|
@@
-1,804
+1,797
|
|
1
|
/** General usage functions and RTEMS tasks.
|
|
1
|
/** General usage functions and RTEMS tasks.
|
|
2
|
*
|
|
2
|
*
|
|
3
|
* @file
|
|
3
|
* @file
|
|
4
|
* @author P. LEROY
|
|
4
|
* @author P. LEROY
|
|
5
|
*
|
|
5
|
*
|
|
6
|
*/
|
|
6
|
*/
|
|
7
|
|
|
7
|
|
|
8
|
#include "fsw_misc.h"
|
|
8
|
#include "fsw_misc.h"
|
|
9
|
|
|
9
|
|
|
10
|
void timer_configure(unsigned char timer, unsigned int clock_divider,
|
|
10
|
void timer_configure(unsigned char timer, unsigned int clock_divider,
|
|
11
|
unsigned char interrupt_level, rtems_isr (*timer_isr)() )
|
|
11
|
unsigned char interrupt_level, rtems_isr (*timer_isr)() )
|
|
12
|
{
|
|
12
|
{
|
|
13
|
/** This function configures a GPTIMER timer instantiated in the VHDL design.
|
|
13
|
/** This function configures a GPTIMER timer instantiated in the VHDL design.
|
|
14
|
*
|
|
14
|
*
|
|
15
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
15
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
16
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
16
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
17
|
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
|
|
17
|
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
|
|
18
|
* @param interrupt_level is the interrupt level that the timer drives.
|
|
18
|
* @param interrupt_level is the interrupt level that the timer drives.
|
|
19
|
* @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
|
|
19
|
* @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
|
|
20
|
*
|
|
20
|
*
|
|
21
|
* Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
|
|
21
|
* Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
|
|
22
|
*
|
|
22
|
*
|
|
23
|
*/
|
|
23
|
*/
|
|
24
|
|
|
24
|
|
|
25
|
rtems_status_code status;
|
|
25
|
rtems_status_code status;
|
|
26
|
rtems_isr_entry old_isr_handler;
|
|
26
|
rtems_isr_entry old_isr_handler;
|
|
27
|
|
|
27
|
|
|
28
|
gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
|
|
28
|
gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
|
|
29
|
|
|
29
|
|
|
30
|
status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
|
|
30
|
status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
|
|
31
|
if (status!=RTEMS_SUCCESSFUL)
|
|
31
|
if (status!=RTEMS_SUCCESSFUL)
|
|
32
|
{
|
|
32
|
{
|
|
33
|
PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
|
|
33
|
PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
|
|
34
|
}
|
|
34
|
}
|
|
35
|
|
|
35
|
|
|
36
|
timer_set_clock_divider( timer, clock_divider);
|
|
36
|
timer_set_clock_divider( timer, clock_divider);
|
|
37
|
}
|
|
37
|
}
|
|
38
|
|
|
38
|
|
|
39
|
void timer_start(unsigned char timer)
|
|
39
|
void timer_start(unsigned char timer)
|
|
40
|
{
|
|
40
|
{
|
|
41
|
/** This function starts a GPTIMER timer.
|
|
41
|
/** This function starts a GPTIMER timer.
|
|
42
|
*
|
|
42
|
*
|
|
43
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
43
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
44
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
44
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
45
|
*
|
|
45
|
*
|
|
46
|
*/
|
|
46
|
*/
|
|
47
|
|
|
47
|
|
|
48
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
|
|
48
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
|
|
49
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
|
|
49
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
|
|
50
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
|
|
50
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
|
|
51
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
|
|
51
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
|
|
52
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
|
|
52
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
|
|
53
|
}
|
|
53
|
}
|
|
54
|
|
|
54
|
|
|
55
|
void timer_stop(unsigned char timer)
|
|
55
|
void timer_stop(unsigned char timer)
|
|
56
|
{
|
|
56
|
{
|
|
57
|
/** This function stops a GPTIMER timer.
|
|
57
|
/** This function stops a GPTIMER timer.
|
|
58
|
*
|
|
58
|
*
|
|
59
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
59
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
60
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
60
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
61
|
*
|
|
61
|
*
|
|
62
|
*/
|
|
62
|
*/
|
|
63
|
|
|
63
|
|
|
64
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
|
|
64
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
|
|
65
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
|
|
65
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
|
|
66
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
|
|
66
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
|
|
67
|
}
|
|
67
|
}
|
|
68
|
|
|
68
|
|
|
69
|
void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
|
|
69
|
void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
|
|
70
|
{
|
|
70
|
{
|
|
71
|
/** This function sets the clock divider of a GPTIMER timer.
|
|
71
|
/** This function sets the clock divider of a GPTIMER timer.
