##// END OF EJS Templates
1.0.0.7...
paul -
r135:f2636eaf863a VHDLib206
parent child
Show More
@@ -0,0 +1,145
1 /*
2 * CPU Usage Reporter
3 *
4 * COPYRIGHT (c) 1989-2009
5 * On-Line Applications Research Corporation (OAR).
6 *
7 * The license and distribution terms for this file may be
8 * found in the file LICENSE in this distribution or at
9 * http://www.rtems.com/license/LICENSE.
10 *
11 * $Id$
12 */
13
14 #ifdef HAVE_CONFIG_H
15 #include "config.h"
16 #endif
17
18 #include <rtems.h>
19
20 #include <assert.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <ctype.h>
25 #include <inttypes.h>
26
27 #include <rtems/cpuuse.h>
28 #include <rtems/bspIo.h>
29
30 #include "lfr_cpu_usage_report.h"
31
32 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
33 #include <rtems/score/timestamp.h>
34 #endif
35
36 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
37 extern Timestamp_Control CPU_usage_Uptime_at_last_reset;
38 #else
39 extern uint32_t CPU_usage_Ticks_at_last_reset;
40 #endif
41
42 /*PAGE
43 *
44 * rtems_cpu_usage_report
45 */
46
47 unsigned char lfr_rtems_cpu_usage_report( void )
48 {
49 uint32_t api_index;
50 Thread_Control *the_thread;
51 Objects_Information *information;
52 uint32_t ival, fval;
53 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
54 Timestamp_Control uptime, total, ran;
55 #else
56 uint32_t total_units = 0;
57 #endif
58
59 unsigned char cpu_load;
60 cpu_load = 0;
61
62 /*
63 * When not using nanosecond CPU usage resolution, we have to count
64 * the number of "ticks" we gave credit for to give the user a rough
65 * guideline as to what each number means proportionally.
66 */
67 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
68 _TOD_Get_uptime( &uptime );
69 _Timestamp_Subtract( &CPU_usage_Uptime_at_last_reset, &uptime, &total );
70 #else
71 for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
72 if ( !_Objects_Information_table[ api_index ] )
73 {
74 continue;
75 }
76 information = _Objects_Information_table[ api_index ][ 1 ];
77 if ( information )
78 {
79 for ( i=1 ; i <= information->maximum ; i++ ) {
80 the_thread = (Thread_Control *)information->local_table[ i ];
81
82 if ( the_thread )
83 total_units += the_thread->cpu_time_used;
84 }
85 }
86 }
87 #endif
88
89 for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ )
90 {
91 if ( !_Objects_Information_table[ api_index ] )
92 {
93 continue;
94 }
95 information = _Objects_Information_table[ api_index ][ 1 ];
96 if ( information )
97 {
98 the_thread = (Thread_Control *)information->local_table[ 1 ];
99
100 if ( !the_thread )
101 {
102 continue;
103 }
104
105 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
106 /*
107 * If this is the currently executing thread, account for time
108 * since the last context switch.
109 */
110 ran = the_thread->cpu_time_used;
111 if ( _Thread_Executing->Object.id == the_thread->Object.id )
112 {
113 Timestamp_Control used;
114 _Timestamp_Subtract(
115 &_Thread_Time_of_last_context_switch, &uptime, &used
116 );
117 _Timestamp_Add_to( &ran, &used );
118 }
119 _Timestamp_Divide( &ran, &total, &ival, &fval );
120
121 #else
122 if (total_units)
123 {
124 uint64_t ival_64;
125
126 ival_64 = the_thread->cpu_time_used;
127 ival_64 *= 100000;
128 ival = ival_64 / total_units;
129 }
130 else
131 {
132 ival = 0;
133 }
134
135 fval = ival % 1000;
136 ival /= 1000;
137 #endif
138 }
139 }
140 cpu_load = (unsigned char) (100 - ival);
141
142 return cpu_load;
143 }
144
145
@@ -1,1 +1,1
1 b0a4fa20a3c7bd7e9ca1a1c4fda85d3269653bc8 src/basic_parameters
1 163519b5356a8bcd9197f504c31ad34b6233de38 src/basic_parameters
@@ -1,273 +1,274
1 #############################################################################
1 #############################################################################
2 # Makefile for building: bin/fsw
2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Fri May 16 07:58:47 2014
3 # Generated by qmake (2.01a) (Qt 4.8.6) on: Mon May 26 14:45:46 2014
4 # Project: fsw-qt.pro
4 # Project: fsw-qt.pro
5 # Template: app
5 # Template: app
6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 #############################################################################
7 #############################################################################
8
8
9 ####### Compiler, tools and options
9 ####### Compiler, tools and options
10
10
11 CC = sparc-rtems-gcc
11 CC = sparc-rtems-gcc
12 CXX = sparc-rtems-g++
12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=7 -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=7 -DPRINT_MESSAGES_ON_CONSOLE
14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/basic_parameters
16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../header/processing -I../src/basic_parameters
17 LINK = sparc-rtems-g++
17 LINK = sparc-rtems-g++
18 LFLAGS =
18 LFLAGS =
19 LIBS = $(SUBLIBS)
19 LIBS = $(SUBLIBS)
20 AR = sparc-rtems-ar rcs
20 AR = sparc-rtems-ar rcs
21 RANLIB =
21 RANLIB =
22 QMAKE = /usr/bin/qmake-qt4
22 QMAKE = /usr/bin/qmake-qt4
23 TAR = tar -cf
23 TAR = tar -cf
24 COMPRESS = gzip -9f
24 COMPRESS = gzip -9f
25 COPY = cp -f
25 COPY = cp -f
26 SED = sed
26 SED = sed
27 COPY_FILE = $(COPY)
27 COPY_FILE = $(COPY)
28 COPY_DIR = $(COPY) -r
28 COPY_DIR = $(COPY) -r
29 STRIP = sparc-rtems-strip
29 STRIP = sparc-rtems-strip
30 INSTALL_FILE = install -m 644 -p
30 INSTALL_FILE = install -m 644 -p
31 INSTALL_DIR = $(COPY_DIR)
31 INSTALL_DIR = $(COPY_DIR)
32 INSTALL_PROGRAM = install -m 755 -p
32 INSTALL_PROGRAM = install -m 755 -p
33 DEL_FILE = rm -f
33 DEL_FILE = rm -f
34 SYMLINK = ln -f -s
34 SYMLINK = ln -f -s
35 DEL_DIR = rmdir
35 DEL_DIR = rmdir
36 MOVE = mv -f
36 MOVE = mv -f
37 CHK_DIR_EXISTS= test -d
37 CHK_DIR_EXISTS= test -d
38 MKDIR = mkdir -p
38 MKDIR = mkdir -p
39
39
40 ####### Output directory
40 ####### Output directory
41
41
42 OBJECTS_DIR = obj/
42 OBJECTS_DIR = obj/
43
43
44 ####### Files
44 ####### Files
45
45
46 SOURCES = ../src/wf_handler.c \
46 SOURCES = ../src/wf_handler.c \
47 ../src/tc_handler.c \
47 ../src/tc_handler.c \
48 ../src/fsw_misc.c \
48 ../src/fsw_misc.c \
49 ../src/fsw_init.c \
49 ../src/fsw_init.c \
50 ../src/fsw_globals.c \
50 ../src/fsw_globals.c \
51 ../src/fsw_spacewire.c \
51 ../src/fsw_spacewire.c \
52 ../src/tc_load_dump_parameters.c \
52 ../src/tc_load_dump_parameters.c \
53 ../src/tm_lfr_tc_exe.c \
53 ../src/tm_lfr_tc_exe.c \
54 ../src/tc_acceptance.c \
54 ../src/tc_acceptance.c \
55 ../src/basic_parameters/basic_parameters.c \
55 ../src/basic_parameters/basic_parameters.c \
56 ../src/processing/fsw_processing.c \
56 ../src/processing/fsw_processing.c \
57 ../src/processing/avf0_prc0.c \
57 ../src/processing/avf0_prc0.c \
58 ../src/processing/avf1_prc1.c \
58 ../src/processing/avf1_prc1.c \
59 ../src/processing/avf2_prc2.c \
59 ../src/processing/avf2_prc2.c \
60 ../src/lfr_cpu_usage_report.c
60 ../src/lfr_cpu_usage_report.c
61 OBJECTS = obj/wf_handler.o \
61 OBJECTS = obj/wf_handler.o \
62 obj/tc_handler.o \
62 obj/tc_handler.o \
63 obj/fsw_misc.o \
63 obj/fsw_misc.o \
64 obj/fsw_init.o \
64 obj/fsw_init.o \
65 obj/fsw_globals.o \
65 obj/fsw_globals.o \
66 obj/fsw_spacewire.o \
66 obj/fsw_spacewire.o \
67 obj/tc_load_dump_parameters.o \
67 obj/tc_load_dump_parameters.o \
68 obj/tm_lfr_tc_exe.o \
68 obj/tm_lfr_tc_exe.o \
69 obj/tc_acceptance.o \
69 obj/tc_acceptance.o \
70 obj/basic_parameters.o \
70 obj/basic_parameters.o \
71 obj/fsw_processing.o \
71 obj/fsw_processing.o \
72 obj/avf0_prc0.o \
72 obj/avf0_prc0.o \
73 obj/avf1_prc1.o \
73 obj/avf1_prc1.o \
74 obj/avf2_prc2.o \
74 obj/avf2_prc2.o \
75 obj/lfr_cpu_usage_report.o
75 obj/lfr_cpu_usage_report.o
76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
76 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
77 /usr/lib64/qt4/mkspecs/common/linux.conf \
77 /usr/lib64/qt4/mkspecs/common/linux.conf \
78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
78 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
79 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
80 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
81 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
82 /usr/lib64/qt4/mkspecs/qconfig.pri \
82 /usr/lib64/qt4/mkspecs/qconfig.pri \
83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
83 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
84 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
85 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
86 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
87 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
88 sparc.pri \
88 sparc.pri \
89 /usr/lib64/qt4/mkspecs/features/release.prf \
89 /usr/lib64/qt4/mkspecs/features/release.prf \
90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
90 /usr/lib64/qt4/mkspecs/features/default_post.prf \
91 /usr/lib64/qt4/mkspecs/features/shared.prf \
91 /usr/lib64/qt4/mkspecs/features/shared.prf \
92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
92 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
93 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
94 /usr/lib64/qt4/mkspecs/features/resources.prf \
94 /usr/lib64/qt4/mkspecs/features/resources.prf \
95 /usr/lib64/qt4/mkspecs/features/uic.prf \
95 /usr/lib64/qt4/mkspecs/features/uic.prf \
96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
96 /usr/lib64/qt4/mkspecs/features/yacc.prf \
97 /usr/lib64/qt4/mkspecs/features/lex.prf \
97 /usr/lib64/qt4/mkspecs/features/lex.prf \
98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
98 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
99 fsw-qt.pro
99 fsw-qt.pro
100 QMAKE_TARGET = fsw
100 QMAKE_TARGET = fsw
101 DESTDIR = bin/
101 DESTDIR = bin/
102 TARGET = bin/fsw
102 TARGET = bin/fsw
103
103
104 first: all
104 first: all
105 ####### Implicit rules
105 ####### Implicit rules
106
106
107 .SUFFIXES: .o .c .cpp .cc .cxx .C
107 .SUFFIXES: .o .c .cpp .cc .cxx .C
108
108
109 .cpp.o:
109 .cpp.o:
110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
110 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
111
111
112 .cc.o:
112 .cc.o:
113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
113 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
114
114
115 .cxx.o:
115 .cxx.o:
116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
116 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
117
117
118 .C.o:
118 .C.o:
119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
119 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
120
120
121 .c.o:
121 .c.o:
122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
122 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
123
123
124 ####### Build rules
124 ####### Build rules
125
125
126 all: Makefile $(TARGET)
126 all: Makefile $(TARGET)
127
127
128 $(TARGET): $(OBJECTS)
128 $(TARGET): $(OBJECTS)
129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
129 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
130 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
131
131
132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
132 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
133 /usr/lib64/qt4/mkspecs/common/linux.conf \
133 /usr/lib64/qt4/mkspecs/common/linux.conf \
134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
134 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
135 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
136 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
137 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
138 /usr/lib64/qt4/mkspecs/qconfig.pri \
138 /usr/lib64/qt4/mkspecs/qconfig.pri \
139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
139 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
140 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
141 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
142 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
143 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
144 sparc.pri \
144 sparc.pri \
145 /usr/lib64/qt4/mkspecs/features/release.prf \
145 /usr/lib64/qt4/mkspecs/features/release.prf \
146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
146 /usr/lib64/qt4/mkspecs/features/default_post.prf \
147 /usr/lib64/qt4/mkspecs/features/shared.prf \
147 /usr/lib64/qt4/mkspecs/features/shared.prf \
148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
148 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
149 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
150 /usr/lib64/qt4/mkspecs/features/resources.prf \
150 /usr/lib64/qt4/mkspecs/features/resources.prf \
151 /usr/lib64/qt4/mkspecs/features/uic.prf \
151 /usr/lib64/qt4/mkspecs/features/uic.prf \
152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
152 /usr/lib64/qt4/mkspecs/features/yacc.prf \
153 /usr/lib64/qt4/mkspecs/features/lex.prf \
153 /usr/lib64/qt4/mkspecs/features/lex.prf \
154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
154 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
155 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
156 /usr/lib64/qt4/mkspecs/common/unix.conf:
156 /usr/lib64/qt4/mkspecs/common/unix.conf:
157 /usr/lib64/qt4/mkspecs/common/linux.conf:
157 /usr/lib64/qt4/mkspecs/common/linux.conf:
158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
158 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
159 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
160 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
161 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
162 /usr/lib64/qt4/mkspecs/qconfig.pri:
162 /usr/lib64/qt4/mkspecs/qconfig.pri:
163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
163 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
164 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
165 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
166 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
167 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
168 sparc.pri:
168 sparc.pri:
169 /usr/lib64/qt4/mkspecs/features/release.prf:
169 /usr/lib64/qt4/mkspecs/features/release.prf:
170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
170 /usr/lib64/qt4/mkspecs/features/default_post.prf:
171 /usr/lib64/qt4/mkspecs/features/shared.prf:
171 /usr/lib64/qt4/mkspecs/features/shared.prf:
172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
172 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
173 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
174 /usr/lib64/qt4/mkspecs/features/resources.prf:
174 /usr/lib64/qt4/mkspecs/features/resources.prf:
175 /usr/lib64/qt4/mkspecs/features/uic.prf:
175 /usr/lib64/qt4/mkspecs/features/uic.prf:
176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
176 /usr/lib64/qt4/mkspecs/features/yacc.prf:
177 /usr/lib64/qt4/mkspecs/features/lex.prf:
177 /usr/lib64/qt4/mkspecs/features/lex.prf:
178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
178 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
179 qmake: FORCE
179 qmake: FORCE
180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
180 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
181
181
182 dist:
182 dist:
183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
183 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
184 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
185
185
186
186
187 clean:compiler_clean
187 clean:compiler_clean
188 -$(DEL_FILE) $(OBJECTS)
188 -$(DEL_FILE) $(OBJECTS)
189 -$(DEL_FILE) *~ core *.core
189 -$(DEL_FILE) *~ core *.core
190
190
191
191
192 ####### Sub-libraries
192 ####### Sub-libraries
193
193
194 distclean: clean
194 distclean: clean
195 -$(DEL_FILE) $(TARGET)
195 -$(DEL_FILE) $(TARGET)
196 -$(DEL_FILE) Makefile
196 -$(DEL_FILE) Makefile
197
197
198
198
199 grmon:
199 grmon:
200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
200 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
201
201
202 check: first
202 check: first
203
203
204 compiler_rcc_make_all:
204 compiler_rcc_make_all:
205 compiler_rcc_clean:
205 compiler_rcc_clean:
206 compiler_uic_make_all:
206 compiler_uic_make_all:
207 compiler_uic_clean:
207 compiler_uic_clean:
208 compiler_image_collection_make_all: qmake_image_collection.cpp
208 compiler_image_collection_make_all: qmake_image_collection.cpp
209 compiler_image_collection_clean:
209 compiler_image_collection_clean:
210 -$(DEL_FILE) qmake_image_collection.cpp
210 -$(DEL_FILE) qmake_image_collection.cpp
211 compiler_yacc_decl_make_all:
211 compiler_yacc_decl_make_all:
212 compiler_yacc_decl_clean:
212 compiler_yacc_decl_clean:
213 compiler_yacc_impl_make_all:
213 compiler_yacc_impl_make_all:
214 compiler_yacc_impl_clean:
214 compiler_yacc_impl_clean:
215 compiler_lex_make_all:
215 compiler_lex_make_all:
216 compiler_lex_clean:
216 compiler_lex_clean:
217 compiler_clean:
217 compiler_clean:
218
218
219 ####### Compile
219 ####### Compile
220
220
221 obj/wf_handler.o: ../src/wf_handler.c
221 obj/wf_handler.o: ../src/wf_handler.c
222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
222 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
223
223
224 obj/tc_handler.o: ../src/tc_handler.c
224 obj/tc_handler.o: ../src/tc_handler.c
225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
225 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
226
226
227 obj/fsw_misc.o: ../src/fsw_misc.c
227 obj/fsw_misc.o: ../src/fsw_misc.c
228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
228 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
229
229
230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
230 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
231 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
232
232
233 obj/fsw_globals.o: ../src/fsw_globals.c
233 obj/fsw_globals.o: ../src/fsw_globals.c
234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
234 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
235
235
236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
236 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
237 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
238
238
239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
239 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
240 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
241
241
242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
242 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
243 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
244
244
245 obj/tc_acceptance.o: ../src/tc_acceptance.c
245 obj/tc_acceptance.o: ../src/tc_acceptance.c
246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
246 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
247
247
248 obj/basic_parameters.o: ../src/basic_parameters/basic_parameters.c ../src/basic_parameters/basic_parameters.h
248 obj/basic_parameters.o: ../src/basic_parameters/basic_parameters.c ../src/basic_parameters/basic_parameters.h \
249 ../src/basic_parameters/basic_parameters_params.h
249 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/basic_parameters/basic_parameters.c
250 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../src/basic_parameters/basic_parameters.c
250
251
251 obj/fsw_processing.o: ../src/processing/fsw_processing.c
252 obj/fsw_processing.o: ../src/processing/fsw_processing.c
252 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
253 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/processing/fsw_processing.c
253
254
254 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
255 obj/avf0_prc0.o: ../src/processing/avf0_prc0.c
255 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
256 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf0_prc0.o ../src/processing/avf0_prc0.c
256
257
257 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
258 obj/avf1_prc1.o: ../src/processing/avf1_prc1.c
258 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
259 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf1_prc1.o ../src/processing/avf1_prc1.c
259
260
260 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
261 obj/avf2_prc2.o: ../src/processing/avf2_prc2.c
261 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
262 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/avf2_prc2.o ../src/processing/avf2_prc2.c
262
263
263 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
264 obj/lfr_cpu_usage_report.o: ../src/lfr_cpu_usage_report.c
264 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
265 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/lfr_cpu_usage_report.o ../src/lfr_cpu_usage_report.c
265
266
266 ####### Install
267 ####### Install
267
268
268 install: FORCE
269 install: FORCE
269
270
270 uninstall: FORCE
271 uninstall: FORCE
271
272
272 FORCE:
273 FORCE:
273
274
@@ -1,201 +1,201
1 <?xml version="1.0" encoding="UTF-8"?>
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE QtCreatorProject>
2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-05-16T15:09:51. -->
3 <!-- Written by QtCreator 3.0.1, 2014-05-26T06:56:48. -->
4 <qtcreator>
4 <qtcreator>
5 <data>
5 <data>
6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 <value type="int">0</value>
7 <value type="int">0</value>
8 </data>
8 </data>
9 <data>
9 <data>
10 <variable>ProjectExplorer.Project.EditorSettings</variable>
10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 <valuemap type="QVariantMap">
11 <valuemap type="QVariantMap">
12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 <value type="QString" key="language">Cpp</value>
16 <value type="QString" key="language">Cpp</value>
17 <valuemap type="QVariantMap" key="value">
17 <valuemap type="QVariantMap" key="value">
18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 </valuemap>
19 </valuemap>
20 </valuemap>
20 </valuemap>
21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 <value type="QString" key="language">QmlJS</value>
22 <value type="QString" key="language">QmlJS</value>
23 <valuemap type="QVariantMap" key="value">
23 <valuemap type="QVariantMap" key="value">
24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 </valuemap>
25 </valuemap>
26 </valuemap>
26 </valuemap>
27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 <value type="int" key="EditorConfiguration.TabSize">8</value>
38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 </valuemap>
45 </valuemap>
46 </data>
46 </data>
47 <data>
47 <data>
48 <variable>ProjectExplorer.Project.PluginSettings</variable>
48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 <valuemap type="QVariantMap"/>
49 <valuemap type="QVariantMap"/>
50 </data>
50 </data>
51 <data>
51 <data>
52 <variable>ProjectExplorer.Project.Target.0</variable>
52 <variable>ProjectExplorer.Project.Target.0</variable>
53 <valuemap type="QVariantMap">
53 <valuemap type="QVariantMap">
54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 </valuemap>
72 </valuemap>
73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 <value type="QString">-w</value>
79 <value type="QString">-w</value>
80 <value type="QString">-r</value>
80 <value type="QString">-r</value>
81 </valuelist>
81 </valuelist>
82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 </valuemap>
85 </valuemap>
86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 </valuemap>
90 </valuemap>
91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 <value type="QString">-w</value>
98 <value type="QString">-w</value>
99 <value type="QString">-r</value>
99 <value type="QString">-r</value>
100 </valuelist>
100 </valuelist>
101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 </valuemap>
104 </valuemap>
105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 </valuemap>
109 </valuemap>
110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 </valuemap>
118 </valuemap>
119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 </valuemap>
126 </valuemap>
127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 </valuemap>
131 </valuemap>
132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 <value type="int">0</value>
153 <value type="int">0</value>
154 <value type="int">1</value>
154 <value type="int">1</value>
155 <value type="int">2</value>
155 <value type="int">2</value>
156 <value type="int">3</value>
156 <value type="int">3</value>
157 <value type="int">4</value>
157 <value type="int">4</value>
158 <value type="int">5</value>
158 <value type="int">5</value>
159 <value type="int">6</value>
159 <value type="int">6</value>
160 <value type="int">7</value>
160 <value type="int">7</value>
161 <value type="int">8</value>
161 <value type="int">8</value>
162 <value type="int">9</value>
162 <value type="int">9</value>
163 <value type="int">10</value>
163 <value type="int">10</value>
164 <value type="int">11</value>
164 <value type="int">11</value>
165 <value type="int">12</value>
165 <value type="int">12</value>
166 <value type="int">13</value>
166 <value type="int">13</value>
167 <value type="int">14</value>
167 <value type="int">14</value>
168 </valuelist>
168 </valuelist>
169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
180 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 </valuemap>
185 </valuemap>
186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 </valuemap>
187 </valuemap>
188 </data>
188 </data>
189 <data>
189 <data>
190 <variable>ProjectExplorer.Project.TargetCount</variable>
190 <variable>ProjectExplorer.Project.TargetCount</variable>
191 <value type="int">1</value>
191 <value type="int">1</value>
192 </data>
192 </data>
193 <data>
193 <data>
194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
194 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
195 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
195 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
196 </data>
196 </data>
197 <data>
197 <data>
198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
198 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
199 <value type="int">15</value>
199 <value type="int">15</value>
200 </data>
200 </data>
201 </qtcreator>
201 </qtcreator>
@@ -1,238 +1,239
1 #ifndef FSW_PROCESSING_H_INCLUDED
1 #ifndef FSW_PROCESSING_H_INCLUDED
2 #define FSW_PROCESSING_H_INCLUDED
2 #define FSW_PROCESSING_H_INCLUDED
3
3
4 #include <rtems.h>
4 #include <rtems.h>
5 #include <grspw.h>
5 #include <grspw.h>
6 #include <math.h>
6 #include <math.h>
7 #include <stdlib.h> // abs() is in the stdlib
7 #include <stdlib.h> // abs() is in the stdlib
8 #include <stdio.h> // printf()
8 #include <stdio.h> // printf()
9 #include <math.h>
9 #include <math.h>
10
10
11 #include "fsw_params.h"
11 #include "fsw_params.h"
12 #include "fsw_spacewire.h"
12 #include "fsw_spacewire.h"
13
13
14 typedef struct ring_node_sm
14 typedef struct ring_node_sm
15 {
15 {
16 struct ring_node_sm *previous;
16 struct ring_node_sm *previous;
17 struct ring_node_sm *next;
17 struct ring_node_sm *next;
18 int buffer_address;
18 int buffer_address;
19 unsigned int status;
19 unsigned int status;
20 unsigned int coarseTime;
20 unsigned int coarseTime;
21 unsigned int fineTime;
21 unsigned int fineTime;
22 } ring_node_sm;
22 } ring_node_sm;
23
23
24 typedef struct ring_node_asm
24 typedef struct ring_node_asm
25 {
25 {
26 struct ring_node_asm *next;
