743
743
744 // compute the acquitionTime range
744 // compute the acquitionTime range
745 offsetInFineTime = ((double) filterPar.sy_lfr_pas_filter_offset) * CONST_65536;
745 offsetInFineTime = ((double) filterPar.sy_lfr_pas_filter_offset) * CONST_65536;
746 shiftInFineTime = ((double) filterPar.sy_lfr_pas_filter_shift) * CONST_65536;
746 shiftInFineTime = ((double) filterPar.sy_lfr_pas_filter_shift) * CONST_65536;
747 tBadInFineTime = ((double) filterPar.sy_lfr_pas_filter_tbad) * CONST_65536;
747 tBadInFineTime = ((double) filterPar.sy_lfr_pas_filter_tbad) * CONST_65536;
748
748
749 acquisitionTimeRangeMin =
749 acquisitionTimeRangeMin =
750 timecodeReference
750 timecodeReference
751 + offsetInFineTime
751 + offsetInFineTime
752 + shiftInFineTime
752 + shiftInFineTime
753 - acquisitionDurations[channel];
753 - acquisitionDurations[channel];
754 acquisitionTimeRangeMax =
754 acquisitionTimeRangeMax =
755 timecodeReference
755 timecodeReference
756 + offsetInFineTime
756 + offsetInFineTime
757 + shiftInFineTime
757 + shiftInFineTime
758 + tBadInFineTime;
758 + tBadInFineTime;
759
759
760 if ( (acquisitionTime >= acquisitionTimeRangeMin)
760 if ( (acquisitionTime >= acquisitionTimeRangeMin)
761 && (acquisitionTime <= acquisitionTimeRangeMax)
761 && (acquisitionTime <= acquisitionTimeRangeMax)
762 && (pasFilteringIsEnabled == 1) )
762 && (pasFilteringIsEnabled == 1) )
763 {
763 {
764 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
764 ret = 0; // the acquisition time is INSIDE the range, the matrix shall be ignored
765 }
765 }
766 else
766 else
767 {
767 {
768 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
768 ret = 1; // the acquisition time is OUTSIDE the range, the matrix can be used for the averaging
769 }
769 }
770
770
771 // printf("coarseTime = %x, fineTime = %x\n",
771 // printf("coarseTime = %x, fineTime = %x\n",
772 // coarseTime,
772 // coarseTime,
773 // fineTime);
773 // fineTime);
774
774
775 // printf("[ret = %d] *** acquisitionTime = %f, Reference = %f",
775 // printf("[ret = %d] *** acquisitionTime = %f, Reference = %f",
776 // ret,
776 // ret,
777 // acquisitionTime / 65536.,
777 // acquisitionTime / 65536.,
778 // timecodeReference / 65536.);
778 // timecodeReference / 65536.);
779
779
780 // printf(", Min = %f, Max = %f\n",
780 // printf(", Min = %f, Max = %f\n",
781 // acquisitionTimeRangeMin / 65536.,
781 // acquisitionTimeRangeMin / 65536.,
782 // acquisitionTimeRangeMax / 65536.);
782 // acquisitionTimeRangeMax / 65536.);
783
783
784 return ret;
784 return ret;
785 }
785 }
786
786
787 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
787 void init_kcoeff_sbm_from_kcoeff_norm(float *input_kcoeff, float *output_kcoeff, unsigned char nb_bins_norm)
788 {
788 {
789 unsigned char bin;
789 unsigned char bin;
790 unsigned char kcoeff;
790 unsigned char kcoeff;
791
791
792 for (bin=0; bin<nb_bins_norm; bin++)
792 for (bin=0; bin<nb_bins_norm; bin++)
793 {
793 {
794 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
794 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
795 {
795 {
796 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF ]
796 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF ]
797 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
797 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
798 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF + 1 ]
798 output_kcoeff[ ( ( bin * NB_K_COEFF_PER_BIN ) + kcoeff ) * SBM_COEFF_PER_NORM_COEFF + 1 ]
799 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
799 = input_kcoeff[ (bin*NB_K_COEFF_PER_BIN) + kcoeff ];
800 }
800 }
801 }
801 }
802 }
802 }
@@ -1,481 +1,481
1 /** Functions related to TeleCommand acceptance.
1 /** Functions related to TeleCommand acceptance.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands parsing.\n
6 * A group of functions to handle TeleCommands parsing.\n
7 *
7 *
8 */
8 */
9
9
10 #include "tc_acceptance.h"
10 #include "tc_acceptance.h"
11 #include <stdio.h>
11 #include <stdio.h>
12
12
13 unsigned int lookUpTableForCRC[CONST_256];
13 unsigned int lookUpTableForCRC[CONST_256] = {0};
14
14
15 //**********************
15 //**********************
16 // GENERAL USE FUNCTIONS
16 // GENERAL USE FUNCTIONS
17 unsigned int Crc_opt( unsigned char D, unsigned int Chk)
17 unsigned int Crc_opt( unsigned char D, unsigned int Chk)
18 {
18 {
19 /** This function generate the CRC for one byte and returns the value of the new syndrome.
19 /** This function generate the CRC for one byte and returns the value of the new syndrome.
20 *
20 *
21 * @param D is the current byte of data.
21 * @param D is the current byte of data.
22 * @param Chk is the current syndrom value.
22 * @param Chk is the current syndrom value.
23 *
23 *
24 * @return the value of the new syndrome on two bytes.
24 * @return the value of the new syndrome on two bytes.
25 *
25 *
26 */
26 */
27
27
28 return(((Chk << SHIFT_1_BYTE) & BYTE0_MASK)^lookUpTableForCRC [(((Chk >> SHIFT_1_BYTE)^D) & BYTE1_MASK)]);
28 return(((Chk << SHIFT_1_BYTE) & BYTE0_MASK)^lookUpTableForCRC [(((Chk >> SHIFT_1_BYTE)^D) & BYTE1_MASK)]);
29 }
29 }
30
30
31 void initLookUpTableForCRC( void )
31 void initLookUpTableForCRC( void )
32 {
32 {
33 /** This function is used to initiates the look-up table for fast CRC computation.
33 /** This function is used to initiates the look-up table for fast CRC computation.
34 *
34 *
35 * The global table lookUpTableForCRC[256] is initiated.
35 * The global table lookUpTableForCRC[256] is initiated.
36 *
36 *
37 */
37 */
38
38
39 unsigned int i;
39 unsigned int i;
40 unsigned int tmp;
40 unsigned int tmp;
41
41
42 for (i=0; i<CONST_256; i++)
42 for (i=0; i<CONST_256; i++)
43 {
43 {
44 tmp = 0;
44 tmp = 0;
45 if((i & BIT_0) != 0) {
45 if((i & BIT_0) != 0) {
46 tmp = tmp ^ CONST_CRC_0;
46 tmp = tmp ^ CONST_CRC_0;
47 }
47 }
48 if((i & BIT_1) != 0) {
48 if((i & BIT_1) != 0) {
49 tmp = tmp ^ CONST_CRC_1;
49 tmp = tmp ^ CONST_CRC_1;
50 }
50 }
51 if((i & BIT_2) != 0) {
51 if((i & BIT_2) != 0) {
52 tmp = tmp ^ CONST_CRC_2;
52 tmp = tmp ^ CONST_CRC_2;
53 }
53 }
54 if((i & BIT_3) != 0) {
54 if((i & BIT_3) != 0) {
55 tmp = tmp ^ CONST_CRC_3;
55 tmp = tmp ^ CONST_CRC_3;
56 }
56 }
57 if((i & BIT_4) != 0) {
57 if((i & BIT_4) != 0) {
58 tmp = tmp ^ CONST_CRC_4;
58 tmp = tmp ^ CONST_CRC_4;
59 }
59 }
60 if((i & BIT_5) != 0) {
60 if((i & BIT_5) != 0) {
61 tmp = tmp ^ CONST_CRC_5;
61 tmp = tmp ^ CONST_CRC_5;
62 }
62 }
63 if((i & BIT_6) != 0) {
63 if((i & BIT_6) != 0) {
64 tmp = tmp ^ CONST_CRC_6;
64 tmp = tmp ^ CONST_CRC_6;
65 }
65 }
66 if((i & BIT_7) != 0) {
66 if((i & BIT_7) != 0) {
67 tmp = tmp ^ CONST_CRC_7;
67 tmp = tmp ^ CONST_CRC_7;
68 }
68 }
69 lookUpTableForCRC[i] = tmp;
69 lookUpTableForCRC[i] = tmp;
70 }
70 }
71 }
71 }
72
72
73 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData)
73 void GetCRCAsTwoBytes(unsigned char* data, unsigned char* crcAsTwoBytes, unsigned int sizeOfData)
74 {
74 {
75 /** This function calculates a two bytes Cyclic Redundancy Code.
75 /** This function calculates a two bytes Cyclic Redundancy Code.
76 *
76 *
77 * @param data points to a buffer containing the data on which to compute the CRC.
77 * @param data points to a buffer containing the data on which to compute the CRC.
78 * @param crcAsTwoBytes points points to a two bytes buffer in which the CRC is stored.
78 * @param crcAsTwoBytes points points to a two bytes buffer in which the CRC is stored.
79 * @param sizeOfData is the number of bytes of *data* used to compute the CRC.
79 * @param sizeOfData is the number of bytes of *data* used to compute the CRC.
80 *
80 *
81 * The specification of the Cyclic Redundancy Code is described in the following document: ECSS-E-70-41-A.
81 * The specification of the Cyclic Redundancy Code is described in the following document: ECSS-E-70-41-A.
82 *
82 *
83 */
83 */
84
84
85 unsigned int Chk;
85 unsigned int Chk;
86 int j;
86 int j;
87 Chk = CRC_RESET; // reset the syndrom to all ones
87 Chk = CRC_RESET; // reset the syndrom to all ones
88 for (j=0; j<sizeOfData; j++) {
88 for (j=0; j<sizeOfData; j++) {
89 Chk = Crc_opt(data[j], Chk);
89 Chk = Crc_opt(data[j], Chk);
90 }
90 }
91 crcAsTwoBytes[0] = (unsigned char) (Chk >> SHIFT_1_BYTE);
91 crcAsTwoBytes[0] = (unsigned char) (Chk >> SHIFT_1_BYTE);
92 crcAsTwoBytes[1] = (unsigned char) (Chk & BYTE1_MASK);
92 crcAsTwoBytes[1] = (unsigned char) (Chk & BYTE1_MASK);
93 }
93 }
94
94
95 //*********************
95 //*********************
96 // ACCEPTANCE FUNCTIONS
96 // ACCEPTANCE FUNCTIONS
97 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int estimatedPacketLength, unsigned char *computed_CRC)
97 int tc_parser(ccsdsTelecommandPacket_t * TCPacket, unsigned int estimatedPacketLength, unsigned char *computed_CRC)
98 {
98 {
99 /** This function parses TeleCommands.
99 /** This function parses TeleCommands.
100 *
100 *
101 * @param TC points to the TeleCommand that will be parsed.
101 * @param TC points to the TeleCommand that will be parsed.
102 * @param estimatedPacketLength is the PACKET_LENGTH field calculated from the effective length of the received packet.
102 * @param estimatedPacketLength is the PACKET_LENGTH field calculated from the effective length of the received packet.
103 *
103 *
104 * @return Status code of the parsing.
104 * @return Status code of the parsing.
105 *
105 *
106 * The parsing checks:
106 * The parsing checks:
107 * - process id
107 * - process id
108 * - category
108 * - category
109 * - length: a global check is performed and a per subtype check also
109 * - length: a global check is performed and a per subtype check also
110 * - type
110 * - type
111 * - subtype
111 * - subtype
112 * - crc
112 * - crc
113 *
113 *
114 */
114 */
115
115
116 int status;
116 int status;
117 int status_crc;
117 int status_crc;
118 unsigned char pid;
118 unsigned char pid;
119 unsigned char category;
119 unsigned char category;
120 unsigned int packetLength;
120 unsigned int packetLength;
121 unsigned char packetType;
121 unsigned char packetType;
122 unsigned char packetSubtype;
122 unsigned char packetSubtype;
123 unsigned char sid;
123 unsigned char sid;
124
124
125 status = CCSDS_TM_VALID;
125 status = CCSDS_TM_VALID;
126
126
127 // APID check *** APID on 2 bytes
127 // APID check *** APID on 2 bytes
128 pid = ((TCPacket->packetID[0] & BITS_PID_0) << SHIFT_4_BITS)
128 pid = ((TCPacket->packetID[0] & BITS_PID_0) << SHIFT_4_BITS)
129 + ( (TCPacket->packetID[1] >> SHIFT_4_BITS) & BITS_PID_1 ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
129 + ( (TCPacket->packetID[1] >> SHIFT_4_BITS) & BITS_PID_1 ); // PID = 11 *** 7 bits xxxxx210 7654xxxx
130 category = (TCPacket->packetID[1] & BITS_CAT); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
130 category = (TCPacket->packetID[1] & BITS_CAT); // PACKET_CATEGORY = 12 *** 4 bits xxxxxxxx xxxx3210
131 packetLength = (TCPacket->packetLength[0] * CONST_256) + TCPacket->packetLength[1];
131 packetLength = (TCPacket->packetLength[0] * CONST_256) + TCPacket->packetLength[1];
132 packetType = TCPacket->serviceType;
132 packetType = TCPacket->serviceType;
133 packetSubtype = TCPacket->serviceSubType;
133 packetSubtype = TCPacket->serviceSubType;
134 sid = TCPacket->sourceID;
134 sid = TCPacket->sourceID;
135
135
136 if ( pid != CCSDS_PROCESS_ID ) // CHECK THE PROCESS ID
136 if ( pid != CCSDS_PROCESS_ID ) // CHECK THE PROCESS ID
137 {
137 {
138 status = ILLEGAL_APID;
138 status = ILLEGAL_APID;
139 }
139 }
140 if (status == CCSDS_TM_VALID) // CHECK THE CATEGORY
140 if (status == CCSDS_TM_VALID) // CHECK THE CATEGORY
141 {
141 {
142 if ( category != CCSDS_PACKET_CATEGORY )
142 if ( category != CCSDS_PACKET_CATEGORY )
143 {
143 {
144 status = ILLEGAL_APID;
144 status = ILLEGAL_APID;
145 }
145 }
146 }
146 }
147 if (status == CCSDS_TM_VALID) // CHECK THE PACKET_LENGTH FIELD AND THE ESTIMATED PACKET_LENGTH COMPLIANCE
147 if (status == CCSDS_TM_VALID) // CHECK THE PACKET_LENGTH FIELD AND THE ESTIMATED PACKET_LENGTH COMPLIANCE
148 {
148 {
149 if (packetLength != estimatedPacketLength ) {
149 if (packetLength != estimatedPacketLength ) {
150 status = WRONG_LEN_PKT;
150 status = WRONG_LEN_PKT;
151 }
151 }
152 }
152 }
153 if (status == CCSDS_TM_VALID) // CHECK THAT THE PACKET DOES NOT EXCEED THE MAX SIZE
153 if (status == CCSDS_TM_VALID) // CHECK THAT THE PACKET DOES NOT EXCEED THE MAX SIZE
154 {
154 {
155 if ( packetLength > CCSDS_TC_PKT_MAX_SIZE ) {
155 if ( packetLength > CCSDS_TC_PKT_MAX_SIZE ) {
156 status = WRONG_LEN_PKT;
156 status = WRONG_LEN_PKT;
157 }
157 }
158 }
158 }
159 if (status == CCSDS_TM_VALID) // CHECK THE TYPE
159 if (status == CCSDS_TM_VALID) // CHECK THE TYPE
160 {
160 {
161 status = tc_check_type( packetType );
161 status = tc_check_type( packetType );
162 }
162 }
163 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE
163 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE
164 {
164 {
165 status = tc_check_type_subtype( packetType, packetSubtype );
165 status = tc_check_type_subtype( packetType, packetSubtype );
166 }
166 }
167 if (status == CCSDS_TM_VALID) // CHECK THE SID
167 if (status == CCSDS_TM_VALID) // CHECK THE SID
168 {
168 {
169 status = tc_check_sid( sid );
169 status = tc_check_sid( sid );
170 }
170 }
171 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE AND LENGTH COMPLIANCE
171 if (status == CCSDS_TM_VALID) // CHECK THE SUBTYPE AND LENGTH COMPLIANCE
172 {
172 {
173 status = tc_check_length( packetSubtype, packetLength );
173 status = tc_check_length( packetSubtype, packetLength );
174 }
174 }
175 status_crc = tc_check_crc( TCPacket, estimatedPacketLength, computed_CRC );
175 status_crc = tc_check_crc( TCPacket, estimatedPacketLength, computed_CRC );
176 if (status == CCSDS_TM_VALID ) // CHECK CRC
176 if (status == CCSDS_TM_VALID ) // CHECK CRC
177 {
177 {
178 status = status_crc;
178 status = status_crc;
179 }
179 }
180
180
181 return status;
181 return status;
182 }
182 }
183
183
184 int tc_check_type( unsigned char packetType )
184 int tc_check_type( unsigned char packetType )
185 {
185 {
186 /** This function checks that the type of a TeleCommand is valid.
186 /** This function checks that the type of a TeleCommand is valid.
187 *
187 *
188 * @param packetType is the type to check.
188 * @param packetType is the type to check.
189 *
189 *
190 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
190 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
191 *
191 *
192 */
192 */
193
193
194 int status;
194 int status;
195
195
196 status = ILL_TYPE;
196 status = ILL_TYPE;
197
197
198 if ( (packetType == TC_TYPE_GEN) || (packetType == TC_TYPE_TIME))
198 if ( (packetType == TC_TYPE_GEN) || (packetType == TC_TYPE_TIME))
199 {
199 {
200 status = CCSDS_TM_VALID;
200 status = CCSDS_TM_VALID;
201 }
201 }
202 else
202 else
203 {
203 {
204 status = ILL_TYPE;
204 status = ILL_TYPE;
205 }
205 }
206
206
207 return status;
207 return status;
208 }
208 }
209
209
210 int tc_check_type_subtype( unsigned char packetType, unsigned char packetSubType )
210 int tc_check_type_subtype( unsigned char packetType, unsigned char packetSubType )
211 {
211 {
212 /** This function checks that the subtype of a TeleCommand is valid and coherent with the type.
212 /** This function checks that the subtype of a TeleCommand is valid and coherent with the type.
213 *
213 *
214 * @param packetType is the type of the TC.
214 * @param packetType is the type of the TC.
215 * @param packetSubType is the subtype to check.
215 * @param packetSubType is the subtype to check.
216 *
216 *
217 * @return Status code CCSDS_TM_VALID or ILL_SUBTYPE.
217 * @return Status code CCSDS_TM_VALID or ILL_SUBTYPE.
218 *
218 *
219 */
219 */
220
220
221 int status;
221 int status;
222
222
223 switch(packetType)
223 switch(packetType)
224 {
224 {
225 case TC_TYPE_GEN:
225 case TC_TYPE_GEN:
226 if ( (packetSubType == TC_SUBTYPE_RESET)
226 if ( (packetSubType == TC_SUBTYPE_RESET)
227 || (packetSubType == TC_SUBTYPE_LOAD_COMM)
227 || (packetSubType == TC_SUBTYPE_LOAD_COMM)
228 || (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
228 || (packetSubType == TC_SUBTYPE_LOAD_NORM) || (packetSubType == TC_SUBTYPE_LOAD_BURST)
229 || (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
229 || (packetSubType == TC_SUBTYPE_LOAD_SBM1) || (packetSubType == TC_SUBTYPE_LOAD_SBM2)
230 || (packetSubType == TC_SUBTYPE_DUMP)
230 || (packetSubType == TC_SUBTYPE_DUMP)
231 || (packetSubType == TC_SUBTYPE_ENTER)
231 || (packetSubType == TC_SUBTYPE_ENTER)
232 || (packetSubType == TC_SUBTYPE_UPDT_INFO)
232 || (packetSubType == TC_SUBTYPE_UPDT_INFO)
233 || (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL)
233 || (packetSubType == TC_SUBTYPE_EN_CAL) || (packetSubType == TC_SUBTYPE_DIS_CAL)
234 || (packetSubType == TC_SUBTYPE_LOAD_K) || (packetSubType == TC_SUBTYPE_DUMP_K)
234 || (packetSubType == TC_SUBTYPE_LOAD_K) || (packetSubType == TC_SUBTYPE_DUMP_K)
235 || (packetSubType == TC_SUBTYPE_LOAD_FBINS)
235 || (packetSubType == TC_SUBTYPE_LOAD_FBINS)
236 || (packetSubType == TC_SUBTYPE_LOAD_FILTER_PAR))
236 || (packetSubType == TC_SUBTYPE_LOAD_FILTER_PAR))
237 {
237 {
238 status = CCSDS_TM_VALID;
238 status = CCSDS_TM_VALID;
239 }
239 }
240 else
240 else
241 {
241 {
242 status = ILL_SUBTYPE;
242 status = ILL_SUBTYPE;
243 }
243 }
244 break;
244 break;
245
245
246 case TC_TYPE_TIME:
246 case TC_TYPE_TIME:
247 if (packetSubType == TC_SUBTYPE_UPDT_TIME)
247 if (packetSubType == TC_SUBTYPE_UPDT_TIME)
248 {
248 {
249 status = CCSDS_TM_VALID;
249 status = CCSDS_TM_VALID;
250 }
250 }
251 else
251 else
252 {
252 {
253 status = ILL_SUBTYPE;
253 status = ILL_SUBTYPE;
254 }
254 }
255 break;
255 break;
256
256
257 default:
257 default:
258 status = ILL_SUBTYPE;
258 status = ILL_SUBTYPE;
259 break;
259 break;
260 }
260 }
261
261
262 return status;
262 return status;
263 }
263 }
264
264
265 int tc_check_sid( unsigned char sid )
265 int tc_check_sid( unsigned char sid )
266 {
266 {
267 /** This function checks that the sid of a TeleCommand is valid.
267 /** This function checks that the sid of a TeleCommand is valid.
268 *
268 *
269 * @param sid is the sid to check.
269 * @param sid is the sid to check.
270 *
270 *
271 * @return Status code CCSDS_TM_VALID or CORRUPTED.
271 * @return Status code CCSDS_TM_VALID or CORRUPTED.
272 *
272 *
273 */
273 */
274
274
275 int status;
275 int status;
276
276
277 status = WRONG_SRC_ID;
277 status = WRONG_SRC_ID;
278
278
279 if ( (sid == SID_TC_MISSION_TIMELINE) || (sid == SID_TC_TC_SEQUENCES) || (sid == SID_TC_RECOVERY_ACTION_CMD)
279 if ( (sid == SID_TC_MISSION_TIMELINE) || (sid == SID_TC_TC_SEQUENCES) || (sid == SID_TC_RECOVERY_ACTION_CMD)
280 || (sid == SID_TC_BACKUP_MISSION_TIMELINE)
280 || (sid == SID_TC_BACKUP_MISSION_TIMELINE)
281 || (sid == SID_TC_DIRECT_CMD) || (sid == SID_TC_SPARE_GRD_SRC1) || (sid == SID_TC_SPARE_GRD_SRC2)
281 || (sid == SID_TC_DIRECT_CMD) || (sid == SID_TC_SPARE_GRD_SRC1) || (sid == SID_TC_SPARE_GRD_SRC2)
282 || (sid == SID_TC_OBCP) || (sid == SID_TC_SYSTEM_CONTROL) || (sid == SID_TC_AOCS)
282 || (sid == SID_TC_OBCP) || (sid == SID_TC_SYSTEM_CONTROL) || (sid == SID_TC_AOCS)
283 || (sid == SID_TC_RPW_INTERNAL))
283 || (sid == SID_TC_RPW_INTERNAL))
284 {
284 {
285 status = CCSDS_TM_VALID;
285 status = CCSDS_TM_VALID;
286 }
286 }
287 else
287 else
288 {
288 {
289 status = WRONG_SRC_ID;
289 status = WRONG_SRC_ID;
290 }
290 }
291
291
292 return status;
292 return status;
293 }
293 }
294
294
295 int tc_check_length( unsigned char packetSubType, unsigned int length )
295 int tc_check_length( unsigned char packetSubType, unsigned int length )
296 {
296 {
297 /** This function checks that the subtype and the length are compliant.
297 /** This function checks that the subtype and the length are compliant.
298 *
298 *
299 * @param packetSubType is the subtype to check.
299 * @param packetSubType is the subtype to check.
300 * @param length is the length to check.
300 * @param length is the length to check.
301 *
301 *
302 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
302 * @return Status code CCSDS_TM_VALID or ILL_TYPE.