|
|
72
|
*
|
|
72
|
*
|
|
73
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
73
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
74
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
74
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
75
|
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
|
|
75
|
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
|
|
76
|
*
|
|
76
|
*
|
|
77
|
*/
|
|
77
|
*/
|
|
78
|
|
|
78
|
|
|
79
|
gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
|
|
79
|
gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
|
|
80
|
}
|
|
80
|
}
|
|
81
|
|
|
81
|
|
|
82
|
// WATCHDOG
|
|
82
|
// WATCHDOG
|
|
83
|
|
|
83
|
|
|
84
|
rtems_isr watchdog_isr( rtems_vector_number vector )
|
|
84
|
rtems_isr watchdog_isr( rtems_vector_number vector )
|
|
85
|
{
|
|
85
|
{
|
|
86
|
rtems_status_code status_code;
|
|
86
|
rtems_status_code status_code;
|
|
87
|
|
|
87
|
|
|
88
|
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
|
|
88
|
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
|
|
89
|
|
|
89
|
|
|
90
|
PRINTF("watchdog_isr *** this is the end, exit(0)\n");
|
|
90
|
PRINTF("watchdog_isr *** this is the end, exit(0)\n");
|
|
91
|
|
|
91
|
|
|
92
|
exit(0);
|
|
92
|
exit(0);
|
|
93
|
}
|
|
93
|
}
|
|
94
|
|
|
94
|
|
|
95
|
void watchdog_configure(void)
|
|
95
|
void watchdog_configure(void)
|
|
96
|
{
|
|
96
|
{
|
|
97
|
/** This function configure the watchdog.
|
|
97
|
/** This function configure the watchdog.
|
|
98
|
*
|
|
98
|
*
|
|
99
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
99
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
100
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
100
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
101
|
*
|
|
101
|
*
|
|
102
|
* The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
|
|
102
|
* The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
|
|
103
|
*
|
|
103
|
*
|
|
104
|
*/
|
|
104
|
*/
|
|
105
|
|
|
105
|
|
|
106
|
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
|
|
106
|
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
|
|
107
|
|
|
107
|
|
|
108
|
timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
|
|
108
|
timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
|
|
109
|
|
|
109
|
|
|
110
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
|
|
110
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
|
|
111
|
}
|
|
111
|
}
|
|
112
|
|
|
112
|
|
|
113
|
void watchdog_stop(void)
|
|
113
|
void watchdog_stop(void)
|
|
114
|
{
|
|
114
|
{
|
|
115
|
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
|
|
115
|
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
|
|
116
|
timer_stop( TIMER_WATCHDOG );
|
|
116
|
timer_stop( TIMER_WATCHDOG );
|
|
117
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
|
|
117
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
|
|
118
|
}
|
|
118
|
}
|
|
119
|
|
|
119
|
|
|
120
|
void watchdog_reload(void)
|
|
120
|
void watchdog_reload(void)
|
|
121
|
{
|
|
121
|
{
|
|
122
|
/** This function reloads the watchdog timer counter with the timer reload value.
|
|
122
|
/** This function reloads the watchdog timer counter with the timer reload value.
|
|
123
|
*
|
|
123
|
*
|
|
124
|
* @param void
|
|
124
|
* @param void
|
|
125
|
*
|
|
125
|
*
|
|
126
|
* @return void
|
|
126
|
* @return void
|
|
127
|
*
|
|
127
|
*
|
|
128
|
*/
|
|
128
|
*/
|
|
129
|
|
|
129
|
|
|
130
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
|
|
130
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
|
|
131
|
}
|
|
131
|
}
|
|
132
|
|
|
132
|
|
|
133
|
void watchdog_start(void)
|
|
133
|
void watchdog_start(void)
|
|
134
|
{
|
|
134
|
{
|
|
135
|
/** This function starts the watchdog timer.
|
|
135
|
/** This function starts the watchdog timer.
|
|
136
|
*
|
|
136
|
*
|
|
137
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
137
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
138
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
138
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
139
|
*
|
|
139
|
*
|
|
140
|
*/
|
|
140
|
*/
|
|
141
|
|
|
141
|
|
|
142
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
|
|
142
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
|
|
143
|
|
|
143
|
|
|
144
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
|
|
144
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
|
|
145
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
|
|
145
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
|
|
146
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
|
|
146
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
|
|
147
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
|
|
147
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
|
|
148
|
|
|
148
|
|
|
149
|
LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
|
|
149
|
LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
|
|
150
|
|
|
150
|
|
|
151
|
}
|
|
151
|
}
|
|
152
|
|
|
152
|
|
|
153
|
int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
|
|
153
|
int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
|
|
154
|
{
|
|
154
|
{
|
|
155
|
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
|
|
155
|
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
|
|
156
|
|
|
156
|
|
|
157
|
apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
|
|
157
|
apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
|
|
158
|
|
|
158
|
|
|
159
|
return 0;
|
|
159
|
return 0;
|
|
160
|
}
|
|
160
|
}
|
|
161
|
|
|
161
|
|
|
162
|
void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
|
|
162
|
void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
|
|
163
|
{
|
|
163
|
{
|
|
164
|
/** This function sets the scaler reload register of the apbuart module
|
|
164
|
/** This function sets the scaler reload register of the apbuart module
|
|
165
|
*
|
|
165
|
*
|
|
166
|
* @param regs is the address of the apbuart registers in memory
|
|
166
|
* @param regs is the address of the apbuart registers in memory
|
|
167
|
* @param value is the value that will be stored in the scaler register
|
|
167
|
* @param value is the value that will be stored in the scaler register
|
|
168
|
*
|
|
168
|
*
|
|
169
|
* The value shall be set by the software to get data on the serial interface.
|
|
169
|
* The value shall be set by the software to get data on the serial interface.