26 struct ring_node_asm *next;
27 float matrix[ TOTAL_SIZE_SM ];
27 float matrix[ TOTAL_SIZE_SM ];
28 unsigned int status;
28 unsigned int status;
29 } ring_node_asm;
29 } ring_node_asm;
30
30
31 typedef struct
31 typedef struct
32 {
32 {
33 Header_TM_LFR_SCIENCE_BP_t header;
33 Header_TM_LFR_SCIENCE_BP_t header;
34 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
34 unsigned char data[ 30 * 22 ]; // MAX size is 22 * 30 [TM_LFR_SCIENCE_BURST_BP2_F1]
35 } bp_packet;
35 } bp_packet;
36
36
37 typedef struct
37 typedef struct
38 {
38 {
39 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
39 Header_TM_LFR_SCIENCE_BP_with_spare_t header;
40 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
40 unsigned char data[ 9 * 13 ]; // only for TM_LFR_SCIENCE_NORMAL_BP1_F0 and F1
41 } bp_packet_with_spare;
41 } bp_packet_with_spare;
42
42
43 typedef struct
43 typedef struct
44 {
44 {
45 ring_node_asm *norm;
45 ring_node_asm *norm;
46 ring_node_asm *burst_sbm;
46 ring_node_asm *burst_sbm;
47 rtems_event_set event;
47 rtems_event_set event;
48 unsigned int coarseTime;
48 unsigned int coarseTime;
49 unsigned int fineTime;
49 unsigned int fineTime;
50 } asm_msg;
50 } asm_msg;
51
51
52 extern volatile int sm_f0[ ];
52 extern volatile int sm_f0[ ];
53 extern volatile int sm_f1[ ];
53 extern volatile int sm_f1[ ];
54 extern volatile int sm_f2[ ];
54 extern volatile int sm_f2[ ];
55
55
56 // parameters
56 // parameters
57 extern struct param_local_str param_local;
57 extern struct param_local_str param_local;
58
58
59 // registers
59 // registers
60 extern time_management_regs_t *time_management_regs;
60 extern time_management_regs_t *time_management_regs;
61 extern spectral_matrix_regs_t *spectral_matrix_regs;
61 extern spectral_matrix_regs_t *spectral_matrix_regs;
62
62
63 extern rtems_name misc_name[5];
63 extern rtems_name misc_name[5];
64 extern rtems_id Task_id[20]; /* array of task ids */
64 extern rtems_id Task_id[20]; /* array of task ids */
65
65
66 // ISR
66 // ISR
67 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
67 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
68 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
68 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
69
69
70 //******************
70 //******************
71 // Spectral Matrices
71 // Spectral Matrices
72 void reset_nb_sm( void );
72 void reset_nb_sm( void );
73 // SM
73 // SM
74 void SM_init_rings( void );
74 void SM_init_rings( void );
75 void SM_reset_current_ring_nodes( void );
75 void SM_reset_current_ring_nodes( void );
76 void SM_generic_init_ring(ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] );
76 // ASM
77 // ASM
77 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
78 void ASM_generic_init_ring(ring_node_asm *ring, unsigned char nbNodes );
78 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
79 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header);
79 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
80 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
80 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
81 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
81
82
82 //*****************
83 //*****************
83 // Basic Parameters
84 // Basic Parameters
84
85
85 void BP_reset_current_ring_nodes( void );
86 void BP_reset_current_ring_nodes( void );
86 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
87 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
87 unsigned int apid, unsigned char sid,
88 unsigned int apid, unsigned char sid,
88 unsigned int packetLength , unsigned char blkNr);
89 unsigned int packetLength , unsigned char blkNr);
89 void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
90 void BP_init_header_with_spare( Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
90 unsigned int apid, unsigned char sid,
91 unsigned int apid, unsigned char sid,
91 unsigned int packetLength, unsigned char blkNr );
92 unsigned int packetLength, unsigned char blkNr );
92 void BP_send( char *data,
93 void BP_send( char *data,
93 rtems_id queue_id ,
94 rtems_id queue_id ,
94 unsigned int nbBytesToSend , unsigned int sid );
95 unsigned int nbBytesToSend , unsigned int sid );
95
96
96 //******************
97 //******************
97 // general functions
98 // general functions
98 void reset_spectral_matrix_regs( void );
99 void reset_spectral_matrix_regs( void );
99 void set_time(unsigned char *time, unsigned char *timeInBuffer );
100 void set_time(unsigned char *time, unsigned char *timeInBuffer );
100
101
101 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
102 extern rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id );
102 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
103 extern rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id );
103
104
104 //***************************************
105 //***************************************
105 // DEFINITIONS OF STATIC INLINE FUNCTIONS
106 // DEFINITIONS OF STATIC INLINE FUNCTIONS
106 static inline void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
107 static inline void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
107 ring_node_sm *ring_node_tab[],
108 ring_node_sm *ring_node_tab[],
108 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 );
109 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 );
109 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
110 static inline void ASM_reorganize_and_divide(float *averaged_spec_mat, float *averaged_spec_mat_reorganized,
110 float divider );
111 float divider );
111 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
112 static inline void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat,
112 float divider,
113 float divider,
113 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
114 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage , unsigned char ASMIndexStart);
114 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
115 static inline void ASM_convert(volatile float *input_matrix, char *output_matrix);
115
116
116 void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
117 void SM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
117 ring_node_sm *ring_node_tab[],
118 ring_node_sm *ring_node_tab[],
118 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
119 unsigned int nbAverageNormF0, unsigned int nbAverageSBM1F0 )
119 {
120 {
120 float sum;
121 float sum;
121 unsigned int i;
122 unsigned int i;
122
123
123 for(i=0; i<TOTAL_SIZE_SM; i++)
124 for(i=0; i<TOTAL_SIZE_SM; i++)
124 {
125 {
125 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
126 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
126 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
127 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
127 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
128 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
128 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
129 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
129 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
130 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
130 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
131 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
131 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
132 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
132 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
133 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
133
134
134 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
135 if ( (nbAverageNormF0 == 0) && (nbAverageSBM1F0 == 0) )
135 {
136 {
136 averaged_spec_mat_f0[ i ] = sum;
137 averaged_spec_mat_f0[ i ] = sum;
137 averaged_spec_mat_f1[ i ] = sum;
138 averaged_spec_mat_f1[ i ] = sum;
138 }
139 }
139 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
140 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 != 0) )
140 {
141 {
141 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
142 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
142 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
143 averaged_spec_mat_f1[ i ] = ( averaged_spec_mat_f1[ i ] + sum );
143 }
144 }
144 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
145 else if ( (nbAverageNormF0 != 0) && (nbAverageSBM1F0 == 0) )
145 {
146 {
146 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
147 averaged_spec_mat_f0[ i ] = ( averaged_spec_mat_f0[ i ] + sum );
147 averaged_spec_mat_f1[ i ] = sum;
148 averaged_spec_mat_f1[ i ] = sum;
148 }
149 }
149 else
150 else
150 {
151 {
151 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
152 PRINTF2("ERR *** in SM_average *** unexpected parameters %d %d\n", nbAverageNormF0, nbAverageSBM1F0)
152 }
153 }
153 }
154 }
154 }
155 }
155
156
156 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
157 void ASM_reorganize_and_divide( float *averaged_spec_mat, float *averaged_spec_mat_reorganized, float divider )
157 {
158 {
158 int frequencyBin;
159 int frequencyBin;
159 int asmComponent;
160 int asmComponent;
160 unsigned int offsetAveragedSpecMatReorganized;
161 unsigned int offsetAveragedSpecMatReorganized;
161 unsigned int offsetAveragedSpecMat;
162 unsigned int offsetAveragedSpecMat;
162
163
163 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
164 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
164 {
165 {
165 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
166 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
166 {
167 {
167 offsetAveragedSpecMatReorganized =
168 offsetAveragedSpecMatReorganized =
168 frequencyBin * NB_VALUES_PER_SM
169 frequencyBin * NB_VALUES_PER_SM
169 + asmComponent;
170 + asmComponent;
170 offsetAveragedSpecMat =
171 offsetAveragedSpecMat =
171 asmComponent * NB_BINS_PER_SM
172 asmComponent * NB_BINS_PER_SM
172 + frequencyBin;
173 + frequencyBin;
173 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
174 averaged_spec_mat_reorganized[offsetAveragedSpecMatReorganized ] =
174 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
175 averaged_spec_mat[ offsetAveragedSpecMat ] / divider;
175 }
176 }
176 }
177 }
177 }
178 }
178
179
179 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
180 void ASM_compress_reorganize_and_divide(float *averaged_spec_mat, float *compressed_spec_mat , float divider,
180 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
181 unsigned char nbBinsCompressedMatrix, unsigned char nbBinsToAverage, unsigned char ASMIndexStart )
181 {
182 {
182 int frequencyBin;
183 int frequencyBin;
183 int asmComponent;
184 int asmComponent;
184 int offsetASM;
185 int offsetASM;
185 int offsetCompressed;
186 int offsetCompressed;
186 int k;
187 int k;
187
188
188 // build data
189 // build data
189 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
190 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
190 {
191 {
191 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
192 for( frequencyBin = 0; frequencyBin < nbBinsCompressedMatrix; frequencyBin++ )
192 {
193 {
193 offsetCompressed = // NO TIME OFFSET
194 offsetCompressed = // NO TIME OFFSET
194 frequencyBin * NB_VALUES_PER_SM
195 frequencyBin * NB_VALUES_PER_SM
195 + asmComponent;
196 + asmComponent;
196 offsetASM = // NO TIME OFFSET
197 offsetASM = // NO TIME OFFSET
197 asmComponent * NB_BINS_PER_SM
198 asmComponent * NB_BINS_PER_SM
198 + ASMIndexStart
199 + ASMIndexStart
199 + frequencyBin * nbBinsToAverage;
200 + frequencyBin * nbBinsToAverage;
200 compressed_spec_mat[ offsetCompressed ] = 0;
201 compressed_spec_mat[ offsetCompressed ] = 0;
201 for ( k = 0; k < nbBinsToAverage; k++ )
202 for ( k = 0; k < nbBinsToAverage; k++ )
202 {
203 {
203 compressed_spec_mat[offsetCompressed ] =
204 compressed_spec_mat[offsetCompressed ] =
204 ( compressed_spec_mat[ offsetCompressed ]
205 ( compressed_spec_mat[ offsetCompressed ]
205 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
206 + averaged_spec_mat[ offsetASM + k ] ) / (divider * nbBinsToAverage);
206 }
207 }
207 }
208 }
208 }
209 }
209 }
210 }
210
211
211 void ASM_convert( volatile float *input_matrix, char *output_matrix)
212 void ASM_convert( volatile float *input_matrix, char *output_matrix)
212 {
213 {
213 unsigned int frequencyBin;
214 unsigned int frequencyBin;
214 unsigned int asmComponent;
215 unsigned int asmComponent;
215 char * pt_char_input;
216 char * pt_char_input;
216 char * pt_char_output;
217 char * pt_char_output;
217 unsigned int offsetInput;
218 unsigned int offsetInput;
218 unsigned int offsetOutput;
219 unsigned int offsetOutput;
219
220
220 pt_char_input = (char*) &input_matrix;
221 pt_char_input = (char*) &input_matrix;
221 pt_char_output = (char*) &output_matrix;
222 pt_char_output = (char*) &output_matrix;
222
223
223 // convert all other data
224 // convert all other data
224 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
225 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
225 {
226 {
226 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
227 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
227 {
228 {
228 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
229 offsetInput = (frequencyBin*NB_VALUES_PER_SM) + asmComponent ;
229 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
230 offsetOutput = 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) ;
230 pt_char_input = (char*) &input_matrix [ offsetInput ];
231 pt_char_input = (char*) &input_matrix [ offsetInput ];
231 pt_char_output = (char*) &output_matrix[ offsetOutput ];
232 pt_char_output = (char*) &output_matrix[ offsetOutput ];
232 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
233 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
233 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
234 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
234 }
235 }
235 }
236 }
236 }
237 }
237
238
238 #endif // FSW_PROCESSING_H_INCLUDED
239 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,523 +1,586
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 {
12 {
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 *
14 *
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 * @param interrupt_level is the interrupt level that the timer drives.
18 * @param interrupt_level is the interrupt level that the timer drives.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 *
20 *
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 *
22 *
23 */
23 */
24
24
25 rtems_status_code status;
25 rtems_status_code status;
26 rtems_isr_entry old_isr_handler;
26 rtems_isr_entry old_isr_handler;
27
27
28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29
29
30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 if (status!=RTEMS_SUCCESSFUL)
31 if (status!=RTEMS_SUCCESSFUL)
32 {
32 {
33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 }
34 }
35
35
36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 }
37 }
38
38
39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 {
40 {
41 /** This function starts a GPTIMER timer.
41 /** This function starts a GPTIMER timer.
42 *
42 *
43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 *
45 *
46 */
46 */
47
47
48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 }
53 }
54
54
55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 {
56 {
57 /** This function stops a GPTIMER timer.
57 /** This function stops a GPTIMER timer.
58 *
58 *
59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 *
61 *
62 */
62 */
63
63
64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 }
67 }
68
68
69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 {
70 {
71 /** This function sets the clock divider of a GPTIMER timer.
71 /** This function sets the clock divider of a GPTIMER timer.
72 *
72 *
73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 *
76 *
77 */
77 */
78
78
79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 }
80 }
81
81
82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 {
83 {
84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85
85
86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87
87
88 return 0;
88 return 0;
89 }
89 }
90
90
91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 {
92 {
93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94
94
95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96
96
97 return 0;
97 return 0;
98 }
98 }
99
99
100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 {
101 {
102 /** This function sets the scaler reload register of the apbuart module
102 /** This function sets the scaler reload register of the apbuart module
103 *
103 *
104 * @param regs is the address of the apbuart registers in memory
104 * @param regs is the address of the apbuart registers in memory
105 * @param value is the value that will be stored in the scaler register
105 * @param value is the value that will be stored in the scaler register
106 *
106 *
107 * The value shall be set by the software to get data on the serial interface.
107 * The value shall be set by the software to get data on the serial interface.
108 *
108 *
109 */
109 */
110
110
111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112
112
113 apbuart_regs->scaler = value;
113 apbuart_regs->scaler = value;
114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 }
115 }
116
116
117 //************
117 //************
118 // RTEMS TASKS
118 // RTEMS TASKS
119
119
120 rtems_task stat_task(rtems_task_argument argument)
120 rtems_task stat_task(rtems_task_argument argument)
121 {
121 {
122 int i;
122 int i;
123 int j;
123 int j;
124 i = 0;
124 i = 0;
125 j = 0;
125 j = 0;
126 BOOT_PRINTF("in STAT *** \n")
126 BOOT_PRINTF("in STAT *** \n")
127 while(1){
127 while(1){
128 rtems_task_wake_after(1000);
128 rtems_task_wake_after(1000);
129 PRINTF1("%d\n", j)
129 PRINTF1("%d\n", j)
130 if (i == CPU_USAGE_REPORT_PERIOD) {
130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 // #ifdef PRINT_TASK_STATISTICS
131 // #ifdef PRINT_TASK_STATISTICS
132 // rtems_cpu_usage_report();
132 // rtems_cpu_usage_report();
133 // rtems_cpu_usage_reset();
133 // rtems_cpu_usage_reset();
134 // #endif
134 // #endif
135 i = 0;
135 i = 0;
136 }
136 }
137 else i++;
137 else i++;
138 j++;
138 j++;
139 }
139 }
140 }
140 }
141
141
142 rtems_task hous_task(rtems_task_argument argument)
142 rtems_task hous_task(rtems_task_argument argument)
143 {
143 {
144 rtems_status_code status;
144 rtems_status_code status;
145 rtems_id queue_id;
145 rtems_id queue_id;
146 rtems_rate_monotonic_period_status period_status;
146 rtems_rate_monotonic_period_status period_status;
147
147
148 status = get_message_queue_id_send( &queue_id );
148 status = get_message_queue_id_send( &queue_id );
149 if (status != RTEMS_SUCCESSFUL)
149 if (status != RTEMS_SUCCESSFUL)
150 {
150 {
151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 }
152 }
153
153
154 BOOT_PRINTF("in HOUS ***\n")
154 BOOT_PRINTF("in HOUS ***\n")
155
155
156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 if( status != RTEMS_SUCCESSFUL ) {
158 if( status != RTEMS_SUCCESSFUL ) {
159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
160 }
160 }
161 }
161 }
162
162
163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
165 housekeeping_packet.reserved = DEFAULT_RESERVED;
165 housekeeping_packet.reserved = DEFAULT_RESERVED;
166 housekeeping_packet.userApplication = CCSDS_USER_APP;
166 housekeeping_packet.userApplication = CCSDS_USER_APP;
167 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
167 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
168 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
168 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
174 housekeeping_packet.serviceType = TM_TYPE_HK;
174 housekeeping_packet.serviceType = TM_TYPE_HK;
175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
177 housekeeping_packet.sid = SID_HK;
177 housekeeping_packet.sid = SID_HK;
178
178
179 status = rtems_rate_monotonic_cancel(HK_id);
179 status = rtems_rate_monotonic_cancel(HK_id);
180 if( status != RTEMS_SUCCESSFUL ) {
180 if( status != RTEMS_SUCCESSFUL ) {
181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
182 }
182 }
183 else {
183 else {
184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
185 }
185 }
186
186
187 // startup phase
187 // startup phase
188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 {
192 {
193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 {
194 {
195 break; // break if LFR is synchronized
195 break; // break if LFR is synchronized
196 }
196 }
197 else
197 else
198 {
198 {
199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 // sched_yield();
200 // sched_yield();
201 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
201 status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
202 }
202 }
203 }
203 }
204 status = rtems_rate_monotonic_cancel(HK_id);
204 status = rtems_rate_monotonic_cancel(HK_id);
205 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
205 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
206
206
207 while(1){ // launch the rate monotonic task
207 while(1){ // launch the rate monotonic task
208 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
208 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
209 if ( status != RTEMS_SUCCESSFUL ) {
209 if ( status != RTEMS_SUCCESSFUL ) {
210 PRINTF1( "in HOUS *** ERR period: %d\n", status);
210 PRINTF1( "in HOUS *** ERR period: %d\n", status);
211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
211 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
212 }
212 }
213 else {
213 else {
214 increment_seq_counter( housekeeping_packet.packetSequenceControl );
214 increment_seq_counter( housekeeping_packet.packetSequenceControl );
215 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
215 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
216 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
216 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
217 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
217 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
218 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
218 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
219 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
219 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
220 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
220 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
221
221
222 spacewire_update_statistics();
222 spacewire_update_statistics();
223
223
224 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
224 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
225 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
225 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
226
226
227 // SEND PACKET
227 // SEND PACKET
228 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
228 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
229 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
229 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
230 if (status != RTEMS_SUCCESSFUL) {
230 if (status != RTEMS_SUCCESSFUL) {
231 PRINTF1("in HOUS *** ERR send: %d\n", status)
231 PRINTF1("in HOUS *** ERR send: %d\n", status)
232 }
232 }
233 }
233 }
234 }
234 }
235
235
236 PRINTF("in HOUS *** deleting task\n")
236 PRINTF("in HOUS *** deleting task\n")
237
237
238 status = rtems_task_delete( RTEMS_SELF ); // should not return
238 status = rtems_task_delete( RTEMS_SELF ); // should not return
239 printf( "rtems_task_delete returned with status of %d.\n", status );
239 printf( "rtems_task_delete returned with status of %d.\n", status );
240 return;
240 return;
241 }
241 }
242
242
243 rtems_task dumb_task( rtems_task_argument unused )
243 rtems_task dumb_task( rtems_task_argument unused )
244 {
244 {
245 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
245 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
246 *
246 *
247 * @param unused is the starting argument of the RTEMS task
247 * @param unused is the starting argument of the RTEMS task
248 *
248 *
249 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
249 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
250 *
250 *
251 */
251 */
252
252
253 unsigned int i;
253 unsigned int i;
254 unsigned int intEventOut;
254 unsigned int intEventOut;
255 unsigned int coarse_time = 0;
255 unsigned int coarse_time = 0;
256 unsigned int fine_time = 0;
256 unsigned int fine_time = 0;
257 rtems_event_set event_out;
257 rtems_event_set event_out;
258
258
259 char *DumbMessages[10] = {"in DUMB *** default", // RTEMS_EVENT_0
259 char *DumbMessages[10] = {"in DUMB *** default", // RTEMS_EVENT_0
260 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
260 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
261 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
261 "in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
262 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
262 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
263 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
263 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
264 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
264 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
265 "ERR HK", // RTEMS_EVENT_6
265 "ERR HK", // RTEMS_EVENT_6
266 "ready for dump", // RTEMS_EVENT_7
266 "ready for dump", // RTEMS_EVENT_7
267 "in DUMB *** spectral_matrices_isr", // RTEMS_EVENT_8
267 "in DUMB *** spectral_matrices_isr", // RTEMS_EVENT_8
268 "tick" // RTEMS_EVENT_9
268 "tick" // RTEMS_EVENT_9
269 };
269 };
270
270
271 BOOT_PRINTF("in DUMB *** \n")
271 BOOT_PRINTF("in DUMB *** \n")
272
272
273 while(1){
273 while(1){
274 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
274 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
275 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
275 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
276 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
276 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
277 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
277 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
278 intEventOut = (unsigned int) event_out;
278 intEventOut = (unsigned int) event_out;
279 for ( i=0; i<32; i++)
279 for ( i=0; i<32; i++)
280 {
280 {
281 if ( ((intEventOut >> i) & 0x0001) != 0)
281 if ( ((intEventOut >> i) & 0x0001) != 0)
282 {
282 {
283 coarse_time = time_management_regs->coarse_time;
283 coarse_time = time_management_regs->coarse_time;
284 fine_time = time_management_regs->fine_time;
284 fine_time = time_management_regs->fine_time;
285 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
285 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
286 if (i==8)
287 {
288 PRINTF1("status = %x\n", spectral_matrix_regs->status)
289 }
286 }
290 }
287 }
291 }
288 }
292 }
289 }
293 }
290
294
291 //*****************************
295 //*****************************
292 // init housekeeping parameters
296 // init housekeeping parameters
293
297
294 void init_housekeeping_parameters( void )
298 void init_housekeeping_parameters( void )
295 {
299 {
296 /** This function initialize the housekeeping_packet global variable with default values.