303 *
303 *
304 */
304 */
305
305
306 int status;
306 int status;
307
307
308 status = LFR_SUCCESSFUL;
308 status = LFR_SUCCESSFUL;
309
309
310 switch(packetSubType)
310 switch(packetSubType)
311 {
311 {
312 case TC_SUBTYPE_RESET:
312 case TC_SUBTYPE_RESET:
313 if (length!=(TC_LEN_RESET-CCSDS_TC_TM_PACKET_OFFSET)) {
313 if (length!=(TC_LEN_RESET-CCSDS_TC_TM_PACKET_OFFSET)) {
314 status = WRONG_LEN_PKT;
314 status = WRONG_LEN_PKT;
315 }
315 }
316 else {
316 else {
317 status = CCSDS_TM_VALID;
317 status = CCSDS_TM_VALID;
318 }
318 }
319 break;
319 break;
320 case TC_SUBTYPE_LOAD_COMM:
320 case TC_SUBTYPE_LOAD_COMM:
321 if (length!=(TC_LEN_LOAD_COMM-CCSDS_TC_TM_PACKET_OFFSET)) {
321 if (length!=(TC_LEN_LOAD_COMM-CCSDS_TC_TM_PACKET_OFFSET)) {
322 status = WRONG_LEN_PKT;
322 status = WRONG_LEN_PKT;
323 }
323 }
324 else {
324 else {
325 status = CCSDS_TM_VALID;
325 status = CCSDS_TM_VALID;
326 }
326 }
327 break;
327 break;
328 case TC_SUBTYPE_LOAD_NORM:
328 case TC_SUBTYPE_LOAD_NORM:
329 if (length!=(TC_LEN_LOAD_NORM-CCSDS_TC_TM_PACKET_OFFSET)) {
329 if (length!=(TC_LEN_LOAD_NORM-CCSDS_TC_TM_PACKET_OFFSET)) {
330 status = WRONG_LEN_PKT;
330 status = WRONG_LEN_PKT;
331 }
331 }
332 else {
332 else {
333 status = CCSDS_TM_VALID;
333 status = CCSDS_TM_VALID;
334 }
334 }
335 break;
335 break;
336 case TC_SUBTYPE_LOAD_BURST:
336 case TC_SUBTYPE_LOAD_BURST:
337 if (length!=(TC_LEN_LOAD_BURST-CCSDS_TC_TM_PACKET_OFFSET)) {
337 if (length!=(TC_LEN_LOAD_BURST-CCSDS_TC_TM_PACKET_OFFSET)) {
338 status = WRONG_LEN_PKT;
338 status = WRONG_LEN_PKT;
339 }
339 }
340 else {
340 else {
341 status = CCSDS_TM_VALID;
341 status = CCSDS_TM_VALID;
342 }
342 }
343 break;
343 break;
344 case TC_SUBTYPE_LOAD_SBM1:
344 case TC_SUBTYPE_LOAD_SBM1:
345 if (length!=(TC_LEN_LOAD_SBM1-CCSDS_TC_TM_PACKET_OFFSET)) {
345 if (length!=(TC_LEN_LOAD_SBM1-CCSDS_TC_TM_PACKET_OFFSET)) {
346 status = WRONG_LEN_PKT;
346 status = WRONG_LEN_PKT;
347 }
347 }
348 else {
348 else {
349 status = CCSDS_TM_VALID;
349 status = CCSDS_TM_VALID;
350 }
350 }
351 break;
351 break;
352 case TC_SUBTYPE_LOAD_SBM2:
352 case TC_SUBTYPE_LOAD_SBM2:
353 if (length!=(TC_LEN_LOAD_SBM2-CCSDS_TC_TM_PACKET_OFFSET)) {
353 if (length!=(TC_LEN_LOAD_SBM2-CCSDS_TC_TM_PACKET_OFFSET)) {
354 status = WRONG_LEN_PKT;
354 status = WRONG_LEN_PKT;
355 }
355 }
356 else {
356 else {
357 status = CCSDS_TM_VALID;
357 status = CCSDS_TM_VALID;
358 }
358 }
359 break;
359 break;
360 case TC_SUBTYPE_DUMP:
360 case TC_SUBTYPE_DUMP:
361 if (length!=(TC_LEN_DUMP-CCSDS_TC_TM_PACKET_OFFSET)) {
361 if (length!=(TC_LEN_DUMP-CCSDS_TC_TM_PACKET_OFFSET)) {
362 status = WRONG_LEN_PKT;
362 status = WRONG_LEN_PKT;
363 }
363 }
364 else {
364 else {
365 status = CCSDS_TM_VALID;
365 status = CCSDS_TM_VALID;
366 }
366 }
367 break;
367 break;
368 case TC_SUBTYPE_ENTER:
368 case TC_SUBTYPE_ENTER:
369 if (length!=(TC_LEN_ENTER-CCSDS_TC_TM_PACKET_OFFSET)) {
369 if (length!=(TC_LEN_ENTER-CCSDS_TC_TM_PACKET_OFFSET)) {
370 status = WRONG_LEN_PKT;
370 status = WRONG_LEN_PKT;
371 }
371 }
372 else {
372 else {
373 status = CCSDS_TM_VALID;
373 status = CCSDS_TM_VALID;
374 }
374 }
375 break;
375 break;
376 case TC_SUBTYPE_UPDT_INFO:
376 case TC_SUBTYPE_UPDT_INFO:
377 if (length!=(TC_LEN_UPDT_INFO-CCSDS_TC_TM_PACKET_OFFSET)) {
377 if (length!=(TC_LEN_UPDT_INFO-CCSDS_TC_TM_PACKET_OFFSET)) {
378 status = WRONG_LEN_PKT;
378 status = WRONG_LEN_PKT;
379 }
379 }
380 else {
380 else {
381 status = CCSDS_TM_VALID;
381 status = CCSDS_TM_VALID;
382 }
382 }
383 break;
383 break;
384 case TC_SUBTYPE_EN_CAL:
384 case TC_SUBTYPE_EN_CAL:
385 if (length!=(TC_LEN_EN_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
385 if (length!=(TC_LEN_EN_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
386 status = WRONG_LEN_PKT;
386 status = WRONG_LEN_PKT;
387 }
387 }
388 else {
388 else {
389 status = CCSDS_TM_VALID;
389 status = CCSDS_TM_VALID;
390 }
390 }
391 break;
391 break;
392 case TC_SUBTYPE_DIS_CAL:
392 case TC_SUBTYPE_DIS_CAL:
393 if (length!=(TC_LEN_DIS_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
393 if (length!=(TC_LEN_DIS_CAL-CCSDS_TC_TM_PACKET_OFFSET)) {
394 status = WRONG_LEN_PKT;
394 status = WRONG_LEN_PKT;
395 }
395 }
396 else {
396 else {
397 status = CCSDS_TM_VALID;
397 status = CCSDS_TM_VALID;
398 }
398 }
399 break;
399 break;
400 case TC_SUBTYPE_LOAD_K:
400 case TC_SUBTYPE_LOAD_K:
401 if (length!=(TC_LEN_LOAD_K-CCSDS_TC_TM_PACKET_OFFSET)) {
401 if (length!=(TC_LEN_LOAD_K-CCSDS_TC_TM_PACKET_OFFSET)) {
402 status = WRONG_LEN_PKT;
402 status = WRONG_LEN_PKT;
403 }
403 }
404 else {
404 else {
405 status = CCSDS_TM_VALID;
405 status = CCSDS_TM_VALID;
406 }
406 }
407 break;
407 break;
408 case TC_SUBTYPE_DUMP_K:
408 case TC_SUBTYPE_DUMP_K:
409 if (length!=(TC_LEN_DUMP_K-CCSDS_TC_TM_PACKET_OFFSET)) {
409 if (length!=(TC_LEN_DUMP_K-CCSDS_TC_TM_PACKET_OFFSET)) {
410 status = WRONG_LEN_PKT;
410 status = WRONG_LEN_PKT;
411 }
411 }
412 else {
412 else {
413 status = CCSDS_TM_VALID;
413 status = CCSDS_TM_VALID;
414 }
414 }
415 break;
415 break;
416 case TC_SUBTYPE_LOAD_FBINS:
416 case TC_SUBTYPE_LOAD_FBINS:
417 if (length!=(TC_LEN_LOAD_FBINS-CCSDS_TC_TM_PACKET_OFFSET)) {
417 if (length!=(TC_LEN_LOAD_FBINS-CCSDS_TC_TM_PACKET_OFFSET)) {
418 status = WRONG_LEN_PKT;
418 status = WRONG_LEN_PKT;
419 }
419 }
420 else {
420 else {
421 status = CCSDS_TM_VALID;
421 status = CCSDS_TM_VALID;
422 }
422 }
423 break;
423 break;
424 case TC_SUBTYPE_LOAD_FILTER_PAR:
424 case TC_SUBTYPE_LOAD_FILTER_PAR:
425 if (length!=(TC_LEN_LOAD_FILTER_PAR-CCSDS_TC_TM_PACKET_OFFSET)) {
425 if (length!=(TC_LEN_LOAD_FILTER_PAR-CCSDS_TC_TM_PACKET_OFFSET)) {
426 status = WRONG_LEN_PKT;
426 status = WRONG_LEN_PKT;
427 }
427 }
428 else {
428 else {
429 status = CCSDS_TM_VALID;
429 status = CCSDS_TM_VALID;
430 }
430 }
431 break;
431 break;
432 case TC_SUBTYPE_UPDT_TIME:
432 case TC_SUBTYPE_UPDT_TIME:
433 if (length!=(TC_LEN_UPDT_TIME-CCSDS_TC_TM_PACKET_OFFSET)) {
433 if (length!=(TC_LEN_UPDT_TIME-CCSDS_TC_TM_PACKET_OFFSET)) {
434 status = WRONG_LEN_PKT;
434 status = WRONG_LEN_PKT;
435 }
435 }
436 else {
436 else {
437 status = CCSDS_TM_VALID;
437 status = CCSDS_TM_VALID;
438 }
438 }
439 break;
439 break;
440 default: // if the subtype is not a legal value, return ILL_SUBTYPE
440 default: // if the subtype is not a legal value, return ILL_SUBTYPE
441 status = ILL_SUBTYPE;
441 status = ILL_SUBTYPE;
442 break ;
442 break ;
443 }
443 }
444
444
445 return status;
445 return status;
446 }
446 }
447
447
448 int tc_check_crc( ccsdsTelecommandPacket_t * TCPacket, unsigned int length, unsigned char *computed_CRC )
448 int tc_check_crc( ccsdsTelecommandPacket_t * TCPacket, unsigned int length, unsigned char *computed_CRC )
449 {
449 {
450 /** This function checks the CRC validity of the corresponding TeleCommand packet.
450 /** This function checks the CRC validity of the corresponding TeleCommand packet.
451 *
451 *
452 * @param TCPacket points to the TeleCommand packet to check.
452 * @param TCPacket points to the TeleCommand packet to check.
453 * @param length is the length of the TC packet.
453 * @param length is the length of the TC packet.
454 *
454 *
455 * @return Status code CCSDS_TM_VALID or INCOR_CHECKSUM.
455 * @return Status code CCSDS_TM_VALID or INCOR_CHECKSUM.
456 *
456 *
457 */
457 */
458
458
459 int status;
459 int status;
460 unsigned char * CCSDSContent;
460 unsigned char * CCSDSContent;
461
461
462 status = INCOR_CHECKSUM;
462 status = INCOR_CHECKSUM;
463
463
464 CCSDSContent = (unsigned char*) TCPacket->packetID;
464 CCSDSContent = (unsigned char*) TCPacket->packetID;
465 GetCRCAsTwoBytes(CCSDSContent, computed_CRC, length + CCSDS_TC_TM_PACKET_OFFSET - BYTES_PER_CRC); // 2 CRC bytes removed from the calculation of the CRC
465 GetCRCAsTwoBytes(CCSDSContent, computed_CRC, length + CCSDS_TC_TM_PACKET_OFFSET - BYTES_PER_CRC); // 2 CRC bytes removed from the calculation of the CRC
466
466
467 if (computed_CRC[0] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET - BYTES_PER_CRC]) {
467 if (computed_CRC[0] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET - BYTES_PER_CRC]) {
468 status = INCOR_CHECKSUM;
468 status = INCOR_CHECKSUM;
469 }
469 }
470 else if (computed_CRC[1] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -1]) {
470 else if (computed_CRC[1] != CCSDSContent[length + CCSDS_TC_TM_PACKET_OFFSET -1]) {
471 status = INCOR_CHECKSUM;
471 status = INCOR_CHECKSUM;
472 }
472 }
473 else {
473 else {
474 status = CCSDS_TM_VALID;
474 status = CCSDS_TM_VALID;
475 }
475 }
476
476
477 return status;
477 return status;
478 }
478 }
479
479
480
480
481
481
@@ -1,1657 +1,1657
1 /** Functions to load and dump parameters in the LFR registers.
1 /** Functions to load and dump parameters in the LFR registers.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TC related to parameter loading and dumping.\n
6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 * TC_LFR_LOAD_COMMON_PAR\n
7 * TC_LFR_LOAD_COMMON_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
8 * TC_LFR_LOAD_NORMAL_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
9 * TC_LFR_LOAD_BURST_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
10 * TC_LFR_LOAD_SBM1_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
11 * TC_LFR_LOAD_SBM2_PAR\n
12 *
12 *
13 */
13 */
14
14
15 #include "tc_load_dump_parameters.h"
15 #include "tc_load_dump_parameters.h"
16
16
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1;
17 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_1 = {0};
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2;
18 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t kcoefficients_dump_2 = {0};
19 ring_node kcoefficient_node_1;
19 ring_node kcoefficient_node_1 = {0};
20 ring_node kcoefficient_node_2;
20 ring_node kcoefficient_node_2 = {0};
21
21
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
22 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
23 {
23 {
24 /** This function updates the LFR registers with the incoming common parameters.
24 /** This function updates the LFR registers with the incoming common parameters.
25 *
25 *
26 * @param TC points to the TeleCommand packet that is being processed
26 * @param TC points to the TeleCommand packet that is being processed
27 *
27 *
28 *
28 *
29 */
29 */
30
30
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
31 parameter_dump_packet.sy_lfr_common_parameters_spare = TC->dataAndCRC[0];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
32 parameter_dump_packet.sy_lfr_common_parameters = TC->dataAndCRC[1];
33 set_wfp_data_shaping( );
33 set_wfp_data_shaping( );
34 return LFR_SUCCESSFUL;
34 return LFR_SUCCESSFUL;
35 }
35 }
36
36
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
37 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
38 {
38 {
39 /** This function updates the LFR registers with the incoming normal parameters.
39 /** This function updates the LFR registers with the incoming normal parameters.
40 *
40 *
41 * @param TC points to the TeleCommand packet that is being processed
41 * @param TC points to the TeleCommand packet that is being processed
42 * @param queue_id is the id of the queue which handles TM related to this execution step
42 * @param queue_id is the id of the queue which handles TM related to this execution step
43 *
43 *
44 */
44 */
45
45
46 int result;
46 int result;
47 int flag;
47 int flag;
48 rtems_status_code status;
48 rtems_status_code status;
49
49
50 flag = LFR_SUCCESSFUL;
50 flag = LFR_SUCCESSFUL;
51
51
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
52 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
53 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
54 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
55 flag = LFR_DEFAULT;
55 flag = LFR_DEFAULT;
56 }
56 }
57
57
58 // CHECK THE PARAMETERS SET CONSISTENCY
58 // CHECK THE PARAMETERS SET CONSISTENCY
59 if (flag == LFR_SUCCESSFUL)
59 if (flag == LFR_SUCCESSFUL)
60 {
60 {
61 flag = check_normal_par_consistency( TC, queue_id );
61 flag = check_normal_par_consistency( TC, queue_id );
62 }
62 }
63
63
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
64 // SET THE PARAMETERS IF THEY ARE CONSISTENT
65 if (flag == LFR_SUCCESSFUL)
65 if (flag == LFR_SUCCESSFUL)
66 {
66 {
67 result = set_sy_lfr_n_swf_l( TC );
67 result = set_sy_lfr_n_swf_l( TC );
68 result = set_sy_lfr_n_swf_p( TC );
68 result = set_sy_lfr_n_swf_p( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
69 result = set_sy_lfr_n_bp_p0( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
70 result = set_sy_lfr_n_bp_p1( TC );
71 result = set_sy_lfr_n_asm_p( TC );
71 result = set_sy_lfr_n_asm_p( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
72 result = set_sy_lfr_n_cwf_long_f3( TC );
73 }
73 }
74
74
75 return flag;
75 return flag;
76 }
76 }
77
77
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
78 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
79 {
79 {
80 /** This function updates the LFR registers with the incoming burst parameters.
80 /** This function updates the LFR registers with the incoming burst parameters.
81 *
81 *
82 * @param TC points to the TeleCommand packet that is being processed
82 * @param TC points to the TeleCommand packet that is being processed
83 * @param queue_id is the id of the queue which handles TM related to this execution step
83 * @param queue_id is the id of the queue which handles TM related to this execution step
84 *
84 *
85 */
85 */
86
86
87 int flag;
87 int flag;
88 rtems_status_code status;
88 rtems_status_code status;
89 unsigned char sy_lfr_b_bp_p0;
89 unsigned char sy_lfr_b_bp_p0;
90 unsigned char sy_lfr_b_bp_p1;
90 unsigned char sy_lfr_b_bp_p1;
91 float aux;
91 float aux;
92
92
93 flag = LFR_SUCCESSFUL;
93 flag = LFR_SUCCESSFUL;
94
94
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
95 if ( lfrCurrentMode == LFR_MODE_BURST ) {
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
96 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
97 flag = LFR_DEFAULT;
97 flag = LFR_DEFAULT;
98 }
98 }
99
99
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
100 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
101 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
102
102
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
103 // sy_lfr_b_bp_p0 shall not be lower than its default value
104 if (flag == LFR_SUCCESSFUL)
104 if (flag == LFR_SUCCESSFUL)
105 {
105 {
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
106 if (sy_lfr_b_bp_p0 < DEFAULT_SY_LFR_B_BP_P0 )
107 {
107 {
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
108 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
109 flag = WRONG_APP_DATA;
109 flag = WRONG_APP_DATA;
110 }
110 }
111 }
111 }
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
112 // sy_lfr_b_bp_p1 shall not be lower than its default value
113 if (flag == LFR_SUCCESSFUL)
113 if (flag == LFR_SUCCESSFUL)
114 {
114 {
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
115 if (sy_lfr_b_bp_p1 < DEFAULT_SY_LFR_B_BP_P1 )
116 {
116 {
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
117 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P1 + DATAFIELD_OFFSET, sy_lfr_b_bp_p1 );
118 flag = WRONG_APP_DATA;
118 flag = WRONG_APP_DATA;
119 }
119 }
120 }
120 }
121 //****************************************************************
121 //****************************************************************
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
122 // check the consistency between sy_lfr_b_bp_p0 and sy_lfr_b_bp_p1
123 if (flag == LFR_SUCCESSFUL)
123 if (flag == LFR_SUCCESSFUL)
124 {
124 {
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
125 sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
126 sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
127 aux = ( (float ) sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0 ) - floor(sy_lfr_b_bp_p1 / sy_lfr_b_bp_p0);
128 if (aux > FLOAT_EQUAL_ZERO)
128 if (aux > FLOAT_EQUAL_ZERO)
129 {
129 {
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
130 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_B_BP_P0 + DATAFIELD_OFFSET, sy_lfr_b_bp_p0 );
131 flag = LFR_DEFAULT;
131 flag = LFR_DEFAULT;
132 }
132 }
133 }
133 }
134
134
135 // SET THE PARAMETERS
135 // SET THE PARAMETERS
136 if (flag == LFR_SUCCESSFUL)
136 if (flag == LFR_SUCCESSFUL)
137 {
137 {
138 flag = set_sy_lfr_b_bp_p0( TC );
138 flag = set_sy_lfr_b_bp_p0( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
139 flag = set_sy_lfr_b_bp_p1( TC );
140 }
140 }
141
141
142 return flag;
142 return flag;
143 }
143 }
144
144
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
145 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
146 {
146 {
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
147 /** This function updates the LFR registers with the incoming sbm1 parameters.
148 *
148 *
149 * @param TC points to the TeleCommand packet that is being processed
149 * @param TC points to the TeleCommand packet that is being processed
150 * @param queue_id is the id of the queue which handles TM related to this execution step
150 * @param queue_id is the id of the queue which handles TM related to this execution step
151 *
151 *
152 */
152 */
153
153
154 int flag;
154 int flag;
155 rtems_status_code status;
155 rtems_status_code status;
156 unsigned char sy_lfr_s1_bp_p0;
156 unsigned char sy_lfr_s1_bp_p0;
157 unsigned char sy_lfr_s1_bp_p1;
157 unsigned char sy_lfr_s1_bp_p1;
158 float aux;
158 float aux;
159
159
160 flag = LFR_SUCCESSFUL;
160 flag = LFR_SUCCESSFUL;
161
161
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
162 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
163 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
164 flag = LFR_DEFAULT;
164 flag = LFR_DEFAULT;
165 }
165 }
166
166
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
167 sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
168 sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
169
169
170 // sy_lfr_s1_bp_p0
170 // sy_lfr_s1_bp_p0
171 if (flag == LFR_SUCCESSFUL)
171 if (flag == LFR_SUCCESSFUL)
172 {
172 {
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
173 if (sy_lfr_s1_bp_p0 < DEFAULT_SY_LFR_S1_BP_P0 )
174 {
174 {
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
175 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
176 flag = WRONG_APP_DATA;
176 flag = WRONG_APP_DATA;
177 }
177 }
178 }
178 }
179 // sy_lfr_s1_bp_p1
179 // sy_lfr_s1_bp_p1
180 if (flag == LFR_SUCCESSFUL)
180 if (flag == LFR_SUCCESSFUL)
181 {
181 {
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
182 if (sy_lfr_s1_bp_p1 < DEFAULT_SY_LFR_S1_BP_P1 )
183 {
183 {
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
184 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p1 );
185 flag = WRONG_APP_DATA;
185 flag = WRONG_APP_DATA;
186 }
186 }
187 }
187 }
188 //******************************************************************
188 //******************************************************************
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
189 // check the consistency between sy_lfr_s1_bp_p0 and sy_lfr_s1_bp_p1
190 if (flag == LFR_SUCCESSFUL)
190 if (flag == LFR_SUCCESSFUL)
191 {
191 {
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
192 aux = ( (float ) sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE) )
193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
193 - floor(sy_lfr_s1_bp_p1 / (sy_lfr_s1_bp_p0 * S1_BP_P0_SCALE));
194 if (aux > FLOAT_EQUAL_ZERO)
194 if (aux > FLOAT_EQUAL_ZERO)
195 {
195 {
196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
196 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S1_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s1_bp_p0 );
197 flag = LFR_DEFAULT;
197 flag = LFR_DEFAULT;
198 }
198 }
199 }
199 }
200
200
201 // SET THE PARAMETERS
201 // SET THE PARAMETERS
202 if (flag == LFR_SUCCESSFUL)
202 if (flag == LFR_SUCCESSFUL)
203 {
203 {
204 flag = set_sy_lfr_s1_bp_p0( TC );
204 flag = set_sy_lfr_s1_bp_p0( TC );
205 flag = set_sy_lfr_s1_bp_p1( TC );
205 flag = set_sy_lfr_s1_bp_p1( TC );
206 }
206 }
207
207
208 return flag;
208 return flag;
209 }
209 }
210
210
211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
211 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
212 {
212 {
213 /** This function updates the LFR registers with the incoming sbm2 parameters.
213 /** This function updates the LFR registers with the incoming sbm2 parameters.