|
|
170
|
*
|
|
170
|
*
|
|
171
|
*/
|
|
171
|
*/
|
|
172
|
|
|
172
|
|
|
173
|
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
|
|
173
|
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
|
|
174
|
|
|
174
|
|
|
175
|
apbuart_regs->scaler = value;
|
|
175
|
apbuart_regs->scaler = value;
|
|
176
|
|
|
176
|
|
|
177
|
BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
|
|
177
|
BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
|
|
178
|
}
|
|
178
|
}
|
|
179
|
|
|
179
|
|
|
180
|
//************
|
|
180
|
//************
|
|
181
|
// RTEMS TASKS
|
|
181
|
// RTEMS TASKS
|
|
182
|
|
|
182
|
|
|
183
|
rtems_task load_task(rtems_task_argument argument)
|
|
183
|
rtems_task load_task(rtems_task_argument argument)
|
|
184
|
{
|
|
184
|
{
|
|
185
|
BOOT_PRINTF("in LOAD *** \n")
|
|
185
|
BOOT_PRINTF("in LOAD *** \n")
|
|
186
|
|
|
186
|
|
|
187
|
rtems_status_code status;
|
|
187
|
rtems_status_code status;
|
|
188
|
unsigned int i;
|
|
188
|
unsigned int i;
|
|
189
|
unsigned int j;
|
|
189
|
unsigned int j;
|
|
190
|
rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
|
|
190
|
rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
|
|
191
|
rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
|
|
191
|
rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
|
|
192
|
|
|
192
|
|
|
193
|
name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
|
|
193
|
name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
|
|
194
|
|
|
194
|
|
|
195
|
status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
|
|
195
|
status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
|
|
196
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
196
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
197
|
PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
|
|
197
|
PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
|
|
198
|
}
|
|
198
|
}
|
|
199
|
|
|
199
|
|
|
200
|
i = 0;
|
|
200
|
i = 0;
|
|
201
|
j = 0;
|
|
201
|
j = 0;
|
|
202
|
|
|
202
|
|
|
203
|
watchdog_configure();
|
|
203
|
watchdog_configure();
|
|
204
|
|
|
204
|
|
|
205
|
watchdog_start();
|
|
205
|
watchdog_start();
|
|
206
|
|
|
206
|
|
|
207
|
set_sy_lfr_watchdog_enabled( true );
|
|
207
|
set_sy_lfr_watchdog_enabled( true );
|
|
208
|
|
|
208
|
|
|
209
|
while(1){
|
|
209
|
while(1){
|
|
210
|
status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
|
|
210
|
status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
|
|
211
|
watchdog_reload();
|
|
211
|
watchdog_reload();
|
|
212
|
i = i + 1;
|
|
212
|
i = i + 1;
|
|
213
|
if ( i == 10 )
|
|
213
|
if ( i == 10 )
|
|
214
|
{
|
|
214
|
{
|
|
215
|
i = 0;
|
|
215
|
i = 0;
|
|
216
|
j = j + 1;
|
|
216
|
j = j + 1;
|
|
217
|
PRINTF1("%d\n", j)
|
|
217
|
PRINTF1("%d\n", j)
|
|
218
|
}
|
|
218
|
}
|
|
219
|
#ifdef DEBUG_WATCHDOG
|
|
219
|
#ifdef DEBUG_WATCHDOG
|
|
220
|
if (j == 3 )
|
|
220
|
if (j == 3 )
|
|
221
|
{
|
|
221
|
{
|
|
222
|
status = rtems_task_delete(RTEMS_SELF);
|
|
222
|
status = rtems_task_delete(RTEMS_SELF);
|
|
223
|
}
|
|
223
|
}
|
|
224
|
#endif
|
|
224
|
#endif
|
|
225
|
}
|
|
225
|
}
|
|
226
|
}
|
|
226
|
}
|
|
227
|
|
|
227
|
|
|
228
|
rtems_task hous_task(rtems_task_argument argument)
|
|
228
|
rtems_task hous_task(rtems_task_argument argument)
|
|
229
|
{
|
|
229
|
{
|
|
230
|
rtems_status_code status;
|
|
230
|
rtems_status_code status;
|
|
231
|
rtems_status_code spare_status;
|
|
231
|
rtems_status_code spare_status;
|
|
232
|
rtems_id queue_id;
|
|
232
|
rtems_id queue_id;
|
|
233
|
rtems_rate_monotonic_period_status period_status;
|
|
233
|
rtems_rate_monotonic_period_status period_status;
|
|
234
|
|
|
234
|
|
|
235
|
status = get_message_queue_id_send( &queue_id );
|
|
235
|
status = get_message_queue_id_send( &queue_id );
|
|
236
|
if (status != RTEMS_SUCCESSFUL)
|
|
236
|
if (status != RTEMS_SUCCESSFUL)
|
|
237
|
{
|
|
237
|
{
|
|
238
|
PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
|
|
238
|
PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
|
|
239
|
}
|
|
239
|
}
|
|
240
|
|
|
240
|
|
|
241
|
BOOT_PRINTF("in HOUS ***\n");
|
|
241
|
BOOT_PRINTF("in HOUS ***\n");
|
|
242
|
|
|
242
|
|
|
243
|
if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
|
|
243
|
if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
|
|
244
|
status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
|
|
244
|
status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
|
|
245
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
245
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
246
|
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
|
|
246
|
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
|
|
247
|
}
|
|
247
|
}
|
|
248
|
}
|
|
248
|
}
|
|
249
|
|
|
249
|
|
|
250
|
status = rtems_rate_monotonic_cancel(HK_id);
|
|
250
|
status = rtems_rate_monotonic_cancel(HK_id);
|
|
251
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
251
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
252
|
PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
|
|
252
|
PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
|
|
253
|
}
|
|
253
|
}
|
|
254
|
else {
|
|
254
|
else {
|
|
255
|
DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
|
|
255
|
DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
|
|
256
|
}
|
|
256
|
}
|
|
257
|
|
|
257
|
|
|
258
|
// startup phase
|
|
258
|
// startup phase
|
|
259
|
status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
|
|
259
|
status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
|
|
260
|
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
|
|
260
|
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