300 /** This function initialize the housekeeping_packet global variable with default values.
297 *
301 *
298 */
302 */
299
303
300 unsigned int i = 0;
304 unsigned int i = 0;
301 unsigned char *parameters;
305 unsigned char *parameters;
302
306
303 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
307 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
304 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
308 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
305 {
309 {
306 parameters[i] = 0x00;
310 parameters[i] = 0x00;
307 }
311 }
308 // init status word
312 // init status word
309 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
313 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
310 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
314 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
311 // init software version
315 // init software version
312 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
316 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
313 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
317 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
314 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
318 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
315 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
319 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
316 // init fpga version
320 // init fpga version
317 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
321 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
318 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
322 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
319 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
323 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
320 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
324 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
321 }
325 }
322
326
323 void increment_seq_counter( unsigned char *packet_sequence_control)
327 void increment_seq_counter( unsigned char *packet_sequence_control)
324 {
328 {
325 /** This function increment the sequence counter psased in argument.
329 /** This function increment the sequence counter psased in argument.
326 *
330 *
327 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
331 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
328 *
332 *
329 */
333 */
330
334
331 unsigned short sequence_cnt;
335 unsigned short sequence_cnt;
332 unsigned short segmentation_grouping_flag;
336 unsigned short segmentation_grouping_flag;
333 unsigned short new_packet_sequence_control;
337 unsigned short new_packet_sequence_control;
334
338
335 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
339 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8; // keep bits 7 downto 6
336 sequence_cnt = (unsigned short) (
340 sequence_cnt = (unsigned short) (
337 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
341 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
338 + packet_sequence_control[1]
342 + packet_sequence_control[1]
339 );
343 );
340
344
341 if ( sequence_cnt < SEQ_CNT_MAX)
345 if ( sequence_cnt < SEQ_CNT_MAX)
342 {
346 {
343 sequence_cnt = sequence_cnt + 1;
347 sequence_cnt = sequence_cnt + 1;
344 }
348 }
345 else
349 else
346 {
350 {
347 sequence_cnt = 0;
351 sequence_cnt = 0;
348 }
352 }
349
353
350 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
354 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
351
355
352 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
356 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
353 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
357 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
354 }
358 }
355
359
356 void getTime( unsigned char *time)
360 void getTime( unsigned char *time)
357 {
361 {
358 /** This function write the current local time in the time buffer passed in argument.
362 /** This function write the current local time in the time buffer passed in argument.
359 *
363 *
360 */
364 */
361
365
362 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
366 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
363 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
367 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
364 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
368 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
365 time[3] = (unsigned char) (time_management_regs->coarse_time);
369 time[3] = (unsigned char) (time_management_regs->coarse_time);
366 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
370 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
367 time[5] = (unsigned char) (time_management_regs->fine_time);
371 time[5] = (unsigned char) (time_management_regs->fine_time);
368 }
372 }
369
373
370 unsigned long long int getTimeAsUnsignedLongLongInt( )
374 unsigned long long int getTimeAsUnsignedLongLongInt( )
371 {
375 {
372 /** This function write the current local time in the time buffer passed in argument.
376 /** This function write the current local time in the time buffer passed in argument.
373 *
377 *
374 */
378 */
375 unsigned long long int time;
379 unsigned long long int time;
376
380
377 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
381 time = ( (unsigned long long int) (time_management_regs->coarse_time & 0x7fffffff) << 16 )
378 + time_management_regs->fine_time;
382 + time_management_regs->fine_time;
379
383
380 return time;
384 return time;
381 }
385 }
382
386
383 void send_dumb_hk( void )
387 void send_dumb_hk( void )
384 {
388 {
385 Packet_TM_LFR_HK_t dummy_hk_packet;
389 Packet_TM_LFR_HK_t dummy_hk_packet;
386 unsigned char *parameters;
390 unsigned char *parameters;
387 unsigned int i;
391 unsigned int i;
388 rtems_id queue_id;
392 rtems_id queue_id;
389
393
390 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
394 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
391 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
395 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
392 dummy_hk_packet.reserved = DEFAULT_RESERVED;
396 dummy_hk_packet.reserved = DEFAULT_RESERVED;
393 dummy_hk_packet.userApplication = CCSDS_USER_APP;
397 dummy_hk_packet.userApplication = CCSDS_USER_APP;
394 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
398 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> 8);
395 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
399 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
396 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
400 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
397 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
401 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
398 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
402 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
399 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
403 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
400 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
404 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
401 dummy_hk_packet.serviceType = TM_TYPE_HK;
405 dummy_hk_packet.serviceType = TM_TYPE_HK;
402 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
406 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
403 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
407 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
404 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
408 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
405 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
409 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
406 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
410 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
407 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
411 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
408 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
412 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
409 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
413 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
410 dummy_hk_packet.sid = SID_HK;
414 dummy_hk_packet.sid = SID_HK;
411
415
412 // init status word
416 // init status word
413 dummy_hk_packet.lfr_status_word[0] = 0xff;
417 dummy_hk_packet.lfr_status_word[0] = 0xff;
414 dummy_hk_packet.lfr_status_word[1] = 0xff;
418 dummy_hk_packet.lfr_status_word[1] = 0xff;
415 // init software version
419 // init software version
416 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
420 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
417 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
421 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
418 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
422 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
419 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
423 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
420 // init fpga version
424 // init fpga version
421 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
425 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
422 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
426 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
423 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
427 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
424 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
428 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
425
429
426 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
430 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
427
431
428 for (i=0; i<100; i++)
432 for (i=0; i<100; i++)
429 {
433 {
430 parameters[i] = 0xff;
434 parameters[i] = 0xff;
431 }
435 }
432
436
433 get_message_queue_id_send( &queue_id );
437 get_message_queue_id_send( &queue_id );
434
438
435 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
439 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
436 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
440 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
437 }
441 }
438
442
439 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
443 void get_v_e1_e2_f3_old( unsigned char *spacecraft_potential )
440 {
444 {
441 unsigned int coarseTime;
445 unsigned int coarseTime;
442 unsigned int acquisitionTime;
446 unsigned int acquisitionTime;
443 unsigned int deltaT = 0;
447 unsigned int deltaT = 0;
444 unsigned char *bufferPtr;
448 unsigned char *bufferPtr;
445
449
446 unsigned int offset_in_samples;
450 unsigned int offset_in_samples;
447 unsigned int offset_in_bytes;
451 unsigned int offset_in_bytes;
448 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
452 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
449
453
450 if (lfrCurrentMode == LFR_MODE_STANDBY)
454 if (lfrCurrentMode == LFR_MODE_STANDBY)
451 {
455 {
452 spacecraft_potential[0] = 0x00;
456 spacecraft_potential[0] = 0x00;
453 spacecraft_potential[1] = 0x00;
457 spacecraft_potential[1] = 0x00;
454 spacecraft_potential[2] = 0x00;
458 spacecraft_potential[2] = 0x00;
455 spacecraft_potential[3] = 0x00;
459 spacecraft_potential[3] = 0x00;
456 spacecraft_potential[4] = 0x00;
460 spacecraft_potential[4] = 0x00;
457 spacecraft_potential[5] = 0x00;
461 spacecraft_potential[5] = 0x00;
458 }
462 }
459 else
463 else
460 {
464 {
461 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
465 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
462 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
466 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
463 acquisitionTime = (unsigned int) ( ( bufferPtr[2] & 0x7f ) << 24 )
467 acquisitionTime = (unsigned int) ( ( bufferPtr[2] & 0x7f ) << 24 )
464 + (unsigned int) ( bufferPtr[3] << 16 )
468 + (unsigned int) ( bufferPtr[3] << 16 )
465 + (unsigned int) ( bufferPtr[0] << 8 )
469 + (unsigned int) ( bufferPtr[0] << 8 )
466 + (unsigned int) ( bufferPtr[1] );
470 + (unsigned int) ( bufferPtr[1] );
467 if ( coarseTime > acquisitionTime )
471 if ( coarseTime > acquisitionTime )
468 {
472 {
469 deltaT = coarseTime - acquisitionTime;
473 deltaT = coarseTime - acquisitionTime;
470 offset_in_samples = (deltaT-1) * f3 ;
474 offset_in_samples = (deltaT-1) * f3 ;
471 }
475 }
472 else if( coarseTime == acquisitionTime )
476 else if( coarseTime == acquisitionTime )
473 {
477 {
474 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
478 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
475 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
479 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
476 }
480 }
477 else
481 else
478 {
482 {
479 offset_in_samples = 0;
483 offset_in_samples = 0;
480 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
484 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
481 }
485 }
482
486
483 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
487 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
484 {
488 {
485 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
489 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
486 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
490 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
487 }
491 }
488 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
492 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
489 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
493 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
490 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
494 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
491 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
495 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
492 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
496 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
493 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
497 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
494 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
498 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
495 }
499 }
496 }
500 }
497
501
502 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
503 {
504 unsigned int coarseTime;
505 unsigned int acquisitionTime;
506 unsigned int deltaT = 0;
507 unsigned char *bufferPtr;
508
509 unsigned int offset_in_samples;
510 unsigned int offset_in_bytes;
511 unsigned char f3 = 16; // v, e1 and e2 will be picked up each second, f3 = 16 Hz
512
513 if (lfrCurrentMode == LFR_MODE_STANDBY)
514 {
515 spacecraft_potential[0] = 0x00;
516 spacecraft_potential[1] = 0x00;
517 spacecraft_potential[2] = 0x00;
518 spacecraft_potential[3] = 0x00;
519 spacecraft_potential[4] = 0x00;
520 spacecraft_potential[5] = 0x00;
521 }
522 else
523 {
524 coarseTime = time_management_regs->coarse_time & 0x7fffffff;
525 bufferPtr = (unsigned char*) current_ring_node_f3->buffer_address;
526 acquisitionTime = (unsigned int) ( ( bufferPtr[0] & 0x7f ) << 24 )
527 + (unsigned int) ( bufferPtr[1] << 16 )
528 + (unsigned int) ( bufferPtr[2] << 8 )
529 + (unsigned int) ( bufferPtr[3] );
530 if ( coarseTime > acquisitionTime )
531 {
532 deltaT = coarseTime - acquisitionTime;
533 offset_in_samples = (deltaT-1) * f3 ;
534 }
535 else if( coarseTime == acquisitionTime )
536 {
537 bufferPtr = (unsigned char*) current_ring_node_f3->previous->buffer_address; // pick up v e1 and e2 in the previous f3 buffer
538 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT-1;
539 }
540 else
541 {
542 offset_in_samples = 0;
543 PRINTF2("ERR *** in get_v_e1_e2_f3 *** coarseTime = %x, acquisitionTime = %x\n", coarseTime, acquisitionTime)
544 }
545
546 if ( offset_in_samples > (NB_SAMPLES_PER_SNAPSHOT - 1) )
547 {
548 PRINTF1("ERR *** in get_v_e1_e2_f3 *** trying to read out of the buffer, counter = %d\n", offset_in_samples)
549 offset_in_samples = NB_SAMPLES_PER_SNAPSHOT -1;
550 }
551 offset_in_bytes = TIME_OFFSET_IN_BYTES + offset_in_samples * NB_WORDS_SWF_BLK * 4;
552 spacecraft_potential[0] = bufferPtr[ offset_in_bytes + 0];
553 spacecraft_potential[1] = bufferPtr[ offset_in_bytes + 1];
554 spacecraft_potential[2] = bufferPtr[ offset_in_bytes + 2];
555 spacecraft_potential[3] = bufferPtr[ offset_in_bytes + 3];
556 spacecraft_potential[4] = bufferPtr[ offset_in_bytes + 4];
557 spacecraft_potential[5] = bufferPtr[ offset_in_bytes + 5];
558 }
559 }
560
498 void get_cpu_load( unsigned char *resource_statistics )
561 void get_cpu_load( unsigned char *resource_statistics )
499 {
562 {
500 unsigned char cpu_load;
563 unsigned char cpu_load;
501
564
502 cpu_load = lfr_rtems_cpu_usage_report();
565 cpu_load = lfr_rtems_cpu_usage_report();
503
566
504 // HK_LFR_CPU_LOAD
567 // HK_LFR_CPU_LOAD
505 resource_statistics[0] = cpu_load;
568 resource_statistics[0] = cpu_load;
506
569
507 // HK_LFR_CPU_LOAD_MAX
570 // HK_LFR_CPU_LOAD_MAX
508 if (cpu_load > resource_statistics[1])
571 if (cpu_load > resource_statistics[1])
509 {
572 {
510 resource_statistics[1] = cpu_load;
573 resource_statistics[1] = cpu_load;
511 }
574 }
512
575
513 // CPU_LOAD_AVE
576 // CPU_LOAD_AVE
514 resource_statistics[2] = 0;
577 resource_statistics[2] = 0;
515
578
516 #ifndef PRINT_TASK_STATISTICS
579 #ifndef PRINT_TASK_STATISTICS
517 rtems_cpu_usage_reset();
580 rtems_cpu_usage_reset();
518 #endif
581 #endif
519
582
520 }
583 }
521
584
522
585
523
586
@@ -1,370 +1,371
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "avf0_prc0.h"
10 #include "avf0_prc0.h"
11 #include "fsw_processing.h"
11 #include "fsw_processing.h"
12
12
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
14
14
15 //***
15 //***
16 // F0
16 // F0
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0[ NB_RING_NODES_ASM_BURST_SBM_F0 ];
18 ring_node_asm asm_ring_burst_sbm_f0[ NB_RING_NODES_ASM_BURST_SBM_F0 ];
19
19
20 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
20 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
21 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
21 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
22 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
22 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
23 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
23 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
24 //unsigned char bp1_norm_f0 [ TOTAL_SIZE_BP1_NORM_F0 ];
24 //unsigned char bp1_norm_f0 [ TOTAL_SIZE_BP1_NORM_F0 ];
25 //unsigned char bp1_sbm_f0 [ TOTAL_SIZE_BP1_SBM_F0 ];
25 //unsigned char bp1_sbm_f0 [ TOTAL_SIZE_BP1_SBM_F0 ];
26
26
27 //************
27 //************
28 // RTEMS TASKS
28 // RTEMS TASKS
29
29
30 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
30 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
31 {
31 {
32 int i;
32 int i;
33
33
34 rtems_event_set event_out;
34 rtems_event_set event_out;
35 rtems_status_code status;
35 rtems_status_code status;
36 rtems_id queue_id_prc0;
36 rtems_id queue_id_prc0;
37 asm_msg msgForMATR;
37 asm_msg msgForMATR;
38 ring_node_sm *ring_node_tab[8];
38 ring_node_sm *ring_node_tab[8];
39 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
39 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
40 ring_node_asm *current_ring_node_asm_norm_f0;
40 ring_node_asm *current_ring_node_asm_norm_f0;
41
41
42 unsigned int nb_norm_bp1;
42 unsigned int nb_norm_bp1;
43 unsigned int nb_norm_bp2;
43 unsigned int nb_norm_bp2;
44 unsigned int nb_norm_asm;
44 unsigned int nb_norm_asm;
45 unsigned int nb_sbm_bp1;
45 unsigned int nb_sbm_bp1;
46 unsigned int nb_sbm_bp2;
46 unsigned int nb_sbm_bp2;
47
47
48 nb_norm_bp1 = 0;
48 nb_norm_bp1 = 0;
49 nb_norm_bp2 = 0;
49 nb_norm_bp2 = 0;
50 nb_norm_asm = 0;
50 nb_norm_asm = 0;
51 nb_sbm_bp1 = 0;
51 nb_sbm_bp1 = 0;
52 nb_sbm_bp2 = 0;
52 nb_sbm_bp2 = 0;
53
53
54 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
54 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
55 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
55 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
56 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
56 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
57 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
57 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
58 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
58 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
59
59
60 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
60 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
61
61
62 status = get_message_queue_id_prc0( &queue_id_prc0 );
62 status = get_message_queue_id_prc0( &queue_id_prc0 );
63 if (status != RTEMS_SUCCESSFUL)
63 if (status != RTEMS_SUCCESSFUL)
64 {
64 {
65 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
65 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
66 }
66 }
67
67
68 while(1){
68 while(1){
69 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
69 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
70 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
70 ring_node_tab[NB_SM_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
71 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
71 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
72 {
72 {
73 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
73 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
74 ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
74 ring_node_tab[NB_SM_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
75 }
75 }
76
76
77 // compute the average and store it in the averaged_sm_f1 buffer
77 // compute the average and store it in the averaged_sm_f1 buffer
78 SM_average( current_ring_node_asm_norm_f0->matrix,
78 SM_average( current_ring_node_asm_norm_f0->matrix,
79 current_ring_node_asm_burst_sbm_f0->matrix,
79 current_ring_node_asm_burst_sbm_f0->matrix,
80 ring_node_tab,
80 ring_node_tab,
81 nb_norm_bp1, nb_sbm_bp1 );
81 nb_norm_bp1, nb_sbm_bp1 );
82
82
83 // update nb_average
83 // update nb_average
84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
84 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
85 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
86 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
87 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
87 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
88 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
88 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
89
89
90 //****************************************
90 //****************************************
91 // initialize the mesage for the MATR task
91 // initialize the mesage for the MATR task
92 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
92 msgForMATR.event = 0x00; // this composite event will be sent to the MATR task
93 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
93 msgForMATR.burst_sbm = current_ring_node_asm_burst_sbm_f0;
94 msgForMATR.norm = current_ring_node_asm_norm_f0;
94 msgForMATR.norm = current_ring_node_asm_norm_f0;
95 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
95 // msgForMATR.coarseTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[0];
96 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
96 // msgForMATR.fineTime = ( (unsigned int *) (ring_node_tab[0]->buffer_address) )[1];
97 msgForMATR.coarseTime = time_management_regs->coarse_time;
97 msgForMATR.coarseTime = time_management_regs->coarse_time;
98 msgForMATR.fineTime = time_management_regs->fine_time;
98 msgForMATR.fineTime = time_management_regs->fine_time;
99
99
100 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
100 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
101 {
101 {
102 nb_sbm_bp1 = 0;
102 nb_sbm_bp1 = 0;
103 // set another ring for the ASM storage
103 // set another ring for the ASM storage
104 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
104 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
105 if ( (lfrCurrentMode == LFR_MODE_BURST)
105 if ( (lfrCurrentMode == LFR_MODE_BURST)
106 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
106 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
107 {
107 {
108 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F0;
108 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP1_F0;
109 }
109 }
110 }
110 }
111
111
112 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
112 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
113 {
113 {
114 nb_sbm_bp2 = 0;
114 nb_sbm_bp2 = 0;
115 if ( (lfrCurrentMode == LFR_MODE_BURST)
115 if ( (lfrCurrentMode == LFR_MODE_BURST)
116 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
116 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
117 {
117 {
118 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F0;
118 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_BURST_SBM_BP2_F0;
119 }
119 }
120 }
120 }
121
121
122 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
122 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
123 {
123 {
124 nb_norm_bp1 = 0;
124 nb_norm_bp1 = 0;
125 // set another ring for the ASM storage
125 // set another ring for the ASM storage
126 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
126 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