214 *
214 *
215 * @param TC points to the TeleCommand packet that is being processed
215 * @param TC points to the TeleCommand packet that is being processed
216 * @param queue_id is the id of the queue which handles TM related to this execution step
216 * @param queue_id is the id of the queue which handles TM related to this execution step
217 *
217 *
218 */
218 */
219
219
220 int flag;
220 int flag;
221 rtems_status_code status;
221 rtems_status_code status;
222 unsigned char sy_lfr_s2_bp_p0;
222 unsigned char sy_lfr_s2_bp_p0;
223 unsigned char sy_lfr_s2_bp_p1;
223 unsigned char sy_lfr_s2_bp_p1;
224 float aux;
224 float aux;
225
225
226 flag = LFR_SUCCESSFUL;
226 flag = LFR_SUCCESSFUL;
227
227
228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
228 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
229 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
230 flag = LFR_DEFAULT;
230 flag = LFR_DEFAULT;
231 }
231 }
232
232
233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
233 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
234 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
235
235
236 // sy_lfr_s2_bp_p0
236 // sy_lfr_s2_bp_p0
237 if (flag == LFR_SUCCESSFUL)
237 if (flag == LFR_SUCCESSFUL)
238 {
238 {
239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
239 if (sy_lfr_s2_bp_p0 < DEFAULT_SY_LFR_S2_BP_P0 )
240 {
240 {
241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
241 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
242 flag = WRONG_APP_DATA;
242 flag = WRONG_APP_DATA;
243 }
243 }
244 }
244 }
245 // sy_lfr_s2_bp_p1
245 // sy_lfr_s2_bp_p1
246 if (flag == LFR_SUCCESSFUL)
246 if (flag == LFR_SUCCESSFUL)
247 {
247 {
248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
248 if (sy_lfr_s2_bp_p1 < DEFAULT_SY_LFR_S2_BP_P1 )
249 {
249 {
250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
250 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P1 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p1 );
251 flag = WRONG_APP_DATA;
251 flag = WRONG_APP_DATA;
252 }
252 }
253 }
253 }
254 //******************************************************************
254 //******************************************************************
255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
255 // check the consistency between sy_lfr_s2_bp_p0 and sy_lfr_s2_bp_p1
256 if (flag == LFR_SUCCESSFUL)
256 if (flag == LFR_SUCCESSFUL)
257 {
257 {
258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
258 sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
259 sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
260 aux = ( (float ) sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0 ) - floor(sy_lfr_s2_bp_p1 / sy_lfr_s2_bp_p0);
261 if (aux > FLOAT_EQUAL_ZERO)
261 if (aux > FLOAT_EQUAL_ZERO)
262 {
262 {
263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
263 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_S2_BP_P0 + DATAFIELD_OFFSET, sy_lfr_s2_bp_p0 );
264 flag = LFR_DEFAULT;
264 flag = LFR_DEFAULT;
265 }
265 }
266 }
266 }
267
267
268 // SET THE PARAMETERS
268 // SET THE PARAMETERS
269 if (flag == LFR_SUCCESSFUL)
269 if (flag == LFR_SUCCESSFUL)
270 {
270 {
271 flag = set_sy_lfr_s2_bp_p0( TC );
271 flag = set_sy_lfr_s2_bp_p0( TC );
272 flag = set_sy_lfr_s2_bp_p1( TC );
272 flag = set_sy_lfr_s2_bp_p1( TC );
273 }
273 }
274
274
275 return flag;
275 return flag;
276 }
276 }
277
277
278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
278 int action_load_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 {
279 {
280 /** This function updates the LFR registers with the incoming sbm2 parameters.
280 /** This function updates the LFR registers with the incoming sbm2 parameters.
281 *
281 *
282 * @param TC points to the TeleCommand packet that is being processed
282 * @param TC points to the TeleCommand packet that is being processed
283 * @param queue_id is the id of the queue which handles TM related to this execution step
283 * @param queue_id is the id of the queue which handles TM related to this execution step
284 *
284 *
285 */
285 */
286
286
287 int flag;
287 int flag;
288
288
289 flag = LFR_DEFAULT;
289 flag = LFR_DEFAULT;
290
290
291 flag = set_sy_lfr_kcoeff( TC, queue_id );
291 flag = set_sy_lfr_kcoeff( TC, queue_id );
292
292
293 return flag;
293 return flag;
294 }
294 }
295
295
296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 int action_load_fbins_mask(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
297 {
297 {
298 /** This function updates the LFR registers with the incoming sbm2 parameters.
298 /** This function updates the LFR registers with the incoming sbm2 parameters.
299 *
299 *
300 * @param TC points to the TeleCommand packet that is being processed
300 * @param TC points to the TeleCommand packet that is being processed
301 * @param queue_id is the id of the queue which handles TM related to this execution step
301 * @param queue_id is the id of the queue which handles TM related to this execution step
302 *
302 *
303 */
303 */
304
304
305 int flag;
305 int flag;
306
306
307 flag = LFR_DEFAULT;
307 flag = LFR_DEFAULT;
308
308
309 flag = set_sy_lfr_fbins( TC );
309 flag = set_sy_lfr_fbins( TC );
310
310
311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
311 // once the fbins masks have been stored, they have to be merged with the masks which handle the reaction wheels frequencies filtering
312 merge_fbins_masks();
312 merge_fbins_masks();
313
313
314 return flag;
314 return flag;
315 }
315 }
316
316
317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
317 int action_load_filter_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
318 {
318 {
319 /** This function updates the LFR registers with the incoming sbm2 parameters.
319 /** This function updates the LFR registers with the incoming sbm2 parameters.
320 *
320 *
321 * @param TC points to the TeleCommand packet that is being processed
321 * @param TC points to the TeleCommand packet that is being processed
322 * @param queue_id is the id of the queue which handles TM related to this execution step
322 * @param queue_id is the id of the queue which handles TM related to this execution step
323 *
323 *
324 */
324 */
325
325
326 int flag;
326 int flag;
327
327
328 flag = LFR_DEFAULT;
328 flag = LFR_DEFAULT;
329
329
330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
330 flag = check_sy_lfr_filter_parameters( TC, queue_id );
331
331
332 if (flag == LFR_SUCCESSFUL)
332 if (flag == LFR_SUCCESSFUL)
333 {
333 {
334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
334 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ];
335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
335 parameter_dump_packet.sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
336 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_0 ];
337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
337 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_1 ];
338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
338 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_2 ];
339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
339 parameter_dump_packet.sy_lfr_pas_filter_tbad[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + BYTE_3 ];
340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
340 parameter_dump_packet.sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
341 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_0 ];
342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
342 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_1 ];
343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
343 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_2 ];
344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
344 parameter_dump_packet.sy_lfr_pas_filter_shift[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + BYTE_3 ];
345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
345 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_0 ];
346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
346 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_1 ];
347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
347 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_2] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_2 ];
348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
348 parameter_dump_packet.sy_lfr_sc_rw_delta_f[BYTE_3] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F + BYTE_3 ];
349
349
350 //****************************
350 //****************************
351 // store PAS filter parameters
351 // store PAS filter parameters
352 // sy_lfr_pas_filter_enabled
352 // sy_lfr_pas_filter_enabled
353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
353 filterPar.spare_sy_lfr_pas_filter_enabled = parameter_dump_packet.spare_sy_lfr_pas_filter_enabled;
354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
354 set_sy_lfr_pas_filter_enabled( parameter_dump_packet.spare_sy_lfr_pas_filter_enabled & BIT_PAS_FILTER_ENABLED );
355 // sy_lfr_pas_filter_modulus
355 // sy_lfr_pas_filter_modulus
356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
356 filterPar.sy_lfr_pas_filter_modulus = parameter_dump_packet.sy_lfr_pas_filter_modulus;
357 // sy_lfr_pas_filter_tbad
357 // sy_lfr_pas_filter_tbad
358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
358 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_tbad,
359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
359 parameter_dump_packet.sy_lfr_pas_filter_tbad );
360 // sy_lfr_pas_filter_offset
360 // sy_lfr_pas_filter_offset
361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
361 filterPar.sy_lfr_pas_filter_offset = parameter_dump_packet.sy_lfr_pas_filter_offset;
362 // sy_lfr_pas_filter_shift
362 // sy_lfr_pas_filter_shift
363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
363 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_pas_filter_shift,
364 parameter_dump_packet.sy_lfr_pas_filter_shift );
364 parameter_dump_packet.sy_lfr_pas_filter_shift );
365
365
366 //****************************************************
366 //****************************************************
367 // store the parameter sy_lfr_sc_rw_delta_f as a float
367 // store the parameter sy_lfr_sc_rw_delta_f as a float
368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
368 copyFloatByChar( (unsigned char*) &filterPar.sy_lfr_sc_rw_delta_f,
369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
369 parameter_dump_packet.sy_lfr_sc_rw_delta_f );
370 }
370 }
371
371
372 return flag;
372 return flag;
373 }
373 }
374
374
375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
375 int action_dump_kcoefficients(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
376 {
376 {
377 /** This function updates the LFR registers with the incoming sbm2 parameters.
377 /** This function updates the LFR registers with the incoming sbm2 parameters.
378 *
378 *
379 * @param TC points to the TeleCommand packet that is being processed
379 * @param TC points to the TeleCommand packet that is being processed
380 * @param queue_id is the id of the queue which handles TM related to this execution step
380 * @param queue_id is the id of the queue which handles TM related to this execution step
381 *
381 *
382 */
382 */
383
383
384 unsigned int address;
384 unsigned int address;
385 rtems_status_code status;
385 rtems_status_code status;
386 unsigned int freq;
386 unsigned int freq;
387 unsigned int bin;
387 unsigned int bin;
388 unsigned int coeff;
388 unsigned int coeff;
389 unsigned char *kCoeffPtr;
389 unsigned char *kCoeffPtr;
390 unsigned char *kCoeffDumpPtr;
390 unsigned char *kCoeffDumpPtr;
391
391
392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
392 // for each sy_lfr_kcoeff_frequency there is 32 kcoeff
393 // F0 => 11 bins
393 // F0 => 11 bins
394 // F1 => 13 bins
394 // F1 => 13 bins
395 // F2 => 12 bins
395 // F2 => 12 bins
396 // 36 bins to dump in two packets (30 bins max per packet)
396 // 36 bins to dump in two packets (30 bins max per packet)
397
397
398 //*********
398 //*********
399 // PACKET 1
399 // PACKET 1
400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
400 // 11 F0 bins, 13 F1 bins and 6 F2 bins
401 kcoefficients_dump_1.destinationID = TC->sourceID;
401 kcoefficients_dump_1.destinationID = TC->sourceID;
402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
402 increment_seq_counter_destination_id_dump( kcoefficients_dump_1.packetSequenceControl, TC->sourceID );
403 for( freq = 0;
403 for( freq = 0;
404 freq < NB_BINS_COMPRESSED_SM_F0;
404 freq < NB_BINS_COMPRESSED_SM_F0;
405 freq++ )
405 freq++ )
406 {
406 {
407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
407 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1] = freq;
408 bin = freq;
408 bin = freq;
409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
409 // printKCoefficients( freq, bin, k_coeff_intercalib_f0_norm);
410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
410 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
411 {
411 {
412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
412 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
413 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
414 ]; // 2 for the kcoeff_frequency
414 ]; // 2 for the kcoeff_frequency
415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
415 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f0_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
416 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
417 }
417 }
418 }
418 }
419 for( freq = NB_BINS_COMPRESSED_SM_F0;
419 for( freq = NB_BINS_COMPRESSED_SM_F0;
420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
420 freq < ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
421 freq++ )
421 freq++ )
422 {
422 {
423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
423 kcoefficients_dump_1.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = freq;
424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
424 bin = freq - NB_BINS_COMPRESSED_SM_F0;
425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
425 // printKCoefficients( freq, bin, k_coeff_intercalib_f1_norm);
426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
426 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
427 {
427 {
428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
428 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
429 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
430 ]; // 2 for the kcoeff_frequency
430 ]; // 2 for the kcoeff_frequency
431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
431 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f1_norm[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
432 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
433 }
433 }
434 }
434 }
435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
435 for( freq = ( NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 );
436 freq < KCOEFF_BLK_NR_PKT1 ;
436 freq < KCOEFF_BLK_NR_PKT1 ;
437 freq++ )
437 freq++ )
438 {
438 {
439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
439 kcoefficients_dump_1.kcoeff_blks[ (freq * KCOEFF_BLK_SIZE) + 1 ] = freq;
440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
440 bin = freq - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
441 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
442 for ( coeff = 0; coeff <NB_K_COEFF_PER_BIN; coeff++ )
443 {
443 {
444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
444 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_1.kcoeff_blks[
445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
445 (freq * KCOEFF_BLK_SIZE) + (coeff * NB_BYTES_PER_FLOAT) + KCOEFF_FREQ
446 ]; // 2 for the kcoeff_frequency
446 ]; // 2 for the kcoeff_frequency
447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
447 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
448 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
449 }
449 }
450 }
450 }
451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
451 kcoefficients_dump_1.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
452 kcoefficients_dump_1.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
453 kcoefficients_dump_1.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
454 kcoefficients_dump_1.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
455 kcoefficients_dump_1.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
456 kcoefficients_dump_1.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
457 // SEND DATA
457 // SEND DATA
458 kcoefficient_node_1.status = 1;
458 kcoefficient_node_1.status = 1;
459 address = (unsigned int) &kcoefficient_node_1;
459 address = (unsigned int) &kcoefficient_node_1;
460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
460 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
461 if (status != RTEMS_SUCCESSFUL) {
461 if (status != RTEMS_SUCCESSFUL) {
462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
462 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 1 , code %d", status)
463 }
463 }
464
464
465 //********
465 //********
466 // PACKET 2
466 // PACKET 2
467 // 6 F2 bins
467 // 6 F2 bins
468 kcoefficients_dump_2.destinationID = TC->sourceID;
468 kcoefficients_dump_2.destinationID = TC->sourceID;
469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
469 increment_seq_counter_destination_id_dump( kcoefficients_dump_2.packetSequenceControl, TC->sourceID );
470 for( freq = 0;
470 for( freq = 0;
471 freq < KCOEFF_BLK_NR_PKT2;
471 freq < KCOEFF_BLK_NR_PKT2;
472 freq++ )
472 freq++ )
473 {
473 {
474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
474 kcoefficients_dump_2.kcoeff_blks[ (freq*KCOEFF_BLK_SIZE) + 1 ] = KCOEFF_BLK_NR_PKT1 + freq;
475 bin = freq + KCOEFF_BLK_NR_PKT2;
475 bin = freq + KCOEFF_BLK_NR_PKT2;
476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
476 // printKCoefficients( freq, bin, k_coeff_intercalib_f2);
477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
477 for ( coeff=0; coeff<NB_K_COEFF_PER_BIN; coeff++ )
478 {
478 {
479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
479 kCoeffDumpPtr = (unsigned char*) &kcoefficients_dump_2.kcoeff_blks[
480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
480 (freq*KCOEFF_BLK_SIZE) + (coeff*NB_BYTES_PER_FLOAT) + KCOEFF_FREQ ]; // 2 for the kcoeff_frequency
481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
481 kCoeffPtr = (unsigned char*) &k_coeff_intercalib_f2[ (bin*NB_K_COEFF_PER_BIN) + coeff ];
482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
482 copyFloatByChar( kCoeffDumpPtr, kCoeffPtr );
483 }
483 }
484 }
484 }
485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
485 kcoefficients_dump_2.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
486 kcoefficients_dump_2.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
487 kcoefficients_dump_2.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
488 kcoefficients_dump_2.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
489 kcoefficients_dump_2.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
490 kcoefficients_dump_2.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
491 // SEND DATA
491 // SEND DATA
492 kcoefficient_node_2.status = 1;
492 kcoefficient_node_2.status = 1;
493 address = (unsigned int) &kcoefficient_node_2;
493 address = (unsigned int) &kcoefficient_node_2;
494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
494 status = rtems_message_queue_send( queue_id, &address, sizeof( ring_node* ) );
495 if (status != RTEMS_SUCCESSFUL) {
495 if (status != RTEMS_SUCCESSFUL) {
496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
496 PRINTF1("in action_dump_kcoefficients *** ERR sending packet 2, code %d", status)
497 }
497 }
498
498
499 return status;
499 return status;
500 }
500 }
501
501
502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
502 int action_dump_par( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
503 {
503 {
504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
504 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
505 *
505 *
506 * @param queue_id is the id of the queue which handles TM related to this execution step.
506 * @param queue_id is the id of the queue which handles TM related to this execution step.
507 *
507 *
508 * @return RTEMS directive status codes:
508 * @return RTEMS directive status codes:
509 * - RTEMS_SUCCESSFUL - message sent successfully
509 * - RTEMS_SUCCESSFUL - message sent successfully
510 * - RTEMS_INVALID_ID - invalid queue id
510 * - RTEMS_INVALID_ID - invalid queue id
511 * - RTEMS_INVALID_SIZE - invalid message size
511 * - RTEMS_INVALID_SIZE - invalid message size
512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
512 * - RTEMS_INVALID_ADDRESS - buffer is NULL
513 * - RTEMS_UNSATISFIED - out of message buffers
513 * - RTEMS_UNSATISFIED - out of message buffers
514 * - RTEMS_TOO_MANY - queue s limit has been reached
514 * - RTEMS_TOO_MANY - queue s limit has been reached
515 *
515 *
516 */
516 */
517
517
518 int status;
518 int status;
519
519
520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
520 increment_seq_counter_destination_id_dump( parameter_dump_packet.packetSequenceControl, TC->sourceID );
521 parameter_dump_packet.destinationID = TC->sourceID;
521 parameter_dump_packet.destinationID = TC->sourceID;
522
522
523 // UPDATE TIME
523 // UPDATE TIME
524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
524 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
525 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
526 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
527 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
528 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
529 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
530 // SEND DATA
530 // SEND DATA
531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
531 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
532 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
533 if (status != RTEMS_SUCCESSFUL) {
533 if (status != RTEMS_SUCCESSFUL) {
534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
534 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
535 }
535 }
536
536
537 return status;
537 return status;
538 }
538 }
539
539
540 //***********************
540 //***********************
541 // NORMAL MODE PARAMETERS
541 // NORMAL MODE PARAMETERS
542
542
543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
543 int check_normal_par_consistency( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
544 {
544 {
545 unsigned char msb;
545 unsigned char msb;
546 unsigned char lsb;
546 unsigned char lsb;
547 int flag;
547 int flag;
548 float aux;
548 float aux;
549 rtems_status_code status;
549 rtems_status_code status;
550
550
551 unsigned int sy_lfr_n_swf_l;
551 unsigned int sy_lfr_n_swf_l;
552 unsigned int sy_lfr_n_swf_p;
552 unsigned int sy_lfr_n_swf_p;
553 unsigned int sy_lfr_n_asm_p;
553 unsigned int sy_lfr_n_asm_p;
554 unsigned char sy_lfr_n_bp_p0;
554 unsigned char sy_lfr_n_bp_p0;
555 unsigned char sy_lfr_n_bp_p1;
555 unsigned char sy_lfr_n_bp_p1;
556 unsigned char sy_lfr_n_cwf_long_f3;
556 unsigned char sy_lfr_n_cwf_long_f3;
557
557
558 flag = LFR_SUCCESSFUL;
558 flag = LFR_SUCCESSFUL;
559
559
560 //***************
560 //***************
561 // get parameters
561 // get parameters
562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
562 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
563 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
564 sy_lfr_n_swf_l = (msb * CONST_256) + lsb;
565
565
566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
566 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
567 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
568 sy_lfr_n_swf_p = (msb * CONST_256) + lsb;
569
569
570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
570 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
571 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
572 sy_lfr_n_asm_p = (msb * CONST_256) + lsb;
573
573
574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
574 sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
575
575
576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
576 sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
577
577
578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
578 sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
579
579
580 //******************
580 //******************
581 // check consistency
581 // check consistency
582 // sy_lfr_n_swf_l
582 // sy_lfr_n_swf_l
583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
583 if (sy_lfr_n_swf_l != DFLT_SY_LFR_N_SWF_L)
584 {
584 {
585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
585 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L + DATAFIELD_OFFSET, sy_lfr_n_swf_l );
586 flag = WRONG_APP_DATA;
586 flag = WRONG_APP_DATA;
587 }
587 }
588 // sy_lfr_n_swf_p
588 // sy_lfr_n_swf_p
589 if (flag == LFR_SUCCESSFUL)
589 if (flag == LFR_SUCCESSFUL)
590 {
590 {
591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
591 if ( sy_lfr_n_swf_p < MIN_SY_LFR_N_SWF_P )
592 {
592 {
593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
593 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P + DATAFIELD_OFFSET, sy_lfr_n_swf_p );
594 flag = WRONG_APP_DATA;
594 flag = WRONG_APP_DATA;
595 }
595 }
596 }
596 }
597 // sy_lfr_n_bp_p0
597 // sy_lfr_n_bp_p0
598 if (flag == LFR_SUCCESSFUL)
598 if (flag == LFR_SUCCESSFUL)
599 {
599 {
600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
600 if (sy_lfr_n_bp_p0 < DFLT_SY_LFR_N_BP_P0)
601 {
601 {
602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
602 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P0 + DATAFIELD_OFFSET, sy_lfr_n_bp_p0 );
603 flag = WRONG_APP_DATA;
603 flag = WRONG_APP_DATA;
604 }
604 }
605 }
605 }
606 // sy_lfr_n_asm_p
606 // sy_lfr_n_asm_p
607 if (flag == LFR_SUCCESSFUL)
607 if (flag == LFR_SUCCESSFUL)
608 {
608 {
609 if (sy_lfr_n_asm_p == 0)
609 if (sy_lfr_n_asm_p == 0)
610 {
610 {
611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
611 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
612 flag = WRONG_APP_DATA;
612 flag = WRONG_APP_DATA;
613 }
613 }
614 }
614 }
615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
615 // sy_lfr_n_asm_p shall be a whole multiple of sy_lfr_n_bp_p0
616 if (flag == LFR_SUCCESSFUL)
616 if (flag == LFR_SUCCESSFUL)
617 {
617 {
618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
618 aux = ( (float ) sy_lfr_n_asm_p / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_asm_p / sy_lfr_n_bp_p0);
619 if (aux > FLOAT_EQUAL_ZERO)
619 if (aux > FLOAT_EQUAL_ZERO)
620 {
620 {
621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
621 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_ASM_P + DATAFIELD_OFFSET, sy_lfr_n_asm_p );
622 flag = WRONG_APP_DATA;
622 flag = WRONG_APP_DATA;
623 }
623 }
624 }
624 }
625 // sy_lfr_n_bp_p1
625 // sy_lfr_n_bp_p1
626 if (flag == LFR_SUCCESSFUL)
626 if (flag == LFR_SUCCESSFUL)
627 {
627 {
628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
628 if (sy_lfr_n_bp_p1 < DFLT_SY_LFR_N_BP_P1)
629 {
629 {
630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
630 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
631 flag = WRONG_APP_DATA;
631 flag = WRONG_APP_DATA;
632 }
632 }
633 }
633 }
634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
634 // sy_lfr_n_bp_p1 shall be a whole multiple of sy_lfr_n_bp_p0
635 if (flag == LFR_SUCCESSFUL)
635 if (flag == LFR_SUCCESSFUL)
636 {
636 {
637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
637 aux = ( (float ) sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0 ) - floor(sy_lfr_n_bp_p1 / sy_lfr_n_bp_p0);
638 if (aux > FLOAT_EQUAL_ZERO)
638 if (aux > FLOAT_EQUAL_ZERO)
639 {
639 {
640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
640 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_BP_P1 + DATAFIELD_OFFSET, sy_lfr_n_bp_p1 );
641 flag = LFR_DEFAULT;
641 flag = LFR_DEFAULT;
642 }
642 }
643 }
643 }
644 // sy_lfr_n_cwf_long_f3
644 // sy_lfr_n_cwf_long_f3
645
645
646 return flag;
646 return flag;
647 }
647 }
648
648
649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
649 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC )
650 {
650 {
651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
651 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
652 *
652 *
653 * @param TC points to the TeleCommand packet that is being processed
653 * @param TC points to the TeleCommand packet that is being processed
654 * @param queue_id is the id of the queue which handles TM related to this execution step
654 * @param queue_id is the id of the queue which handles TM related to this execution step
655 *
655 *
656 */
656 */
657
657
658 int result;
658 int result;
659
659
660 result = LFR_SUCCESSFUL;
660 result = LFR_SUCCESSFUL;
661
661
662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
662 parameter_dump_packet.sy_lfr_n_swf_l[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
663 parameter_dump_packet.sy_lfr_n_swf_l[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
664
664
665 return result;
665 return result;
666 }
666 }
667
667
668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
668 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC )
669 {
669 {
670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
670 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
671 *
671 *
672 * @param TC points to the TeleCommand packet that is being processed
672 * @param TC points to the TeleCommand packet that is being processed
673 * @param queue_id is the id of the queue which handles TM related to this execution step
673 * @param queue_id is the id of the queue which handles TM related to this execution step
674 *
674 *
675 */
675 */
676
676
677 int result;
677 int result;
678
678
679 result = LFR_SUCCESSFUL;
679 result = LFR_SUCCESSFUL;
680
680
681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
681 parameter_dump_packet.sy_lfr_n_swf_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
682 parameter_dump_packet.sy_lfr_n_swf_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
683
683
684 return result;
684 return result;
685 }
685 }
686
686
687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
687 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC )
688 {
688 {
689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
689 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
690 *
690 *
691 * @param TC points to the TeleCommand packet that is being processed
691 * @param TC points to the TeleCommand packet that is being processed
692 * @param queue_id is the id of the queue which handles TM related to this execution step
692 * @param queue_id is the id of the queue which handles TM related to this execution step
693 *
693 *
694 */
694 */
695
695
696 int result;
696 int result;
697
697
698 result = LFR_SUCCESSFUL;
698 result = LFR_SUCCESSFUL;
699
699
700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
700 parameter_dump_packet.sy_lfr_n_asm_p[0] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
701 parameter_dump_packet.sy_lfr_n_asm_p[1] = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
702
702
703 return result;
703 return result;
704 }
704 }
705
705
706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
706 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC )
707 {
707 {
708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
708 /** This function sets the time between two basic parameter sets, in s (DFLT_SY_LFR_N_BP_P0).