|
|
261
|
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
|
|
261
|
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
|
|
262
|
while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
|
|
262
|
while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
|
|
263
|
{
|
|
263
|
{
|
|
264
|
if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
|
|
264
|
if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
|
|
265
|
{
|
|
265
|
{
|
|
266
|
break; // break if LFR is synchronized
|
|
266
|
break; // break if LFR is synchronized
|
|
267
|
}
|
|
267
|
}
|
|
268
|
else
|
|
268
|
else
|
|
269
|
{
|
|
269
|
{
|
|
270
|
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
|
|
270
|
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
|
|
271
|
// sched_yield();
|
|
271
|
// sched_yield();
|
|
272
|
status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
|
|
272
|
status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
|
|
273
|
}
|
|
273
|
}
|
|
274
|
}
|
|
274
|
}
|
|
275
|
status = rtems_rate_monotonic_cancel(HK_id);
|
|
275
|
status = rtems_rate_monotonic_cancel(HK_id);
|
|
276
|
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
|
|
276
|
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
|
|
277
|
|
|
277
|
|
|
278
|
set_hk_lfr_reset_cause( POWER_ON );
|
|
278
|
set_hk_lfr_reset_cause( POWER_ON );
|
|
279
|
|
|
279
|
|
|
280
|
while(1){ // launch the rate monotonic task
|
|
280
|
while(1){ // launch the rate monotonic task
|
|
281
|
status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
|
|
281
|
status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
|
|
282
|
if ( status != RTEMS_SUCCESSFUL ) {
|
|
282
|
if ( status != RTEMS_SUCCESSFUL ) {
|
|
283
|
PRINTF1( "in HOUS *** ERR period: %d\n", status);
|
|
283
|
PRINTF1( "in HOUS *** ERR period: %d\n", status);
|
|
284
|
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
|
|
284
|
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
|
|
285
|
}
|
|
285
|
}
|
|
286
|
else {
|
|
286
|
else {
|
|
287
|
housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
|
|
287
|
housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
|
|
288
|
housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
|
|
288
|
housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
|
|
289
|
increment_seq_counter( &sequenceCounterHK );
|
|
289
|
increment_seq_counter( &sequenceCounterHK );
|
|
290
|
|
|
290
|
|
|
291
|
housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
|
|
291
|
housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
|
|
292
|
housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
|
|
292
|
housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
|
|
293
|
housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
|
|
293
|
housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
|
|
294
|
housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
|
|
294
|
housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
|
|
295
|
housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
|
|
295
|
housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
|
|
296
|
housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
|
|
296
|
housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
|
|
297
|
|
|
297
|
|
|
298
|
spacewire_read_statistics();
|
|
298
|
spacewire_read_statistics();
|
|
299
|
|
|
299
|
|
|
300
|
update_hk_with_grspw_stats();
|
|
300
|
update_hk_with_grspw_stats();
|
|
301
|
|
|
301
|
|
|
302
|
set_hk_lfr_time_not_synchro();
|
|
302
|
set_hk_lfr_time_not_synchro();
|
|
303
|
|
|
303
|
|
|
304
|
housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
|
|
304
|
housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
|
|
305
|
housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
|
|
305
|
housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
|
|
306
|
housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
|
|
306
|
housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
|
|
307
|
housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
|
|
307
|
housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
|
|
308
|
housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
|
|
308
|
housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
|
|
309
|
|
|
309
|
|
|
310
|
housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
|
|
310
|
housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
|
|
311
|
housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
|
|
311
|
housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
|
|
312
|
get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
|
|
312
|
get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
|
|
313
|
get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
|
|
313
|
get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
|
|
314
|
get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
|
|
314
|
get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
|
|
315
|
|
|
315
|
|
|
316
|
hk_lfr_le_me_he_update();
|
|
316
|
hk_lfr_le_me_he_update();
|
|
317
|
|
|
317
|
|
|
318
|
// SEND PACKET
|
|
318
|
// SEND PACKET
|
|
319
|
status = rtems_message_queue_send( queue_id, &housekeeping_packet,
|
|
319
|
status = rtems_message_queue_send( queue_id, &housekeeping_packet,
|
|
320
|
PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
|
|
320
|
PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
|
|
321
|
if (status != RTEMS_SUCCESSFUL) {
|
|
321
|
if (status != RTEMS_SUCCESSFUL) {
|
|
322
|
PRINTF1("in HOUS *** ERR send: %d\n", status)
|
|
322
|
PRINTF1("in HOUS *** ERR send: %d\n", status)
|
|
323
|
}
|
|
323
|
}
|
|
324