127 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
127 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
128 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
128 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
129 {
129 {
130 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
130 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP1_F0;
131 }
131 }
132 }
132 }
133
133
134 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
134 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
135 {
135 {
136 nb_norm_bp2 = 0;
136 nb_norm_bp2 = 0;
137 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
137 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
138 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
138 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
139 {
139 {
140 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
140 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_BP2_F0;
141 }
141 }
142 }
142 }
143
143
144 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
144 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
145 {
145 {
146 nb_norm_asm = 0;
146 nb_norm_asm = 0;
147 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
147 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
148 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
148 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
149 {
149 {
150 // PRINTF1("%lld\n", localTime)
150 // PRINTF1("%lld\n", localTime)
151 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
151 msgForMATR.event = msgForMATR.event | RTEMS_EVENT_NORM_ASM_F0;
152 }
152 }
153 }
153 }
154
154
155 //*************************
155 //*************************
156 // send the message to MATR
156 // send the message to MATR
157 if (msgForMATR.event != 0x00)
157 if (msgForMATR.event != 0x00)
158 {
158 {
159 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
159 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForMATR, MSG_QUEUE_SIZE_PRC0);
160 }
160 }
161
161
162 if (status != RTEMS_SUCCESSFUL) {
162 if (status != RTEMS_SUCCESSFUL) {
163 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
163 printf("in AVF0 *** Error sending message to MATR, code %d\n", status);
164 }
164 }
165 }
165 }
166 }
166 }
167
167
168 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
168 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
169 {
169 {
170 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
170 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
171 size_t size; // size of the incoming TC packet
171 size_t size; // size of the incoming TC packet
172 asm_msg *incomingMsg;
172 asm_msg *incomingMsg;
173 //
173 //
174 spw_ioctl_pkt_send spw_ioctl_send_ASM;
174 spw_ioctl_pkt_send spw_ioctl_send_ASM;
175 rtems_status_code status;
175 rtems_status_code status;
176 rtems_id queue_id;
176 rtems_id queue_id;
177 rtems_id queue_id_q_p0;
177 rtems_id queue_id_q_p0;
178 Header_TM_LFR_SCIENCE_ASM_t headerASM;
178 Header_TM_LFR_SCIENCE_ASM_t headerASM;
179 bp_packet_with_spare packet_norm_bp1_f0;
179 bp_packet_with_spare packet_norm_bp1_f0;
180 bp_packet packet_norm_bp2_f0;
180 bp_packet packet_norm_bp2_f0;
181 bp_packet packet_sbm_bp1_f0;
181 bp_packet packet_sbm_bp1_f0;
182 bp_packet packet_sbm_bp2_f0;
182 bp_packet packet_sbm_bp2_f0;
183
183
184 unsigned long long int localTime;
184 unsigned long long int localTime;
185
185
186 ASM_init_header( &headerASM );
186 ASM_init_header( &headerASM );
187
187
188 //*************
188 //*************
189 // NORM headers
189 // NORM headers
190 BP_init_header_with_spare( &packet_norm_bp1_f0.header,
190 BP_init_header_with_spare( &packet_norm_bp1_f0.header,
191 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
191 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
192 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
192 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
193 BP_init_header( &packet_norm_bp2_f0.header,
193 BP_init_header( &packet_norm_bp2_f0.header,
194 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
194 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
195 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
195 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
196
196
197 //****************************
197 //****************************
198 // BURST SBM1 and SBM2 headers
198 // BURST SBM1 and SBM2 headers
199 if ( lfrRequestedMode == LFR_MODE_BURST )
199 if ( lfrRequestedMode == LFR_MODE_BURST )
200 {
200 {
201 BP_init_header( &packet_sbm_bp1_f0.header,
201 BP_init_header( &packet_sbm_bp1_f0.header,
202 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
202 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
203 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
203 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
204 BP_init_header( &packet_sbm_bp2_f0.header,
204 BP_init_header( &packet_sbm_bp2_f0.header,
205 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
205 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
206 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
206 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
207 }
207 }
208 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
208 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
209 {
209 {
210 BP_init_header( &packet_sbm_bp1_f0.header,
210 BP_init_header( &packet_sbm_bp1_f0.header,
211 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
211 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
212 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
212 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
213 BP_init_header( &packet_sbm_bp2_f0.header,
213 BP_init_header( &packet_sbm_bp2_f0.header,
214 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
214 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
215 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
215 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
216 }
216 }
217 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
217 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
218 {
218 {
219 BP_init_header( &packet_sbm_bp1_f0.header,
219 BP_init_header( &packet_sbm_bp1_f0.header,
220 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
220 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
222 BP_init_header( &packet_sbm_bp2_f0.header,
222 BP_init_header( &packet_sbm_bp2_f0.header,
223 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
223 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
225 }
225 }
226 else
226 else
227 {
227 {
228 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
228 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
229 }
229 }
230
230
231 status = get_message_queue_id_send( &queue_id );
231 status = get_message_queue_id_send( &queue_id );
232 if (status != RTEMS_SUCCESSFUL)
232 if (status != RTEMS_SUCCESSFUL)
233 {
233 {
234 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
234 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
235 }
235 }
236 status = get_message_queue_id_prc0( &queue_id_q_p0);
236 status = get_message_queue_id_prc0( &queue_id_q_p0);
237 if (status != RTEMS_SUCCESSFUL)
237 if (status != RTEMS_SUCCESSFUL)
238 {
238 {
239 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
239 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
240 }
240 }
241
241
242 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
242 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
243
243
244 while(1){
244 while(1){
245 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
245 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
246 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
246 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
247
247
248 incomingMsg = (asm_msg*) incomingData;
248 incomingMsg = (asm_msg*) incomingData;
249
249
250 localTime = getTimeAsUnsignedLongLongInt( );
250 localTime = getTimeAsUnsignedLongLongInt( );
251
251 //****************
252 //****************
252 //****************
253 //****************
253 // BURST SBM1 SBM2
254 // BURST SBM1 SBM2
254 //****************
255 //****************
255 //****************
256 //****************
256 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F0 )
257 if (incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP1_F0 )
257 {
258 {
258 // 1) compress the matrix for Basic Parameters calculation
259 // 1) compress the matrix for Basic Parameters calculation
259 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f0,
260 ASM_compress_reorganize_and_divide( incomingMsg->burst_sbm->matrix, compressed_sm_sbm_f0,
260 nb_sm_before_f0.burst_sbm_bp1,
261 nb_sm_before_f0.burst_sbm_bp1,
261 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
262 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
262 ASM_F0_INDICE_START);
263 ASM_F0_INDICE_START);
263 // 2) compute the BP1 set
264 // 2) compute the BP1 set
264 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, bp1_sbm_f0 );
265 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, bp1_sbm_f0 );
265 // 3) send the BP1 set
266 // 3) send the BP1 set
266 set_time( packet_sbm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
267 set_time( packet_sbm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
267 set_time( packet_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
268 set_time( packet_sbm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
268 BP_send( (char *) &packet_sbm_bp1_f0, queue_id,
269 BP_send( (char *) &packet_sbm_bp1_f0, queue_id,
269 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
270 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
270 SID_SBM1_BP1_F0);
271 SID_SBM1_BP1_F0);
271 // 4) compute the BP2 set if needed
272 // 4) compute the BP2 set if needed
272 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F0 )
273 if ( incomingMsg->event & RTEMS_EVENT_BURST_SBM_BP2_F0 )
273 {
274 {
274 // 1) compute the BP2 set
275 // 1) compute the BP2 set
275
276
276 // 2) send the BP2 set
277 // 2) send the BP2 set
277 set_time( packet_sbm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
278 set_time( packet_sbm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
278 set_time( packet_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
279 set_time( packet_sbm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
279 BP_send( (char *) &packet_sbm_bp2_f0, queue_id,
280 BP_send( (char *) &packet_sbm_bp2_f0, queue_id,
280 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
281 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
281 SID_SBM1_BP2_F0);
282 SID_SBM1_BP2_F0);
282 }
283 }
283 }
284 }
284
285
285 //*****
286 //*****
286 //*****
287 //*****
287 // NORM
288 // NORM
288 //*****
289 //*****
289 //*****
290 //*****
290 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
291 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
291 {
292 {
292 // 1) compress the matrix for Basic Parameters calculation
293 // 1) compress the matrix for Basic Parameters calculation
293 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f0,
294 ASM_compress_reorganize_and_divide( incomingMsg->norm->matrix, compressed_sm_norm_f0,
294 nb_sm_before_f0.norm_bp1,
295 nb_sm_before_f0.norm_bp1,
295 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
296 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
296 ASM_F0_INDICE_START );
297 ASM_F0_INDICE_START );
297 // 2) compute the BP1 set
298 // 2) compute the BP1 set
298 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, bp1_norm_f0 );
299 // BP1_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, bp1_norm_f0 );
299 // 3) send the BP1 set
300 // 3) send the BP1 set
300 set_time( packet_norm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
301 set_time( packet_norm_bp1_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
301 set_time( packet_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
302 set_time( packet_norm_bp1_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
302 BP_send( (char *) &packet_norm_bp1_f0, queue_id,
303 BP_send( (char *) &packet_norm_bp1_f0, queue_id,
303 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
304 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
304 SID_NORM_BP1_F0 );
305 SID_NORM_BP1_F0 );
305 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
306 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
306 {
307 {
307 // 1) compute the BP2 set using the same ASM as the one used for BP1
308 // 1) compute the BP2 set using the same ASM as the one used for BP1
308
309
309 // 2) send the BP2 set
310 // 2) send the BP2 set
310 set_time( packet_norm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
311 set_time( packet_norm_bp2_f0.header.time, (unsigned char *) &incomingMsg->coarseTime );
311 set_time( packet_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
312 set_time( packet_norm_bp2_f0.header.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
312 BP_send( (char *) &packet_norm_bp2_f0, queue_id,
313 BP_send( (char *) &packet_norm_bp2_f0, queue_id,
313 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
314 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
314 SID_NORM_BP2_F0);
315 SID_NORM_BP2_F0);
315 }
316 }
316 }
317 }
317
318
318 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
319 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
319 {
320 {
320 // 1) reorganize the ASM and divide
321 // 1) reorganize the ASM and divide
321 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
322 ASM_reorganize_and_divide( incomingMsg->norm->matrix,
322 asm_f0_reorganized,
323 asm_f0_reorganized,
323 nb_sm_before_f0.norm_bp1 );
324 nb_sm_before_f0.norm_bp1 );
324 // 2) convert the float array in a char array
325 // 2) convert the float array in a char array
325 ASM_convert( asm_f0_reorganized, asm_f0_char);
326 ASM_convert( asm_f0_reorganized, asm_f0_char);
326 // 3) send the spectral matrix packets
327 // 3) send the spectral matrix packets
327 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
328 set_time( headerASM.time , (unsigned char *) &incomingMsg->coarseTime );
328 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
329 set_time( headerASM.acquisitionTime, (unsigned char *) &incomingMsg->coarseTime );
329 ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
330 ASM_send( &headerASM, asm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
330 }
331 }
331
332
332 }
333 }
333 }
334 }
334
335
335 //**********
336 //**********
336 // FUNCTIONS
337 // FUNCTIONS
337
338
338 void reset_nb_sm_f0( unsigned char lfrMode )
339 void reset_nb_sm_f0( unsigned char lfrMode )
339 {
340 {
340 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
341 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
341 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
342 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
342 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
343 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
343 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24;
344 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24;
344 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
345 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
345 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
346 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
346 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
347 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
347 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
348 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
348 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
349 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
349
350
350 if (lfrMode == LFR_MODE_SBM1)
351 if (lfrMode == LFR_MODE_SBM1)
351 {
352 {
352 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
353 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
353 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
354 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
354 }
355 }
355 else if (lfrMode == LFR_MODE_SBM2)
356 else if (lfrMode == LFR_MODE_SBM2)
356 {
357 {
357 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
358 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
358 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
359 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
359 }
360 }
360 else if (lfrMode == LFR_MODE_BURST)
361 else if (lfrMode == LFR_MODE_BURST)
361 {
362 {
362 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
363 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
363 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
364 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
364 }
365 }
365 else
366 else
366 {
367 {
367 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
368 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
368 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
369 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
369 }
370 }
370 }
371 }
@@ -1,459 +1,512
1 /** Functions related to data processing.
1 /** Functions related to data processing.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 *
7 *
8 */
8 */
9
9
10 #include "fsw_processing.h"
10 #include "fsw_processing.h"
11 #include "fsw_processing_globals.c"
11 #include "fsw_processing_globals.c"
12
12
13 unsigned int nb_sm_f0;
13 unsigned int nb_sm_f0;
14 unsigned int nb_sm_f0_aux_f1;
14 unsigned int nb_sm_f0_aux_f1;
15 unsigned int nb_sm_f1;
15 unsigned int nb_sm_f1;
16 unsigned int nb_sm_f0_aux_f2;
16 unsigned int nb_sm_f0_aux_f2;
17
17
18 //************************
18 //************************
19 // spectral matrices rings
19 // spectral matrices rings
20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
20 ring_node_sm sm_ring_f0[ NB_RING_NODES_SM_F0 ];
21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
21 ring_node_sm sm_ring_f1[ NB_RING_NODES_SM_F1 ];
22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
22 ring_node_sm sm_ring_f2[ NB_RING_NODES_SM_F2 ];
23 ring_node_sm *current_ring_node_sm_f0;
23 ring_node_sm *current_ring_node_sm_f0;
24 ring_node_sm *current_ring_node_sm_f1;
24 ring_node_sm *current_ring_node_sm_f1;
25 ring_node_sm *current_ring_node_sm_f2;
25 ring_node_sm *current_ring_node_sm_f2;
26 ring_node_sm *ring_node_for_averaging_sm_f0;
26 ring_node_sm *ring_node_for_averaging_sm_f0;
27 ring_node_sm *ring_node_for_averaging_sm_f1;
27 ring_node_sm *ring_node_for_averaging_sm_f1;
28 ring_node_sm *ring_node_for_averaging_sm_f2;
28 ring_node_sm *ring_node_for_averaging_sm_f2;
29
29
30 //***********************************************************
30 //***********************************************************
31 // Interrupt Service Routine for spectral matrices processing
31 // Interrupt Service Routine for spectral matrices processing
32
32
33 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
33 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
34 {
34 {
35 // ring_node_sm *previous_ring_node_sm_f0;
35 //***
36
36 // F0
37 //// rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
37 if ( (spectral_matrix_regs->status & 0x1) == 0x01) // check the status_ready_matrix_f0 bit
38
38 {
39 // previous_ring_node_sm_f0 = current_ring_node_sm_f0;
39 nb_sm_f0 = nb_sm_f0 + 1;
40 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
41 {
42 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
43 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
44 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
45 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
46 {
47 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
48 }
49 nb_sm_f0 = 0;
50 }
51 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
52 }
40
53
41 // if ( (spectral_matrix_regs->status & 0x2) == 0x02) // check ready matrix bit f0_1
54 //***
42 // {
55 // F1
43 // current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
56 if ( (spectral_matrix_regs->status & 0x4) == 0x04) // check the status_ready_matrix_f1 bit
44 // spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
57 {
45 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
58 nb_sm_f1 = nb_sm_f1 + 1;
46 // nb_sm_f0 = nb_sm_f0 + 1;
59 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
47 // }
60 {
61 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
62 current_ring_node_sm_f1 = current_ring_node_sm_f1->next;
63 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
64 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
65 {
66 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
67 }
68 nb_sm_f1 = 0;
69 }
70 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffb; // 1011
71 }
48
72
49 // //************************
73 //***
50 // // reset status error bits
74 // F2
51 // if ( (spectral_matrix_regs->status & 0x30) != 0x00)
75 if ( (spectral_matrix_regs->status & 0x8) == 0x08) // check the status_ready_matrix_f2 bit
76 {
77
78 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
79 current_ring_node_sm_f2 = current_ring_node_sm_f2->next;
80 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
81 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
82 {
83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
84 }
85 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff7; // 0111
86 }
87
88 //************************
89 // reset status error bits
90 // if ( (spectral_matrix_regs->status & 0x3e0) != 0x00) // [0011 1110 0000] check the status bits
52 // {
91 // {
53 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
92 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
54 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
93 // spectral_matrix_regs->status = spectral_matrix_regs->status | 0xfffffc1f; // [1100 0001 1111]
55 // }
56
57 // //**************************************
58 // // reset ready matrix bits for f0_0, f1 and f2
59 // spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff2; // 0010
60
61 // if (nb_sm_f0 == NB_SM_BEFORE_AVF0)
62 // {
63 // ring_node_for_averaging_sm_f0 = previous_ring_node_sm_f0;
64 // if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
65 // {
66 // rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
67 // }
68 // nb_sm_f0 = 0;
69 // }
94 // }
70
95
71 }
96 }
72
97
73 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
98 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
74 {
99 {
75 //***
100 //***
76 // F0
101 // F0
77 nb_sm_f0 = nb_sm_f0 + 1;
102 nb_sm_f0 = nb_sm_f0 + 1;
78 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
103 if (nb_sm_f0 == NB_SM_BEFORE_AVF0 )
79 {
104 {
80 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
105 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
81 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
106 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
82 {
107 {
83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
108 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
84 }
109 }
85 nb_sm_f0 = 0;
110 nb_sm_f0 = 0;
86 }
111 }
87
112
88 //***
113 //***
89 // F1
114 // F1
90 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
115 nb_sm_f0_aux_f1 = nb_sm_f0_aux_f1 + 1;
91 if (nb_sm_f0_aux_f1 == 6)
116 if (nb_sm_f0_aux_f1 == 6)
92 {
117 {
93 nb_sm_f0_aux_f1 = 0;
118 nb_sm_f0_aux_f1 = 0;
94 nb_sm_f1 = nb_sm_f1 + 1;
119 nb_sm_f1 = nb_sm_f1 + 1;
95 }
120 }
96 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
121 if (nb_sm_f1 == NB_SM_BEFORE_AVF1 )
97 {
122 {
98 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
123 ring_node_for_averaging_sm_f1 = current_ring_node_sm_f1;
99 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
124 if (rtems_event_send( Task_id[TASKID_AVF1], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
100 {
125 {
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
126 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
102 }
127 }
103 nb_sm_f1 = 0;
128 nb_sm_f1 = 0;
104 }
129 }
105
130
106 //***
131 //***
107 // F2
132 // F2
108 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
133 nb_sm_f0_aux_f2 = nb_sm_f0_aux_f2 + 1;
109 if (nb_sm_f0_aux_f2 == 96)
134 if (nb_sm_f0_aux_f2 == 96)
110 {
135 {
111 nb_sm_f0_aux_f2 = 0;
136 nb_sm_f0_aux_f2 = 0;
112 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
137 ring_node_for_averaging_sm_f2 = current_ring_node_sm_f2;
113 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
138 if (rtems_event_send( Task_id[TASKID_AVF2], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
114 {
139 {
115 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
140 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
116 }
141 }
117 }
142 }
118 }
143 }
119
144
120 //******************
145 //******************
121 // Spectral Matrices
146 // Spectral Matrices
122
147
123 void reset_nb_sm( void )
148 void reset_nb_sm( void )
124 {
149 {
125 nb_sm_f0 = 0;
150 nb_sm_f0 = 0;
126 nb_sm_f0_aux_f1 = 0;
151 nb_sm_f0_aux_f1 = 0;
127 nb_sm_f0_aux_f2 = 0;
152 nb_sm_f0_aux_f2 = 0;
128
153
129 nb_sm_f1 = 0;
154 nb_sm_f1 = 0;
130 }
155 }
131
156
132 void SM_init_rings( void )
157 void SM_init_rings( void )