709 *
709 *
710 * @param TC points to the TeleCommand packet that is being processed
710 * @param TC points to the TeleCommand packet that is being processed
711 * @param queue_id is the id of the queue which handles TM related to this execution step
711 * @param queue_id is the id of the queue which handles TM related to this execution step
712 *
712 *
713 */
713 */
714
714
715 int status;
715 int status;
716
716
717 status = LFR_SUCCESSFUL;
717 status = LFR_SUCCESSFUL;
718
718
719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
719 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
720
720
721 return status;
721 return status;
722 }
722 }
723
723
724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
724 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC )
725 {
725 {
726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
726 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
727 *
727 *
728 * @param TC points to the TeleCommand packet that is being processed
728 * @param TC points to the TeleCommand packet that is being processed
729 * @param queue_id is the id of the queue which handles TM related to this execution step
729 * @param queue_id is the id of the queue which handles TM related to this execution step
730 *
730 *
731 */
731 */
732
732
733 int status;
733 int status;
734
734
735 status = LFR_SUCCESSFUL;
735 status = LFR_SUCCESSFUL;
736
736
737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
737 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
738
738
739 return status;
739 return status;
740 }
740 }
741
741
742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
742 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC )
743 {
743 {
744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
744 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
745 *
745 *
746 * @param TC points to the TeleCommand packet that is being processed
746 * @param TC points to the TeleCommand packet that is being processed
747 * @param queue_id is the id of the queue which handles TM related to this execution step
747 * @param queue_id is the id of the queue which handles TM related to this execution step
748 *
748 *
749 */
749 */
750
750
751 int status;
751 int status;
752
752
753 status = LFR_SUCCESSFUL;
753 status = LFR_SUCCESSFUL;
754
754
755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
755 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
756
756
757 return status;
757 return status;
758 }
758 }
759
759
760 //**********************
760 //**********************
761 // BURST MODE PARAMETERS
761 // BURST MODE PARAMETERS
762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
762 int set_sy_lfr_b_bp_p0(ccsdsTelecommandPacket_t *TC)
763 {
763 {
764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
764 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P0).
765 *
765 *
766 * @param TC points to the TeleCommand packet that is being processed
766 * @param TC points to the TeleCommand packet that is being processed
767 * @param queue_id is the id of the queue which handles TM related to this execution step
767 * @param queue_id is the id of the queue which handles TM related to this execution step
768 *
768 *
769 */
769 */
770
770
771 int status;
771 int status;
772
772
773 status = LFR_SUCCESSFUL;
773 status = LFR_SUCCESSFUL;
774
774
775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
775 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P0 ];
776
776
777 return status;
777 return status;
778 }
778 }
779
779
780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
780 int set_sy_lfr_b_bp_p1( ccsdsTelecommandPacket_t *TC )
781 {
781 {
782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
782 /** This function sets the time between two basic parameter sets, in s (SY_LFR_B_BP_P1).
783 *
783 *
784 * @param TC points to the TeleCommand packet that is being processed
784 * @param TC points to the TeleCommand packet that is being processed
785 * @param queue_id is the id of the queue which handles TM related to this execution step
785 * @param queue_id is the id of the queue which handles TM related to this execution step
786 *
786 *
787 */
787 */
788
788
789 int status;
789 int status;
790
790
791 status = LFR_SUCCESSFUL;
791 status = LFR_SUCCESSFUL;
792
792
793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
793 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_B_BP_P1 ];
794
794
795 return status;
795 return status;
796 }
796 }
797
797
798 //*********************
798 //*********************
799 // SBM1 MODE PARAMETERS
799 // SBM1 MODE PARAMETERS
800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
800 int set_sy_lfr_s1_bp_p0( ccsdsTelecommandPacket_t *TC )
801 {
801 {
802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
802 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P0).
803 *
803 *
804 * @param TC points to the TeleCommand packet that is being processed
804 * @param TC points to the TeleCommand packet that is being processed
805 * @param queue_id is the id of the queue which handles TM related to this execution step
805 * @param queue_id is the id of the queue which handles TM related to this execution step
806 *
806 *
807 */
807 */
808
808
809 int status;
809 int status;
810
810
811 status = LFR_SUCCESSFUL;
811 status = LFR_SUCCESSFUL;
812
812
813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
813 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P0 ];
814
814
815 return status;
815 return status;
816 }
816 }
817
817
818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
818 int set_sy_lfr_s1_bp_p1( ccsdsTelecommandPacket_t *TC )
819 {
819 {
820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
820 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S1_BP_P1).
821 *
821 *
822 * @param TC points to the TeleCommand packet that is being processed
822 * @param TC points to the TeleCommand packet that is being processed
823 * @param queue_id is the id of the queue which handles TM related to this execution step
823 * @param queue_id is the id of the queue which handles TM related to this execution step
824 *
824 *
825 */
825 */
826
826
827 int status;
827 int status;
828
828
829 status = LFR_SUCCESSFUL;
829 status = LFR_SUCCESSFUL;
830
830
831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
831 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S1_BP_P1 ];
832
832
833 return status;
833 return status;
834 }
834 }
835
835
836 //*********************
836 //*********************
837 // SBM2 MODE PARAMETERS
837 // SBM2 MODE PARAMETERS
838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
838 int set_sy_lfr_s2_bp_p0( ccsdsTelecommandPacket_t *TC )
839 {
839 {
840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
840 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P0).
841 *
841 *
842 * @param TC points to the TeleCommand packet that is being processed
842 * @param TC points to the TeleCommand packet that is being processed
843 * @param queue_id is the id of the queue which handles TM related to this execution step
843 * @param queue_id is the id of the queue which handles TM related to this execution step
844 *
844 *
845 */
845 */
846
846
847 int status;
847 int status;
848
848
849 status = LFR_SUCCESSFUL;
849 status = LFR_SUCCESSFUL;
850
850
851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
851 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P0 ];
852
852
853 return status;
853 return status;
854 }
854 }
855
855
856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
856 int set_sy_lfr_s2_bp_p1( ccsdsTelecommandPacket_t *TC )
857 {
857 {
858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
858 /** This function sets the time between two basic parameter sets, in s (SY_LFR_S2_BP_P1).
859 *
859 *
860 * @param TC points to the TeleCommand packet that is being processed
860 * @param TC points to the TeleCommand packet that is being processed
861 * @param queue_id is the id of the queue which handles TM related to this execution step
861 * @param queue_id is the id of the queue which handles TM related to this execution step
862 *
862 *
863 */
863 */
864
864
865 int status;
865 int status;
866
866
867 status = LFR_SUCCESSFUL;
867 status = LFR_SUCCESSFUL;
868
868
869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
869 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_S2_BP_P1 ];
870
870
871 return status;
871 return status;
872 }
872 }
873
873
874 //*******************
874 //*******************
875 // TC_LFR_UPDATE_INFO
875 // TC_LFR_UPDATE_INFO
876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
876 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
877 {
877 {
878 unsigned int status;
878 unsigned int status;
879
879
880 status = LFR_DEFAULT;
880 status = LFR_DEFAULT;
881
881
882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
882 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
883 || (mode == LFR_MODE_BURST)
883 || (mode == LFR_MODE_BURST)
884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
884 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
885 {
885 {
886 status = LFR_SUCCESSFUL;
886 status = LFR_SUCCESSFUL;
887 }
887 }
888 else
888 else
889 {
889 {
890 status = LFR_DEFAULT;
890 status = LFR_DEFAULT;
891 }
891 }
892
892
893 return status;
893 return status;
894 }
894 }
895
895
896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
896 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
897 {
897 {
898 unsigned int status;
898 unsigned int status;
899
899
900 status = LFR_DEFAULT;
900 status = LFR_DEFAULT;
901
901
902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
902 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
903 || (mode == TDS_MODE_BURST)
903 || (mode == TDS_MODE_BURST)
904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
904 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
905 || (mode == TDS_MODE_LFM))
905 || (mode == TDS_MODE_LFM))
906 {
906 {
907 status = LFR_SUCCESSFUL;
907 status = LFR_SUCCESSFUL;
908 }
908 }
909 else
909 else
910 {
910 {
911 status = LFR_DEFAULT;
911 status = LFR_DEFAULT;
912 }
912 }
913
913
914 return status;
914 return status;
915 }
915 }
916
916
917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
917 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
918 {
918 {
919 unsigned int status;
919 unsigned int status;
920
920
921 status = LFR_DEFAULT;
921 status = LFR_DEFAULT;
922
922
923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
923 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
924 || (mode == THR_MODE_BURST))
924 || (mode == THR_MODE_BURST))
925 {
925 {
926 status = LFR_SUCCESSFUL;
926 status = LFR_SUCCESSFUL;
927 }
927 }
928 else
928 else
929 {
929 {
930 status = LFR_DEFAULT;
930 status = LFR_DEFAULT;
931 }
931 }
932
932
933 return status;
933 return status;
934 }
934 }
935
935
936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
936 void getReactionWheelsFrequencies( ccsdsTelecommandPacket_t *TC )
937 {
937 {
938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
938 /** This function get the reaction wheels frequencies in the incoming TC_LFR_UPDATE_INFO and copy the values locally.
939 *
939 *
940 * @param TC points to the TeleCommand packet that is being processed
940 * @param TC points to the TeleCommand packet that is being processed
941 *
941 *
942 */
942 */
943
943
944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
944 unsigned char * bytePosPtr; // pointer to the beginning of the incoming TC packet
945
945
946 bytePosPtr = (unsigned char *) &TC->packetID;
946 bytePosPtr = (unsigned char *) &TC->packetID;
947
947
948 // cp_rpw_sc_rw1_f1
948 // cp_rpw_sc_rw1_f1
949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
949 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f1,
950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
950 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F1 ] );
951
951
952 // cp_rpw_sc_rw1_f2
952 // cp_rpw_sc_rw1_f2
953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
953 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw1_f2,
954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
954 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW1_F2 ] );
955
955
956 // cp_rpw_sc_rw2_f1
956 // cp_rpw_sc_rw2_f1
957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
957 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f1,
958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
958 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F1 ] );
959
959
960 // cp_rpw_sc_rw2_f2
960 // cp_rpw_sc_rw2_f2
961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
961 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw2_f2,
962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
962 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW2_F2 ] );
963
963
964 // cp_rpw_sc_rw3_f1
964 // cp_rpw_sc_rw3_f1
965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
965 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f1,
966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
966 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F1 ] );
967
967
968 // cp_rpw_sc_rw3_f2
968 // cp_rpw_sc_rw3_f2
969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
969 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw3_f2,
970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
970 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW3_F2 ] );
971
971
972 // cp_rpw_sc_rw4_f1
972 // cp_rpw_sc_rw4_f1
973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
973 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f1,
974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
974 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F1 ] );
975
975
976 // cp_rpw_sc_rw4_f2
976 // cp_rpw_sc_rw4_f2
977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
977 copyFloatByChar( (unsigned char*) &cp_rpw_sc_rw4_f2,
978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
978 (unsigned char*) &bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW4_F2 ] );
979 }
979 }
980
980
981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
981 void setFBinMask( unsigned char *fbins_mask, float rw_f, unsigned char deltaFreq, unsigned char flag )
982 {
982 {
983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
983 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
984 *
984 *
985 * @param fbins_mask
985 * @param fbins_mask
986 * @param rw_f is the reaction wheel frequency to filter
986 * @param rw_f is the reaction wheel frequency to filter
987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
987 * @param delta_f is the frequency step between the frequency bins, it depends on the frequency channel
988 * @param flag [true] filtering enabled [false] filtering disabled
988 * @param flag [true] filtering enabled [false] filtering disabled
989 *
989 *
990 * @return void
990 * @return void
991 *
991 *
992 */
992 */
993
993
994 float f_RW_min;
994 float f_RW_min;
995 float f_RW_MAX;
995 float f_RW_MAX;
996 float fi_min;
996 float fi_min;
997 float fi_MAX;
997 float fi_MAX;
998 float fi;
998 float fi;
999 float deltaBelow;
999 float deltaBelow;
1000 float deltaAbove;
1000 float deltaAbove;
1001 int binBelow;
1001 int binBelow;
1002 int binAbove;
1002 int binAbove;
1003 int closestBin;
1003 int closestBin;
1004 unsigned int whichByte;
1004 unsigned int whichByte;
1005 int selectedByte;
1005 int selectedByte;
1006 int bin;
1006 int bin;
1007 int binToRemove[NB_BINS_TO_REMOVE];
1007 int binToRemove[NB_BINS_TO_REMOVE];
1008 int k;
1008 int k;
1009
1009
1010 closestBin = 0;
1010 closestBin = 0;
1011 whichByte = 0;
1011 whichByte = 0;
1012 bin = 0;
1012 bin = 0;
1013
1013
1014 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1014 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1015 {
1015 {
1016 binToRemove[k] = -1;
1016 binToRemove[k] = -1;
1017 }
1017 }
1018
1018
1019 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1019 // compute the frequency range to filter [ rw_f - delta_f/2; rw_f + delta_f/2 ]
1020 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1020 f_RW_min = rw_f - (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1021 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1021 f_RW_MAX = rw_f + (filterPar.sy_lfr_sc_rw_delta_f / 2.);
1022
1022
1023 // compute the index of the frequency bin immediately below rw_f
1023 // compute the index of the frequency bin immediately below rw_f
1024 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1024 binBelow = (int) ( floor( ((double) rw_f) / ((double) deltaFreq)) );
1025 deltaBelow = rw_f - binBelow * deltaFreq;
1025 deltaBelow = rw_f - binBelow * deltaFreq;
1026
1026
1027 // compute the index of the frequency bin immediately above rw_f
1027 // compute the index of the frequency bin immediately above rw_f
1028 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1028 binAbove = (int) ( ceil( ((double) rw_f) / ((double) deltaFreq)) );
1029 deltaAbove = binAbove * deltaFreq - rw_f;
1029 deltaAbove = binAbove * deltaFreq - rw_f;
1030
1030
1031 // search the closest bin
1031 // search the closest bin
1032 if (deltaAbove > deltaBelow)
1032 if (deltaAbove > deltaBelow)
1033 {
1033 {
1034 closestBin = binBelow;
1034 closestBin = binBelow;
1035 }
1035 }
1036 else
1036 else
1037 {
1037 {
1038 closestBin = binAbove;
1038 closestBin = binAbove;
1039 }
1039 }
1040
1040
1041 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1041 // compute the fi interval [fi - deltaFreq * 0.285, fi + deltaFreq * 0.285]
1042 fi = closestBin * deltaFreq;
1042 fi = closestBin * deltaFreq;
1043 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1043 fi_min = fi - (deltaFreq * FI_INTERVAL_COEFF);
1044 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1044 fi_MAX = fi + (deltaFreq * FI_INTERVAL_COEFF);
1045
1045
1046 //**************************************************************************************
1046 //**************************************************************************************
1047 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1047 // be careful here, one shall take into account that the bin 0 IS DROPPED in the spectra
1048 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1048 // thus, the index 0 in a mask corresponds to the bin 1 of the spectrum
1049 //**************************************************************************************
1049 //**************************************************************************************
1050
1050
1051 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1051 // 1. IF [ f_RW_min, f_RW_MAX] is included in [ fi_min; fi_MAX ]
1052 // => remove f_(i), f_(i-1) and f_(i+1)
1052 // => remove f_(i), f_(i-1) and f_(i+1)
1053 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1053 if ( ( f_RW_min > fi_min ) && ( f_RW_MAX < fi_MAX ) )
1054 {
1054 {
1055 binToRemove[0] = (closestBin - 1) - 1;
1055 binToRemove[0] = (closestBin - 1) - 1;
1056 binToRemove[1] = (closestBin) - 1;
1056 binToRemove[1] = (closestBin) - 1;
1057 binToRemove[2] = (closestBin + 1) - 1;
1057 binToRemove[2] = (closestBin + 1) - 1;
1058 }
1058 }
1059 // 2. ELSE
1059 // 2. ELSE
1060 // => remove the two f_(i) which are around f_RW
1060 // => remove the two f_(i) which are around f_RW
1061 else
1061 else
1062 {
1062 {
1063 binToRemove[0] = (binBelow) - 1;
1063 binToRemove[0] = (binBelow) - 1;
1064 binToRemove[1] = (binAbove) - 1;
1064 binToRemove[1] = (binAbove) - 1;
1065 binToRemove[2] = (-1);
1065 binToRemove[2] = (-1);
1066 }
1066 }
1067
1067
1068 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1068 for (k = 0; k < NB_BINS_TO_REMOVE; k++)
1069 {
1069 {
1070 bin = binToRemove[k];
1070 bin = binToRemove[k];
1071 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1071 if ( (bin >= BIN_MIN) && (bin <= BIN_MAX) )
1072 {
1072 {
1073 if (flag == 1)
1073 if (flag == 1)
1074 {
1074 {
1075 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1075 whichByte = (bin >> SHIFT_3_BITS); // division by 8
1076 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1076 selectedByte = ( 1 << (bin - (whichByte * BITS_PER_BYTE)) );
1077 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1077 fbins_mask[BYTES_PER_MASK - 1 - whichByte] =
1078 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1078 fbins_mask[BYTES_PER_MASK - 1 - whichByte] & ((unsigned char) (~selectedByte)); // bytes are ordered MSB first in the packets
1079 }
1079 }
1080 }
1080 }
1081 }
1081 }
1082 }
1082 }
1083
1083
1084 void build_sy_lfr_rw_mask( unsigned int channel )
1084 void build_sy_lfr_rw_mask( unsigned int channel )
1085 {
1085 {
1086 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1086 unsigned char local_rw_fbins_mask[BYTES_PER_MASK];
1087 unsigned char *maskPtr;
1087 unsigned char *maskPtr;
1088 double deltaF;
1088 double deltaF;
1089 unsigned k;
1089 unsigned k;
1090
1090
1091 k = 0;
1091 k = 0;
1092
1092
1093 maskPtr = NULL;
1093 maskPtr = NULL;
1094 deltaF = DELTAF_F2;
1094 deltaF = DELTAF_F2;
1095
1095
1096 switch (channel)
1096 switch (channel)
1097 {
1097 {
1098 case CHANNELF0:
1098 case CHANNELF0:
1099 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1099 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1100 deltaF = DELTAF_F0;
1100 deltaF = DELTAF_F0;
1101 break;
1101 break;
1102 case CHANNELF1:
1102 case CHANNELF1:
1103 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1103 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1104 deltaF = DELTAF_F1;
1104 deltaF = DELTAF_F1;
1105 break;
1105 break;
1106 case CHANNELF2:
1106 case CHANNELF2:
1107 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1107 maskPtr = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1108 deltaF = DELTAF_F2;
1108 deltaF = DELTAF_F2;
1109 break;
1109 break;
1110 default:
1110 default:
1111 break;
1111 break;
1112 }
1112 }
1113
1113
1114 for (k = 0; k < BYTES_PER_MASK; k++)
1114 for (k = 0; k < BYTES_PER_MASK; k++)
1115 {
1115 {
1116 local_rw_fbins_mask[k] = INT8_ALL_F;
1116 local_rw_fbins_mask[k] = INT8_ALL_F;
1117 }
1117 }
1118
1118
1119 // RW1 F1
1119 // RW1 F1
1120 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS ); // [1000 0000]
1120 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F1) >> SHIFT_7_BITS ); // [1000 0000]
1121
1121
1122 // RW1 F2
1122 // RW1 F2
1123 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS ); // [0100 0000]
1123 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw1_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW1_F2) >> SHIFT_6_BITS ); // [0100 0000]
1124
1124
1125 // RW2 F1
1125 // RW2 F1
1126 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS ); // [0010 0000]
1126 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F1) >> SHIFT_5_BITS ); // [0010 0000]
1127
1127
1128 // RW2 F2
1128 // RW2 F2
1129 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS ); // [0001 0000]
1129 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw2_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW2_F2) >> SHIFT_4_BITS ); // [0001 0000]
1130
1130
1131 // RW3 F1
1131 // RW3 F1
1132 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS ); // [0000 1000]
1132 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F1) >> SHIFT_3_BITS ); // [0000 1000]
1133
1133
1134 // RW3 F2
1134 // RW3 F2
1135 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS ); // [0000 0100]
1135 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw3_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW3_F2) >> SHIFT_2_BITS ); // [0000 0100]
1136
1136
1137 // RW4 F1
1137 // RW4 F1
1138 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 ); // [0000 0010]
1138 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f1, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F1) >> 1 ); // [0000 0010]
1139
1139
1140 // RW4 F2
1140 // RW4 F2
1141 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) ); // [0000 0001]
1141 setFBinMask( local_rw_fbins_mask, cp_rpw_sc_rw4_f2, deltaF, (cp_rpw_sc_rw_f_flags & BIT_RW4_F2) ); // [0000 0001]
1142
1142
1143 // update the value of the fbins related to reaction wheels frequency filtering
1143 // update the value of the fbins related to reaction wheels frequency filtering
1144 if (maskPtr != NULL)
1144 if (maskPtr != NULL)
1145 {
1145 {
1146 for (k = 0; k < BYTES_PER_MASK; k++)
1146 for (k = 0; k < BYTES_PER_MASK; k++)
1147 {
1147 {
1148 maskPtr[k] = local_rw_fbins_mask[k];
1148 maskPtr[k] = local_rw_fbins_mask[k];
1149 }
1149 }
1150 }
1150 }
1151 }
1151 }
1152
1152
1153 void build_sy_lfr_rw_masks( void )
1153 void build_sy_lfr_rw_masks( void )
1154 {
1154 {
1155 build_sy_lfr_rw_mask( CHANNELF0 );
1155 build_sy_lfr_rw_mask( CHANNELF0 );
1156 build_sy_lfr_rw_mask( CHANNELF1 );
1156 build_sy_lfr_rw_mask( CHANNELF1 );
1157 build_sy_lfr_rw_mask( CHANNELF2 );
1157 build_sy_lfr_rw_mask( CHANNELF2 );
1158 }
1158 }
1159
1159
1160 void merge_fbins_masks( void )
1160 void merge_fbins_masks( void )
1161 {
1161 {
1162 unsigned char k;
1162 unsigned char k;
1163
1163
1164 unsigned char *fbins_f0;
1164 unsigned char *fbins_f0;
1165 unsigned char *fbins_f1;
1165 unsigned char *fbins_f1;
1166 unsigned char *fbins_f2;
1166 unsigned char *fbins_f2;
1167 unsigned char *rw_mask_f0;
1167 unsigned char *rw_mask_f0;
1168 unsigned char *rw_mask_f1;
1168 unsigned char *rw_mask_f1;
1169 unsigned char *rw_mask_f2;
1169 unsigned char *rw_mask_f2;
1170
1170
1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
1171 fbins_f0 = parameter_dump_packet.sy_lfr_fbins.fx.f0_word1;
1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins.fx.f1_word1;
1172 fbins_f1 = parameter_dump_packet.sy_lfr_fbins.fx.f1_word1;
1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins.fx.f2_word1;
1173 fbins_f2 = parameter_dump_packet.sy_lfr_fbins.fx.f2_word1;
1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1174 rw_mask_f0 = parameter_dump_packet.sy_lfr_rw_mask.fx.f0_word1;
1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1175 rw_mask_f1 = parameter_dump_packet.sy_lfr_rw_mask.fx.f1_word1;
1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1176 rw_mask_f2 = parameter_dump_packet.sy_lfr_rw_mask.fx.f2_word1;
1177
1177
1178 for( k=0; k < BYTES_PER_MASK; k++ )
1178 for( k=0; k < BYTES_PER_MASK; k++ )
1179 {
1179 {
1180 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1180 fbins_masks.merged_fbins_mask_f0[k] = fbins_f0[k] & rw_mask_f0[k];
1181 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1181 fbins_masks.merged_fbins_mask_f1[k] = fbins_f1[k] & rw_mask_f1[k];
1182 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1182 fbins_masks.merged_fbins_mask_f2[k] = fbins_f2[k] & rw_mask_f2[k];
1183 }
1183 }
1184 }
1184 }
1185
1185
1186 //***********
1186 //***********
1187 // FBINS MASK
1187 // FBINS MASK
1188
1188
1189 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1189 int set_sy_lfr_fbins( ccsdsTelecommandPacket_t *TC )
1190 {
1190 {
1191 int status;
1191 int status;
1192 unsigned int k;
1192 unsigned int k;
1193 unsigned char *fbins_mask_dump;
1193 unsigned char *fbins_mask_dump;
1194 unsigned char *fbins_mask_TC;
1194 unsigned char *fbins_mask_TC;
1195
1195
1196 status = LFR_SUCCESSFUL;
1196 status = LFR_SUCCESSFUL;
1197
1197
1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins.raw;
1198 fbins_mask_dump = parameter_dump_packet.sy_lfr_fbins.raw;
1199 fbins_mask_TC = TC->dataAndCRC;
1199 fbins_mask_TC = TC->dataAndCRC;
1200
1200
1201 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1201 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1202 {
1202 {
1203 fbins_mask_dump[k] = fbins_mask_TC[k];
1203 fbins_mask_dump[k] = fbins_mask_TC[k];
1204 }
1204 }
1205
1205
1206 return status;
1206 return status;
1207 }
1207 }
1208
1208
1209 //***************************
1209 //***************************
1210 // TC_LFR_LOAD_PAS_FILTER_PAR
1210 // TC_LFR_LOAD_PAS_FILTER_PAR
1211
1211
1212 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1212 int check_sy_lfr_filter_parameters( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
1213 {
