##// END OF EJS Templates
Integration of basic parameters functions in the flight software...
Integration of basic parameters functions in the flight software BP1 and BP2 are computed constant LSB_FIRST_TCH is defined (will be removed later) k coefficients are initialized in the init task v, e1 and e2 are read directly in buffers and put in HK packets sending functions slightly modified spectral matrices are now correctly timestamped a few changes to LFR_basic-parameters

File last commit:

r179:f0fdfd2b8c4c VHDL_0_1_28
r179:f0fdfd2b8c4c VHDL_0_1_28
Show More
fsw_processing.h
298 lines | 11.0 KiB | text/x-c | CLexer
#ifndef FSW_PROCESSING_H_INCLUDED
#define FSW_PROCESSING_H_INCLUDED
#include <rtems.h>
#include <grspw.h>
#include <math.h>
#include <stdlib.h> // abs() is in the stdlib
#include <stdio.h> // printf()
#include <math.h>
#include <grlib_regs.h>
#include "fsw_params.h"
#include "fsw_spacewire.h"
typedef struct ring_node_asm
{
struct ring_node_asm *next;
float matrix[ TOTAL_SIZE_SM ];
unsigned int status;
} ring_node_asm;
typedef struct
{
unsigned char targetLogicalAddress;
unsigned char protocolIdentifier;
unsigned char reserved;
unsigned char userApplication;
unsigned char packetID[2];
unsigned char packetSequenceControl[2];
unsigned char packetLength[2];
// DATA FIELD HEADER
unsigned char spare1_pusVersion_spare2;
unsigned char serviceType;
unsigned char serviceSubType;
unsigned char destinationID;
unsigned char time[6];
// AUXILIARY HEADER
unsigned char sid;
unsigned char biaStatusInfo;
unsigned char acquisitionTime[6];
unsigned char pa_lfr_bp_blk_nr[2];
// SOURCE DATA
unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
} bp_packet;
typedef struct
{
Header_TM_LFR_SCIENCE_BP_with_spare_t header;
unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
} bp_packet_with_spare;
typedef struct
{
ring_node_asm *norm;
ring_node_asm *burst_sbm;
rtems_event_set event;
unsigned int coarseTimeNORM;
unsigned int fineTimeNORM;
unsigned int coarseTimeSBM;
unsigned int fineTimeSBM;
} asm_msg;
extern volatile int sm_f0[ ];
extern volatile int sm_f1[ ];
extern volatile int sm_f2[ ];
// parameters
extern struct param_local_str param_local;
// registers
extern time_management_regs_t *time_management_regs;
extern volatile spectral_matrix_regs_t *spectral_matrix_regs;
extern rtems_name misc_name[5];
extern rtems_id Task_id[20]; /* array of task ids */
//
ring_node * getRingNodeForAveraging( unsigned char frequencyChannel);
// ISR
rtems_isr spectral_matrices_isr( rtems_vector_number vector );
rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
//******************
// Spectral Matrices
void reset_nb_sm( void );
// SM
void SM_init_rings( void );
void SM_reset_current_ring_nodes( void );
// ASM
void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
//*****************
// Basic Parameters
void BP_reset_current_ring_nodes( void );
void BP_init_header(bp_packet *header,
unsigned int apid, unsigned char sid,
unsigned int packetLength , unsigned char blkNr);
void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
unsigned int apid, unsigned char sid,
unsigned int packetLength, unsigned char blkNr );
void BP_send( char *data,
rtems_id queue_id ,
unsigned int nbBytesToSend , unsigned int sid );
//******************
// general functions
void reset_sm_status( void );
void reset_spectral_matrix_regs( void );
void set_time(unsigned char *time, unsigned char *timeInBuffer );
unsigned long long int get_acquisition_time( unsigned char *timePtr );
unsigned char getSID( rtems_event_set event );
extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
//***************************************
// DEFINITIONS OF STATIC INLINE FUNCTIONS
static inline void SM_average(float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
ring_node *ring_node_tab[],
unsigned int nbAverageNORM, unsigned int nbAverageSBM,
asm_msg *msgForMATR );
static inline void SM_average_debug( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
ring_node *ring_node_tab[],
unsigned int nbAverageNORM, unsigned int nbAverageSBM );
static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