133 {
158 {
134 unsigned char i;
159 unsigned char i;
135
160
136 // F0 RING
161 // F0 RING
137 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
162 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
138 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
163 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-1];
139 sm_ring_f0[0].buffer_address =
164 sm_ring_f0[0].buffer_address =
140 (int) &sm_f0[ 0 ];
165 (int) &sm_f0[ 0 ];
141
166
142 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
167 sm_ring_f0[NB_RING_NODES_SM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
143 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
168 sm_ring_f0[NB_RING_NODES_SM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_SM_F0-2];
144 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
169 sm_ring_f0[NB_RING_NODES_SM_F0-1].buffer_address =
145 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
170 (int) &sm_f0[ (NB_RING_NODES_SM_F0-1) * TOTAL_SIZE_SM ];
146
171
147 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
172 for(i=1; i<NB_RING_NODES_SM_F0-1; i++)
148 {
173 {
149 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
174 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
150 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
175 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
151 sm_ring_f0[i].buffer_address =
176 sm_ring_f0[i].buffer_address =
152 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
177 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
153 }
178 }
154
179
155 // F1 RING
180 // F1 RING
156 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
181 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
157 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
182 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-1];
158 sm_ring_f1[0].buffer_address =
183 sm_ring_f1[0].buffer_address =
159 (int) &sm_f1[ 0 ];
184 (int) &sm_f1[ 0 ];
160
185
161 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
186 sm_ring_f1[NB_RING_NODES_SM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
162 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
187 sm_ring_f1[NB_RING_NODES_SM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_SM_F1-2];
163 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
188 sm_ring_f1[NB_RING_NODES_SM_F1-1].buffer_address =
164 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
189 (int) &sm_f1[ (NB_RING_NODES_SM_F1-1) * TOTAL_SIZE_SM ];
165
190
166 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
191 for(i=1; i<NB_RING_NODES_SM_F1-1; i++)
167 {
192 {
168 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
193 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
169 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
194 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
170 sm_ring_f1[i].buffer_address =
195 sm_ring_f1[i].buffer_address =
171 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
196 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
172 }
197 }
173
198
174 // F2 RING
199 // F2 RING
175 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
200 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
176 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
201 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-1];
177 sm_ring_f2[0].buffer_address =
202 sm_ring_f2[0].buffer_address =
178 (int) &sm_f2[ 0 ];
203 (int) &sm_f2[ 0 ];
179
204
180 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
205 sm_ring_f2[NB_RING_NODES_SM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
181 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
206 sm_ring_f2[NB_RING_NODES_SM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_SM_F2-2];
182 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
207 sm_ring_f2[NB_RING_NODES_SM_F2-1].buffer_address =
183 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
208 (int) &sm_f2[ (NB_RING_NODES_SM_F2-1) * TOTAL_SIZE_SM ];
184
209
185 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
210 for(i=1; i<NB_RING_NODES_SM_F2-1; i++)
186 {
211 {
187 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
212 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
188 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
213 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
189 sm_ring_f2[i].buffer_address =
214 sm_ring_f2[i].buffer_address =
190 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
215 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
191 }
216 }
192
217
193 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
218 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
194 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
219 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
195 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
220 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
196
221
197 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
222 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
198 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
223 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
199 }
224 }
200
225
226 void SM_generic_init_ring( ring_node_sm *ring, unsigned char nbNodes, volatile int sm_f[] )
227 {
228 unsigned char i;
229
230 //***************
231 // BUFFER ADDRESS
232 for(i=0; i<nbNodes; i++)
233 {
234 ring[ i ].buffer_address = (int) &sm_f[ i * TOTAL_SIZE_SM ];
235 }
236
237 //*****
238 // NEXT
239 ring[ nbNodes - 1 ].next = (ring_node_sm*) &ring[ 0 ];
240 for(i=0; i<nbNodes-1; i++)
241 {
242 ring[ i ].next = (ring_node_sm*) &ring[ i + 1 ];
243 }
244
245 //*********
246 // PREVIOUS
247 ring[ 0 ].previous = (ring_node_sm*) &ring[ nbNodes -1 ];
248 for(i=1; i<nbNodes; i++)
249 {
250 ring[ i ].previous = (ring_node_sm*) &ring[ i - 1 ];
251 }
252 }
253
201 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
254 void ASM_generic_init_ring( ring_node_asm *ring, unsigned char nbNodes )
202 {
255 {
203 unsigned char i;
256 unsigned char i;
204
257
205 ring[ nbNodes - 1 ].next
258 ring[ nbNodes - 1 ].next
206 = (ring_node_asm*) &ring[ 0 ];
259 = (ring_node_asm*) &ring[ 0 ];
207
260
208 for(i=0; i<nbNodes-1; i++)
261 for(i=0; i<nbNodes-1; i++)
209 {
262 {
210 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
263 ring[ i ].next = (ring_node_asm*) &ring[ i + 1 ];
211 }
264 }
212 }
265 }
213
266
214 void SM_reset_current_ring_nodes( void )
267 void SM_reset_current_ring_nodes( void )
215 {
268 {
216 current_ring_node_sm_f0 = sm_ring_f0;
269 current_ring_node_sm_f0 = sm_ring_f0;
217 current_ring_node_sm_f1 = sm_ring_f1;
270 current_ring_node_sm_f1 = sm_ring_f1;
218 current_ring_node_sm_f2 = sm_ring_f2;
271 current_ring_node_sm_f2 = sm_ring_f2;
219
272
220 ring_node_for_averaging_sm_f0 = sm_ring_f0;
273 ring_node_for_averaging_sm_f0 = sm_ring_f0;
221 ring_node_for_averaging_sm_f1 = sm_ring_f1;
274 ring_node_for_averaging_sm_f1 = sm_ring_f1;
222 ring_node_for_averaging_sm_f2 = sm_ring_f2;
275 ring_node_for_averaging_sm_f2 = sm_ring_f2;
223 }
276 }
224
277
225 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
278 void ASM_init_header( Header_TM_LFR_SCIENCE_ASM_t *header)
226 {
279 {
227 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
280 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
228 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
281 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
229 header->reserved = 0x00;
282 header->reserved = 0x00;
230 header->userApplication = CCSDS_USER_APP;
283 header->userApplication = CCSDS_USER_APP;
231 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
284 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
232 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
285 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
233 header->packetSequenceControl[0] = 0xc0;
286 header->packetSequenceControl[0] = 0xc0;
234 header->packetSequenceControl[1] = 0x00;
287 header->packetSequenceControl[1] = 0x00;
235 header->packetLength[0] = 0x00;
288 header->packetLength[0] = 0x00;
236 header->packetLength[1] = 0x00;
289 header->packetLength[1] = 0x00;
237 // DATA FIELD HEADER
290 // DATA FIELD HEADER
238 header->spare1_pusVersion_spare2 = 0x10;
291 header->spare1_pusVersion_spare2 = 0x10;
239 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
292 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
240 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
293 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
241 header->destinationID = TM_DESTINATION_ID_GROUND;
294 header->destinationID = TM_DESTINATION_ID_GROUND;
242 // AUXILIARY DATA HEADER
295 // AUXILIARY DATA HEADER
243 header->sid = 0x00;
296 header->sid = 0x00;
244 header->biaStatusInfo = 0x00;
297 header->biaStatusInfo = 0x00;
245 header->pa_lfr_pkt_cnt_asm = 0x00;
298 header->pa_lfr_pkt_cnt_asm = 0x00;
246 header->pa_lfr_pkt_nr_asm = 0x00;
299 header->pa_lfr_pkt_nr_asm = 0x00;
247 header->time[0] = 0x00;
300 header->time[0] = 0x00;
248 header->time[0] = 0x00;
301 header->time[0] = 0x00;
249 header->time[0] = 0x00;
302 header->time[0] = 0x00;
250 header->time[0] = 0x00;
303 header->time[0] = 0x00;
251 header->time[0] = 0x00;
304 header->time[0] = 0x00;
252 header->time[0] = 0x00;
305 header->time[0] = 0x00;
253 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
306 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
254 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
307 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
255 }
308 }
256
309
257 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
310 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
258 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
311 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
259 {
312 {
260 unsigned int i;
313 unsigned int i;
261 unsigned int length = 0;
314 unsigned int length = 0;
262 rtems_status_code status;
315 rtems_status_code status;
263
316
264 for (i=0; i<2; i++)
317 for (i=0; i<2; i++)
265 {
318 {
266 // (1) BUILD THE DATA
319 // (1) BUILD THE DATA
267 switch(sid)
320 switch(sid)
268 {
321 {
269 case SID_NORM_ASM_F0:
322 case SID_NORM_ASM_F0:
270 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
323 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2; // 2 packets will be sent
271 spw_ioctl_send->data = &spectral_matrix[
324 spw_ioctl_send->data = &spectral_matrix[
272 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
325 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
273 ];
326 ];
274 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
327 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
275 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
328 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
276 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
329 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
277 break;
330 break;
278 case SID_NORM_ASM_F1:
331 case SID_NORM_ASM_F1:
279 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
332 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F1_IN_BYTES / 2; // 2 packets will be sent
280 spw_ioctl_send->data = &spectral_matrix[
333 spw_ioctl_send->data = &spectral_matrix[
281 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
334 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1) ) * NB_VALUES_PER_SM ) * 2
282 ];
335 ];
283 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
336 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1;
284 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
337 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1) >> 8 ); // BLK_NR MSB
285 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
338 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1); // BLK_NR LSB
286 break;
339 break;
287 case SID_NORM_ASM_F2:
340 case SID_NORM_ASM_F2:
288 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
341 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F2_IN_BYTES / 2; // 2 packets will be sent
289 spw_ioctl_send->data = &spectral_matrix[
342 spw_ioctl_send->data = &spectral_matrix[
290 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
343 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM ) * 2
291 ];
344 ];
292 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
345 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
293 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
346 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
294 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
347 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
295 break;
348 break;
296 default:
349 default:
297 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
350 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
298 break;
351 break;
299 }
352 }
300 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
353 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
301 spw_ioctl_send->hdr = (char *) header;
354 spw_ioctl_send->hdr = (char *) header;
302 spw_ioctl_send->options = 0;
355 spw_ioctl_send->options = 0;
303
356
304 // (2) BUILD THE HEADER
357 // (2) BUILD THE HEADER
305 increment_seq_counter_source_id( header->packetSequenceControl, sid );
358 increment_seq_counter_source_id( header->packetSequenceControl, sid );
306 header->packetLength[0] = (unsigned char) (length>>8);
359 header->packetLength[0] = (unsigned char) (length>>8);
307 header->packetLength[1] = (unsigned char) (length);
360 header->packetLength[1] = (unsigned char) (length);
308 header->sid = (unsigned char) sid; // SID
361 header->sid = (unsigned char) sid; // SID
309 header->pa_lfr_pkt_cnt_asm = 2;
362 header->pa_lfr_pkt_cnt_asm = 2;
310 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
363 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
311
364
312 // (3) SET PACKET TIME
365 // (3) SET PACKET TIME
313 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
366 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
314 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
367 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
315 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
368 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
316 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
369 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
317 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
370 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
318 header->time[5] = (unsigned char) (time_management_regs->fine_time);
371 header->time[5] = (unsigned char) (time_management_regs->fine_time);
319 //
372 //
320 header->acquisitionTime[0] = header->time[0];
373 header->acquisitionTime[0] = header->time[0];
321 header->acquisitionTime[1] = header->time[1];
374 header->acquisitionTime[1] = header->time[1];
322 header->acquisitionTime[2] = header->time[2];
375 header->acquisitionTime[2] = header->time[2];
323 header->acquisitionTime[3] = header->time[3];
376 header->acquisitionTime[3] = header->time[3];
324 header->acquisitionTime[4] = header->time[4];
377 header->acquisitionTime[4] = header->time[4];
325 header->acquisitionTime[5] = header->time[5];
378 header->acquisitionTime[5] = header->time[5];
326
379
327 // (4) SEND PACKET
380 // (4) SEND PACKET
328 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
381 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
329 if (status != RTEMS_SUCCESSFUL) {
382 if (status != RTEMS_SUCCESSFUL) {
330 printf("in ASM_send *** ERR %d\n", (int) status);
383 printf("in ASM_send *** ERR %d\n", (int) status);
331 }
384 }
332 }
385 }
333 }
386 }
334
387
335 //*****************
388 //*****************
336 // Basic Parameters
389 // Basic Parameters
337
390
338 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
391 void BP_init_header( Header_TM_LFR_SCIENCE_BP_t *header,
339 unsigned int apid, unsigned char sid,
392 unsigned int apid, unsigned char sid,
340 unsigned int packetLength, unsigned char blkNr )
393 unsigned int packetLength, unsigned char blkNr )
341 {
394 {
342 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
395 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
343 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
396 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
344 header->reserved = 0x00;
397 header->reserved = 0x00;
345 header->userApplication = CCSDS_USER_APP;
398 header->userApplication = CCSDS_USER_APP;
346 header->packetID[0] = (unsigned char) (apid >> 8);
399 header->packetID[0] = (unsigned char) (apid >> 8);
347 header->packetID[1] = (unsigned char) (apid);
400 header->packetID[1] = (unsigned char) (apid);
348 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
401 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
349 header->packetSequenceControl[1] = 0x00;
402 header->packetSequenceControl[1] = 0x00;
350 header->packetLength[0] = (unsigned char) (packetLength >> 8);
403 header->packetLength[0] = (unsigned char) (packetLength >> 8);
351 header->packetLength[1] = (unsigned char) (packetLength);
404 header->packetLength[1] = (unsigned char) (packetLength);
352 // DATA FIELD HEADER
405 // DATA FIELD HEADER
353 header->spare1_pusVersion_spare2 = 0x10;
406 header->spare1_pusVersion_spare2 = 0x10;
354 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
407 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
355 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
408 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
356 header->destinationID = TM_DESTINATION_ID_GROUND;
409 header->destinationID = TM_DESTINATION_ID_GROUND;
357 // AUXILIARY DATA HEADER
410 // AUXILIARY DATA HEADER
358 header->sid = sid;
411 header->sid = sid;
359 header->biaStatusInfo = 0x00;
412 header->biaStatusInfo = 0x00;
360 header->time[0] = 0x00;
413 header->time[0] = 0x00;
361 header->time[0] = 0x00;
414 header->time[0] = 0x00;
362 header->time[0] = 0x00;
415 header->time[0] = 0x00;
363 header->time[0] = 0x00;
416 header->time[0] = 0x00;
364 header->time[0] = 0x00;
417 header->time[0] = 0x00;
365 header->time[0] = 0x00;
418 header->time[0] = 0x00;
366 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
419 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
367 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
420 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
368 }
421 }
369
422
370 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
423 void BP_init_header_with_spare(Header_TM_LFR_SCIENCE_BP_with_spare_t *header,
371 unsigned int apid, unsigned char sid,
424 unsigned int apid, unsigned char sid,
372 unsigned int packetLength , unsigned char blkNr)
425 unsigned int packetLength , unsigned char blkNr)
373 {
426 {
374 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
427 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
375 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
428 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
376 header->reserved = 0x00;
429 header->reserved = 0x00;
377 header->userApplication = CCSDS_USER_APP;
430 header->userApplication = CCSDS_USER_APP;
378 header->packetID[0] = (unsigned char) (apid >> 8);
431 header->packetID[0] = (unsigned char) (apid >> 8);
379 header->packetID[1] = (unsigned char) (apid);
432 header->packetID[1] = (unsigned char) (apid);
380 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
433 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
381 header->packetSequenceControl[1] = 0x00;
434 header->packetSequenceControl[1] = 0x00;
382 header->packetLength[0] = (unsigned char) (packetLength >> 8);
435 header->packetLength[0] = (unsigned char) (packetLength >> 8);
383 header->packetLength[1] = (unsigned char) (packetLength);
436 header->packetLength[1] = (unsigned char) (packetLength);
384 // DATA FIELD HEADER
437 // DATA FIELD HEADER
385 header->spare1_pusVersion_spare2 = 0x10;
438 header->spare1_pusVersion_spare2 = 0x10;
386 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
439 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
387 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
440 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
388 header->destinationID = TM_DESTINATION_ID_GROUND;
441 header->destinationID = TM_DESTINATION_ID_GROUND;
389 // AUXILIARY DATA HEADER
442 // AUXILIARY DATA HEADER
390 header->sid = sid;
443 header->sid = sid;
391 header->biaStatusInfo = 0x00;
444 header->biaStatusInfo = 0x00;
392 header->time[0] = 0x00;
445 header->time[0] = 0x00;
393 header->time[0] = 0x00;
446 header->time[0] = 0x00;
394 header->time[0] = 0x00;
447 header->time[0] = 0x00;
395 header->time[0] = 0x00;
448 header->time[0] = 0x00;
396 header->time[0] = 0x00;
449 header->time[0] = 0x00;
397 header->time[0] = 0x00;
450 header->time[0] = 0x00;
398 header->source_data_spare = 0x00;
451 header->source_data_spare = 0x00;
399 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
452 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
400 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
453 header->pa_lfr_bp_blk_nr[1] = blkNr; // BLK_NR LSB
401 }
454 }
402
455
403 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
456 void BP_send(char *data, rtems_id queue_id, unsigned int nbBytesToSend, unsigned int sid )
404 {
457 {
405 rtems_status_code status;
458 rtems_status_code status;
406
459
407 // SET THE SEQUENCE_CNT PARAMETER
460 // SET THE SEQUENCE_CNT PARAMETER
408 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
461 increment_seq_counter_source_id( (unsigned char*) &data[ PACKET_POS_SEQUENCE_CNT ], sid );
409 // SEND PACKET
462 // SEND PACKET
410 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
463 status = rtems_message_queue_send( queue_id, data, nbBytesToSend);
411 if (status != RTEMS_SUCCESSFUL)
464 if (status != RTEMS_SUCCESSFUL)
412 {
465 {
413 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
466 printf("ERR *** in BP_send *** ERR %d\n", (int) status);
414 }
467 }
415 }
468 }
416
469
417 //******************
470 //******************
418 // general functions
471 // general functions
419
472
420 void reset_spectral_matrix_regs( void )
473 void reset_spectral_matrix_regs( void )
421 {
474 {
422 /** This function resets the spectral matrices module registers.
475 /** This function resets the spectral matrices module registers.
423 *
476 *
424 * The registers affected by this function are located at the following offset addresses:
477 * The registers affected by this function are located at the following offset addresses:
425 *
478 *
426 * - 0x00 config
479 * - 0x00 config
427 * - 0x04 status
480 * - 0x04 status
428 * - 0x08 matrixF0_Address0
481 * - 0x08 matrixF0_Address0
429 * - 0x10 matrixFO_Address1
482 * - 0x10 matrixFO_Address1
430 * - 0x14 matrixF1_Address
483 * - 0x14 matrixF1_Address
431 * - 0x18 matrixF2_Address
484 * - 0x18 matrixF2_Address
432 *
485 *
433 */
486 */
434
487
435 spectral_matrix_regs->config = 0x00;
488 spectral_matrix_regs->config = 0x00;
436 spectral_matrix_regs->status = 0x00;
489 spectral_matrix_regs->status = 0x00;
437
490
438 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
491 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
439 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
492 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
440 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
493 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
441 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
494 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
442 }
495 }
443
496
444 void set_time( unsigned char *time, unsigned char * timeInBuffer )
497 void set_time( unsigned char *time, unsigned char * timeInBuffer )
445 {
498 {
446 // time[0] = timeInBuffer[2];
499 // time[0] = timeInBuffer[2];
447 // time[1] = timeInBuffer[3];
500 // time[1] = timeInBuffer[3];
448 // time[2] = timeInBuffer[0];
501 // time[2] = timeInBuffer[0];
449 // time[3] = timeInBuffer[1];
502 // time[3] = timeInBuffer[1];
450 // time[4] = timeInBuffer[6];
503 // time[4] = timeInBuffer[6];
451 // time[5] = timeInBuffer[7];
504 // time[5] = timeInBuffer[7];
452
505
453 time[0] = timeInBuffer[0];
506 time[0] = timeInBuffer[0];
454 time[1] = timeInBuffer[1];
507 time[1] = timeInBuffer[1];
455 time[2] = timeInBuffer[2];
508 time[2] = timeInBuffer[2];
456 time[3] = timeInBuffer[3];
509 time[3] = timeInBuffer[3];
457 time[4] = timeInBuffer[6];
510 time[4] = timeInBuffer[6];
458 time[5] = timeInBuffer[7];
511 time[5] = timeInBuffer[7];
459 }
512 }
@@ -1,949 +1,949
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14
14
15 //***********
15 //***********
16 // RTEMS TASK
16 // RTEMS TASK
17
17
18 rtems_task actn_task( rtems_task_argument unused )
18 rtems_task actn_task( rtems_task_argument unused )
19 {
19 {
20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 *
21 *
22 * @param unused is the starting argument of the RTEMS task
22 * @param unused is the starting argument of the RTEMS task
23 *
23 *
24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * on the incoming TeleCommand.
25 * on the incoming TeleCommand.