1213 {
1214 int flag;
1214 int flag;
1215 rtems_status_code status;
1215 rtems_status_code status;
1216
1216
1217 unsigned char sy_lfr_pas_filter_enabled;
1217 unsigned char sy_lfr_pas_filter_enabled;
1218 unsigned char sy_lfr_pas_filter_modulus;
1218 unsigned char sy_lfr_pas_filter_modulus;
1219 float sy_lfr_pas_filter_tbad;
1219 float sy_lfr_pas_filter_tbad;
1220 unsigned char sy_lfr_pas_filter_offset;
1220 unsigned char sy_lfr_pas_filter_offset;
1221 float sy_lfr_pas_filter_shift;
1221 float sy_lfr_pas_filter_shift;
1222 float sy_lfr_sc_rw_delta_f;
1222 float sy_lfr_sc_rw_delta_f;
1223 char *parPtr;
1223 char *parPtr;
1224
1224
1225 flag = LFR_SUCCESSFUL;
1225 flag = LFR_SUCCESSFUL;
1226 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1226 sy_lfr_pas_filter_tbad = INIT_FLOAT;
1227 sy_lfr_pas_filter_shift = INIT_FLOAT;
1227 sy_lfr_pas_filter_shift = INIT_FLOAT;
1228 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1228 sy_lfr_sc_rw_delta_f = INIT_FLOAT;
1229 parPtr = NULL;
1229 parPtr = NULL;
1230
1230
1231 //***************
1231 //***************
1232 // get parameters
1232 // get parameters
1233 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1233 sy_lfr_pas_filter_enabled = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_ENABLED ] & BIT_PAS_FILTER_ENABLED; // [0000 0001]
1234 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1234 sy_lfr_pas_filter_modulus = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS ];
1235 copyFloatByChar(
1235 copyFloatByChar(
1236 (unsigned char*) &sy_lfr_pas_filter_tbad,
1236 (unsigned char*) &sy_lfr_pas_filter_tbad,
1237 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1237 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD ]
1238 );
1238 );
1239 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1239 sy_lfr_pas_filter_offset = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET ];
1240 copyFloatByChar(
1240 copyFloatByChar(
1241 (unsigned char*) &sy_lfr_pas_filter_shift,
1241 (unsigned char*) &sy_lfr_pas_filter_shift,
1242 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1242 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT ]
1243 );
1243 );
1244 copyFloatByChar(
1244 copyFloatByChar(
1245 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1245 (unsigned char*) &sy_lfr_sc_rw_delta_f,
1246 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1246 (unsigned char*) &TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_SC_RW_DELTA_F ]
1247 );
1247 );
1248
1248
1249 //******************
1249 //******************
1250 // CHECK CONSISTENCY
1250 // CHECK CONSISTENCY
1251
1251
1252 //**************************
1252 //**************************
1253 // sy_lfr_pas_filter_enabled
1253 // sy_lfr_pas_filter_enabled
1254 // nothing to check, value is 0 or 1
1254 // nothing to check, value is 0 or 1
1255
1255
1256 //**************************
1256 //**************************
1257 // sy_lfr_pas_filter_modulus
1257 // sy_lfr_pas_filter_modulus
1258 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1258 if ( (sy_lfr_pas_filter_modulus < MIN_PAS_FILTER_MODULUS) || (sy_lfr_pas_filter_modulus > MAX_PAS_FILTER_MODULUS) )
1259 {
1259 {
1260 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1260 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1261 flag = WRONG_APP_DATA;
1261 flag = WRONG_APP_DATA;
1262 }
1262 }
1263
1263
1264 //***********************
1264 //***********************
1265 // sy_lfr_pas_filter_tbad
1265 // sy_lfr_pas_filter_tbad
1266 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1266 if ( (sy_lfr_pas_filter_tbad < MIN_PAS_FILTER_TBAD) || (sy_lfr_pas_filter_tbad > MAX_PAS_FILTER_TBAD) )
1267 {
1267 {
1268 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1268 parPtr = (char*) &sy_lfr_pas_filter_tbad;
1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1269 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_TBAD + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1270 flag = WRONG_APP_DATA;
1270 flag = WRONG_APP_DATA;
1271 }
1271 }
1272
1272
1273 //*************************
1273 //*************************
1274 // sy_lfr_pas_filter_offset
1274 // sy_lfr_pas_filter_offset
1275 if (flag == LFR_SUCCESSFUL)
1275 if (flag == LFR_SUCCESSFUL)
1276 {
1276 {
1277 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1277 if ( (sy_lfr_pas_filter_offset < MIN_PAS_FILTER_OFFSET) || (sy_lfr_pas_filter_offset > MAX_PAS_FILTER_OFFSET) )
1278 {
1278 {
1279 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1279 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_OFFSET + DATAFIELD_OFFSET, sy_lfr_pas_filter_offset );
1280 flag = WRONG_APP_DATA;
1280 flag = WRONG_APP_DATA;
1281 }
1281 }
1282 }
1282 }
1283
1283
1284 //************************
1284 //************************
1285 // sy_lfr_pas_filter_shift
1285 // sy_lfr_pas_filter_shift
1286 if (flag == LFR_SUCCESSFUL)
1286 if (flag == LFR_SUCCESSFUL)
1287 {
1287 {
1288 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1288 if ( (sy_lfr_pas_filter_shift < MIN_PAS_FILTER_SHIFT) || (sy_lfr_pas_filter_shift > MAX_PAS_FILTER_SHIFT) )
1289 {
1289 {
1290 parPtr = (char*) &sy_lfr_pas_filter_shift;
1290 parPtr = (char*) &sy_lfr_pas_filter_shift;
1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1291 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_SHIFT + DATAFIELD_OFFSET, parPtr[FLOAT_LSBYTE] );
1292 flag = WRONG_APP_DATA;
1292 flag = WRONG_APP_DATA;
1293 }
1293 }
1294 }
1294 }
1295
1295
1296 //*************************************
1296 //*************************************
1297 // check global coherency of the values
1297 // check global coherency of the values
1298 if (flag == LFR_SUCCESSFUL)
1298 if (flag == LFR_SUCCESSFUL)
1299 {
1299 {
1300 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1300 if ( (sy_lfr_pas_filter_tbad + sy_lfr_pas_filter_offset + sy_lfr_pas_filter_shift) > sy_lfr_pas_filter_modulus )
1301 {
1301 {
1302 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1302 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_PAS_FILTER_MODULUS + DATAFIELD_OFFSET, sy_lfr_pas_filter_modulus );
1303 flag = WRONG_APP_DATA;
1303 flag = WRONG_APP_DATA;
1304 }
1304 }
1305 }
1305 }
1306
1306
1307 //*********************
1307 //*********************
1308 // sy_lfr_sc_rw_delta_f
1308 // sy_lfr_sc_rw_delta_f
1309 // nothing to check, no default value in the ICD
1309 // nothing to check, no default value in the ICD
1310
1310
1311 return flag;
1311 return flag;
1312 }
1312 }
1313
1313
1314 //**************
1314 //**************
1315 // KCOEFFICIENTS
1315 // KCOEFFICIENTS
1316 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1316 int set_sy_lfr_kcoeff( ccsdsTelecommandPacket_t *TC,rtems_id queue_id )
1317 {
1317 {
1318 unsigned int kcoeff;
1318 unsigned int kcoeff;
1319 unsigned short sy_lfr_kcoeff_frequency;
1319 unsigned short sy_lfr_kcoeff_frequency;
1320 unsigned short bin;
1320 unsigned short bin;
1321 unsigned short *freqPtr;
1321 unsigned short *freqPtr;
1322 float *kcoeffPtr_norm;
1322 float *kcoeffPtr_norm;
1323 float *kcoeffPtr_sbm;
1323 float *kcoeffPtr_sbm;
1324 int status;
1324 int status;
1325 unsigned char *kcoeffLoadPtr;
1325 unsigned char *kcoeffLoadPtr;
1326 unsigned char *kcoeffNormPtr;
1326 unsigned char *kcoeffNormPtr;
1327 unsigned char *kcoeffSbmPtr_a;
1327 unsigned char *kcoeffSbmPtr_a;
1328 unsigned char *kcoeffSbmPtr_b;
1328 unsigned char *kcoeffSbmPtr_b;
1329
1329
1330 status = LFR_SUCCESSFUL;
1330 status = LFR_SUCCESSFUL;
1331
1331
1332 kcoeffPtr_norm = NULL;
1332 kcoeffPtr_norm = NULL;
1333 kcoeffPtr_sbm = NULL;
1333 kcoeffPtr_sbm = NULL;
1334 bin = 0;
1334 bin = 0;
1335
1335
1336 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1336 freqPtr = (unsigned short *) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY];
1337 sy_lfr_kcoeff_frequency = *freqPtr;
1337 sy_lfr_kcoeff_frequency = *freqPtr;
1338
1338
1339 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1339 if ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM )
1340 {
1340 {
1341 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1341 PRINTF1("ERR *** in set_sy_lfr_kcoeff_frequency *** sy_lfr_kcoeff_frequency = %d\n", sy_lfr_kcoeff_frequency)
1342 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1342 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + DATAFIELD_OFFSET + 1,
1343 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1343 TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_FREQUENCY + 1] ); // +1 to get the LSB instead of the MSB
1344 status = LFR_DEFAULT;
1344 status = LFR_DEFAULT;
1345 }
1345 }
1346 else
1346 else
1347 {
1347 {
1348 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1348 if ( ( sy_lfr_kcoeff_frequency >= 0 )
1349 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1349 && ( sy_lfr_kcoeff_frequency < NB_BINS_COMPRESSED_SM_F0 ) )
1350 {
1350 {
1351 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1351 kcoeffPtr_norm = k_coeff_intercalib_f0_norm;
1352 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1352 kcoeffPtr_sbm = k_coeff_intercalib_f0_sbm;
1353 bin = sy_lfr_kcoeff_frequency;
1353 bin = sy_lfr_kcoeff_frequency;
1354 }
1354 }
1355 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1355 else if ( ( sy_lfr_kcoeff_frequency >= NB_BINS_COMPRESSED_SM_F0 )
1356 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1356 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) ) )
1357 {
1357 {
1358 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1358 kcoeffPtr_norm = k_coeff_intercalib_f1_norm;
1359 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1359 kcoeffPtr_sbm = k_coeff_intercalib_f1_sbm;
1360 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1360 bin = sy_lfr_kcoeff_frequency - NB_BINS_COMPRESSED_SM_F0;
1361 }
1361 }
1362 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1362 else if ( ( sy_lfr_kcoeff_frequency >= (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1) )
1363 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1363 && ( sy_lfr_kcoeff_frequency < (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1 + NB_BINS_COMPRESSED_SM_F2) ) )
1364 {
1364 {
1365 kcoeffPtr_norm = k_coeff_intercalib_f2;
1365 kcoeffPtr_norm = k_coeff_intercalib_f2;
1366 kcoeffPtr_sbm = NULL;
1366 kcoeffPtr_sbm = NULL;
1367 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1367 bin = sy_lfr_kcoeff_frequency - (NB_BINS_COMPRESSED_SM_F0 + NB_BINS_COMPRESSED_SM_F1);
1368 }
1368 }
1369 }
1369 }
1370
1370
1371 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1371 if (kcoeffPtr_norm != NULL ) // update K coefficient for NORMAL data products
1372 {
1372 {
1373 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1373 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1374 {
1374 {
1375 // destination
1375 // destination
1376 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1376 kcoeffNormPtr = (unsigned char*) &kcoeffPtr_norm[ (bin * NB_K_COEFF_PER_BIN) + kcoeff ];
1377 // source
1377 // source
1378 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1378 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1379 // copy source to destination
1379 // copy source to destination
1380 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1380 copyFloatByChar( kcoeffNormPtr, kcoeffLoadPtr );
1381 }
1381 }
1382 }
1382 }
1383
1383
1384 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1384 if (kcoeffPtr_sbm != NULL ) // update K coefficient for SBM data products
1385 {
1385 {
1386 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1386 for (kcoeff=0; kcoeff<NB_K_COEFF_PER_BIN; kcoeff++)
1387 {
1387 {
1388 // destination
1388 // destination
1389 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1389 kcoeffSbmPtr_a= (unsigned char*) &kcoeffPtr_sbm[ ( (bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_COEFF_PER_NORM_COEFF ];
1390 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1390 kcoeffSbmPtr_b= (unsigned char*) &kcoeffPtr_sbm[ (((bin * NB_K_COEFF_PER_BIN) + kcoeff) * SBM_KCOEFF_PER_NORM_KCOEFF) + 1 ];
1391 // source
1391 // source
1392 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1392 kcoeffLoadPtr = (unsigned char*) &TC->dataAndCRC[DATAFIELD_POS_SY_LFR_KCOEFF_1 + (NB_BYTES_PER_FLOAT * kcoeff)];
1393 // copy source to destination
1393 // copy source to destination
1394 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1394 copyFloatByChar( kcoeffSbmPtr_a, kcoeffLoadPtr );
1395 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1395 copyFloatByChar( kcoeffSbmPtr_b, kcoeffLoadPtr );
1396 }
1396 }
1397 }
1397 }
1398
1398
1399 // print_k_coeff();
1399 // print_k_coeff();
1400
1400
1401 return status;
1401 return status;
1402 }
1402 }
1403
1403
1404 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1404 void copyFloatByChar( unsigned char *destination, unsigned char *source )
1405 {
1405 {
1406 destination[BYTE_0] = source[BYTE_0];
1406 destination[BYTE_0] = source[BYTE_0];
1407 destination[BYTE_1] = source[BYTE_1];
1407 destination[BYTE_1] = source[BYTE_1];
1408 destination[BYTE_2] = source[BYTE_2];
1408 destination[BYTE_2] = source[BYTE_2];
1409 destination[BYTE_3] = source[BYTE_3];
1409 destination[BYTE_3] = source[BYTE_3];
1410 }
1410 }
1411
1411
1412 void floatToChar( float value, unsigned char* ptr)
1412 void floatToChar( float value, unsigned char* ptr)
1413 {
1413 {
1414 unsigned char* valuePtr;
1414 unsigned char* valuePtr;
1415
1415
1416 valuePtr = (unsigned char*) &value;
1416 valuePtr = (unsigned char*) &value;
1417 ptr[BYTE_0] = valuePtr[BYTE_0];
1417 ptr[BYTE_0] = valuePtr[BYTE_0];
1418 ptr[BYTE_1] = valuePtr[BYTE_1];
1418 ptr[BYTE_1] = valuePtr[BYTE_1];
1419 ptr[BYTE_2] = valuePtr[BYTE_2];
1419 ptr[BYTE_2] = valuePtr[BYTE_2];
1420 ptr[BYTE_3] = valuePtr[BYTE_3];
1420 ptr[BYTE_3] = valuePtr[BYTE_3];
1421 }
1421 }
1422
1422
1423 //**********
1423 //**********
1424 // init dump
1424 // init dump
1425
1425
1426 void init_parameter_dump( void )
1426 void init_parameter_dump( void )
1427 {
1427 {
1428 /** This function initialize the parameter_dump_packet global variable with default values.
1428 /** This function initialize the parameter_dump_packet global variable with default values.
1429 *
1429 *
1430 */
1430 */
1431
1431
1432 unsigned int k;
1432 unsigned int k;
1433
1433
1434 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1434 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
1435 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1435 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
1436 parameter_dump_packet.reserved = CCSDS_RESERVED;
1436 parameter_dump_packet.reserved = CCSDS_RESERVED;
1437 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1437 parameter_dump_packet.userApplication = CCSDS_USER_APP;
1438 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1438 parameter_dump_packet.packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1439 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1439 parameter_dump_packet.packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1440 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1440 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1441 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1441 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1442 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1442 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> SHIFT_1_BYTE);
1443 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1443 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
1444 // DATA FIELD HEADER
1444 // DATA FIELD HEADER
1445 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1445 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1446 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1446 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
1447 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1447 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
1448 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1448 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
1449 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1449 parameter_dump_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
1450 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1450 parameter_dump_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
1451 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1451 parameter_dump_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
1452 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1452 parameter_dump_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
1453 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1453 parameter_dump_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
1454 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1454 parameter_dump_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
1455 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1455 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
1456
1456
1457 //******************
1457 //******************
1458 // COMMON PARAMETERS
1458 // COMMON PARAMETERS
1459 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1459 parameter_dump_packet.sy_lfr_common_parameters_spare = DEFAULT_SY_LFR_COMMON0;
1460 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1460 parameter_dump_packet.sy_lfr_common_parameters = DEFAULT_SY_LFR_COMMON1;
1461
1461
1462 //******************
1462 //******************
1463 // NORMAL PARAMETERS
1463 // NORMAL PARAMETERS
1464 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1464 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_L >> SHIFT_1_BYTE);
1465 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1465 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_L );
1466 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1466 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (DFLT_SY_LFR_N_SWF_P >> SHIFT_1_BYTE);
1467 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1467 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (DFLT_SY_LFR_N_SWF_P );
1468 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1468 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (DFLT_SY_LFR_N_ASM_P >> SHIFT_1_BYTE);
1469 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1469 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (DFLT_SY_LFR_N_ASM_P );
1470 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1470 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) DFLT_SY_LFR_N_BP_P0;
1471 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1471 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) DFLT_SY_LFR_N_BP_P1;
1472 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1472 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) DFLT_SY_LFR_N_CWF_LONG_F3;
1473
1473
1474 //*****************
1474 //*****************
1475 // BURST PARAMETERS
1475 // BURST PARAMETERS
1476 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1476 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
1477 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1477 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
1478
1478
1479 //****************
1479 //****************
1480 // SBM1 PARAMETERS
1480 // SBM1 PARAMETERS
1481 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1481 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
1482 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1482 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
1483
1483
1484 //****************
1484 //****************
1485 // SBM2 PARAMETERS
1485 // SBM2 PARAMETERS
1486 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1486 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
1487 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1487 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
1488
1488
1489 //************
1489 //************
1490 // FBINS MASKS
1490 // FBINS MASKS
1491 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1491 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1492 {
1492 {
1493 parameter_dump_packet.sy_lfr_fbins.raw[k] = INT8_ALL_F;
1493 parameter_dump_packet.sy_lfr_fbins.raw[k] = INT8_ALL_F;
1494 }
1494 }
1495
1495
1496 // PAS FILTER PARAMETERS
1496 // PAS FILTER PARAMETERS
1497 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1497 parameter_dump_packet.pa_rpw_spare8_2 = INIT_CHAR;
1498 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1498 parameter_dump_packet.spare_sy_lfr_pas_filter_enabled = INIT_CHAR;
1499 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1499 parameter_dump_packet.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS;
1500 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1500 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_TBAD, parameter_dump_packet.sy_lfr_pas_filter_tbad );
1501 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1501 parameter_dump_packet.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET;
1502 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1502 floatToChar( DEFAULT_SY_LFR_PAS_FILTER_SHIFT, parameter_dump_packet.sy_lfr_pas_filter_shift );
1503 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1503 floatToChar( DEFAULT_SY_LFR_SC_RW_DELTA_F, parameter_dump_packet.sy_lfr_sc_rw_delta_f );
1504
1504
1505 // LFR_RW_MASK
1505 // LFR_RW_MASK
1506 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1506 for (k=0; k < BYTES_PER_MASKS_SET; k++)
1507 {
1507 {
1508 parameter_dump_packet.sy_lfr_rw_mask.raw[k] = INT8_ALL_F;
1508 parameter_dump_packet.sy_lfr_rw_mask.raw[k] = INT8_ALL_F;
1509 }
1509 }
1510
1510
1511 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1511 // once the reaction wheels masks have been initialized, they have to be merged with the fbins masks
1512 merge_fbins_masks();
1512 merge_fbins_masks();
1513 }
1513 }
1514
1514
1515 void init_kcoefficients_dump( void )
1515 void init_kcoefficients_dump( void )
1516 {
1516 {
1517 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1517 init_kcoefficients_dump_packet( &kcoefficients_dump_1, PKTNR_1, KCOEFF_BLK_NR_PKT1 );
1518 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1518 init_kcoefficients_dump_packet( &kcoefficients_dump_2, PKTNR_2, KCOEFF_BLK_NR_PKT2 );
1519
1519
1520 kcoefficient_node_1.previous = NULL;
1520 kcoefficient_node_1.previous = NULL;
1521 kcoefficient_node_1.next = NULL;
1521 kcoefficient_node_1.next = NULL;
1522 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1522 kcoefficient_node_1.sid = TM_CODE_K_DUMP;
1523 kcoefficient_node_1.coarseTime = INIT_CHAR;
1523 kcoefficient_node_1.coarseTime = INIT_CHAR;
1524 kcoefficient_node_1.fineTime = INIT_CHAR;
1524 kcoefficient_node_1.fineTime = INIT_CHAR;
1525 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1525 kcoefficient_node_1.buffer_address = (int) &kcoefficients_dump_1;
1526 kcoefficient_node_1.status = INIT_CHAR;
1526 kcoefficient_node_1.status = INIT_CHAR;
1527
1527
1528 kcoefficient_node_2.previous = NULL;
1528 kcoefficient_node_2.previous = NULL;
1529 kcoefficient_node_2.next = NULL;
1529 kcoefficient_node_2.next = NULL;
1530 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1530 kcoefficient_node_2.sid = TM_CODE_K_DUMP;
1531 kcoefficient_node_2.coarseTime = INIT_CHAR;
1531 kcoefficient_node_2.coarseTime = INIT_CHAR;
1532 kcoefficient_node_2.fineTime = INIT_CHAR;
1532 kcoefficient_node_2.fineTime = INIT_CHAR;
1533 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1533 kcoefficient_node_2.buffer_address = (int) &kcoefficients_dump_2;
1534 kcoefficient_node_2.status = INIT_CHAR;
1534 kcoefficient_node_2.status = INIT_CHAR;
1535 }
1535 }
1536
1536
1537 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1537 void init_kcoefficients_dump_packet( Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump, unsigned char pkt_nr, unsigned char blk_nr )
1538 {
1538 {
1539 unsigned int k;
1539 unsigned int k;
1540 unsigned int packetLength;
1540 unsigned int packetLength;
1541
1541
1542 packetLength =
1542 packetLength =
1543 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1543 ((blk_nr * KCOEFF_BLK_SIZE) + BYTE_POS_KCOEFFICIENTS_PARAMETES) - CCSDS_TC_TM_PACKET_OFFSET; // 4 bytes for the CCSDS header
1544
1544
1545 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1545 kcoefficients_dump->targetLogicalAddress = CCSDS_DESTINATION_ID;
1546 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1546 kcoefficients_dump->protocolIdentifier = CCSDS_PROTOCOLE_ID;
1547 kcoefficients_dump->reserved = CCSDS_RESERVED;
1547 kcoefficients_dump->reserved = CCSDS_RESERVED;
1548 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1548 kcoefficients_dump->userApplication = CCSDS_USER_APP;
1549 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1549 kcoefficients_dump->packetID[0] = (unsigned char) (APID_TM_PARAMETER_DUMP >> SHIFT_1_BYTE);
1550 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1550 kcoefficients_dump->packetID[1] = (unsigned char) APID_TM_PARAMETER_DUMP;
1551 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1551 kcoefficients_dump->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
1552 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1552 kcoefficients_dump->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
1553 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1553 kcoefficients_dump->packetLength[0] = (unsigned char) (packetLength >> SHIFT_1_BYTE);
1554 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1554 kcoefficients_dump->packetLength[1] = (unsigned char) packetLength;
1555 // DATA FIELD HEADER
1555 // DATA FIELD HEADER
1556 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1556 kcoefficients_dump->spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
1557 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1557 kcoefficients_dump->serviceType = TM_TYPE_K_DUMP;
1558 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1558 kcoefficients_dump->serviceSubType = TM_SUBTYPE_K_DUMP;
1559 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1559 kcoefficients_dump->destinationID= TM_DESTINATION_ID_GROUND;
1560 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1560 kcoefficients_dump->time[BYTE_0] = INIT_CHAR;
1561 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1561 kcoefficients_dump->time[BYTE_1] = INIT_CHAR;
1562 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1562 kcoefficients_dump->time[BYTE_2] = INIT_CHAR;
1563 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1563 kcoefficients_dump->time[BYTE_3] = INIT_CHAR;
1564 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1564 kcoefficients_dump->time[BYTE_4] = INIT_CHAR;
1565 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1565 kcoefficients_dump->time[BYTE_5] = INIT_CHAR;
1566 kcoefficients_dump->sid = SID_K_DUMP;
1566 kcoefficients_dump->sid = SID_K_DUMP;
1567
1567
1568 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1568 kcoefficients_dump->pkt_cnt = KCOEFF_PKTCNT;
1569 kcoefficients_dump->pkt_nr = PKTNR_1;
1569 kcoefficients_dump->pkt_nr = PKTNR_1;
1570 kcoefficients_dump->blk_nr = blk_nr;
1570 kcoefficients_dump->blk_nr = blk_nr;
1571
1571
1572 //******************
1572 //******************
1573 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1573 // SOURCE DATA repeated N times with N in [0 .. PA_LFR_KCOEFF_BLK_NR]
1574 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1574 // one blk is 2 + 4 * 32 = 130 bytes, 30 blks max in one packet (30 * 130 = 3900)
1575 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1575 for (k=0; k<(KCOEFF_BLK_NR_PKT1 * KCOEFF_BLK_SIZE); k++)
1576 {
1576 {
1577 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1577 kcoefficients_dump->kcoeff_blks[k] = INIT_CHAR;
1578 }
1578 }
1579 }
1579 }
1580
1580
1581 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1581 void increment_seq_counter_destination_id_dump( unsigned char *packet_sequence_control, unsigned char destination_id )
1582 {
1582 {
1583 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1583 /** This function increment the packet sequence control parameter of a TC, depending on its destination ID.