float divider );
static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
float divider,
unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
void SM_average( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
ring_node *ring_node_tab[],
unsigned int nbAverageNORM, unsigned int nbAverageSBM,
asm_msg *msgForMATR )
{
float sum;
unsigned int i;
for(i=0; i<TOTAL_SIZE_SM; i++)
{
sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
+ ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
{
averaged_spec_mat_NORM[ i ] = sum;
averaged_spec_mat_SBM[ i ] = sum;
msgForMATR->coarseTimeNORM = ring_node_tab[0]->coarseTime;
msgForMATR->fineTimeNORM = ring_node_tab[0]->fineTime;
msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
}
else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
{
averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
averaged_spec_mat_SBM[ i ] = ( averaged_spec_mat_SBM[ i ] + sum );
}
else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
{
averaged_spec_mat_NORM[ i ] = ( averaged_spec_mat_NORM[ i ] + sum );
averaged_spec_mat_SBM[ i ] = sum;
msgForMATR->coarseTimeSBM = ring_node_tab[0]->coarseTime;
msgForMATR->fineTimeSBM = ring_node_tab[0]->fineTime;
}
else
{
PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
}
}
}
void SM_average_debug( float *averaged_spec_mat_NORM, float *averaged_spec_mat_SBM,
ring_node *ring_node_tab[],
unsigned int nbAverageNORM, unsigned int nbAverageSBM )
{
float sum;
unsigned int i;
for(i=0; i<TOTAL_SIZE_SM; i++)
{
sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ];
if ( (nbAverageNORM == 0) && (nbAverageSBM == 0) )
{
averaged_spec_mat_NORM[ i ] = sum;
averaged_spec_mat_SBM[ i ] = sum;
}
else if ( (nbAverageNORM != 0) && (nbAverageSBM != 0) )
{
averaged_spec_mat_NORM[ i ] = sum;
averaged_spec_mat_SBM[ i ] = sum;
}
else if ( (nbAverageNORM != 0) && (nbAverageSBM == 0) )
{
averaged_spec_mat_NORM[ i ] = sum;
averaged_spec_mat_SBM[ i ] = sum;
}
else
{
PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNORM, nbAverageSBM)
}
}
}
void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
{
int frequencyBin;
int asmComponent;
unsigned int offsetASM;
unsigned int offsetASMReorganized;
// BUILD DATA
for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
{
for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
{
offsetASMReorganized =
frequencyBin * NB_VALUES_PER_SM
+ asmComponent;
offsetASM =
asmComponent * NB_BINS_PER_SM
+ frequencyBin;
averaged_spec_mat_reorganized[offsetASMReorganized ] =
averaged_spec_mat[ offsetASM ] / divider;
}
}
}
void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
{
int frequencyBin;
int asmComponent;
int offsetASM;
int offsetCompressed;
int k;
// BUILD DATA
for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
{
for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
{
offsetCompressed = // NO TIME OFFSET
frequencyBin * NB_VALUES_PER_SM
+ asmComponent;
offsetASM = // NO TIME OFFSET
asmComponent * NB_BINS_PER_SM
+ ASMIndexStart
+ frequencyBin * nbBinsToAverage;
compressed_spec_mat[ offsetCompressed ] = 0;
for ( k = 0; k < nbBinsToAverage; k++ )
{
compressed_spec_mat[offsetCompressed ] =
( compressed_spec_mat[ offsetCompressed ]
+ averaged_spec_mat[ offsetASM + k ] );
}
compressed_spec_mat[ offsetCompressed ] =
compressed_spec_mat[ offsetCompressed ] / (divider * nbBinsToAverage);
}
}
}
void ASM_convert( volatile float *input_matrix, char *output_matrix)
{
unsigned int frequencyBin;
unsigned int asmComponent;
char * pt_char_input;
char * pt_char_output;
unsigned int offsetInput;
unsigned int offsetOutput;
pt_char_input = (char*) &input_matrix;
pt_char_output = (char*) &output_matrix;
// convert all other data
for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
{
for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
{
offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
pt_char_input = (char*) &input_matrix [ offsetInput ];
pt_char_output = (char*) &output_matrix[ offsetOutput ];
pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
}
}
}
#endif // FSW_PROCESSING_H_INCLUDED