26 *
26 *
27 */
27 */
28
28
29 int result;
29 int result;
30 rtems_status_code status; // RTEMS status code
30 rtems_status_code status; // RTEMS status code
31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 size_t size; // size of the incoming TC packet
32 size_t size; // size of the incoming TC packet
33 unsigned char subtype; // subtype of the current TC packet
33 unsigned char subtype; // subtype of the current TC packet
34 unsigned char time[6];
34 unsigned char time[6];
35 rtems_id queue_rcv_id;
35 rtems_id queue_rcv_id;
36 rtems_id queue_snd_id;
36 rtems_id queue_snd_id;
37
37
38 status = get_message_queue_id_recv( &queue_rcv_id );
38 status = get_message_queue_id_recv( &queue_rcv_id );
39 if (status != RTEMS_SUCCESSFUL)
39 if (status != RTEMS_SUCCESSFUL)
40 {
40 {
41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 }
42 }
43
43
44 status = get_message_queue_id_send( &queue_snd_id );
44 status = get_message_queue_id_send( &queue_snd_id );
45 if (status != RTEMS_SUCCESSFUL)
45 if (status != RTEMS_SUCCESSFUL)
46 {
46 {
47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 }
48 }
49
49
50 result = LFR_SUCCESSFUL;
50 result = LFR_SUCCESSFUL;
51 subtype = 0; // subtype of the current TC packet
51 subtype = 0; // subtype of the current TC packet
52
52
53 BOOT_PRINTF("in ACTN *** \n")
53 BOOT_PRINTF("in ACTN *** \n")
54
54
55 while(1)
55 while(1)
56 {
56 {
57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 getTime( time ); // set time to the current time
59 getTime( time ); // set time to the current time
60 if (status!=RTEMS_SUCCESSFUL)
60 if (status!=RTEMS_SUCCESSFUL)
61 {
61 {
62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 }
63 }
64 else
64 else
65 {
65 {
66 subtype = TC.serviceSubType;
66 subtype = TC.serviceSubType;
67 switch(subtype)
67 switch(subtype)
68 {
68 {
69 case TC_SUBTYPE_RESET:
69 case TC_SUBTYPE_RESET:
70 result = action_reset( &TC, queue_snd_id, time );
70 result = action_reset( &TC, queue_snd_id, time );
71 close_action( &TC, result, queue_snd_id );
71 close_action( &TC, result, queue_snd_id );
72 break;
72 break;
73 //
73 //
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 //
78 //
79 case TC_SUBTYPE_LOAD_NORM:
79 case TC_SUBTYPE_LOAD_NORM:
80 result = action_load_normal_par( &TC, queue_snd_id, time );
80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 close_action( &TC, result, queue_snd_id );
81 close_action( &TC, result, queue_snd_id );
82 break;
82 break;
83 //
83 //
84 case TC_SUBTYPE_LOAD_BURST:
84 case TC_SUBTYPE_LOAD_BURST:
85 result = action_load_burst_par( &TC, queue_snd_id, time );
85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 close_action( &TC, result, queue_snd_id );
86 close_action( &TC, result, queue_snd_id );
87 break;
87 break;
88 //
88 //
89 case TC_SUBTYPE_LOAD_SBM1:
89 case TC_SUBTYPE_LOAD_SBM1:
90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 close_action( &TC, result, queue_snd_id );
91 close_action( &TC, result, queue_snd_id );
92 break;
92 break;
93 //
93 //
94 case TC_SUBTYPE_LOAD_SBM2:
94 case TC_SUBTYPE_LOAD_SBM2:
95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 //
98 //
99 case TC_SUBTYPE_DUMP:
99 case TC_SUBTYPE_DUMP:
100 result = action_dump_par( queue_snd_id );
100 result = action_dump_par( queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
101 close_action( &TC, result, queue_snd_id );
102 break;
102 break;
103 //
103 //
104 case TC_SUBTYPE_ENTER:
104 case TC_SUBTYPE_ENTER:
105 result = action_enter_mode( &TC, queue_snd_id );
105 result = action_enter_mode( &TC, queue_snd_id );
106 close_action( &TC, result, queue_snd_id );
106 close_action( &TC, result, queue_snd_id );
107 break;
107 break;
108 //
108 //
109 case TC_SUBTYPE_UPDT_INFO:
109 case TC_SUBTYPE_UPDT_INFO:
110 result = action_update_info( &TC, queue_snd_id );
110 result = action_update_info( &TC, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
111 close_action( &TC, result, queue_snd_id );
112 break;
112 break;
113 //
113 //
114 case TC_SUBTYPE_EN_CAL:
114 case TC_SUBTYPE_EN_CAL:
115 result = action_enable_calibration( &TC, queue_snd_id, time );
115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 //
118 //
119 case TC_SUBTYPE_DIS_CAL:
119 case TC_SUBTYPE_DIS_CAL:
120 result = action_disable_calibration( &TC, queue_snd_id, time );
120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 close_action( &TC, result, queue_snd_id );
121 close_action( &TC, result, queue_snd_id );
122 break;
122 break;
123 //
123 //
124 case TC_SUBTYPE_UPDT_TIME:
124 case TC_SUBTYPE_UPDT_TIME:
125 result = action_update_time( &TC );
125 result = action_update_time( &TC );
126 close_action( &TC, result, queue_snd_id );
126 close_action( &TC, result, queue_snd_id );
127 break;
127 break;
128 //
128 //
129 default:
129 default:
130 break;
130 break;
131 }
131 }
132 }
132 }
133 }
133 }
134 }
134 }
135
135
136 //***********
136 //***********
137 // TC ACTIONS
137 // TC ACTIONS
138
138
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 {
140 {
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 *
142 *
143 * @param TC points to the TeleCommand packet that is being processed
143 * @param TC points to the TeleCommand packet that is being processed
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 *
145 *
146 */
146 */
147
147
148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 return LFR_DEFAULT;
149 return LFR_DEFAULT;
150 }
150 }
151
151
152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 {
153 {
154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 *
155 *
156 * @param TC points to the TeleCommand packet that is being processed
156 * @param TC points to the TeleCommand packet that is being processed
157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 *
158 *
159 */
159 */
160
160
161 rtems_status_code status;
161 rtems_status_code status;
162 unsigned char requestedMode;
162 unsigned char requestedMode;
163 unsigned int *transitionCoarseTime_ptr;
163 unsigned int *transitionCoarseTime_ptr;
164 unsigned int transitionCoarseTime;
164 unsigned int transitionCoarseTime;
165 unsigned char * bytePosPtr;
165 unsigned char * bytePosPtr;
166
166
167 bytePosPtr = (unsigned char *) &TC->packetID;
167 bytePosPtr = (unsigned char *) &TC->packetID;
168
168
169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172
172
173 status = check_mode_value( requestedMode );
173 status = check_mode_value( requestedMode );
174
174
175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 {
176 {
177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 }
178 }
179 else // the mode value is consistent, check the transition
179 else // the mode value is consistent, check the transition
180 {
180 {
181 status = check_mode_transition(requestedMode);
181 status = check_mode_transition(requestedMode);
182 if (status != LFR_SUCCESSFUL)
182 if (status != LFR_SUCCESSFUL)
183 {
183 {
184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 }
186 }
187 }
187 }
188
188
189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 {
190 {
191 status = check_transition_date( transitionCoarseTime );
191 status = check_transition_date( transitionCoarseTime );
192 if (status != LFR_SUCCESSFUL)
192 if (status != LFR_SUCCESSFUL)
193 {
193 {
194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 }
198 }
199 }
199 }
200
200
201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 {
202 {
203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 status = enter_mode( requestedMode, transitionCoarseTime );
204 status = enter_mode( requestedMode, transitionCoarseTime );
205 }
205 }
206
206
207 return status;
207 return status;
208 }
208 }
209
209
210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 {
211 {
212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 *
213 *
214 * @param TC points to the TeleCommand packet that is being processed
214 * @param TC points to the TeleCommand packet that is being processed
215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 *
216 *
217 * @return LFR directive status code:
217 * @return LFR directive status code:
218 * - LFR_DEFAULT
218 * - LFR_DEFAULT
219 * - LFR_SUCCESSFUL
219 * - LFR_SUCCESSFUL
220 *
220 *
221 */
221 */
222
222
223 unsigned int val;
223 unsigned int val;
224 int result;
224 int result;
225 unsigned int status;
225 unsigned int status;
226 unsigned char mode;
226 unsigned char mode;
227 unsigned char * bytePosPtr;
227 unsigned char * bytePosPtr;
228
228
229 bytePosPtr = (unsigned char *) &TC->packetID;
229 bytePosPtr = (unsigned char *) &TC->packetID;
230
230
231 // check LFR mode
231 // check LFR mode
232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 status = check_update_info_hk_lfr_mode( mode );
233 status = check_update_info_hk_lfr_mode( mode );
234 if (status == LFR_SUCCESSFUL) // check TDS mode
234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 {
235 {
236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 status = check_update_info_hk_tds_mode( mode );
237 status = check_update_info_hk_tds_mode( mode );
238 }
238 }
239 if (status == LFR_SUCCESSFUL) // check THR mode
239 if (status == LFR_SUCCESSFUL) // check THR mode
240 {
240 {
241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 status = check_update_info_hk_thr_mode( mode );
242 status = check_update_info_hk_thr_mode( mode );
243 }
243 }
244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 {
245 {
246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 val++;
248 val++;
249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 }
251 }
252
252
253 result = status;
253 result = status;
254
254
255 return result;
255 return result;
256 }
256 }
257
257
258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 {
259 {
260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 *
261 *
262 * @param TC points to the TeleCommand packet that is being processed
262 * @param TC points to the TeleCommand packet that is being processed
263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 *
264 *
265 */
265 */
266
266
267 int result;
267 int result;
268 unsigned char lfrMode;
268 unsigned char lfrMode;
269
269
270 result = LFR_DEFAULT;
270 result = LFR_DEFAULT;
271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272
272
273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 result = LFR_DEFAULT;
274 result = LFR_DEFAULT;
275
275
276 return result;
276 return result;
277 }
277 }
278
278
279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 {
280 {
281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 *
282 *
283 * @param TC points to the TeleCommand packet that is being processed
283 * @param TC points to the TeleCommand packet that is being processed
284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 *
285 *
286 */
286 */
287
287
288 int result;
288 int result;
289 unsigned char lfrMode;
289 unsigned char lfrMode;
290
290
291 result = LFR_DEFAULT;
291 result = LFR_DEFAULT;
292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293
293
294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 result = LFR_DEFAULT;
295 result = LFR_DEFAULT;
296
296
297 return result;
297 return result;
298 }
298 }
299
299
300 int action_update_time(ccsdsTelecommandPacket_t *TC)
300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 {
301 {
302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 *
303 *
304 * @param TC points to the TeleCommand packet that is being processed
304 * @param TC points to the TeleCommand packet that is being processed
305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 *
306 *
307 * @return LFR_SUCCESSFUL
307 * @return LFR_SUCCESSFUL
308 *
308 *
309 */
309 */
310
310
311 unsigned int val;
311 unsigned int val;
312
312
313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 + (TC->dataAndCRC[1] << 16)
314 + (TC->dataAndCRC[1] << 16)
315 + (TC->dataAndCRC[2] << 8)
315 + (TC->dataAndCRC[2] << 8)
316 + TC->dataAndCRC[3];
316 + TC->dataAndCRC[3];
317
317
318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319
319
320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 val++;
322 val++;
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326
326
327 return LFR_SUCCESSFUL;
327 return LFR_SUCCESSFUL;
328 }
328 }
329
329
330 //*******************
330 //*******************
331 // ENTERING THE MODES
331 // ENTERING THE MODES
332 int check_mode_value( unsigned char requestedMode )
332 int check_mode_value( unsigned char requestedMode )
333 {
333 {
334 int status;
334 int status;
335
335
336 if ( (requestedMode != LFR_MODE_STANDBY)
336 if ( (requestedMode != LFR_MODE_STANDBY)
337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 {
339 {
340 status = LFR_DEFAULT;
340 status = LFR_DEFAULT;
341 }
341 }
342 else
342 else
343 {
343 {
344 status = LFR_SUCCESSFUL;
344 status = LFR_SUCCESSFUL;
345 }
345 }
346
346
347 return status;
347 return status;
348 }
348 }
349
349
350 int check_mode_transition( unsigned char requestedMode )
350 int check_mode_transition( unsigned char requestedMode )
351 {
351 {
352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 *
353 *
354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 *
355 *
356 * @return LFR directive status codes:
356 * @return LFR directive status codes:
357 * - LFR_SUCCESSFUL - the transition is authorized
357 * - LFR_SUCCESSFUL - the transition is authorized
358 * - LFR_DEFAULT - the transition is not authorized
358 * - LFR_DEFAULT - the transition is not authorized
359 *
359 *
360 */
360 */
361
361
362 int status;
362 int status;
363
363
364 switch (requestedMode)
364 switch (requestedMode)
365 {
365 {
366 case LFR_MODE_STANDBY:
366 case LFR_MODE_STANDBY:
367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 status = LFR_DEFAULT;
368 status = LFR_DEFAULT;
369 }
369 }
370 else
370 else
371 {
371 {
372 status = LFR_SUCCESSFUL;
372 status = LFR_SUCCESSFUL;
373 }
373 }
374 break;
374 break;
375 case LFR_MODE_NORMAL:
375 case LFR_MODE_NORMAL:
376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 status = LFR_DEFAULT;
377 status = LFR_DEFAULT;
378 }
378 }
379 else {
379 else {
380 status = LFR_SUCCESSFUL;
380 status = LFR_SUCCESSFUL;
381 }
381 }
382 break;
382 break;
383 case LFR_MODE_BURST:
383 case LFR_MODE_BURST:
384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 status = LFR_DEFAULT;
385 status = LFR_DEFAULT;
386 }
386 }
387 else {
387 else {
388 status = LFR_SUCCESSFUL;
388 status = LFR_SUCCESSFUL;
389 }
389 }
390 break;
390 break;
391 case LFR_MODE_SBM1:
391 case LFR_MODE_SBM1:
392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 status = LFR_DEFAULT;
393 status = LFR_DEFAULT;
394 }
394 }
395 else {
395 else {
396 status = LFR_SUCCESSFUL;
396 status = LFR_SUCCESSFUL;
397 }
397 }
398 break;
398 break;
399 case LFR_MODE_SBM2:
399 case LFR_MODE_SBM2:
400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 status = LFR_DEFAULT;
401 status = LFR_DEFAULT;
402 }
402 }
403 else {
403 else {
404 status = LFR_SUCCESSFUL;
404 status = LFR_SUCCESSFUL;
405 }
405 }
406 break;
406 break;
407 default:
407 default:
408 status = LFR_DEFAULT;
408 status = LFR_DEFAULT;
409 break;
409 break;
410 }
410 }
411
411
412 return status;
412 return status;
413 }
413 }
414
414
415 int check_transition_date( unsigned int transitionCoarseTime )
415 int check_transition_date( unsigned int transitionCoarseTime )
416 {
416 {
417 int status;
417 int status;
418 unsigned int localCoarseTime;
418 unsigned int localCoarseTime;
419 unsigned int deltaCoarseTime;
419 unsigned int deltaCoarseTime;
420
420
421 status = LFR_SUCCESSFUL;
421 status = LFR_SUCCESSFUL;
422
422
423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 {
424 {
425 status = LFR_SUCCESSFUL;
425 status = LFR_SUCCESSFUL;
426 }
426 }
427 else
427 else
428 {
428 {
429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430
430
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 {
432 {
433 status = LFR_DEFAULT;
433 status = LFR_DEFAULT;
434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 }
435 }
436
436
437 if (status == LFR_SUCCESSFUL)
437 if (status == LFR_SUCCESSFUL)
438 {
438 {
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 {
441 {
442 status = LFR_DEFAULT;
442 status = LFR_DEFAULT;
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 return status;
448 return status;
449 }
449 }
450
450
451 int stop_current_mode( void )
451 int stop_current_mode( void )
452 {
452 {
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 *
454 *
455 * @return RTEMS directive status codes:
455 * @return RTEMS directive status codes:
456 * - RTEMS_SUCCESSFUL - task restarted successfully
456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 * - RTEMS_INVALID_ID - task id invalid
457 * - RTEMS_INVALID_ID - task id invalid
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 *
459 *
460 */
460 */
461
461
462 rtems_status_code status;
462 rtems_status_code status;
463
463
464 status = RTEMS_SUCCESSFUL;
464 status = RTEMS_SUCCESSFUL;
465
465
466 // (1) mask interruptions
466 // (1) mask interruptions
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469
469
470 // (2) clear interruptions
470 // (2) clear interruptions
471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473
473
474 // (3) reset waveform picker registers
474 // (3) reset waveform picker registers
475 reset_wfp_burst_enable(); // reset burst and enable bits
475 reset_wfp_burst_enable(); // reset burst and enable bits
476 reset_wfp_status(); // reset all the status bits
476 reset_wfp_status(); // reset all the status bits
477
477
478 // (4) reset spectral matrices registers
478 // (4) reset spectral matrices registers
479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 reset_extractSWF(); // reset the extractSWF flag to false
481 reset_extractSWF(); // reset the extractSWF flag to false
482
482
483 // <Spectral Matrices simulator>
483 // <Spectral Matrices simulator>
484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 // </Spectral Matrices simulator>
487 // </Spectral Matrices simulator>
488
488
489 // suspend several tasks
489 // suspend several tasks
490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 status = suspend_science_tasks();
491 status = suspend_science_tasks();
492 }
492 }
493
493
494 if (status != RTEMS_SUCCESSFUL)
494 if (status != RTEMS_SUCCESSFUL)
495 {
495 {
496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 }
497 }
498
498
499 return status;
499 return status;
500 }
500 }
501
501
502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 {
503 {
504 /** This function is launched after a mode transition validation.
504 /** This function is launched after a mode transition validation.
505 *
505 *
506 * @param mode is the mode in which LFR will be put.
506 * @param mode is the mode in which LFR will be put.
507 *
507 *
508 * @return RTEMS directive status codes:
508 * @return RTEMS directive status codes:
509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 *
511 *
512 */
512 */
513
513
514 rtems_status_code status;
514 rtems_status_code status;
515
515
516 //**********************
516 //**********************
517 // STOP THE CURRENT MODE
517 // STOP THE CURRENT MODE
518 status = stop_current_mode();
518 status = stop_current_mode();
519 if (status != RTEMS_SUCCESSFUL)
519 if (status != RTEMS_SUCCESSFUL)
520 {
520 {
521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 }
522 }
523
523
524 //*************************
524 //*************************
525 // ENTER THE REQUESTED MODE
525 // ENTER THE REQUESTED MODE
526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 {
528 {
529 #ifdef PRINT_TASK_STATISTICS
529 #ifdef PRINT_TASK_STATISTICS
530 rtems_cpu_usage_reset();
530 rtems_cpu_usage_reset();
531 maxCount = 0;
531 maxCount = 0;
532 #endif
532 #endif
533 status = restart_science_tasks( mode );
533 status = restart_science_tasks( mode );
534 launch_waveform_picker( mode, transitionCoarseTime );
534 launch_waveform_picker( mode, transitionCoarseTime );
535 launch_spectral_matrix( );
535 //launch_spectral_matrix( );
536 launch_spectral_matrix_simu( );
536 launch_spectral_matrix_simu( );
537 }
537 }
538 else if ( mode == LFR_MODE_STANDBY )
538 else if ( mode == LFR_MODE_STANDBY )
539 {
539 {
540 #ifdef PRINT_TASK_STATISTICS
540 #ifdef PRINT_TASK_STATISTICS
541 rtems_cpu_usage_report();
541 rtems_cpu_usage_report();
542 #endif
542 #endif
543
543
544 #ifdef PRINT_STACK_REPORT
544 #ifdef PRINT_STACK_REPORT
545 PRINTF("stack report selected\n")
545 PRINTF("stack report selected\n")
546 rtems_stack_checker_report_usage();
546 rtems_stack_checker_report_usage();
547 #endif
547 #endif
548 PRINTF1("maxCount = %d\n", maxCount)
548 PRINTF1("maxCount = %d\n", maxCount)
549 }
549 }
550 else
550 else
551 {
551 {
552 status = RTEMS_UNSATISFIED;
552 status = RTEMS_UNSATISFIED;
553 }
553 }
554
554
555 if (status != RTEMS_SUCCESSFUL)
555 if (status != RTEMS_SUCCESSFUL)
556 {
556 {
557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
557 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
558 status = RTEMS_UNSATISFIED;
558 status = RTEMS_UNSATISFIED;
559 }
559 }
560
560
561 return status;
561 return status;
562 }
562 }
563
563
564 int restart_science_tasks(unsigned char lfrRequestedMode )
564 int restart_science_tasks(unsigned char lfrRequestedMode )
565 {
565 {
566 /** This function is used to restart all science tasks.
566 /** This function is used to restart all science tasks.
567 *
567 *
568 * @return RTEMS directive status codes:
568 * @return RTEMS directive status codes:
569 * - RTEMS_SUCCESSFUL - task restarted successfully
569 * - RTEMS_SUCCESSFUL - task restarted successfully
570 * - RTEMS_INVALID_ID - task id invalid
570 * - RTEMS_INVALID_ID - task id invalid
571 * - RTEMS_INCORRECT_STATE - task never started
571 * - RTEMS_INCORRECT_STATE - task never started
572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
572 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
573 *
573 *
574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
574 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
575 *
575 *
576 */
576 */
577
577
578 rtems_status_code status[10];
578 rtems_status_code status[10];
579 rtems_status_code ret;
579 rtems_status_code ret;
580
580
581 ret = RTEMS_SUCCESSFUL;
581 ret = RTEMS_SUCCESSFUL;
582
582
583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
583 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
584 if (status[0] != RTEMS_SUCCESSFUL)
584 if (status[0] != RTEMS_SUCCESSFUL)
585 {
585 {
586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
586 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
587 }
587 }
588
588
589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
589 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
590 if (status[1] != RTEMS_SUCCESSFUL)
590 if (status[1] != RTEMS_SUCCESSFUL)
591 {
591 {
592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
592 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
593 }
593 }
594
594
595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
595 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
596 if (status[2] != RTEMS_SUCCESSFUL)
596 if (status[2] != RTEMS_SUCCESSFUL)
597 {
597 {
598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
598 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
599 }
599 }
600
600
601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
601 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
602 if (status[3] != RTEMS_SUCCESSFUL)
602 if (status[3] != RTEMS_SUCCESSFUL)
603 {
603 {
604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
604 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
605 }
605 }
606
606
607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
607 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
608 if (status[4] != RTEMS_SUCCESSFUL)
608 if (status[4] != RTEMS_SUCCESSFUL)
609 {
609 {
610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
610 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
611 }
611 }
612
612
613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
613 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
614 if (status[5] != RTEMS_SUCCESSFUL)
614 if (status[5] != RTEMS_SUCCESSFUL)
615 {
615 {
616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
616 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
617 }
617 }
618
618
619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
619 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
620 if (status[6] != RTEMS_SUCCESSFUL)
620 if (status[6] != RTEMS_SUCCESSFUL)
621 {
621 {
622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
622 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
623 }
623 }
624
624
625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
625 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
626 if (status[7] != RTEMS_SUCCESSFUL)
626 if (status[7] != RTEMS_SUCCESSFUL)
627 {
627 {
628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
628 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
629 }
629 }
630
630
631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
631 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
632 if (status[8] != RTEMS_SUCCESSFUL)
632 if (status[8] != RTEMS_SUCCESSFUL)
633 {
633 {
634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
634 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
635 }
635 }
636
636
637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
637 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
638 if (status[9] != RTEMS_SUCCESSFUL)
638 if (status[9] != RTEMS_SUCCESSFUL)
639 {
639 {
640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
640 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
641 }
641 }
642
642
643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
643 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
644 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
645 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
646 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
647 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
648 {
648 {
649 ret = RTEMS_UNSATISFIED;
649 ret = RTEMS_UNSATISFIED;
650 }
650 }
651
651
652 return ret;
652 return ret;
653 }
653 }
654
654
655 int suspend_science_tasks()
655 int suspend_science_tasks()
656 {
656 {
657 /** This function suspends the science tasks.
657 /** This function suspends the science tasks.