1584 *
1584 *
1585 * @param packet_sequence_control points to the packet sequence control which will be incremented
1585 * @param packet_sequence_control points to the packet sequence control which will be incremented
1586 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1586 * @param destination_id is the destination ID of the TM, there is one counter by destination ID
1587 *
1587 *
1588 * If the destination ID is not known, a dedicated counter is incremented.
1588 * If the destination ID is not known, a dedicated counter is incremented.
1589 *
1589 *
1590 */
1590 */
1591
1591
1592 unsigned short sequence_cnt;
1592 unsigned short sequence_cnt;
1593 unsigned short segmentation_grouping_flag;
1593 unsigned short segmentation_grouping_flag;
1594 unsigned short new_packet_sequence_control;
1594 unsigned short new_packet_sequence_control;
1595 unsigned char i;
1595 unsigned char i;
1596
1596
1597 switch (destination_id)
1597 switch (destination_id)
1598 {
1598 {
1599 case SID_TC_GROUND:
1599 case SID_TC_GROUND:
1600 i = GROUND;
1600 i = GROUND;
1601 break;
1601 break;
1602 case SID_TC_MISSION_TIMELINE:
1602 case SID_TC_MISSION_TIMELINE:
1603 i = MISSION_TIMELINE;
1603 i = MISSION_TIMELINE;
1604 break;
1604 break;
1605 case SID_TC_TC_SEQUENCES:
1605 case SID_TC_TC_SEQUENCES:
1606 i = TC_SEQUENCES;
1606 i = TC_SEQUENCES;
1607 break;
1607 break;
1608 case SID_TC_RECOVERY_ACTION_CMD:
1608 case SID_TC_RECOVERY_ACTION_CMD:
1609 i = RECOVERY_ACTION_CMD;
1609 i = RECOVERY_ACTION_CMD;
1610 break;
1610 break;
1611 case SID_TC_BACKUP_MISSION_TIMELINE:
1611 case SID_TC_BACKUP_MISSION_TIMELINE:
1612 i = BACKUP_MISSION_TIMELINE;
1612 i = BACKUP_MISSION_TIMELINE;
1613 break;
1613 break;
1614 case SID_TC_DIRECT_CMD:
1614 case SID_TC_DIRECT_CMD:
1615 i = DIRECT_CMD;
1615 i = DIRECT_CMD;
1616 break;
1616 break;
1617 case SID_TC_SPARE_GRD_SRC1:
1617 case SID_TC_SPARE_GRD_SRC1:
1618 i = SPARE_GRD_SRC1;
1618 i = SPARE_GRD_SRC1;
1619 break;
1619 break;
1620 case SID_TC_SPARE_GRD_SRC2:
1620 case SID_TC_SPARE_GRD_SRC2:
1621 i = SPARE_GRD_SRC2;
1621 i = SPARE_GRD_SRC2;
1622 break;
1622 break;
1623 case SID_TC_OBCP:
1623 case SID_TC_OBCP:
1624 i = OBCP;
1624 i = OBCP;
1625 break;
1625 break;
1626 case SID_TC_SYSTEM_CONTROL:
1626 case SID_TC_SYSTEM_CONTROL:
1627 i = SYSTEM_CONTROL;
1627 i = SYSTEM_CONTROL;
1628 break;
1628 break;
1629 case SID_TC_AOCS:
1629 case SID_TC_AOCS:
1630 i = AOCS;
1630 i = AOCS;
1631 break;
1631 break;
1632 case SID_TC_RPW_INTERNAL:
1632 case SID_TC_RPW_INTERNAL:
1633 i = RPW_INTERNAL;
1633 i = RPW_INTERNAL;
1634 break;
1634 break;
1635 default:
1635 default:
1636 i = GROUND;
1636 i = GROUND;
1637 break;
1637 break;
1638 }
1638 }
1639
1639
1640 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1640 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1641 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1641 sequence_cnt = sequenceCounters_TM_DUMP[ i ] & SEQ_CNT_MASK;
1642
1642
1643 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1643 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
1644
1644
1645 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1645 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1646 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1646 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1647
1647
1648 // increment the sequence counter
1648 // increment the sequence counter
1649 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1649 if ( sequenceCounters_TM_DUMP[ i ] < SEQ_CNT_MAX )
1650 {
1650 {
1651 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1651 sequenceCounters_TM_DUMP[ i ] = sequenceCounters_TM_DUMP[ i ] + 1;
1652 }
1652 }
1653 else
1653 else
1654 {
1654 {
1655 sequenceCounters_TM_DUMP[ i ] = 0;
1655 sequenceCounters_TM_DUMP[ i ] = 0;
1656 }
1656 }
1657 }
1657 }
@@ -1,1343 +1,1343
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //***************
12 //***************
13 // waveform rings
13 // waveform rings
14 // F0
14 // F0
15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
15 ring_node waveform_ring_f0[NB_RING_NODES_F0]= {0};
16 ring_node *current_ring_node_f0;
16 ring_node *current_ring_node_f0 = NULL;
17 ring_node *ring_node_to_send_swf_f0;
17 ring_node *ring_node_to_send_swf_f0 = NULL;
18 // F1
18 // F1
19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
19 ring_node waveform_ring_f1[NB_RING_NODES_F1] = {0};
20 ring_node *current_ring_node_f1;
20 ring_node *current_ring_node_f1 = NULL;
21 ring_node *ring_node_to_send_swf_f1;
21 ring_node *ring_node_to_send_swf_f1 = NULL;
22 ring_node *ring_node_to_send_cwf_f1;
22 ring_node *ring_node_to_send_cwf_f1 = NULL;
23 // F2
23 // F2
24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
24 ring_node waveform_ring_f2[NB_RING_NODES_F2] = {0};
25 ring_node *current_ring_node_f2;
25 ring_node *current_ring_node_f2 = NULL;
26 ring_node *ring_node_to_send_swf_f2;
26 ring_node *ring_node_to_send_swf_f2 = NULL;
27 ring_node *ring_node_to_send_cwf_f2;
27 ring_node *ring_node_to_send_cwf_f2 = NULL;
28 // F3
28 // F3
29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
29 ring_node waveform_ring_f3[NB_RING_NODES_F3] = {0};
30 ring_node *current_ring_node_f3;
30 ring_node *current_ring_node_f3 = NULL;
31 ring_node *ring_node_to_send_cwf_f3;
31 ring_node *ring_node_to_send_cwf_f3 = NULL;
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ] = {0};
33
33
34 bool extractSWF1 = false;
34 bool extractSWF1 = false;
35 bool extractSWF2 = false;
35 bool extractSWF2 = false;
36 bool swf0_ready_flag_f1 = false;
36 bool swf0_ready_flag_f1 = false;
37 bool swf0_ready_flag_f2 = false;
37 bool swf0_ready_flag_f2 = false;
38 bool swf1_ready = false;
38 bool swf1_ready = false;
39 bool swf2_ready = false;
39 bool swf2_ready = false;
40
40
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ] = {0};
43 ring_node ring_node_swf1_extracted;
43 ring_node ring_node_swf1_extracted = {0};
44 ring_node ring_node_swf2_extracted;
44 ring_node ring_node_swf2_extracted = {0};
45
45
46 typedef enum resynchro_state_t
46 typedef enum resynchro_state_t
47 {
47 {
48 MEASURE,
48 MEASURE,
49 CORRECTION
49 CORRECTION
50 } resynchro_state;
50 } resynchro_state;
51
51
52 //*********************
52 //*********************
53 // Interrupt SubRoutine
53 // Interrupt SubRoutine
54
54
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 {
56 {
57 ring_node *node;
57 ring_node *node;
58
58
59 node = NULL;
59 node = NULL;
60 switch ( frequencyChannel ) {
60 switch ( frequencyChannel ) {
61 case CHANNELF1:
61 case CHANNELF1:
62 node = ring_node_to_send_cwf_f1;
62 node = ring_node_to_send_cwf_f1;
63 break;
63 break;
64 case CHANNELF2:
64 case CHANNELF2:
65 node = ring_node_to_send_cwf_f2;
65 node = ring_node_to_send_cwf_f2;
66 break;
66 break;
67 case CHANNELF3:
67 case CHANNELF3:
68 node = ring_node_to_send_cwf_f3;
68 node = ring_node_to_send_cwf_f3;
69 break;
69 break;
70 default:
70 default:
71 break;
71 break;
72 }
72 }
73
73
74 return node;
74 return node;
75 }
75 }
76
76
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 {
78 {
79 ring_node *node;
79 ring_node *node;
80
80
81 node = NULL;
81 node = NULL;
82 switch ( frequencyChannel ) {
82 switch ( frequencyChannel ) {
83 case CHANNELF0:
83 case CHANNELF0:
84 node = ring_node_to_send_swf_f0;
84 node = ring_node_to_send_swf_f0;
85 break;
85 break;
86 case CHANNELF1:
86 case CHANNELF1:
87 node = ring_node_to_send_swf_f1;
87 node = ring_node_to_send_swf_f1;
88 break;
88 break;
89 case CHANNELF2:
89 case CHANNELF2:
90 node = ring_node_to_send_swf_f2;
90 node = ring_node_to_send_swf_f2;
91 break;
91 break;
92 default:
92 default:
93 break;
93 break;
94 }
94 }
95
95
96 return node;
96 return node;
97 }
97 }
98
98
99 void reset_extractSWF( void )
99 void reset_extractSWF( void )
100 {
100 {
101 extractSWF1 = false;
101 extractSWF1 = false;
102 extractSWF2 = false;
102 extractSWF2 = false;
103 swf0_ready_flag_f1 = false;
103 swf0_ready_flag_f1 = false;
104 swf0_ready_flag_f2 = false;
104 swf0_ready_flag_f2 = false;
105 swf1_ready = false;
105 swf1_ready = false;
106 swf2_ready = false;
106 swf2_ready = false;
107 }
107 }
108
108
109 inline void waveforms_isr_f3( void )
109 inline void waveforms_isr_f3( void )
110 {
110 {
111 rtems_status_code spare_status;
111 rtems_status_code spare_status;
112
112
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 //***
116 //***
117 // F3
117 // F3
118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
118 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F3) != INIT_CHAR ) { // [1100 0000] check the f3 full bits
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 current_ring_node_f3 = current_ring_node_f3->next;
120 current_ring_node_f3 = current_ring_node_f3->next;
121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
121 if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_0) == BIT_WFP_BUF_F3_0){ // [0100 0000] f3 buffer 0 is full
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
125 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_0; // [1000 1000 0100 0000]
126 }
126 }
127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
127 else if ((waveform_picker_regs->status & BIT_WFP_BUF_F3_1) == BIT_WFP_BUF_F3_1){ // [1000 0000] f3 buffer 1 is full
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
131 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F3_1; // [1000 1000 1000 0000]
132 }
132 }
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 }
135 }
136 }
136 }
137 }
137 }
138 }
138 }
139
139
140 inline void waveforms_isr_burst( void )
140 inline void waveforms_isr_burst( void )
141 {
141 {
142 unsigned char status;
142 unsigned char status;
143 rtems_status_code spare_status;
143 rtems_status_code spare_status;
144
144
145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
145 status = (waveform_picker_regs->status & BITS_WFP_STATUS_F2) >> SHIFT_WFP_STATUS_F2; // [0011 0000] get the status bits for f2
146
146
147 switch(status)
147 switch(status)
148 {
148 {
149 case BIT_WFP_BUFFER_0:
149 case BIT_WFP_BUFFER_0:
150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
150 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
151 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
152 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
153 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
154 current_ring_node_f2 = current_ring_node_f2->next;
154 current_ring_node_f2 = current_ring_node_f2->next;
155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
155 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
156 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
157 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
158 }
158 }
159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
159 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
160 break;
160 break;
161 case BIT_WFP_BUFFER_1:
161 case BIT_WFP_BUFFER_1:
162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
162 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
163 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
164 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
165 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
166 current_ring_node_f2 = current_ring_node_f2->next;
166 current_ring_node_f2 = current_ring_node_f2->next;
167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
167 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
168 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
169 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
170 }
170 }
171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
171 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
172 break;
172 break;
173 default:
173 default:
174 break;
174 break;
175 }
175 }
176 }
176 }
177
177
178 inline void waveform_isr_normal_sbm1_sbm2( void )
178 inline void waveform_isr_normal_sbm1_sbm2( void )
179 {
179 {
180 rtems_status_code status;
180 rtems_status_code status;
181
181
182 //***
182 //***
183 // F0
183 // F0
184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
184 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F0) != INIT_CHAR ) // [0000 0011] check the f0 full bits
185 {
185 {
186 swf0_ready_flag_f1 = true;
186 swf0_ready_flag_f1 = true;
187 swf0_ready_flag_f2 = true;
187 swf0_ready_flag_f2 = true;
188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
188 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
189 current_ring_node_f0 = current_ring_node_f0->next;
189 current_ring_node_f0 = current_ring_node_f0->next;
190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
190 if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_0) == BIT_WFP_BUFFER_0)
191 {
191 {
192
192
193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
193 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
194 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
195 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
196 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_0; // [0001 0001 0000 0001]
197 }
197 }
198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
198 else if ( (waveform_picker_regs->status & BIT_WFP_BUFFER_1) == BIT_WFP_BUFFER_1)
199 {
199 {
200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
200 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
201 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
202 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
203 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F0_1; // [0001 0001 0000 0010]
204 }
204 }
205 // send an event to the WFRM task for resynchro activities
205 // send an event to the WFRM task for resynchro activities
206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
206 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
207 }
207 }
208
208
209 //***
209 //***
210 // F1
210 // F1
211 if ( (waveform_picker_regs->status & 0x0c) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
211 if ( (waveform_picker_regs->status & 0x0c) != INIT_CHAR ) { // [0000 1100] check the f1 full bits
212 // (1) change the receiving buffer for the waveform picker
212 // (1) change the receiving buffer for the waveform picker
213 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
213 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
214 current_ring_node_f1 = current_ring_node_f1->next;
214 current_ring_node_f1 = current_ring_node_f1->next;
215 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
215 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_0) == BIT_WFP_BUF_F1_0)
216 {
216 {
217 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
217 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
218 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
218 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
219 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
219 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
220 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
220 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_0; // [0010 0010 0000 0100] f1 bits = 0
221 }
221 }
222 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
222 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F1_1) == BIT_WFP_BUF_F1_1)
223 {
223 {
224 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
224 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
225 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
225 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
226 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
226 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
227 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
227 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F1_1; // [0010 0010 0000 1000] f1 bits = 0
228 }
228 }
229 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
229 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
230 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
230 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
231 }
231 }
232
232
233 //***
233 //***
234 // F2
234 // F2
235 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
235 if ( (waveform_picker_regs->status & BITS_WFP_STATUS_F2) != INIT_CHAR ) { // [0011 0000] check the f2 full bit
236 // (1) change the receiving buffer for the waveform picker
236 // (1) change the receiving buffer for the waveform picker
237 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
237 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
238 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
238 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
239 current_ring_node_f2 = current_ring_node_f2->next;
239 current_ring_node_f2 = current_ring_node_f2->next;
240 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
240 if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_0) == BIT_WFP_BUF_F2_0)
241 {
241 {
242 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
242 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
243 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
243 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
244 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
244 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
245 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
245 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_0; // [0100 0100 0001 0000]
246 }
246 }
247 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
247 else if ( (waveform_picker_regs->status & BIT_WFP_BUF_F2_1) == BIT_WFP_BUF_F2_1)
248 {
248 {
249 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
249 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
250 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
250 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
251 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
251 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
252 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
252 waveform_picker_regs->status = waveform_picker_regs->status & RST_WFP_F2_1; // [0100 0100 0010 0000]
253 }
253 }
254 // (2) send an event for the waveforms transmission
254 // (2) send an event for the waveforms transmission
255 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
255 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
256 }
256 }
257 }
257 }
258
258
259 rtems_isr waveforms_isr( rtems_vector_number vector )
259 rtems_isr waveforms_isr( rtems_vector_number vector )
260 {
260 {
261 /** This is the interrupt sub routine called by the waveform picker core.
261 /** This is the interrupt sub routine called by the waveform picker core.
262 *
262 *
263 * This ISR launch different actions depending mainly on two pieces of information:
263 * This ISR launch different actions depending mainly on two pieces of information:
264 * 1. the values read in the registers of the waveform picker.
264 * 1. the values read in the registers of the waveform picker.
265 * 2. the current LFR mode.
265 * 2. the current LFR mode.