|
}
|
|
324
|
}
|
|
325
|
}
|
|
325
|
}
|
|
326
|
|
|
326
|
|
|
327
|
PRINTF("in HOUS *** deleting task\n")
|
|
327
|
PRINTF("in HOUS *** deleting task\n")
|
|
328
|
|
|
328
|
|
|
329
|
status = rtems_task_delete( RTEMS_SELF ); // should not return
|
|
329
|
status = rtems_task_delete( RTEMS_SELF ); // should not return
|
|
330
|
|
|
330
|
|
|
331
|
return;
|
|
331
|
return;
|
|
332
|
}
|
|
332
|
}
|
|
333
|
|
|
333
|
|
|
334
|
rtems_task dumb_task( rtems_task_argument unused )
|
|
334
|
rtems_task dumb_task( rtems_task_argument unused )
|
|
335
|
{
|
|
335
|
{
|
|
336
|
/** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
|
|
336
|
/** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
|
|
337
|
*
|
|
337
|
*
|
|
338
|
* @param unused is the starting argument of the RTEMS task
|
|
338
|
* @param unused is the starting argument of the RTEMS task
|
|
339
|
*
|
|
339
|
*
|
|
340
|
* The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
|
|
340
|
* The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
|
|
341
|
*
|
|
341
|
*
|
|
342
|
*/
|
|
342
|
*/
|
|
343
|
|
|
343
|
|
|
344
|
unsigned int i;
|
|
344
|
unsigned int i;
|
|
345
|
unsigned int intEventOut;
|
|
345
|
unsigned int intEventOut;
|
|
346
|
unsigned int coarse_time = 0;
|
|
346
|
unsigned int coarse_time = 0;
|
|
347
|
unsigned int fine_time = 0;
|
|
347
|
unsigned int fine_time = 0;
|
|
348
|
rtems_event_set event_out;
|
|
348
|
rtems_event_set event_out;
|
|
349
|
|
|
349
|
|
|
350
|
char *DumbMessages[15] = {"in DUMB *** default", // RTEMS_EVENT_0
|
|
350
|
char *DumbMessages[15] = {"in DUMB *** default", // RTEMS_EVENT_0
|
|
351
|
"in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
|
|
351
|
"in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
|
|
352
|
"in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
|
|
352
|
"in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
|
|
353
|
"in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
|
|
353
|
"in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
|
|
354
|
"in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
|
|
354
|
"in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
|
|
355
|
"in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
|
|
355
|
"in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
|
|
356
|
"VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
|
|
356
|
"VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
|
|
357
|
"ready for dump", // RTEMS_EVENT_7
|
|
357
|
"ready for dump", // RTEMS_EVENT_7
|
|
358
|
"VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
|
|
358
|
"VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
|
|
359
|
"tick", // RTEMS_EVENT_9
|
|
359
|
"tick", // RTEMS_EVENT_9
|
|
360
|
"VHDL ERR *** waveform picker", // RTEMS_EVENT_10
|
|
360
|
"VHDL ERR *** waveform picker", // RTEMS_EVENT_10
|
|
361
|
"VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
|
|
361
|
"VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
|
|
362
|
"WATCHDOG timer", // RTEMS_EVENT_12
|
|
362
|
"WATCHDOG timer", // RTEMS_EVENT_12
|
|
363
|
"TIMECODE timer", // RTEMS_EVENT_13
|
|
363
|
"TIMECODE timer", // RTEMS_EVENT_13
|
|
364
|
"TIMECODE ISR" // RTEMS_EVENT_14
|
|
364
|
"TIMECODE ISR" // RTEMS_EVENT_14
|
|
365
|
};
|
|
365
|
};
|
|
366
|
|
|
366
|
|
|
367
|
BOOT_PRINTF("in DUMB *** \n")
|
|
367
|
BOOT_PRINTF("in DUMB *** \n")
|
|
368
|
|
|
368
|
|
|
369
|
while(1){
|
|
369
|
while(1){
|
|
370
|
rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
|
|
370
|
rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
|
|
371
|
| RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
|
|
371
|
| RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
|
|
372
|
| RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
|
|
372
|
| RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
|
|
373
|
| RTEMS_EVENT_14,
|
|
373
|
| RTEMS_EVENT_14,
|
|
374
|
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
|
|
374
|
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
|
|
375
|
intEventOut = (unsigned int) event_out;
|
|
375
|
intEventOut = (unsigned int) event_out;
|
|
376
|
for ( i=0; i<32; i++)
|
|
376
|
for ( i=0; i<32; i++)
|
|
377
|
{
|
|
377
|
{
|
|
378
|
if ( ((intEventOut >> i) & 0x0001) != 0)
|
|
378
|
if ( ((intEventOut >> i) & 0x0001) != 0)
|
|
379
|
{
|
|
379
|
{
|
|
380
|
coarse_time = time_management_regs->coarse_time;
|
|
380
|
coarse_time = time_management_regs->coarse_time;
|
|
381
|
fine_time = time_management_regs->fine_time;
|
|
381
|
fine_time = time_management_regs->fine_time;
|
|
382
|
if (i==12)
|
|
382
|
if (i==12)
|
|
383
|
{
|
|
383
|
{
|
|
384
|
PRINTF1("%s\n", DumbMessages[12])
|
|
384
|
PRINTF1("%s\n", DumbMessages[12])
|
|
385
|
}
|
|
385
|
}
|
|
386
|
if (i==13)
|
|
386
|
if (i==13)
|
|
387
|
{
|
|
387
|
{
|
|
388
|
PRINTF1("%s\n", DumbMessages[13])
|
|
388
|
PRINTF1("%s\n", DumbMessages[13])
|
|
389
|
}
|
|
389
|
}
|
|
390
|
if (i==14)
|
|
390
|
if (i==14)
|
|
391
|
{
|
|
391
|
{
|
|
392
|
PRINTF1("%s\n", DumbMessages[1])
|
|
392
|
PRINTF1("%s\n", DumbMessages[1])
|
|
393
|
}
|
|
393
|
}
|
|
394
|
}
|
|
394
|
}
|
|
395
|
}
|
|
395
|
}
|
|
396
|
}
|
|
396
|
}
|
|
397
|
}
|
|
397
|
}
|
|
398
|
|
|
398
|
|
|
399
|
//*****************************
|
|
399
|
//*****************************
|
|
400
|
// init housekeeping parameters
|
|
400
|
// init housekeeping parameters
|
|
401
|
|
|
401
|
|
|
402
|
void init_housekeeping_parameters( void )
|
|
402
|
void init_housekeeping_parameters( void )
|
|
403
|
{
|
|
403
|
{
|
|
404
|
/** This function initialize the housekeeping_packet global variable with default values.