658 *
658 *
659 * @return RTEMS directive status codes:
659 * @return RTEMS directive status codes:
660 * - RTEMS_SUCCESSFUL - task restarted successfully
660 * - RTEMS_SUCCESSFUL - task restarted successfully
661 * - RTEMS_INVALID_ID - task id invalid
661 * - RTEMS_INVALID_ID - task id invalid
662 * - RTEMS_ALREADY_SUSPENDED - task already suspended
662 * - RTEMS_ALREADY_SUSPENDED - task already suspended
663 *
663 *
664 */
664 */
665
665
666 rtems_status_code status;
666 rtems_status_code status;
667
667
668 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
668 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
669 if (status != RTEMS_SUCCESSFUL)
669 if (status != RTEMS_SUCCESSFUL)
670 {
670 {
671 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
671 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
672 }
672 }
673 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
673 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
674 {
674 {
675 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
675 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
676 if (status != RTEMS_SUCCESSFUL)
676 if (status != RTEMS_SUCCESSFUL)
677 {
677 {
678 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
678 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
679 }
679 }
680 }
680 }
681 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
681 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
682 {
682 {
683 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
683 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
684 if (status != RTEMS_SUCCESSFUL)
684 if (status != RTEMS_SUCCESSFUL)
685 {
685 {
686 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
686 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
687 }
687 }
688 }
688 }
689 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
689 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
690 {
690 {
691 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
691 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
692 if (status != RTEMS_SUCCESSFUL)
692 if (status != RTEMS_SUCCESSFUL)
693 {
693 {
694 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
694 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
695 }
695 }
696 }
696 }
697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
697 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
698 {
698 {
699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
699 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
700 if (status != RTEMS_SUCCESSFUL)
700 if (status != RTEMS_SUCCESSFUL)
701 {
701 {
702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
702 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
703 }
703 }
704 }
704 }
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
706 {
706 {
707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
707 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
708 if (status != RTEMS_SUCCESSFUL)
708 if (status != RTEMS_SUCCESSFUL)
709 {
709 {
710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
710 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
711 }
711 }
712 }
712 }
713 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
713 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
714 {
714 {
715 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
715 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
716 if (status != RTEMS_SUCCESSFUL)
716 if (status != RTEMS_SUCCESSFUL)
717 {
717 {
718 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
718 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
719 }
719 }
720 }
720 }
721 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
721 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
722 {
722 {
723 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
723 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
724 if (status != RTEMS_SUCCESSFUL)
724 if (status != RTEMS_SUCCESSFUL)
725 {
725 {
726 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
726 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
727 }
727 }
728 }
728 }
729 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
729 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
730 {
730 {
731 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
731 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
732 if (status != RTEMS_SUCCESSFUL)
732 if (status != RTEMS_SUCCESSFUL)
733 {
733 {
734 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
734 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
735 }
735 }
736 }
736 }
737 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
737 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
738 {
738 {
739 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
739 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
740 if (status != RTEMS_SUCCESSFUL)
740 if (status != RTEMS_SUCCESSFUL)
741 {
741 {
742 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
742 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
743 }
743 }
744 }
744 }
745
745
746 return status;
746 return status;
747 }
747 }
748
748
749 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
749 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
750 {
750 {
751 reset_current_ring_nodes();
751 reset_current_ring_nodes();
752 reset_waveform_picker_regs();
752 reset_waveform_picker_regs();
753 set_wfp_burst_enable_register( mode );
753 set_wfp_burst_enable_register( mode );
754
754
755 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
755 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
756 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
756 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
757
757
758 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
758 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
759 if (transitionCoarseTime == 0)
759 if (transitionCoarseTime == 0)
760 {
760 {
761 waveform_picker_regs->start_date = time_management_regs->coarse_time;
761 waveform_picker_regs->start_date = time_management_regs->coarse_time;
762 }
762 }
763 else
763 else
764 {
764 {
765 waveform_picker_regs->start_date = transitionCoarseTime;
765 waveform_picker_regs->start_date = transitionCoarseTime;
766 }
766 }
767 }
767 }
768
768
769 void launch_spectral_matrix( void )
769 void launch_spectral_matrix( void )
770 {
770 {
771 SM_reset_current_ring_nodes();
771 SM_reset_current_ring_nodes();
772 reset_spectral_matrix_regs();
772 reset_spectral_matrix_regs();
773 reset_nb_sm();
773 reset_nb_sm();
774
774
775 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
775 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
776 grgpio_regs->io_port_direction_register =
776 grgpio_regs->io_port_direction_register =
777 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
777 grgpio_regs->io_port_direction_register | 0x01; // [0000 0001], 0 = output disabled, 1 = output enabled
778 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
778 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register & 0xfffffffe; // set the bit 0 to 0
779 set_irq_on_new_ready_matrix( 1 );
779 set_irq_on_new_ready_matrix( 1 );
780 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
780 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
781 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
781 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
782 set_run_matrix_spectral( 1 );
782 set_run_matrix_spectral( 1 );
783
783
784 }
784 }
785
785
786 void launch_spectral_matrix_simu( void )
786 void launch_spectral_matrix_simu( void )
787 {
787 {
788 SM_reset_current_ring_nodes();
788 SM_reset_current_ring_nodes();
789 reset_spectral_matrix_regs();
789 reset_spectral_matrix_regs();
790 reset_nb_sm();
790 reset_nb_sm();
791
791
792 // Spectral Matrices simulator
792 // Spectral Matrices simulator
793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
793 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
794 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
795 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
796 }
796 }
797
797
798 void set_irq_on_new_ready_matrix( unsigned char value )
798 void set_irq_on_new_ready_matrix( unsigned char value )
799 {
799 {
800 if (value == 1)
800 if (value == 1)
801 {
801 {
802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
802 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
803 }
803 }
804 else
804 else
805 {
805 {
806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
806 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
807 }
807 }
808 }
808 }
809
809
810 void set_run_matrix_spectral( unsigned char value )
810 void set_run_matrix_spectral( unsigned char value )
811 {
811 {
812 if (value == 1)
812 if (value == 1)
813 {
813 {
814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
814 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
815 }
815 }
816 else
816 else
817 {
817 {
818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
818 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
819 }
819 }
820 }
820 }
821
821
822 //****************
822 //****************
823 // CLOSING ACTIONS
823 // CLOSING ACTIONS
824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
824 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
825 {
825 {
826 /** This function is used to update the HK packets statistics after a successful TC execution.
826 /** This function is used to update the HK packets statistics after a successful TC execution.
827 *
827 *
828 * @param TC points to the TC being processed
828 * @param TC points to the TC being processed
829 * @param time is the time used to date the TC execution
829 * @param time is the time used to date the TC execution
830 *
830 *
831 */
831 */
832
832
833 unsigned int val;
833 unsigned int val;
834
834
835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
835 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
836 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
837 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
838 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
839 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
840 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
841 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
842 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
843 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
844 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
845 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
846 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
847
847
848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
848 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
849 val++;
849 val++;
850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
850 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
851 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
852 }
852 }
853
853
854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
854 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
855 {
855 {
856 /** This function is used to update the HK packets statistics after a TC rejection.
856 /** This function is used to update the HK packets statistics after a TC rejection.
857 *
857 *
858 * @param TC points to the TC being processed
858 * @param TC points to the TC being processed
859 * @param time is the time used to date the TC rejection
859 * @param time is the time used to date the TC rejection
860 *
860 *
861 */
861 */
862
862
863 unsigned int val;
863 unsigned int val;
864
864
865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
865 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
866 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
867 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
868 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
869 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
870 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
871 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
872 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
873 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
874 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
875 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
876 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
877
877
878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
878 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
879 val++;
879 val++;
880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
880 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
881 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
882 }
882 }
883
883
884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
884 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
885 {
885 {
886 /** This function is the last step of the TC execution workflow.
886 /** This function is the last step of the TC execution workflow.
887 *
887 *
888 * @param TC points to the TC being processed
888 * @param TC points to the TC being processed
889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
889 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
890 * @param queue_id is the id of the RTEMS message queue used to send TM packets
891 * @param time is the time used to date the TC execution
891 * @param time is the time used to date the TC execution
892 *
892 *
893 */
893 */
894
894
895 unsigned char requestedMode;
895 unsigned char requestedMode;
896
896
897 if (result == LFR_SUCCESSFUL)
897 if (result == LFR_SUCCESSFUL)
898 {
898 {
899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
899 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
900 &
900 &
901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
901 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
902 )
902 )
903 {
903 {
904 send_tm_lfr_tc_exe_success( TC, queue_id );
904 send_tm_lfr_tc_exe_success( TC, queue_id );
905 }
905 }
906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
906 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
907 {
907 {
908 //**********************************
908 //**********************************
909 // UPDATE THE LFRMODE LOCAL VARIABLE
909 // UPDATE THE LFRMODE LOCAL VARIABLE
910 requestedMode = TC->dataAndCRC[1];
910 requestedMode = TC->dataAndCRC[1];
911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
911 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
912 updateLFRCurrentMode();
912 updateLFRCurrentMode();
913 }
913 }
914 }
914 }
915 else if (result == LFR_EXE_ERROR)
915 else if (result == LFR_EXE_ERROR)
916 {
916 {
917 send_tm_lfr_tc_exe_error( TC, queue_id );
917 send_tm_lfr_tc_exe_error( TC, queue_id );
918 }
918 }
919 }
919 }
920
920
921 //***************************
921 //***************************
922 // Interrupt Service Routines
922 // Interrupt Service Routines
923 rtems_isr commutation_isr1( rtems_vector_number vector )
923 rtems_isr commutation_isr1( rtems_vector_number vector )
924 {
924 {
925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
925 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
926 printf("In commutation_isr1 *** Error sending event to DUMB\n");
927 }
927 }
928 }
928 }
929
929
930 rtems_isr commutation_isr2( rtems_vector_number vector )
930 rtems_isr commutation_isr2( rtems_vector_number vector )
931 {
931 {
932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
932 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
933 printf("In commutation_isr2 *** Error sending event to DUMB\n");
934 }
934 }
935 }
935 }
936
936
937 //****************
937 //****************
938 // OTHER FUNCTIONS
938 // OTHER FUNCTIONS
939 void updateLFRCurrentMode()
939 void updateLFRCurrentMode()
940 {
940 {
941 /** This function updates the value of the global variable lfrCurrentMode.
941 /** This function updates the value of the global variable lfrCurrentMode.
942 *
942 *
943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
943 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
944 *
944 *
945 */
945 */
946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
946 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
947 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
948 }
948 }
949
949
@@ -1,1303 +1,1392
1 /** Functions and tasks related to waveform packet generation.
1 /** Functions and tasks related to waveform packet generation.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 *
7 *
8 */
8 */
9
9
10 #include "wf_handler.h"
10 #include "wf_handler.h"
11
11
12 //*****************
12 //*****************
13 // waveform headers
13 // waveform headers
14 // SWF
14 // SWF
15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 // CWF
18 // CWF
19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24
24
25 //**************
25 //**************
26 // waveform ring
26 // waveform ring
27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 ring_node waveform_ring_f3[NB_RING_NODES_F3];
31 ring_node *current_ring_node_f0;
31 ring_node *current_ring_node_f0;
32 ring_node *ring_node_to_send_swf_f0;
32 ring_node *ring_node_to_send_swf_f0;
33 ring_node *current_ring_node_f1;
33 ring_node *current_ring_node_f1;
34 ring_node *ring_node_to_send_swf_f1;
34 ring_node *ring_node_to_send_swf_f1;
35 ring_node *ring_node_to_send_cwf_f1;
35 ring_node *ring_node_to_send_cwf_f1;
36 ring_node *current_ring_node_f2;
36 ring_node *current_ring_node_f2;
37 ring_node *ring_node_to_send_swf_f2;
37 ring_node *ring_node_to_send_swf_f2;
38 ring_node *ring_node_to_send_cwf_f2;
38 ring_node *ring_node_to_send_cwf_f2;
39 ring_node *current_ring_node_f3;
39 ring_node *current_ring_node_f3;
40 ring_node *ring_node_to_send_cwf_f3;
40 ring_node *ring_node_to_send_cwf_f3;
41
41
42 bool extractSWF = false;
42 bool extractSWF = false;
43 bool swf_f0_ready = false;
43 bool swf_f0_ready = false;
44 bool swf_f1_ready = false;
44 bool swf_f1_ready = false;
45 bool swf_f2_ready = false;
45 bool swf_f2_ready = false;
46
46
47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
47 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
48
48
49 //*********************
49 //*********************
50 // Interrupt SubRoutine
50 // Interrupt SubRoutine
51
51
52 void reset_extractSWF( void )
52 void reset_extractSWF( void )
53 {
53 {
54 extractSWF = false;
54 extractSWF = false;
55 swf_f0_ready = false;
55 swf_f0_ready = false;
56 swf_f1_ready = false;
56 swf_f1_ready = false;
57 swf_f2_ready = false;
57 swf_f2_ready = false;
58 }
58 }
59
59
60 rtems_isr waveforms_isr( rtems_vector_number vector )
60 rtems_isr waveforms_isr( rtems_vector_number vector )
61 {
61 {
62 /** This is the interrupt sub routine called by the waveform picker core.
62 /** This is the interrupt sub routine called by the waveform picker core.
63 *
63 *
64 * This ISR launch different actions depending mainly on two pieces of information:
64 * This ISR launch different actions depending mainly on two pieces of information:
65 * 1. the values read in the registers of the waveform picker.
65 * 1. the values read in the registers of the waveform picker.
66 * 2. the current LFR mode.
66 * 2. the current LFR mode.
67 *
67 *
68 */
68 */
69
69
70 rtems_status_code status;
70 rtems_status_code status;
71
71
72 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
72 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
73 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
73 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
74 { // in modes other than STANDBY and BURST, send the CWF_F3 data
74 { // in modes other than STANDBY and BURST, send the CWF_F3 data
75 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
75 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
76 // (1) change the receiving buffer for the waveform picker
76 // (1) change the receiving buffer for the waveform picker
77 ring_node_to_send_cwf_f3 = current_ring_node_f3;
77 ring_node_to_send_cwf_f3 = current_ring_node_f3;
78 current_ring_node_f3 = current_ring_node_f3->next;
78 current_ring_node_f3 = current_ring_node_f3->next;
79 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
79 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address;
80 // (2) send an event for the waveforms transmission
80 // (2) send an event for the waveforms transmission
81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
81 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
82 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
83 }
83 }
84 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
84 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2);
85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 }
86 }
87 }
87 }
88
88
89 switch(lfrCurrentMode)
89 switch(lfrCurrentMode)
90 {
90 {
91 //********
91 //********
92 // STANDBY
92 // STANDBY
93 case(LFR_MODE_STANDBY):
93 case(LFR_MODE_STANDBY):
94 break;
94 break;
95
95
96 //******
96 //******
97 // NORMAL
97 // NORMAL
98 case(LFR_MODE_NORMAL):
98 case(LFR_MODE_NORMAL):
99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 {
100 {
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 }
102 }
103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 {
104 {
105 // change F0 ring node
105 // change F0 ring node
106 ring_node_to_send_swf_f0 = current_ring_node_f0;
106 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 current_ring_node_f0 = current_ring_node_f0->next;
107 current_ring_node_f0 = current_ring_node_f0->next;
108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 // change F1 ring node
109 // change F1 ring node
110 ring_node_to_send_swf_f1 = current_ring_node_f1;
110 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 current_ring_node_f1 = current_ring_node_f1->next;
111 current_ring_node_f1 = current_ring_node_f1->next;
112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 // change F2 ring node
113 // change F2 ring node
114 ring_node_to_send_swf_f2 = current_ring_node_f2;
114 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 current_ring_node_f2 = current_ring_node_f2->next;
115 current_ring_node_f2 = current_ring_node_f2->next;
116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 //
117 //
118 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
118 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL)
119 {
119 {
120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
120 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
121 }
121 }
122 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
122 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
123 }
123 }
124 break;
124 break;
125
125
126 //******
126 //******
127 // BURST
127 // BURST
128 case(LFR_MODE_BURST):
128 case(LFR_MODE_BURST):
129 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
129 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
130 // (1) change the receiving buffer for the waveform picker
130 // (1) change the receiving buffer for the waveform picker
131 ring_node_to_send_cwf_f2 = current_ring_node_f2;
131 ring_node_to_send_cwf_f2 = current_ring_node_f2;
132 current_ring_node_f2 = current_ring_node_f2->next;
132 current_ring_node_f2 = current_ring_node_f2->next;
133 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
133 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
134 // (2) send an event for the waveforms transmission
134 // (2) send an event for the waveforms transmission
135 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
135 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
136 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
137 }
137 }
138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
138 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
139 }
139 }
140 break;
140 break;
141
141
142 //*****
142 //*****
143 // SBM1
143 // SBM1
144 case(LFR_MODE_SBM1):
144 case(LFR_MODE_SBM1):
145 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
145 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
146 // (1) change the receiving buffer for the waveform picker
146 // (1) change the receiving buffer for the waveform picker
147 ring_node_to_send_cwf_f1 = current_ring_node_f1;
147 ring_node_to_send_cwf_f1 = current_ring_node_f1;
148 current_ring_node_f1 = current_ring_node_f1->next;
148 current_ring_node_f1 = current_ring_node_f1->next;
149 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
149 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
150 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
150 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
151 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
151 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
152 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
152 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
153 }
153 }
154 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
154 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
155 swf_f0_ready = true;
155 swf_f0_ready = true;
156 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
156 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
157 }
157 }
158 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
158 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
159 swf_f2_ready = true;
159 swf_f2_ready = true;
160 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
160 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
161 }
161 }
162 break;
162 break;
163
163
164 //*****
164 //*****
165 // SBM2
165 // SBM2
166 case(LFR_MODE_SBM2):
166 case(LFR_MODE_SBM2):
167 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
167 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
168 // (1) change the receiving buffer for the waveform picker
168 // (1) change the receiving buffer for the waveform picker
169 ring_node_to_send_cwf_f2 = current_ring_node_f2;
169 ring_node_to_send_cwf_f2 = current_ring_node_f2;
170 current_ring_node_f2 = current_ring_node_f2->next;
170 current_ring_node_f2 = current_ring_node_f2->next;
171 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
171 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
172 // (2) send an event for the waveforms transmission
172 // (2) send an event for the waveforms transmission
173 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
173 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
174 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
174 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
175 }
175 }
176 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
176 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
177 swf_f0_ready = true;
177 swf_f0_ready = true;
178 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
178 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
179 }
179 }
180 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
180 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
181 swf_f1_ready = true;
181 swf_f1_ready = true;
182 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
182 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
183 }
183 }
184 break;
184 break;
185
185
186 //********
186 //********
187 // DEFAULT
187 // DEFAULT
188 default:
188 default:
189 break;
189 break;
190 }
190 }
191 }
191 }
192
192
193 //************
193 //************
194 // RTEMS TASKS
194 // RTEMS TASKS
195
195
196 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
196 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
197 {
197 {
198 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
198 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
199 *
199 *
200 * @param unused is the starting argument of the RTEMS task
200 * @param unused is the starting argument of the RTEMS task
201 *
201 *
202 * The following data packets are sent by this task:
202 * The following data packets are sent by this task:
203 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
203 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
204 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
204 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
205 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
205 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
206 *
206 *
207 */
207 */
208
208
209 rtems_event_set event_out;
209 rtems_event_set event_out;
210 rtems_id queue_id;
210 rtems_id queue_id;
211 rtems_status_code status;
211 rtems_status_code status;
212
212
213 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
213 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
214 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
214 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
215 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
215 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
216
216
217 status = get_message_queue_id_send( &queue_id );
217 status = get_message_queue_id_send( &queue_id );
218 if (status != RTEMS_SUCCESSFUL)
218 if (status != RTEMS_SUCCESSFUL)
219 {
219 {
220 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
220 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
221 }
221 }
222
222
223 BOOT_PRINTF("in WFRM ***\n")
223 BOOT_PRINTF("in WFRM ***\n")
224
224
225 while(1){
225 while(1){
226 // wait for an RTEMS_EVENT
226 // wait for an RTEMS_EVENT
227 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
227 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
228 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
228 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
229 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
229 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
230 if (event_out == RTEMS_EVENT_MODE_NORMAL)
230 if (event_out == RTEMS_EVENT_MODE_NORMAL)
231 {
231 {
232 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
232 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
233 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
233 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
234 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
235 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
236 }
236 }
237 if (event_out == RTEMS_EVENT_MODE_SBM1)
237 if (event_out == RTEMS_EVENT_MODE_SBM1)
238 {
238 {
239 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
239 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
240 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
240 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
241 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
241 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
242 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
242 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
243 }
243 }
244 if (event_out == RTEMS_EVENT_MODE_SBM2)
244 if (event_out == RTEMS_EVENT_MODE_SBM2)
245 {
245 {
246 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
246 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
249 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
249 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
250 }
250 }
251 }
251 }
252 }
252 }
253
253
254 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
254 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
255 {
255 {
256 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
256 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
257 *
257 *
258 * @param unused is the starting argument of the RTEMS task
258 * @param unused is the starting argument of the RTEMS task
259 *
259 *
260 * The following data packet is sent by this task:
260 * The following data packet is sent by this task:
261 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
261 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
262 *
262 *
263 */
263 */
264
264
265 rtems_event_set event_out;
265 rtems_event_set event_out;
266 rtems_id queue_id;
266 rtems_id queue_id;
267 rtems_status_code status;
267 rtems_status_code status;
268
268
269 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
269 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
270 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
270 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
271
271
272 status = get_message_queue_id_send( &queue_id );
272 status = get_message_queue_id_send( &queue_id );
273 if (status != RTEMS_SUCCESSFUL)