266 *
266 *
267 */
267 */
268
268
269 // STATUS
269 // STATUS
270 // new error error buffer full
270 // new error error buffer full
271 // 15 14 13 12 11 10 9 8
271 // 15 14 13 12 11 10 9 8
272 // f3 f2 f1 f0 f3 f2 f1 f0
272 // f3 f2 f1 f0 f3 f2 f1 f0
273 //
273 //
274 // ready buffer
274 // ready buffer
275 // 7 6 5 4 3 2 1 0
275 // 7 6 5 4 3 2 1 0
276 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
276 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
277
277
278 rtems_status_code spare_status;
278 rtems_status_code spare_status;
279
279
280 waveforms_isr_f3();
280 waveforms_isr_f3();
281
281
282 //*************************************************
282 //*************************************************
283 // copy the status bits in the housekeeping packets
283 // copy the status bits in the housekeeping packets
284 housekeeping_packet.hk_lfr_vhdl_iir_cal =
284 housekeeping_packet.hk_lfr_vhdl_iir_cal =
285 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
285 (unsigned char) ((waveform_picker_regs->status & BYTE0_MASK) >> SHIFT_1_BYTE);
286
286
287 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
287 if ( (waveform_picker_regs->status & BYTE0_MASK) != INIT_CHAR) // [1111 1111 0000 0000] check the error bits
288 {
288 {
289 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
289 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
290 }
290 }
291
291
292 switch(lfrCurrentMode)
292 switch(lfrCurrentMode)
293 {
293 {
294 //********
294 //********
295 // STANDBY
295 // STANDBY
296 case LFR_MODE_STANDBY:
296 case LFR_MODE_STANDBY:
297 break;
297 break;
298 //**************************
298 //**************************
299 // LFR NORMAL, SBM1 and SBM2
299 // LFR NORMAL, SBM1 and SBM2
300 case LFR_MODE_NORMAL:
300 case LFR_MODE_NORMAL:
301 case LFR_MODE_SBM1:
301 case LFR_MODE_SBM1:
302 case LFR_MODE_SBM2:
302 case LFR_MODE_SBM2:
303 waveform_isr_normal_sbm1_sbm2();
303 waveform_isr_normal_sbm1_sbm2();
304 break;
304 break;
305 //******
305 //******
306 // BURST
306 // BURST
307 case LFR_MODE_BURST:
307 case LFR_MODE_BURST:
308 waveforms_isr_burst();
308 waveforms_isr_burst();
309 break;
309 break;
310 //********
310 //********
311 // DEFAULT
311 // DEFAULT
312 default:
312 default:
313 break;
313 break;
314 }
314 }
315 }
315 }
316
316
317 //************
317 //************
318 // RTEMS TASKS
318 // RTEMS TASKS
319
319
320 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
320 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
321 {
321 {
322 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
322 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
323 *
323 *
324 * @param unused is the starting argument of the RTEMS task
324 * @param unused is the starting argument of the RTEMS task
325 *
325 *
326 * The following data packets are sent by this task:
326 * The following data packets are sent by this task:
327 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
327 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
328 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
329 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
330 *
330 *
331 */
331 */
332
332
333 rtems_event_set event_out;
333 rtems_event_set event_out;
334 rtems_id queue_id;
334 rtems_id queue_id;
335 rtems_status_code status;
335 rtems_status_code status;
336 ring_node *ring_node_swf1_extracted_ptr;
336 ring_node *ring_node_swf1_extracted_ptr;
337 ring_node *ring_node_swf2_extracted_ptr;
337 ring_node *ring_node_swf2_extracted_ptr;
338
338
339 event_out = EVENT_SETS_NONE_PENDING;
339 event_out = EVENT_SETS_NONE_PENDING;
340 queue_id = RTEMS_ID_NONE;
340 queue_id = RTEMS_ID_NONE;
341
341
342 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
342 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
343 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
343 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
344
344
345 status = get_message_queue_id_send( &queue_id );
345 status = get_message_queue_id_send( &queue_id );
346 if (status != RTEMS_SUCCESSFUL)
346 if (status != RTEMS_SUCCESSFUL)
347 {
347 {
348 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
348 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
349 }
349 }
350
350
351 BOOT_PRINTF("in WFRM ***\n");
351 BOOT_PRINTF("in WFRM ***\n");
352
352
353 while(1){
353 while(1){
354 // wait for an RTEMS_EVENT
354 // wait for an RTEMS_EVENT
355 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
355 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
356 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
356 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
357
357
358 if (event_out == RTEMS_EVENT_MODE_NORMAL)
358 if (event_out == RTEMS_EVENT_MODE_NORMAL)
359 {
359 {
360 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
360 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
361 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
361 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
362 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
362 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
363 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
363 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
364 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
364 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
365 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
365 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
366 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
366 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
367 }
367 }
368 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
368 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
369 {
369 {
370 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
370 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
371 }
371 }
372 }
372 }
373 }
373 }
374
374
375 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
375 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
376 {
376 {
377 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
377 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
378 *
378 *
379 * @param unused is the starting argument of the RTEMS task
379 * @param unused is the starting argument of the RTEMS task
380 *
380 *
381 * The following data packet is sent by this task:
381 * The following data packet is sent by this task:
382 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
382 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
383 *
383 *
384 */
384 */
385
385
386 rtems_event_set event_out;
386 rtems_event_set event_out;
387 rtems_id queue_id;
387 rtems_id queue_id;
388 rtems_status_code status;
388 rtems_status_code status;
389 ring_node ring_node_cwf3_light;
389 ring_node ring_node_cwf3_light;
390 ring_node *ring_node_to_send_cwf;
390 ring_node *ring_node_to_send_cwf;
391
391
392 event_out = EVENT_SETS_NONE_PENDING;
392 event_out = EVENT_SETS_NONE_PENDING;
393 queue_id = RTEMS_ID_NONE;
393 queue_id = RTEMS_ID_NONE;
394
394
395 status = get_message_queue_id_send( &queue_id );
395 status = get_message_queue_id_send( &queue_id );
396 if (status != RTEMS_SUCCESSFUL)
396 if (status != RTEMS_SUCCESSFUL)
397 {
397 {
398 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
398 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
399 }
399 }
400
400
401 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
401 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
402
402
403 // init the ring_node_cwf3_light structure
403 // init the ring_node_cwf3_light structure
404 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
404 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
405 ring_node_cwf3_light.coarseTime = INIT_CHAR;
405 ring_node_cwf3_light.coarseTime = INIT_CHAR;
406 ring_node_cwf3_light.fineTime = INIT_CHAR;
406 ring_node_cwf3_light.fineTime = INIT_CHAR;
407 ring_node_cwf3_light.next = NULL;
407 ring_node_cwf3_light.next = NULL;
408 ring_node_cwf3_light.previous = NULL;
408 ring_node_cwf3_light.previous = NULL;
409 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
409 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
410 ring_node_cwf3_light.status = INIT_CHAR;
410 ring_node_cwf3_light.status = INIT_CHAR;
411
411
412 BOOT_PRINTF("in CWF3 ***\n");
412 BOOT_PRINTF("in CWF3 ***\n");
413
413
414 while(1){
414 while(1){
415 // wait for an RTEMS_EVENT
415 // wait for an RTEMS_EVENT
416 rtems_event_receive( RTEMS_EVENT_0,
416 rtems_event_receive( RTEMS_EVENT_0,
417 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
417 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
418 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
418 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
419 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
419 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
420 {
420 {
421 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
421 ring_node_to_send_cwf = getRingNodeToSendCWF( CHANNELF3 );
422 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
422 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & BIT_CWF_LONG_F3) == BIT_CWF_LONG_F3)
423 {
423 {
424 PRINTF("send CWF_LONG_F3\n");
424 PRINTF("send CWF_LONG_F3\n");
425 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
425 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
426 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
426 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
427 }
427 }
428 else
428 else
429 {
429 {
430 PRINTF("send CWF_F3 (light)\n");
430 PRINTF("send CWF_F3 (light)\n");
431 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
431 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
432 }
432 }
433
433
434 }
434 }
435 else
435 else
436 {
436 {
437 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
437 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
438 }
438 }
439 }
439 }
440 }
440 }
441
441
442 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
442 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
443 {
443 {
444 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
444 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
445 *
445 *
446 * @param unused is the starting argument of the RTEMS task
446 * @param unused is the starting argument of the RTEMS task
447 *
447 *
448 * The following data packet is sent by this function:
448 * The following data packet is sent by this function:
449 * - TM_LFR_SCIENCE_BURST_CWF_F2
449 * - TM_LFR_SCIENCE_BURST_CWF_F2
450 * - TM_LFR_SCIENCE_SBM2_CWF_F2
450 * - TM_LFR_SCIENCE_SBM2_CWF_F2
451 *
451 *
452 */
452 */
453
453
454 rtems_event_set event_out;
454 rtems_event_set event_out;
455 rtems_id queue_id;
455 rtems_id queue_id;
456 rtems_status_code status;
456 rtems_status_code status;
457 ring_node *ring_node_to_send;
457 ring_node *ring_node_to_send;
458 unsigned long long int acquisitionTimeF0_asLong;
458 unsigned long long int acquisitionTimeF0_asLong;
459
459
460 event_out = EVENT_SETS_NONE_PENDING;
460 event_out = EVENT_SETS_NONE_PENDING;
461 queue_id = RTEMS_ID_NONE;
461 queue_id = RTEMS_ID_NONE;
462
462
463 acquisitionTimeF0_asLong = INIT_CHAR;
463 acquisitionTimeF0_asLong = INIT_CHAR;
464
464
465 status = get_message_queue_id_send( &queue_id );
465 status = get_message_queue_id_send( &queue_id );
466 if (status != RTEMS_SUCCESSFUL)
466 if (status != RTEMS_SUCCESSFUL)
467 {
467 {
468 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
468 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
469 }
469 }
470
470
471 BOOT_PRINTF("in CWF2 ***\n");
471 BOOT_PRINTF("in CWF2 ***\n");
472
472
473 while(1){
473 while(1){
474 // wait for an RTEMS_EVENT// send the snapshot when built
474 // wait for an RTEMS_EVENT// send the snapshot when built
475 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
475 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
476 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
476 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
477 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
477 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
478 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
478 ring_node_to_send = getRingNodeToSendCWF( CHANNELF2 );
479 if (event_out == RTEMS_EVENT_MODE_BURST)
479 if (event_out == RTEMS_EVENT_MODE_BURST)
480 { // data are sent whatever the transition time
480 { // data are sent whatever the transition time
481 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
481 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
482 }
482 }
483 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
483 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
484 {
484 {
485 if ( lfrCurrentMode == LFR_MODE_SBM2 )
485 if ( lfrCurrentMode == LFR_MODE_SBM2 )
486 {
486 {
487 // data are sent depending on the transition time
487 // data are sent depending on the transition time
488 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
488 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
489 {
489 {
490 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
490 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
491 }
491 }
492 }
492 }
493 // launch snapshot extraction if needed
493 // launch snapshot extraction if needed
494 if (extractSWF2 == true)
494 if (extractSWF2 == true)
495 {
495 {
496 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
496 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
497 // extract the snapshot
497 // extract the snapshot
498 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
498 build_snapshot_from_ring( ring_node_to_send_swf_f2, CHANNELF2, acquisitionTimeF0_asLong,
499 &ring_node_swf2_extracted, swf2_extracted );
499 &ring_node_swf2_extracted, swf2_extracted );
500 extractSWF2 = false;
500 extractSWF2 = false;
501 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
501 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
502 }
502 }
503 if (swf0_ready_flag_f2 == true)
503 if (swf0_ready_flag_f2 == true)
504 {
504 {
505 extractSWF2 = true;
505 extractSWF2 = true;
506 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
506 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
507 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
507 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
508 swf0_ready_flag_f2 = false;
508 swf0_ready_flag_f2 = false;
509 }
509 }
510 }
510 }
511 }
511 }
512 }
512 }
513
513
514 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
514 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
515 {
515 {
516 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
516 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
517 *
517 *
518 * @param unused is the starting argument of the RTEMS task
518 * @param unused is the starting argument of the RTEMS task
519 *
519 *
520 * The following data packet is sent by this function:
520 * The following data packet is sent by this function:
521 * - TM_LFR_SCIENCE_SBM1_CWF_F1
521 * - TM_LFR_SCIENCE_SBM1_CWF_F1
522 *
522 *
523 */
523 */
524
524
525 rtems_event_set event_out;
525 rtems_event_set event_out;
526 rtems_id queue_id;
526 rtems_id queue_id;
527 rtems_status_code status;
527 rtems_status_code status;
528
528
529 ring_node *ring_node_to_send_cwf;
529 ring_node *ring_node_to_send_cwf;
530
530
531 event_out = EVENT_SETS_NONE_PENDING;
531 event_out = EVENT_SETS_NONE_PENDING;
532 queue_id = RTEMS_ID_NONE;
532 queue_id = RTEMS_ID_NONE;
533
533
534 status = get_message_queue_id_send( &queue_id );
534 status = get_message_queue_id_send( &queue_id );
535 if (status != RTEMS_SUCCESSFUL)
535 if (status != RTEMS_SUCCESSFUL)
536 {
536 {
537 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
537 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
538 }
538 }
539
539
540 BOOT_PRINTF("in CWF1 ***\n");
540 BOOT_PRINTF("in CWF1 ***\n");
541
541
542 while(1){
542 while(1){
543 // wait for an RTEMS_EVENT
543 // wait for an RTEMS_EVENT
544 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
544 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
545 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
545 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
546 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
546 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
547 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
547 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
548 if (lfrCurrentMode == LFR_MODE_SBM1)
548 if (lfrCurrentMode == LFR_MODE_SBM1)
549 {
549 {
550 // data are sent depending on the transition time
550 // data are sent depending on the transition time
551 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
551 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
552 {
552 {
553 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
553 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
554 }
554 }
555 }
555 }
556 // launch snapshot extraction if needed
556 // launch snapshot extraction if needed
557 if (extractSWF1 == true)
557 if (extractSWF1 == true)
558 {
558 {
559 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
559 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
560 // launch the snapshot extraction
560 // launch the snapshot extraction
561 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
561 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
562 extractSWF1 = false;
562 extractSWF1 = false;
563 }
563 }
564 if (swf0_ready_flag_f1 == true)
564 if (swf0_ready_flag_f1 == true)
565 {
565 {
566 extractSWF1 = true;
566 extractSWF1 = true;
567 swf0_ready_flag_f1 = false; // this step shall be executed only one time
567 swf0_ready_flag_f1 = false; // this step shall be executed only one time
568 }
568 }
569 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
569 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
570 {
570 {
571 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
571 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
572 swf1_ready = false;
572 swf1_ready = false;
573 swf2_ready = false;
573 swf2_ready = false;
574 }
574 }
575 }
575 }
576 }
576 }
577
577
578 rtems_task swbd_task(rtems_task_argument argument)
578 rtems_task swbd_task(rtems_task_argument argument)
579 {
579 {
580 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
580 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
581 *
581 *
582 * @param unused is the starting argument of the RTEMS task
582 * @param unused is the starting argument of the RTEMS task
583 *
583 *
584 */
584 */
585
585
586 rtems_event_set event_out;
586 rtems_event_set event_out;
587 unsigned long long int acquisitionTimeF0_asLong;
587 unsigned long long int acquisitionTimeF0_asLong;
588
588
589 event_out = EVENT_SETS_NONE_PENDING;
589 event_out = EVENT_SETS_NONE_PENDING;
590 acquisitionTimeF0_asLong = INIT_CHAR;
590 acquisitionTimeF0_asLong = INIT_CHAR;
591
591
592 BOOT_PRINTF("in SWBD ***\n")
592 BOOT_PRINTF("in SWBD ***\n")
593
593
594 while(1){
594 while(1){
595 // wait for an RTEMS_EVENT
595 // wait for an RTEMS_EVENT
596 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
596 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
597 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
597 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
598 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
598 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
599 {
599 {
600 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
600 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
601 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
601 build_snapshot_from_ring( ring_node_to_send_swf_f1, CHANNELF1, acquisitionTimeF0_asLong,
602 &ring_node_swf1_extracted, swf1_extracted );
602 &ring_node_swf1_extracted, swf1_extracted );
603 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
603 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
604 }
604 }
605 else
605 else
606 {
606 {
607 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
607 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
608 }
608 }
609 }
609 }
610 }
610 }
611
611
612 //******************
612 //******************
613 // general functions
613 // general functions
614
614
615 void WFP_init_rings( void )
615 void WFP_init_rings( void )
616 {
616 {
617 // F0 RING
617 // F0 RING
618 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
618 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
619 // F1 RING
619 // F1 RING
620 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
620 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
621 // F2 RING
621 // F2 RING
622 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
622 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
623 // F3 RING
623 // F3 RING
624 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
624 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
625
625
626 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
626 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
627 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
627 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
628
628
629 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
629 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
630 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
630 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
631 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
631 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
632 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
632 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
633 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
633 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
634 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
634 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
635 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
635 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
636 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
636 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
637
637
638 }
638 }
639
639
640 void WFP_reset_current_ring_nodes( void )
640 void WFP_reset_current_ring_nodes( void )
641 {
641 {
642 current_ring_node_f0 = waveform_ring_f0[0].next;
642 current_ring_node_f0 = waveform_ring_f0[0].next;
643 current_ring_node_f1 = waveform_ring_f1[0].next;
643 current_ring_node_f1 = waveform_ring_f1[0].next;
644 current_ring_node_f2 = waveform_ring_f2[0].next;
644 current_ring_node_f2 = waveform_ring_f2[0].next;
645 current_ring_node_f3 = waveform_ring_f3[0].next;
645 current_ring_node_f3 = waveform_ring_f3[0].next;
646
646
647 ring_node_to_send_swf_f0 = waveform_ring_f0;
647 ring_node_to_send_swf_f0 = waveform_ring_f0;
648 ring_node_to_send_swf_f1 = waveform_ring_f1;
648 ring_node_to_send_swf_f1 = waveform_ring_f1;
649 ring_node_to_send_swf_f2 = waveform_ring_f2;
649 ring_node_to_send_swf_f2 = waveform_ring_f2;
650
650
651 ring_node_to_send_cwf_f1 = waveform_ring_f1;
651 ring_node_to_send_cwf_f1 = waveform_ring_f1;
652 ring_node_to_send_cwf_f2 = waveform_ring_f2;
652 ring_node_to_send_cwf_f2 = waveform_ring_f2;
653 ring_node_to_send_cwf_f3 = waveform_ring_f3;
653 ring_node_to_send_cwf_f3 = waveform_ring_f3;
654 }
654 }
655
655
656 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
656 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
657 {
657 {
658 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
658 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
659 *
659 *
660 * @param waveform points to the buffer containing the data that will be send.
660 * @param waveform points to the buffer containing the data that will be send.
661 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
661 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
662 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
662 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
663 * contain information to setup the transmission of the data packets.
663 * contain information to setup the transmission of the data packets.
664 *
664 *
665 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
665 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
666 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
666 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
667 *
667 *
668 */
668 */
669
669
670 unsigned int i;
670 unsigned int i;
671 unsigned int j;
671 unsigned int j;
672 int ret;
672 int ret;
673 rtems_status_code status;
673 rtems_status_code status;
674
674
675 char *sample;
675 char *sample;
676 int *dataPtr;
676 int *dataPtr;
677
677
678 ret = LFR_DEFAULT;
678 ret = LFR_DEFAULT;
679
679
680 dataPtr = (int*) ring_node_to_send->buffer_address;
680 dataPtr = (int*) ring_node_to_send->buffer_address;
681
681
682 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
682 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
683 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
683 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
684
684
685 //**********************
685 //**********************
686 // BUILD CWF3_light DATA
686 // BUILD CWF3_light DATA
687 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
687 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
688 {
688 {
689 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
689 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
690 for (j=0; j < CWF_BLK_SIZE; j++)
690 for (j=0; j < CWF_BLK_SIZE; j++)
691 {
691 {
692 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
692 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + j] = sample[ j ];
693 }
693 }
694 }
694 }
695
695
696 // SEND PACKET
696 // SEND PACKET
697 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
697 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
698 if (status != RTEMS_SUCCESSFUL) {
698 if (status != RTEMS_SUCCESSFUL) {
699 ret = LFR_DEFAULT;
699 ret = LFR_DEFAULT;
700 }
700 }
701
701
702 return ret;
702 return ret;
703 }
703 }
704
704
705 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
705 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
706 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
706 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
707 {
707 {
708 unsigned long long int acquisitionTimeAsLong;
708 unsigned long long int acquisitionTimeAsLong;
709 unsigned char localAcquisitionTime[BYTES_PER_TIME];
709 unsigned char localAcquisitionTime[BYTES_PER_TIME];
710 double deltaT;
710 double deltaT;
711
711
712 deltaT = INIT_FLOAT;
712 deltaT = INIT_FLOAT;
713
713
714 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
714 localAcquisitionTime[BYTE_0] = (unsigned char) ( coarseTime >> SHIFT_3_BYTES );
715 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
715 localAcquisitionTime[BYTE_1] = (unsigned char) ( coarseTime >> SHIFT_2_BYTES );
716 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
716 localAcquisitionTime[BYTE_2] = (unsigned char) ( coarseTime >> SHIFT_1_BYTE );
717 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
717 localAcquisitionTime[BYTE_3] = (unsigned char) ( coarseTime );
718 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
718 localAcquisitionTime[BYTE_4] = (unsigned char) ( fineTime >> SHIFT_1_BYTE );
719 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
719 localAcquisitionTime[BYTE_5] = (unsigned char) ( fineTime );
720
720
721 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
721 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[BYTE_0] << SHIFT_5_BYTES )
722 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
722 + ( (unsigned long long int) localAcquisitionTime[BYTE_1] << SHIFT_4_BYTES )
723 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
723 + ( (unsigned long long int) localAcquisitionTime[BYTE_2] << SHIFT_3_BYTES )
724 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
724 + ( (unsigned long long int) localAcquisitionTime[BYTE_3] << SHIFT_2_BYTES )
725 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
725 + ( (unsigned long long int) localAcquisitionTime[BYTE_4] << SHIFT_1_BYTE )
726 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
726 + ( (unsigned long long int) localAcquisitionTime[BYTE_5] );
727
727
728 switch( sid )
728 switch( sid )
729 {
729 {
730 case SID_NORM_SWF_F0:
730 case SID_NORM_SWF_F0:
731 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
731 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T0_IN_FINETIME ;
732 break;
732 break;
733
733
734 case SID_NORM_SWF_F1:
734 case SID_NORM_SWF_F1:
735 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
735 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T1_IN_FINETIME ;
736 break;
736 break;
737
737
738 case SID_NORM_SWF_F2:
738 case SID_NORM_SWF_F2:
739 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
739 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * T2_IN_FINETIME ;
740 break;
740 break;
741
741
742 case SID_SBM1_CWF_F1:
742 case SID_SBM1_CWF_F1:
743 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
743 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T1_IN_FINETIME ;
744 break;
744 break;
745
745
746 case SID_SBM2_CWF_F2:
746 case SID_SBM2_CWF_F2:
747 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
747 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
748 break;
748 break;
749
749
750 case SID_BURST_CWF_F2:
750 case SID_BURST_CWF_F2:
751 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
751 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T2_IN_FINETIME ;
752 break;
752 break;
753
753
754 case SID_NORM_CWF_F3:
754 case SID_NORM_CWF_F3:
755 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
755 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * T3_IN_FINETIME ;
756 break;
756 break;
757
757
758 case SID_NORM_CWF_LONG_F3:
758 case SID_NORM_CWF_LONG_F3:
759 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
759 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * T3_IN_FINETIME ;
760 break;
760 break;
761
761
762 default:
762 default:
763 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
763 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
764 deltaT = 0.;
764 deltaT = 0.;
765 break;
765 break;
766 }
766 }
767
767
768 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
768 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
769 //
769 //
770 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
770 acquisitionTime[BYTE_0] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_5_BYTES);
771 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
771 acquisitionTime[BYTE_1] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_4_BYTES);
772 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
772 acquisitionTime[BYTE_2] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_3_BYTES);
773 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
773 acquisitionTime[BYTE_3] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_2_BYTES);
774 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
774 acquisitionTime[BYTE_4] = (unsigned char) (acquisitionTimeAsLong >> SHIFT_1_BYTE );
775 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
775 acquisitionTime[BYTE_5] = (unsigned char) (acquisitionTimeAsLong );
776
776
777 }
777 }
778
778
779 void build_snapshot_from_ring( ring_node *ring_node_to_send,
779 void build_snapshot_from_ring( ring_node *ring_node_to_send,
780 unsigned char frequencyChannel,
780 unsigned char frequencyChannel,
781 unsigned long long int acquisitionTimeF0_asLong,
781 unsigned long long int acquisitionTimeF0_asLong,
782 ring_node *ring_node_swf_extracted,
782 ring_node *ring_node_swf_extracted,
783 int *swf_extracted)
783 int *swf_extracted)
784 {
784 {
785 unsigned int i;
785 unsigned int i;
786 unsigned int node;
786 unsigned int node;
787 unsigned long long int centerTime_asLong;
787 unsigned long long int centerTime_asLong;
788 unsigned long long int acquisitionTime_asLong;
788 unsigned long long int acquisitionTime_asLong;
789 unsigned long long int bufferAcquisitionTime_asLong;
789 unsigned long long int bufferAcquisitionTime_asLong;
790 unsigned char *ptr1;
790 unsigned char *ptr1;
791 unsigned char *ptr2;
791 unsigned char *ptr2;
792 unsigned char *timeCharPtr;
792 unsigned char *timeCharPtr;
793 unsigned char nb_ring_nodes;
793 unsigned char nb_ring_nodes;
794 unsigned long long int frequency_asLong;
794 unsigned long long int frequency_asLong;
795 unsigned long long int nbTicksPerSample_asLong;
795 unsigned long long int nbTicksPerSample_asLong;
796 unsigned long long int nbSamplesPart1_asLong;
796 unsigned long long int nbSamplesPart1_asLong;
797 unsigned long long int sampleOffset_asLong;
797 unsigned long long int sampleOffset_asLong;
798
798
799 unsigned int deltaT_F0;
799 unsigned int deltaT_F0;
800 unsigned int deltaT_F1;
800 unsigned int deltaT_F1;
801 unsigned long long int deltaT_F2;
801 unsigned long long int deltaT_F2;
802
802
803 deltaT_F0 = DELTAT_F0;
803 deltaT_F0 = DELTAT_F0;
804 deltaT_F1 = DELTAF_F1;
804 deltaT_F1 = DELTAF_F1;
805 deltaT_F2 = DELTAF_F2;
805 deltaT_F2 = DELTAF_F2;
806 sampleOffset_asLong = INIT_CHAR;
806 sampleOffset_asLong = INIT_CHAR;
807
807
808 // (1) get the f0 acquisition time => the value is passed in argument
808 // (1) get the f0 acquisition time => the value is passed in argument
809
809
810 // (2) compute the central reference time
810 // (2) compute the central reference time
811 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
811 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
812 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
812 acquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
813 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
813 bufferAcquisitionTime_asLong = centerTime_asLong; //set to default value (Don_Initialisation_P2)
814 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
814 nbTicksPerSample_asLong = TICKS_PER_T2; //set to default value (Don_Initialisation_P2)
815
815
816 // (3) compute the acquisition time of the current snapshot
816 // (3) compute the acquisition time of the current snapshot
817 switch(frequencyChannel)
817 switch(frequencyChannel)
818 {
818 {
819 case CHANNELF1: // 1 is for F1 = 4096 Hz
819 case CHANNELF1: // 1 is for F1 = 4096 Hz
820 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
820 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
821 nb_ring_nodes = NB_RING_NODES_F1;
821 nb_ring_nodes = NB_RING_NODES_F1;
822 frequency_asLong = FREQ_F1;
822 frequency_asLong = FREQ_F1;
823 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
823 nbTicksPerSample_asLong = TICKS_PER_T1; // 65536 / 4096;
824 break;
824 break;
825 case CHANNELF2: // 2 is for F2 = 256 Hz
825 case CHANNELF2: // 2 is for F2 = 256 Hz
826 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
826 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
827 nb_ring_nodes = NB_RING_NODES_F2;
827 nb_ring_nodes = NB_RING_NODES_F2;
828 frequency_asLong = FREQ_F2;
828 frequency_asLong = FREQ_F2;
829 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
829 nbTicksPerSample_asLong = TICKS_PER_T2; // 65536 / 256;
830 break;
830 break;
831 default:
831 default:
832 acquisitionTime_asLong = centerTime_asLong;
832 acquisitionTime_asLong = centerTime_asLong;
833 nb_ring_nodes = 0;
833 nb_ring_nodes = 0;
834 frequency_asLong = FREQ_F2;
834 frequency_asLong = FREQ_F2;
835 nbTicksPerSample_asLong = TICKS_PER_T2;
835 nbTicksPerSample_asLong = TICKS_PER_T2;
836 break;
836 break;
837 }
837 }
838
838
839 //*****************************************************************************
839 //*****************************************************************************
840 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
840 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
841 node = 0;
841 node = 0;
842 while ( node < nb_ring_nodes)
842 while ( node < nb_ring_nodes)
843 {
843 {
844 //PRINTF1("%d ... ", node);
844 //PRINTF1("%d ... ", node);
845 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
845 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
846 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
846 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
847 {
847 {
848 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
848 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
849 node = nb_ring_nodes;
849 node = nb_ring_nodes;
850 }
850 }
851 else
851 else
852 {
852 {
853 node = node + 1;
853 node = node + 1;
854 ring_node_to_send = ring_node_to_send->previous;
854 ring_node_to_send = ring_node_to_send->previous;
855 }
855 }
856 }
856 }
857
857
858 // (5) compute the number of samples to take in the current buffer
858 // (5) compute the number of samples to take in the current buffer
859 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
859 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> SHIFT_2_BYTES;
860 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
860 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
861 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
861 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
862
862
863 // (6) compute the final acquisition time
863 // (6) compute the final acquisition time
864 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
864 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
865 (sampleOffset_asLong * nbTicksPerSample_asLong);
865 (sampleOffset_asLong * nbTicksPerSample_asLong);
866
866
867 // (7) copy the acquisition time at the beginning of the extrated snapshot
867 // (7) copy the acquisition time at the beginning of the extrated snapshot
868 ptr1 = (unsigned char*) &acquisitionTime_asLong;
868 ptr1 = (unsigned char*) &acquisitionTime_asLong;
869 // fine time
869 // fine time
870 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
870 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
871 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
871 ptr2[BYTE_2] = ptr1[ BYTE_4 + OFFSET_2_BYTES ];
872 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
872 ptr2[BYTE_3] = ptr1[ BYTE_5 + OFFSET_2_BYTES ];
873 // coarse time
873 // coarse time
874 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
874 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
875 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
875 ptr2[BYTE_0] = ptr1[ BYTE_0 + OFFSET_2_BYTES ];
876 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
876 ptr2[BYTE_1] = ptr1[ BYTE_1 + OFFSET_2_BYTES ];
877 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
877 ptr2[BYTE_2] = ptr1[ BYTE_2 + OFFSET_2_BYTES ];
878 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
878 ptr2[BYTE_3] = ptr1[ BYTE_3 + OFFSET_2_BYTES ];
879
879
880 // re set the synchronization bit
880 // re set the synchronization bit
881 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
881 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
882 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
882 ptr2[0] = ptr2[0] | (timeCharPtr[0] & SYNC_BIT); // [1000 0000]
883
883
884 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
884 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
885 {
885 {
886 nbSamplesPart1_asLong = 0;
886 nbSamplesPart1_asLong = 0;
887 }
887 }
888 // copy the part 1 of the snapshot in the extracted buffer
888 // copy the part 1 of the snapshot in the extracted buffer
889 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
889 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
890 {
890 {
891 swf_extracted[i] =
891 swf_extracted[i] =
892 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
892 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
893 }
893 }
894 // copy the part 2 of the snapshot in the extracted buffer
894 // copy the part 2 of the snapshot in the extracted buffer
895 ring_node_to_send = ring_node_to_send->next;
895 ring_node_to_send = ring_node_to_send->next;
896 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
896 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
897 {
897 {
898 swf_extracted[i] =
898 swf_extracted[i] =
899 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
899 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
900 }
900 }
901 }
901 }
902
902
903 double computeCorrection( unsigned char *timePtr )
903 double computeCorrection( unsigned char *timePtr )
904 {
904 {
905 unsigned long long int acquisitionTime;
905 unsigned long long int acquisitionTime;
906 unsigned long long int centerTime;
906 unsigned long long int centerTime;
907 unsigned long long int previousTick;
907 unsigned long long int previousTick;
908 unsigned long long int nextTick;
908 unsigned long long int nextTick;
909 unsigned long long int deltaPreviousTick;
909 unsigned long long int deltaPreviousTick;
910 unsigned long long int deltaNextTick;
910 unsigned long long int deltaNextTick;
911 double deltaPrevious_ms;
911 double deltaPrevious_ms;
912 double deltaNext_ms;
912 double deltaNext_ms;
913 double correctionInF2;
913 double correctionInF2;
914
914
915 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
915 correctionInF2 = 0; //set to default value (Don_Initialisation_P2)
916
916
917 // get acquisition time in fine time ticks
917 // get acquisition time in fine time ticks
918 acquisitionTime = get_acquisition_time( timePtr );
918 acquisitionTime = get_acquisition_time( timePtr );
919
919
920 // compute center time
920 // compute center time
921 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
921 centerTime = acquisitionTime + DELTAT_F0; // (2048. / 24576. / 2.) * 65536. = 2730.667;
922 previousTick = centerTime - (centerTime & INT16_ALL_F);
922 previousTick = centerTime - (centerTime & INT16_ALL_F);
923 nextTick = previousTick + TICKS_PER_S;
923 nextTick = previousTick + TICKS_PER_S;
924
924
925 deltaPreviousTick = centerTime - previousTick;
925 deltaPreviousTick = centerTime - previousTick;
926 deltaNextTick = nextTick - centerTime;
926 deltaNextTick = nextTick - centerTime;
927
927
928 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
928 deltaPrevious_ms = (((double) deltaPreviousTick) / TICKS_PER_S) * MS_PER_S;
929 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
929 deltaNext_ms = (((double) deltaNextTick) / TICKS_PER_S) * MS_PER_S;
930
930
931 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
931 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
932
932
933 // which tick is the closest?