|
|
404
|
/** This function initialize the housekeeping_packet global variable with default values.
|
|
405
|
*
|
|
405
|
*
|
|
406
|
*/
|
|
406
|
*/
|
|
407
|
|
|
407
|
|
|
408
|
unsigned int i = 0;
|
|
408
|
unsigned int i = 0;
|
|
409
|
unsigned char *parameters;
|
|
409
|
unsigned char *parameters;
|
|
410
|
unsigned char sizeOfHK;
|
|
410
|
unsigned char sizeOfHK;
|
|
411
|
|
|
411
|
|
|
412
|
sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
|
|
412
|
sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
|
|
413
|
|
|
413
|
|
|
414
|
parameters = (unsigned char*) &housekeeping_packet;
|
|
414
|
parameters = (unsigned char*) &housekeeping_packet;
|
|
415
|
|
|
415
|
|
|
416
|
for(i = 0; i< sizeOfHK; i++)
|
|
416
|
for(i = 0; i< sizeOfHK; i++)
|
|
417
|
{
|
|
417
|
{
|
|
418
|
parameters[i] = 0x00;
|
|
418
|
parameters[i] = 0x00;
|
|
419
|
}
|
|
419
|
}
|
|
420
|
|
|
420
|
|
|
421
|
housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
|
|
421
|
housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
|
|
422
|
housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
|
|
422
|
housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
|
|
423
|
housekeeping_packet.reserved = DEFAULT_RESERVED;
|
|
423
|
housekeeping_packet.reserved = DEFAULT_RESERVED;
|
|
424
|
housekeeping_packet.userApplication = CCSDS_USER_APP;
|
|
424
|
housekeeping_packet.userApplication = CCSDS_USER_APP;
|
|
425
|
housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
|
|
425
|
housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
|
|
426
|
housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
|
|
426
|
housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
|
|
427
|
housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
|
|
427
|
housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
|
|
428
|
housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
|
|
428
|
housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
|
|
429
|
housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
|
|
429
|
housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
|
|
430
|
housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
|
|
430
|
housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
|
|
431
|
housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
|
|
431
|
housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
|
|
432
|
housekeeping_packet.serviceType = TM_TYPE_HK;
|
|
432
|
housekeeping_packet.serviceType = TM_TYPE_HK;
|
|
433
|
housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
|
|
433
|
housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
|
|
434
|
housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
|
|
434
|
housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
|
|
435
|
housekeeping_packet.sid = SID_HK;
|
|
435
|
housekeeping_packet.sid = SID_HK;
|
|
436
|
|
|
436
|
|
|
437
|
// init status word
|
|
437
|
// init status word
|
|
438
|
housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
|
|
438
|
housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
|
|
439
|
housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
|
|
439
|
housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
|
|
440
|
// init software version
|
|
440
|
// init software version
|
|
441
|
housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
|
|
441
|
housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
|
|
442
|
housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
|
|
442
|
housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
|
|
443
|
housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
|
|
443
|
housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
|
|
444
|
housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
|
|
444
|
housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
|
|
445
|
// init fpga version
|
|
445
|
// init fpga version
|
|
446
|
parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
|
|
446
|
parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
|
|
447
|
housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
|
|
447
|
housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
|
|
448
|
housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
|
|
448
|
housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
|
|
449
|
housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
|
|
449
|
housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
|
|
450
|
|
|
450
|
|
|
451
|
housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
|
|
451
|
housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
|
|
452
|
housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
|
|
452
|
housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
|
|
453
|
housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
|
|
453
|
housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
|
|
454
|
housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
|
|
454
|
housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
|
|
455
|
housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
|
|
455
|
housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
|
|
456
|
}
|
|
456
|
}
|
|
457
|
|
|
457
|
|
|
458
|
void increment_seq_counter( unsigned short *packetSequenceControl )
|
|
458
|
void increment_seq_counter( unsigned short *packetSequenceControl )
|
|
459
|
{
|
|
459
|
{
|
|
460
|
/** This function increment the sequence counter passes in argument.