933 // which tick is the closest?
934 if (deltaPreviousTick > deltaNextTick)
934 if (deltaPreviousTick > deltaNextTick)
935 {
935 {
936 // the snapshot center is just before the second => increase delta_snapshot
936 // the snapshot center is just before the second => increase delta_snapshot
937 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
937 correctionInF2 = + (deltaNext_ms * FREQ_F2 / MS_PER_S );
938 }
938 }
939 else
939 else
940 {
940 {
941 // the snapshot center is just after the second => decrease delta_snapshot
941 // the snapshot center is just after the second => decrease delta_snapshot
942 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
942 correctionInF2 = - (deltaPrevious_ms * FREQ_F2 / MS_PER_S );
943 }
943 }
944
944
945 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
945 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
946
946
947 return correctionInF2;
947 return correctionInF2;
948 }
948 }
949
949
950 void applyCorrection( double correction )
950 void applyCorrection( double correction )
951 {
951 {
952 int correctionInt;
952 int correctionInt;
953
953
954 correctionInt = 0;
954 correctionInt = 0;
955
955
956 if (correction >= 0.)
956 if (correction >= 0.)
957 {
957 {
958 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
958 if ( (ONE_TICK_CORR_INTERVAL_0_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_0_MAX) )
959 {
959 {
960 correctionInt = ONE_TICK_CORR;
960 correctionInt = ONE_TICK_CORR;
961 }
961 }
962 else
962 else
963 {
963 {
964 correctionInt = CORR_MULT * floor(correction);
964 correctionInt = CORR_MULT * floor(correction);
965 }
965 }
966 }
966 }
967 else
967 else
968 {
968 {
969 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
969 if ( (ONE_TICK_CORR_INTERVAL_1_MIN < correction) && (correction < ONE_TICK_CORR_INTERVAL_1_MAX) )
970 {
970 {
971 correctionInt = -ONE_TICK_CORR;
971 correctionInt = -ONE_TICK_CORR;
972 }
972 }
973 else
973 else
974 {
974 {
975 correctionInt = CORR_MULT * ceil(correction);
975 correctionInt = CORR_MULT * ceil(correction);
976 }
976 }
977 }
977 }
978 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
978 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
979 }
979 }
980
980
981 void snapshot_resynchronization( unsigned char *timePtr )
981 void snapshot_resynchronization( unsigned char *timePtr )
982 {
982 {
983 /** This function compute a correction to apply on delta_snapshot.
983 /** This function compute a correction to apply on delta_snapshot.
984 *
984 *
985 *
985 *
986 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
986 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
987 *
987 *
988 * @return void
988 * @return void
989 *
989 *
990 */
990 */
991
991
992 static double correction = INIT_FLOAT;
992 static double correction = INIT_FLOAT;
993 static resynchro_state state = MEASURE;
993 static resynchro_state state = MEASURE;
994 static unsigned int nbSnapshots = 0;
994 static unsigned int nbSnapshots = 0;
995
995
996 int correctionInt;
996 int correctionInt;
997
997
998 correctionInt = 0;
998 correctionInt = 0;
999
999
1000 switch (state)
1000 switch (state)
1001 {
1001 {
1002
1002
1003 case MEASURE:
1003 case MEASURE:
1004 // ********
1004 // ********
1005 PRINTF1("MEASURE === %d\n", nbSnapshots);
1005 PRINTF1("MEASURE === %d\n", nbSnapshots);
1006 state = CORRECTION;
1006 state = CORRECTION;
1007 correction = computeCorrection( timePtr );
1007 correction = computeCorrection( timePtr );
1008 PRINTF1("MEASURE === correction = %.2f\n", correction );
1008 PRINTF1("MEASURE === correction = %.2f\n", correction );
1009 applyCorrection( correction );
1009 applyCorrection( correction );
1010 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1010 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1011 //****
1011 //****
1012 break;
1012 break;
1013
1013
1014 case CORRECTION:
1014 case CORRECTION:
1015 //************
1015 //************
1016 PRINTF1("CORRECTION === %d\n", nbSnapshots);
1016 PRINTF1("CORRECTION === %d\n", nbSnapshots);
1017 state = MEASURE;
1017 state = MEASURE;
1018 computeCorrection( timePtr );
1018 computeCorrection( timePtr );
1019 set_wfp_delta_snapshot();
1019 set_wfp_delta_snapshot();
1020 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1020 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
1021 //****
1021 //****
1022 break;
1022 break;
1023
1023
1024 default:
1024 default:
1025 break;
1025 break;
1026
1026
1027 }
1027 }
1028
1028
1029 nbSnapshots++;
1029 nbSnapshots++;
1030 }
1030 }
1031
1031
1032 //**************
1032 //**************
1033 // wfp registers
1033 // wfp registers
1034 void reset_wfp_burst_enable( void )
1034 void reset_wfp_burst_enable( void )
1035 {
1035 {
1036 /** This function resets the waveform picker burst_enable register.
1036 /** This function resets the waveform picker burst_enable register.
1037 *
1037 *
1038 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1038 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1039 *
1039 *
1040 */
1040 */
1041
1041
1042 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1042 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1043 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1043 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & RST_BITS_RUN_BURST_EN;
1044 }
1044 }
1045
1045
1046 void reset_wfp_status( void )
1046 void reset_wfp_status( void )
1047 {
1047 {
1048 /** This function resets the waveform picker status register.
1048 /** This function resets the waveform picker status register.
1049 *
1049 *
1050 * All status bits are set to 0 [new_err full_err full].
1050 * All status bits are set to 0 [new_err full_err full].
1051 *
1051 *
1052 */
1052 */
1053
1053
1054 waveform_picker_regs->status = INT16_ALL_F;
1054 waveform_picker_regs->status = INT16_ALL_F;
1055 }
1055 }
1056
1056
1057 void reset_wfp_buffer_addresses( void )
1057 void reset_wfp_buffer_addresses( void )
1058 {
1058 {
1059 // F0
1059 // F0
1060 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1060 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1061 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1061 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1062 // F1
1062 // F1
1063 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1063 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1064 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1064 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1065 // F2
1065 // F2
1066 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1066 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1067 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1067 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1068 // F3
1068 // F3
1069 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1069 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1070 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1070 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1071 }
1071 }
1072
1072
1073 void reset_waveform_picker_regs( void )
1073 void reset_waveform_picker_regs( void )
1074 {
1074 {
1075 /** This function resets the waveform picker module registers.
1075 /** This function resets the waveform picker module registers.
1076 *
1076 *
1077 * The registers affected by this function are located at the following offset addresses:
1077 * The registers affected by this function are located at the following offset addresses:
1078 * - 0x00 data_shaping
1078 * - 0x00 data_shaping
1079 * - 0x04 run_burst_enable
1079 * - 0x04 run_burst_enable
1080 * - 0x08 addr_data_f0
1080 * - 0x08 addr_data_f0
1081 * - 0x0C addr_data_f1
1081 * - 0x0C addr_data_f1
1082 * - 0x10 addr_data_f2
1082 * - 0x10 addr_data_f2
1083 * - 0x14 addr_data_f3
1083 * - 0x14 addr_data_f3
1084 * - 0x18 status
1084 * - 0x18 status
1085 * - 0x1C delta_snapshot
1085 * - 0x1C delta_snapshot
1086 * - 0x20 delta_f0
1086 * - 0x20 delta_f0
1087 * - 0x24 delta_f0_2
1087 * - 0x24 delta_f0_2
1088 * - 0x28 delta_f1 (obsolet parameter)
1088 * - 0x28 delta_f1 (obsolet parameter)
1089 * - 0x2c delta_f2
1089 * - 0x2c delta_f2
1090 * - 0x30 nb_data_by_buffer
1090 * - 0x30 nb_data_by_buffer
1091 * - 0x34 nb_snapshot_param
1091 * - 0x34 nb_snapshot_param
1092 * - 0x38 start_date
1092 * - 0x38 start_date
1093 * - 0x3c nb_word_in_buffer
1093 * - 0x3c nb_word_in_buffer
1094 *
1094 *
1095 */
1095 */
1096
1096
1097 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1097 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1098
1098
1099 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1099 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1100
1100
1101 reset_wfp_buffer_addresses();
1101 reset_wfp_buffer_addresses();
1102
1102
1103 reset_wfp_status(); // 0x18
1103 reset_wfp_status(); // 0x18
1104
1104
1105 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1105 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1106
1106
1107 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1107 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1108
1108
1109 //the parameter delta_f1 [0x28] is not used anymore
1109 //the parameter delta_f1 [0x28] is not used anymore
1110
1110
1111 set_wfp_delta_f2(); // 0x2c
1111 set_wfp_delta_f2(); // 0x2c
1112
1112
1113 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1113 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1114 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1114 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1115 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1115 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1116 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1116 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1117 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1117 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1118 // 2688 = 8 * 336
1118 // 2688 = 8 * 336
1119 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1119 waveform_picker_regs->nb_data_by_buffer = DFLT_WFP_NB_DATA_BY_BUFFER; // 0x30 *** 2688 - 1 => nb samples -1
1120 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1120 waveform_picker_regs->snapshot_param = DFLT_WFP_SNAPSHOT_PARAM; // 0x34 *** 2688 => nb samples
1121 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1121 waveform_picker_regs->start_date = COARSE_TIME_MASK;
1122 //
1122 //
1123 // coarse time and fine time registers are not initialized, they are volatile
1123 // coarse time and fine time registers are not initialized, they are volatile
1124 //
1124 //
1125 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1125 waveform_picker_regs->buffer_length = DFLT_WFP_BUFFER_LENGTH; // buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1126 }
1126 }
1127
1127
1128 void set_wfp_data_shaping( void )
1128 void set_wfp_data_shaping( void )
1129 {
1129 {
1130 /** This function sets the data_shaping register of the waveform picker module.
1130 /** This function sets the data_shaping register of the waveform picker module.
1131 *
1131 *
1132 * The value is read from one field of the parameter_dump_packet structure:\n
1132 * The value is read from one field of the parameter_dump_packet structure:\n
1133 * bw_sp0_sp1_r0_r1
1133 * bw_sp0_sp1_r0_r1
1134 *
1134 *
1135 */
1135 */
1136
1136
1137 unsigned char data_shaping;
1137 unsigned char data_shaping;
1138
1138
1139 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1139 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1140 // waveform picker : [R1 R0 SP1 SP0 BW]
1140 // waveform picker : [R1 R0 SP1 SP0 BW]
1141
1141
1142 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1142 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1143
1143
1144 waveform_picker_regs->data_shaping =
1144 waveform_picker_regs->data_shaping =
1145 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1145 ( (data_shaping & BIT_5) >> SHIFT_5_BITS ) // BW
1146 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1146 + ( (data_shaping & BIT_4) >> SHIFT_3_BITS ) // SP0
1147 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1147 + ( (data_shaping & BIT_3) >> 1 ) // SP1
1148 + ( (data_shaping & BIT_2) << 1 ) // R0
1148 + ( (data_shaping & BIT_2) << 1 ) // R0
1149 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1149 + ( (data_shaping & BIT_1) << SHIFT_3_BITS ) // R1
1150 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1150 + ( (data_shaping & BIT_0) << SHIFT_5_BITS ); // R2
1151 }
1151 }
1152
1152
1153 void set_wfp_burst_enable_register( unsigned char mode )
1153 void set_wfp_burst_enable_register( unsigned char mode )
1154 {
1154 {
1155 /** This function sets the waveform picker burst_enable register depending on the mode.
1155 /** This function sets the waveform picker burst_enable register depending on the mode.
1156 *
1156 *
1157 * @param mode is the LFR mode to launch.
1157 * @param mode is the LFR mode to launch.
1158 *
1158 *
1159 * The burst bits shall be before the enable bits.
1159 * The burst bits shall be before the enable bits.
1160 *
1160 *
1161 */
1161 */
1162
1162
1163 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1163 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1164 // the burst bits shall be set first, before the enable bits
1164 // the burst bits shall be set first, before the enable bits
1165 switch(mode) {
1165 switch(mode) {
1166 case LFR_MODE_NORMAL:
1166 case LFR_MODE_NORMAL:
1167 case LFR_MODE_SBM1:
1167 case LFR_MODE_SBM1:
1168 case LFR_MODE_SBM2:
1168 case LFR_MODE_SBM2:
1169 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1169 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_SBM2; // [0110 0000] enable f2 and f1 burst
1170 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1170 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1171 break;
1171 break;
1172 case LFR_MODE_BURST:
1172 case LFR_MODE_BURST:
1173 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1173 waveform_picker_regs->run_burst_enable = RUN_BURST_ENABLE_BURST; // [0100 0000] f2 burst enabled
1174 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1174 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1175 break;
1175 break;
1176 default:
1176 default:
1177 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1177 waveform_picker_regs->run_burst_enable = INIT_CHAR; // [0000 0000] no burst enabled, no waveform enabled
1178 break;
1178 break;
1179 }
1179 }
1180 }
1180 }
1181
1181
1182 void set_wfp_delta_snapshot( void )
1182 void set_wfp_delta_snapshot( void )
1183 {
1183 {
1184 /** This function sets the delta_snapshot register of the waveform picker module.
1184 /** This function sets the delta_snapshot register of the waveform picker module.
1185 *
1185 *
1186 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1186 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1187 * - sy_lfr_n_swf_p[0]
1187 * - sy_lfr_n_swf_p[0]
1188 * - sy_lfr_n_swf_p[1]
1188 * - sy_lfr_n_swf_p[1]
1189 *
1189 *
1190 */
1190 */
1191
1191
1192 unsigned int delta_snapshot;
1192 unsigned int delta_snapshot;
1193 unsigned int delta_snapshot_in_T2;
1193 unsigned int delta_snapshot_in_T2;
1194
1194
1195 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1195 delta_snapshot = (parameter_dump_packet.sy_lfr_n_swf_p[0] * CONST_256)
1196 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1196 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1197
1197
1198 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1198 delta_snapshot_in_T2 = delta_snapshot * FREQ_F2;
1199 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1199 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1200 }
1200 }
1201
1201
1202 void set_wfp_delta_f0_f0_2( void )
1202 void set_wfp_delta_f0_f0_2( void )
1203 {
1203 {
1204 unsigned int delta_snapshot;
1204 unsigned int delta_snapshot;
1205 unsigned int nb_samples_per_snapshot;
1205 unsigned int nb_samples_per_snapshot;
1206 float delta_f0_in_float;
1206 float delta_f0_in_float;
1207
1207
1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1209 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1209 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1210 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1210 delta_f0_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F0) ) * FREQ_F2;
1211
1211
1212 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1212 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1213 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2; // 48 = 11 0000, max 7 bits
1213 waveform_picker_regs->delta_f0_2 = DFLT_WFP_DELTA_F0_2; // 48 = 11 0000, max 7 bits
1214 }
1214 }
1215
1215
1216 void set_wfp_delta_f1( void )
1216 void set_wfp_delta_f1( void )
1217 {
1217 {
1218 /** Sets the value of the delta_f1 parameter
1218 /** Sets the value of the delta_f1 parameter
1219 *
1219 *
1220 * @param void
1220 * @param void
1221 *
1221 *
1222 * @return void
1222 * @return void
1223 *
1223 *
1224 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1224 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1225 *
1225 *
1226 */
1226 */
1227
1227
1228 unsigned int delta_snapshot;
1228 unsigned int delta_snapshot;
1229 unsigned int nb_samples_per_snapshot;
1229 unsigned int nb_samples_per_snapshot;
1230 float delta_f1_in_float;
1230 float delta_f1_in_float;
1231
1231
1232 delta_snapshot = waveform_picker_regs->delta_snapshot;
1232 delta_snapshot = waveform_picker_regs->delta_snapshot;
1233 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1233 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1234 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1234 delta_f1_in_float = (nb_samples_per_snapshot / 2.) * ( (1. / FREQ_F2) - (1. / FREQ_F1) ) * FREQ_F2;
1235
1235
1236 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1236 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1237 }
1237 }
1238
1238
1239 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1239 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1240 {
1240 {
1241 /** Sets the value of the delta_f2 parameter
1241 /** Sets the value of the delta_f2 parameter
1242 *
1242 *
1243 * @param void
1243 * @param void
1244 *
1244 *
1245 * @return void
1245 * @return void
1246 *
1246 *
1247 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1247 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1248 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1248 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1249 *
1249 *
1250 */
1250 */
1251
1251
1252 unsigned int delta_snapshot;
1252 unsigned int delta_snapshot;
1253 unsigned int nb_samples_per_snapshot;
1253 unsigned int nb_samples_per_snapshot;
1254
1254
1255 delta_snapshot = waveform_picker_regs->delta_snapshot;
1255 delta_snapshot = waveform_picker_regs->delta_snapshot;
1256 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1256 nb_samples_per_snapshot = (parameter_dump_packet.sy_lfr_n_swf_l[0] * CONST_256) + parameter_dump_packet.sy_lfr_n_swf_l[1];
1257
1257
1258 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1258 waveform_picker_regs->delta_f2 = delta_snapshot - (nb_samples_per_snapshot / 2) - 1;
1259 }
1259 }
1260
1260
1261 //*****************
1261 //*****************
1262 // local parameters
1262 // local parameters
1263
1263
1264 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1264 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1265 {
1265 {
1266 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1266 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1267 *
1267 *
1268 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1268 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1269 * @param sid is the source identifier of the packet being updated.
1269 * @param sid is the source identifier of the packet being updated.
1270 *
1270 *
1271 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1271 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1272 * The sequence counters shall wrap around from 2^14 to zero.
1272 * The sequence counters shall wrap around from 2^14 to zero.
1273 * The sequence counter shall start at zero at startup.
1273 * The sequence counter shall start at zero at startup.
1274 *
1274 *
1275 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1275 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1276 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1276 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1277 *
1277 *
1278 */
1278 */
1279
1279
1280 unsigned short *sequence_cnt;
1280 unsigned short *sequence_cnt;
1281 unsigned short segmentation_grouping_flag;
1281 unsigned short segmentation_grouping_flag;
1282 unsigned short new_packet_sequence_control;
1282 unsigned short new_packet_sequence_control;
1283 rtems_mode initial_mode_set;
1283 rtems_mode initial_mode_set;
1284 rtems_mode current_mode_set;
1284 rtems_mode current_mode_set;
1285 rtems_status_code status;
1285 rtems_status_code status;
1286
1286
1287 initial_mode_set = RTEMS_DEFAULT_MODES;
1287 initial_mode_set = RTEMS_DEFAULT_MODES;
1288 current_mode_set = RTEMS_DEFAULT_MODES;
1288 current_mode_set = RTEMS_DEFAULT_MODES;
1289 sequence_cnt = NULL;
1289 sequence_cnt = NULL;
1290
1290
1291 //******************************************
1291 //******************************************
1292 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1292 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1293 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1293 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1294
1294
1295 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1295 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1296 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1296 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1297 || (sid == SID_BURST_CWF_F2)
1297 || (sid == SID_BURST_CWF_F2)
1298 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1298 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1299 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1299 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1300 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1300 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1301 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1301 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1302 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1302 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1303 {
1303 {
1304 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1304 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1305 }
1305 }
1306 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1306 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1307 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1307 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1308 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1308 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1309 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1309 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1310 {
1310 {
1311 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1311 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1312 }
1312 }
1313 else
1313 else
1314 {
1314 {
1315 sequence_cnt = (unsigned short *) NULL;
1315 sequence_cnt = (unsigned short *) NULL;
1316 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1316 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1317 }
1317 }
1318
1318
1319 if (sequence_cnt != NULL)
1319 if (sequence_cnt != NULL)
1320 {
1320 {
1321 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1321 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE;
1322 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1322 *sequence_cnt = (*sequence_cnt) & SEQ_CNT_MASK;
1323
1323
1324 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1324 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1325
1325
1326 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1326 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> SHIFT_1_BYTE);
1327 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1327 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1328
1328
1329 // increment the sequence counter
1329 // increment the sequence counter
1330 if ( *sequence_cnt < SEQ_CNT_MAX)
1330 if ( *sequence_cnt < SEQ_CNT_MAX)
1331 {
1331 {
1332 *sequence_cnt = *sequence_cnt + 1;
1332 *sequence_cnt = *sequence_cnt + 1;
1333 }
1333 }
1334 else
1334 else
1335 {
1335 {
1336 *sequence_cnt = 0;
1336 *sequence_cnt = 0;
1337 }
1337 }
1338 }
1338 }
1339
1339
1340 //*************************************
1340 //*************************************
1341 // RESTORE THE MODE OF THE CALLING TASK
1341 // RESTORE THE MODE OF THE CALLING TASK
1342 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1342 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1343 }
1343 }
General Comments 0
You need to be logged in to leave comments. Login now