|
|
460
|
/** This function increment the sequence counter passes in argument.
|
|
461
|
*
|
|
461
|
*
|
|
462
|
* The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
|
|
462
|
* The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
|
|
463
|
*
|
|
463
|
*
|
|
464
|
*/
|
|
464
|
*/
|
|
465
|
|
|
465
|
|
|
466
|
unsigned short segmentation_grouping_flag;
|
|
466
|
unsigned short segmentation_grouping_flag;
|
|
467
|
unsigned short sequence_cnt;
|
|
467
|
unsigned short sequence_cnt;
|
|
468
|
|
|
468
|
|
|
469
|
segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
|
|
469
|
segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
|
|
470
|
sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
|
|
470
|
sequence_cnt = (*packetSequenceControl) & 0x3fff; // [0011 1111 1111 1111]
|
|
471
|
|
|
471
|
|
|
472
|
if ( sequence_cnt < SEQ_CNT_MAX)
|
|
472
|
if ( sequence_cnt < SEQ_CNT_MAX)
|
|
473
|
{
|
|
473
|
{
|
|
474
|
sequence_cnt = sequence_cnt + 1;
|
|
474
|
sequence_cnt = sequence_cnt + 1;
|
|
475
|
}
|
|
475
|
}
|
|
476
|
else
|
|
476
|
else
|
|
477
|
{
|
|
477
|
{
|
|
478
|
sequence_cnt = 0;
|
|
478
|
sequence_cnt = 0;
|
|
479
|
}
|
|
479
|
}
|
|
480
|
|
|
480
|
|
|
481
|
*packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
|
|
481
|
*packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
|
|
482
|
}
|
|
482
|
}
|
|
483
|
|
|
483
|
|
|
484
|
void getTime( unsigned char *time)
|
|
484
|
void getTime( unsigned char *time)
|
|
485
|
{
|
|
485
|
{
|
|
486
|
/** This function write the current local time in the time buffer passed in argument.
|
|
486
|
/** This function write the current local time in the time buffer passed in argument.
|
|
487
|
*
|
|
487
|
*
|
|
488
|
*/
|
|
488
|
*/
|
|
489
|
|
|
489
|
|
|
490
|
time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
|
|
490
|
time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
|
|
491
|
time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
|
|
491
|
time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
|
|
492
|
time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
|
|
492
|
time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
|
|
493
|
time[3] = (unsigned char) (time_management_regs->coarse_time);
|
|
493
|
time[3] = (unsigned char) (time_management_regs->coarse_time);
|
|
494
|
time[4] = (unsigned char) (time_management_regs->fine_time>>8);
|
|
494
|
time[4] = (unsigned char) (time_management_regs->fine_time>>8);
|
|
495
|
time[5] = (unsigned char) (time_management_regs->fine_time);
|
|
495
|
time[5] = (unsigned char) (time_management_regs->fine_time);
|
|
496
|
}
|
|
496
|
}
|
|
497
|
|
|
497
|
|
|
498
|
unsigned long long int getTimeAsUnsignedLongLongInt( )
|
|
498
|
unsigned long long int getTimeAsUnsignedLongLongInt( )
|
|
499
|
{
|
|
499
|
{
|
|
500
|
/** This function write the current local time in the time buffer passed in argument.
|
|
500
|
/** This function write the current local time in the time buffer passed in argument.
|
|
501
|
*
|
|
501
|
*
|
|
502
|
*/
|
|
502
|
*/
|
|
503
|
unsigned long long int time;
|
|
503
|
unsigned long long int time;
|
|
504
|
|
|
504
|
|
|
505
|
time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
|
|
505
|
time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
|
|
506
|
+ time_management_regs->fine_time;
|
|
506
|
+ time_management_regs->fine_time;
|
|
507
|
|
|
507
|
|
|
508
|
return time;
|
|
508
|
return time;
|
|
509
|
}
|
|
509
|
}
|
|
510
|
|
|
510
|
|
|
511
|
void send_dumb_hk( void )
|
|
511
|
void send_dumb_hk( void )
|
|
512
|
{
|
|
512
|
{
|
|
513
|
Packet_TM_LFR_HK_t dummy_hk_packet;
|
|
513
|
Packet_TM_LFR_HK_t dummy_hk_packet;
|
|
514
|
unsigned char *parameters;
|
|
514
|
unsigned char *parameters;
|
|
515
|
unsigned int i;
|
|
515
|
unsigned int i;
|
|
516
|
rtems_id queue_id;
|
|
516
|
rtems_id queue_id;
|
|
517
|
|
|
517
|
|
|
518
|
dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
|
|
518
|
dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
|
|
519
|
dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
|
|
519
|
dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
|
|
520
|
dummy_hk_packet.reserved = DEFAULT_RESERVED;
|
|
520
|
dummy_hk_packet.reserved = DEFAULT_RESERVED;
|
|
521
|
dummy_hk_packet.userApplication = CCSDS_USER_APP;
|
|
521
|
dummy_hk_packet.userApplication = CCSDS_USER_APP;
|
|
522
|
dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
|
|
522
|
dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
|
|
523
|
dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
|
|
523
|
dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
|
|
524
|
dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
|
|
524
|
dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
|
|
525
|
dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
|
|
525
|
dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
|
|
526
|
dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
|
|
526
|
dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
|
|
527
|
dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
|
|
527
|
dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
|
|
528
|
dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
|
|
528
|
dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
|
|
529
|
dummy_hk_packet.serviceType = TM_TYPE_HK;
|
|
529
|
dummy_hk_packet.serviceType = TM_TYPE_HK;
|
|
530
|
dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
|
|
530
|
dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
|
|
531
|
dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
|
|
531
|
dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
|
|
532
|
dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
|
|
532
|
dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
|
|
533
|
dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
|
|
533
|
dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
|
|
534
|
dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
|
|
534
|
dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
|
|
535
|
dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
|
|
535
|
dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
|
|
536
|
dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
|
|
536
|
dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
|
|
537
|
dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
|
|
537
|
dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
|
|
538
|
dummy_hk_packet.sid = SID_HK;
|
|
538
|
dummy_hk_packet.sid = SID_HK;
|
|
539
|
|
|
539
|
|
|
540
|
// init status word
|
|
540
|
// init status word
|
|
541
|
dummy_hk_packet.lfr_status_word[0] = 0xff;
|
|
541
|
dummy_hk_packet.lfr_status_word[0] = 0xff;
|
|
542
|
dummy_hk_packet.lfr_status_word[1] = 0xff;
|
|
542
|
dummy_hk_packet.lfr_status_word[1] = 0xff;
|
|
543
|
// init software version
|
|
543
|
// init software version
|
|
544
|
dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
|
|
544
|
dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
|
|
545
|
dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
|
|
545
|
dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
|
|
546
|
dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
|
|
546
|
dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
|
|
547
|
dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
|
|
547
|
dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
|
|
548
|
// init fpga version
|
|
548
|
// init fpga version
|
|
549
|
parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
|
|
549
|
parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
|
|
550
|
dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
|
|
550
|
dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
|
|
551
|
dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
|
|
551
|
dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
|
|
552
|
dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
|
|
552
|
dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
|
|
553
|
|
|
553
|
|
|
554
|
parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
|
|
554
|
parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
|
|
555
|
|
|
555
|
|
|
556
|
for (i=0; i<100; i++)
|
|
556
|
for (i=0; i<100; i++)
|
|
557
|
{
|
|
557
|
{
|
|
558
|
parameters[i] = 0xff;
|
|
558
|
parameters[i] = 0xff;
|
|
559
|
}
|
|
559
|
}
|
|
560
|
|
|
560
|
|
|
561
|
get_message_queue_id_send( &queue_id );
|
|
561
|
get_message_queue_id_send( &queue_id );
|
|
562
|
|
|
562
|
|
|
563
|
rtems_message_queue_send( queue_id, &dummy_hk_packet,
|
|
563
|
rtems_message_queue_send( queue_id, &dummy_hk_packet,
|
|
564
|
PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
|
|
564
|
PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
|
|
565
|
}
|
|
565
|
}
|
|
566
|
|
|
566
|
|
|
567
|
void get_temperatures( unsigned char *temperatures )
|
|
567
|
void get_temperatures( unsigned char *temperatures )
|
|
568
|
{
|
|
568
|
{
|
|
569
|
unsigned char* temp_scm_ptr;
|
|
569
|
unsigned char* temp_scm_ptr;
|
|
570
|
unsigned char* temp_pcb_ptr;
|
|
570
|
unsigned char* temp_pcb_ptr;
|
|
571
|
unsigned char* temp_fpga_ptr;
|
|
571
|
unsigned char* temp_fpga_ptr;
|
|
572
|
|
|
572
|
|
|
573
|
// SEL1 SEL0
|
|
573
|
// SEL1 SEL0
|
|
574
|
// 0 0 => PCB
|
|
574
|
// 0 0 => PCB
|
|
575
|
// 0 1 => FPGA
|
|
575
|
// 0 1 => FPGA
|
|
576
|
// 1 0 => SCM
|
|
576
|
// 1 0 => SCM
|
|
577
|
|
|
577
|
|
|
578
|
temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
|
|
578
|
temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
|
|
579
|
temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
|
|
579
|
temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
|
|
580
|
temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
|
|
580
|
temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
|
|
581
|
|
|
581
|
|
|
582
|
temperatures[0] = temp_scm_ptr[2];
|
|
582
|
temperatures[0] = temp_scm_ptr[2];
|
|
583
|
temperatures[1] = temp_scm_ptr[3];
|
|
583
|
temperatures[1] = temp_scm_ptr[3];
|
|
584
|
temperatures[2] = temp_pcb_ptr[2];
|
|
584
|
temperatures[2] = temp_pcb_ptr[2];
|
|
585
|
temperatures[3] = temp_pcb_ptr[3];
|
|
585
|
temperatures[3] = temp_pcb_ptr[3];
|
|
586
|
temperatures[4] = temp_fpga_ptr[2];
|
|
586
|
temperatures[4] = temp_fpga_ptr[2];
|
|
587
|
temperatures[5] = temp_fpga_ptr[3];
|
|
587
|
temperatures[5] = temp_fpga_ptr[3];
|
|
588
|
}
|
|
588
|
}
|
|
589
|
|
|
589
|
|
|
590
|