273 if (status != RTEMS_SUCCESSFUL)
274 {
274 {
275 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
275 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
276 }
276 }
277
277
278 BOOT_PRINTF("in CWF3 ***\n")
278 BOOT_PRINTF("in CWF3 ***\n")
279
279
280 while(1){
280 while(1){
281 // wait for an RTEMS_EVENT
281 // wait for an RTEMS_EVENT
282 rtems_event_receive( RTEMS_EVENT_0,
282 rtems_event_receive( RTEMS_EVENT_0,
283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
283 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
284 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
284 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
285 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
285 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
286 {
286 {
287 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
287 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
288 {
288 {
289 PRINTF("send CWF_LONG_F3\n")
289 PRINTF("send CWF_LONG_F3\n")
290 send_waveform_CWF(
290 send_waveform_CWF(
291 (volatile int*) current_ring_node_f3->buffer_address,
291 (volatile int*) current_ring_node_f3->buffer_address,
292 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
292 SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
293 }
293 }
294 else
294 else
295 {
295 {
296 PRINTF("send CWF_F3 (light)\n")
296 PRINTF("send CWF_F3 (light)\n")
297 send_waveform_CWF3_light(
297 send_waveform_CWF3_light(
298 (volatile int*) current_ring_node_f3->buffer_address,
298 (volatile int*) current_ring_node_f3->buffer_address,
299 headerCWF_F3_light, queue_id );
299 headerCWF_F3_light, queue_id );
300 }
300 }
301
301
302 }
302 }
303 else
303 else
304 {
304 {
305 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
305 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
306 }
306 }
307 }
307 }
308 }
308 }
309
309
310 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
310 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
311 {
311 {
312 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
312 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
313 *
313 *
314 * @param unused is the starting argument of the RTEMS task
314 * @param unused is the starting argument of the RTEMS task
315 *
315 *
316 * The following data packet is sent by this function:
316 * The following data packet is sent by this function:
317 * - TM_LFR_SCIENCE_BURST_CWF_F2
317 * - TM_LFR_SCIENCE_BURST_CWF_F2
318 * - TM_LFR_SCIENCE_SBM2_CWF_F2
318 * - TM_LFR_SCIENCE_SBM2_CWF_F2
319 *
319 *
320 */
320 */
321
321
322 rtems_event_set event_out;
322 rtems_event_set event_out;
323 rtems_id queue_id;
323 rtems_id queue_id;
324 rtems_status_code status;
324 rtems_status_code status;
325
325
326 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
326 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
327 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
327 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
328
328
329 status = get_message_queue_id_send( &queue_id );
329 status = get_message_queue_id_send( &queue_id );
330 if (status != RTEMS_SUCCESSFUL)
330 if (status != RTEMS_SUCCESSFUL)
331 {
331 {
332 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
332 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
333 }
333 }
334
334
335 BOOT_PRINTF("in CWF2 ***\n")
335 BOOT_PRINTF("in CWF2 ***\n")
336
336
337 while(1){
337 while(1){
338 // wait for an RTEMS_EVENT
338 // wait for an RTEMS_EVENT
339 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
339 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
340 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
340 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 if (event_out == RTEMS_EVENT_MODE_BURST)
341 if (event_out == RTEMS_EVENT_MODE_BURST)
342 {
342 {
343 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
343 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
344 }
344 }
345 if (event_out == RTEMS_EVENT_MODE_SBM2)
345 if (event_out == RTEMS_EVENT_MODE_SBM2)
346 {
346 {
347 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
347 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
348 // launch snapshot extraction if needed
348 // launch snapshot extraction if needed
349 if (extractSWF == true)
349 if (extractSWF == true)
350 {
350 {
351 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
351 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
352 // extract the snapshot
352 // extract the snapshot
353 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
353 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
354 // send the snapshot when built
354 // send the snapshot when built
355 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
355 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
356 extractSWF = false;
356 extractSWF = false;
357 }
357 }
358 if (swf_f0_ready && swf_f1_ready)
358 if (swf_f0_ready && swf_f1_ready)
359 {
359 {
360 extractSWF = true;
360 extractSWF = true;
361 swf_f0_ready = false;
361 swf_f0_ready = false;
362 swf_f1_ready = false;
362 swf_f1_ready = false;
363 }
363 }
364 }
364 }
365 }
365 }
366 }
366 }
367
367
368 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
368 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
369 {
369 {
370 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
370 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
371 *
371 *
372 * @param unused is the starting argument of the RTEMS task
372 * @param unused is the starting argument of the RTEMS task
373 *
373 *
374 * The following data packet is sent by this function:
374 * The following data packet is sent by this function:
375 * - TM_LFR_SCIENCE_SBM1_CWF_F1
375 * - TM_LFR_SCIENCE_SBM1_CWF_F1
376 *
376 *
377 */
377 */
378
378
379 rtems_event_set event_out;
379 rtems_event_set event_out;
380 rtems_id queue_id;
380 rtems_id queue_id;
381 rtems_status_code status;
381 rtems_status_code status;
382
382
383 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
383 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
384
384
385 status = get_message_queue_id_send( &queue_id );
385 status = get_message_queue_id_send( &queue_id );
386 if (status != RTEMS_SUCCESSFUL)
386 if (status != RTEMS_SUCCESSFUL)
387 {
387 {
388 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
388 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
389 }
389 }
390
390
391 BOOT_PRINTF("in CWF1 ***\n")
391 BOOT_PRINTF("in CWF1 ***\n")
392
392
393 while(1){
393 while(1){
394 // wait for an RTEMS_EVENT
394 // wait for an RTEMS_EVENT
395 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
395 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
396 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
396 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
397 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
397 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
398 // launch snapshot extraction if needed
398 // launch snapshot extraction if needed
399 if (extractSWF == true)
399 if (extractSWF == true)
400 {
400 {
401 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
401 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
402 // launch the snapshot extraction
402 // launch the snapshot extraction
403 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
403 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
404 extractSWF = false;
404 extractSWF = false;
405 }
405 }
406 if (swf_f0_ready == true)
406 if (swf_f0_ready == true)
407 {
407 {
408 extractSWF = true;
408 extractSWF = true;
409 swf_f0_ready = false; // this step shall be executed only one time
409 swf_f0_ready = false; // this step shall be executed only one time
410 }
410 }
411 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
411 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
412 {
412 {
413 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
413 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
414 swf_f1_ready = false;
414 swf_f1_ready = false;
415 swf_f2_ready = false;
415 swf_f2_ready = false;
416 }
416 }
417 }
417 }
418 }
418 }
419
419
420 rtems_task swbd_task(rtems_task_argument argument)
420 rtems_task swbd_task(rtems_task_argument argument)
421 {
421 {
422 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
422 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
423 *
423 *
424 * @param unused is the starting argument of the RTEMS task
424 * @param unused is the starting argument of the RTEMS task
425 *
425 *
426 */
426 */
427
427
428 rtems_event_set event_out;
428 rtems_event_set event_out;
429
429
430 BOOT_PRINTF("in SWBD ***\n")
430 BOOT_PRINTF("in SWBD ***\n")
431
431
432 while(1){
432 while(1){
433 // wait for an RTEMS_EVENT
433 // wait for an RTEMS_EVENT
434 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
434 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
435 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
435 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
436 if (event_out == RTEMS_EVENT_MODE_SBM1)
436 if (event_out == RTEMS_EVENT_MODE_SBM1)
437 {
437 {
438 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
438 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
439 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
439 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
440 }
440 }
441 else
441 else
442 {
442 {
443 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
443 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 //******************
448 //******************
449 // general functions
449 // general functions
450
450
451 void init_waveform_rings( void )
451 void init_waveform_rings( void )
452 {
452 {
453 // F0 RING
453 // F0 RING
454 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
454 init_waveform_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_snap_f0 );
455 // F1 RING
455 // F1 RING
456 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
456 init_waveform_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_snap_f1 );
457 // F2 RING
457 // F2 RING
458 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
458 init_waveform_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_snap_f2 );
459 // F3 RING
459 // F3 RING
460 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
460 init_waveform_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_cont_f3 );
461
461
462 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
462 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
463 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
463 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
464 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
464 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
465 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
465 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
466 }
466 }
467
467
468 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
468 void init_waveform_ring(ring_node waveform_ring[], unsigned char nbNodes, volatile int wfrm[] )
469 {
469 {
470 unsigned char i;
470 unsigned char i;
471
471
472 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
472 waveform_ring[0].next = (ring_node*) &waveform_ring[ 1 ];
473 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
473 waveform_ring[0].previous = (ring_node*) &waveform_ring[ nbNodes - 1 ];
474 waveform_ring[0].buffer_address = (int) &wfrm[0];
474 waveform_ring[0].buffer_address = (int) &wfrm[0];
475
475
476 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
476 waveform_ring[nbNodes-1].next = (ring_node*) &waveform_ring[ 0 ];
477 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
477 waveform_ring[nbNodes-1].previous = (ring_node*) &waveform_ring[ nbNodes - 2 ];
478 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
478 waveform_ring[nbNodes-1].buffer_address = (int) &wfrm[ (nbNodes-1) * WFRM_BUFFER ];
479
479
480 for(i=1; i<nbNodes-1; i++)
480 for(i=1; i<nbNodes-1; i++)
481 {
481 {
482 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
482 waveform_ring[i].next = (ring_node*) &waveform_ring[ i + 1 ];
483 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
483 waveform_ring[i].previous = (ring_node*) &waveform_ring[ i - 1 ];
484 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
484 waveform_ring[i].buffer_address = (int) &wfrm[ i * WFRM_BUFFER ];
485 }
485 }
486 }
486 }
487
487
488 void reset_current_ring_nodes( void )
488 void reset_current_ring_nodes( void )
489 {
489 {
490 current_ring_node_f0 = waveform_ring_f0;
490 current_ring_node_f0 = waveform_ring_f0;
491 ring_node_to_send_swf_f0 = waveform_ring_f0;
491 ring_node_to_send_swf_f0 = waveform_ring_f0;
492
492
493 current_ring_node_f1 = waveform_ring_f1;
493 current_ring_node_f1 = waveform_ring_f1;
494 ring_node_to_send_cwf_f1 = waveform_ring_f1;
494 ring_node_to_send_cwf_f1 = waveform_ring_f1;
495 ring_node_to_send_swf_f1 = waveform_ring_f1;
495 ring_node_to_send_swf_f1 = waveform_ring_f1;
496
496
497 current_ring_node_f2 = waveform_ring_f2;
497 current_ring_node_f2 = waveform_ring_f2;
498 ring_node_to_send_cwf_f2 = waveform_ring_f2;
498 ring_node_to_send_cwf_f2 = waveform_ring_f2;
499 ring_node_to_send_swf_f2 = waveform_ring_f2;
499 ring_node_to_send_swf_f2 = waveform_ring_f2;
500
500
501 current_ring_node_f3 = waveform_ring_f3;
501 current_ring_node_f3 = waveform_ring_f3;
502 ring_node_to_send_cwf_f3 = waveform_ring_f3;
502 ring_node_to_send_cwf_f3 = waveform_ring_f3;
503 }
503 }
504
504
505 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
505 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
506 {
506 {
507 unsigned char i;
507 unsigned char i;
508
508
509 for (i=0; i<7; i++)
509 for (i=0; i<7; i++)
510 {
510 {
511 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
511 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
512 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
512 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
513 headerSWF[ i ].reserved = DEFAULT_RESERVED;
513 headerSWF[ i ].reserved = DEFAULT_RESERVED;
514 headerSWF[ i ].userApplication = CCSDS_USER_APP;
514 headerSWF[ i ].userApplication = CCSDS_USER_APP;
515 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
515 headerSWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
516 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
516 headerSWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
517 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
517 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
518 if (i == 6)
518 if (i == 6)
519 {
519 {
520 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
520 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
521 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
521 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
522 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
522 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
523 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
523 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
524 }
524 }
525 else
525 else
526 {
526 {
527 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
527 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
528 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
528 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
529 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
529 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
530 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
530 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
531 }
531 }
532 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
532 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
533 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
533 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
534 headerSWF[ i ].pktNr = i+1; // PKT_NR
534 headerSWF[ i ].pktNr = i+1; // PKT_NR
535 // DATA FIELD HEADER
535 // DATA FIELD HEADER
536 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
536 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
537 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
537 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
538 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
538 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
539 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
539 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
540 // AUXILIARY DATA HEADER
540 // AUXILIARY DATA HEADER
541 headerSWF[ i ].time[0] = 0x00;
541 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].time[0] = 0x00;
542 headerSWF[ i ].time[0] = 0x00;
543 headerSWF[ i ].time[0] = 0x00;
543 headerSWF[ i ].time[0] = 0x00;
544 headerSWF[ i ].time[0] = 0x00;
544 headerSWF[ i ].time[0] = 0x00;
545 headerSWF[ i ].time[0] = 0x00;
545 headerSWF[ i ].time[0] = 0x00;
546 headerSWF[ i ].time[0] = 0x00;
546 headerSWF[ i ].time[0] = 0x00;
547 headerSWF[ i ].sid = sid;
547 headerSWF[ i ].sid = sid;
548 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
548 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
549 }
549 }
550 return LFR_SUCCESSFUL;
550 return LFR_SUCCESSFUL;
551 }
551 }
552
552
553 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
553 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
554 {
554 {
555 unsigned int i;
555 unsigned int i;
556
556
557 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
557 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
558 {
558 {
559 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
559 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
560 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
560 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
561 headerCWF[ i ].reserved = DEFAULT_RESERVED;
561 headerCWF[ i ].reserved = DEFAULT_RESERVED;
562 headerCWF[ i ].userApplication = CCSDS_USER_APP;
562 headerCWF[ i ].userApplication = CCSDS_USER_APP;
563 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
563 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
564 {
564 {
565 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
565 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
566 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
566 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
567 }
567 }
568 else
568 else
569 {
569 {
570 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
570 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
571 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
571 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
572 }
572 }
573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
573 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
574 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
575 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
576 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
577 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
578 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
578 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
579 // DATA FIELD HEADER
579 // DATA FIELD HEADER
580 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
580 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
581 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
581 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
582 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
582 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
583 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
583 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
584 // AUXILIARY DATA HEADER
584 // AUXILIARY DATA HEADER
585 headerCWF[ i ].sid = sid;
585 headerCWF[ i ].sid = sid;
586 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
586 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
587 headerCWF[ i ].time[0] = 0x00;
587 headerCWF[ i ].time[0] = 0x00;
588 headerCWF[ i ].time[0] = 0x00;
588 headerCWF[ i ].time[0] = 0x00;
589 headerCWF[ i ].time[0] = 0x00;
589 headerCWF[ i ].time[0] = 0x00;
590 headerCWF[ i ].time[0] = 0x00;
590 headerCWF[ i ].time[0] = 0x00;
591 headerCWF[ i ].time[0] = 0x00;
591 headerCWF[ i ].time[0] = 0x00;
592 headerCWF[ i ].time[0] = 0x00;
592 headerCWF[ i ].time[0] = 0x00;
593 }
593 }
594 return LFR_SUCCESSFUL;
594 return LFR_SUCCESSFUL;
595 }
595 }
596
596
597 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
597 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
598 {
598 {
599 unsigned int i;
599 unsigned int i;
600
600
601 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
601 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
602 {
602 {
603 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
603 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
604 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
604 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
605 headerCWF[ i ].reserved = DEFAULT_RESERVED;
605 headerCWF[ i ].reserved = DEFAULT_RESERVED;
606 headerCWF[ i ].userApplication = CCSDS_USER_APP;
606 headerCWF[ i ].userApplication = CCSDS_USER_APP;
607
607
608 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
608 headerCWF[ i ].packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
609 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
609 headerCWF[ i ].packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
610
610
611 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
611 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
612 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
612 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
613 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
613 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
614 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
614 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
615 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
615 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
616
616
617 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
617 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
618 // DATA FIELD HEADER
618 // DATA FIELD HEADER
619 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
619 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
620 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
620 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
621 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
621 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
622 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
622 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
623 // AUXILIARY DATA HEADER
623 // AUXILIARY DATA HEADER
624 headerCWF[ i ].sid = SID_NORM_CWF_F3;
624 headerCWF[ i ].sid = SID_NORM_CWF_F3;
625 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
625 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
626 headerCWF[ i ].time[0] = 0x00;
626 headerCWF[ i ].time[0] = 0x00;
627 headerCWF[ i ].time[0] = 0x00;
627 headerCWF[ i ].time[0] = 0x00;
628 headerCWF[ i ].time[0] = 0x00;
628 headerCWF[ i ].time[0] = 0x00;
629 headerCWF[ i ].time[0] = 0x00;
629 headerCWF[ i ].time[0] = 0x00;
630 headerCWF[ i ].time[0] = 0x00;
630 headerCWF[ i ].time[0] = 0x00;
631 headerCWF[ i ].time[0] = 0x00;
631 headerCWF[ i ].time[0] = 0x00;
632 }
632 }
633 return LFR_SUCCESSFUL;
633 return LFR_SUCCESSFUL;
634 }
634 }
635
635
636 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
636 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
637 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
637 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
638 {
638 {
639 /** This function sends SWF CCSDS packets (F2, F1 or F0).
639 /** This function sends SWF CCSDS packets (F2, F1 or F0).
640 *
640 *
641 * @param waveform points to the buffer containing the data that will be send.
641 * @param waveform points to the buffer containing the data that will be send.
642 * @param sid is the source identifier of the data that will be sent.
642 * @param sid is the source identifier of the data that will be sent.
643 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
643 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
644 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
644 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
645 * contain information to setup the transmission of the data packets.
645 * contain information to setup the transmission of the data packets.
646 *
646 *
647 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
647 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
648 *
648 *
649 */
649 */
650
650
651 unsigned int i;
651 unsigned int i;
652 int ret;
652 int ret;
653 unsigned int coarseTime;
653 unsigned int coarseTime;
654 unsigned int fineTime;
654 unsigned int fineTime;
655 rtems_status_code status;
655 rtems_status_code status;
656 spw_ioctl_pkt_send spw_ioctl_send_SWF;
656 spw_ioctl_pkt_send spw_ioctl_send_SWF;
657
657
658 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
658 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
659 spw_ioctl_send_SWF.options = 0;
659 spw_ioctl_send_SWF.options = 0;
660
660
661 ret = LFR_DEFAULT;
661 ret = LFR_DEFAULT;
662
662
663 coarseTime = waveform[0];
663 coarseTime = waveform[0];
664 fineTime = waveform[1];
664 fineTime = waveform[1];
665
665
666 for (i=0; i<7; i++) // send waveform
666 for (i=0; i<7; i++) // send waveform
667 {
667 {
668 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
668 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
669 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
669 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
670 // BUILD THE DATA
670 // BUILD THE DATA
671 if (i==6) {
671 if (i==6) {
672 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
672 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
673 }
673 }
674 else {
674 else {
675 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
675 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
676 }
676 }
677 // SET PACKET SEQUENCE COUNTER
677 // SET PACKET SEQUENCE COUNTER
678 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
678 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
679 // SET PACKET TIME
679 // SET PACKET TIME
680 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
680 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
681 //
681 //
682 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
682 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
683 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
683 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
684 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
684 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
685 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
685 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
686 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
686 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
687 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
687 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
688 // SEND PACKET
688 // SEND PACKET
689 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
689 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
690 if (status != RTEMS_SUCCESSFUL) {
690 if (status != RTEMS_SUCCESSFUL) {
691 printf("%d-%d, ERR %d\n", sid, i, (int) status);
691 printf("%d-%d, ERR %d\n", sid, i, (int) status);
692 ret = LFR_DEFAULT;
692 ret = LFR_DEFAULT;
693 }
693 }
694 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
694 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
695 }
695 }
696
696
697 return ret;
697 return ret;
698 }
698 }
699
699
700 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
700 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
701 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
701 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
702 {
702 {
703 /** This function sends CWF CCSDS packets (F2, F1 or F0).
703 /** This function sends CWF CCSDS packets (F2, F1 or F0).
704 *
704 *
705 * @param waveform points to the buffer containing the data that will be send.
705 * @param waveform points to the buffer containing the data that will be send.
706 * @param sid is the source identifier of the data that will be sent.
706 * @param sid is the source identifier of the data that will be sent.
707 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
707 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
708 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
708 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
709 * contain information to setup the transmission of the data packets.
709 * contain information to setup the transmission of the data packets.
710 *
710 *
711 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
711 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
712 *
712 *
713 */
713 */
714
714
715 unsigned int i;
715 unsigned int i;
716 int ret;
716 int ret;
717 unsigned int coarseTime;
717 unsigned int coarseTime;
718 unsigned int fineTime;
718 unsigned int fineTime;
719 rtems_status_code status;
719 rtems_status_code status;
720 spw_ioctl_pkt_send spw_ioctl_send_CWF;
720 spw_ioctl_pkt_send spw_ioctl_send_CWF;
721
721
722 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
722 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
723 spw_ioctl_send_CWF.options = 0;
723 spw_ioctl_send_CWF.options = 0;
724
724
725 ret = LFR_DEFAULT;
725 ret = LFR_DEFAULT;
726
726
727 coarseTime = waveform[0];
727 coarseTime = waveform[0];
728 fineTime = waveform[1];
728 fineTime = waveform[1];
729
729
730 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
730 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
731 {
731 {
732 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
732 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
733 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
733 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
734 // BUILD THE DATA
734 // BUILD THE DATA
735 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
735 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
736 // SET PACKET SEQUENCE COUNTER
736 // SET PACKET SEQUENCE COUNTER
737 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
737 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
738 // SET PACKET TIME
738 // SET PACKET TIME
739 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
739 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
740 //
740 //
741 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
741 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
742 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
742 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
743 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
743 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
744 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
744 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
745 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
745 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
746 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
746 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
747 // SEND PACKET
747 // SEND PACKET
748 if (sid == SID_NORM_CWF_LONG_F3)
748 if (sid == SID_NORM_CWF_LONG_F3)
749 {
749 {
750 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
750 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
751 if (status != RTEMS_SUCCESSFUL) {
751 if (status != RTEMS_SUCCESSFUL) {
752 printf("%d-%d, ERR %d\n", sid, i, (int) status);
752 printf("%d-%d, ERR %d\n", sid, i, (int) status);
753 ret = LFR_DEFAULT;
753 ret = LFR_DEFAULT;
754 }
754 }
755 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
755 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
756 }
756 }
757 else
757 else
758 {
758 {
759 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
759 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
760 if (status != RTEMS_SUCCESSFUL) {
760 if (status != RTEMS_SUCCESSFUL) {
761 printf("%d-%d, ERR %d\n", sid, i, (int) status);
761 printf("%d-%d, ERR %d\n", sid, i, (int) status);
762 ret = LFR_DEFAULT;
762 ret = LFR_DEFAULT;
763 }
763 }
764 }
764 }
765 }
765 }
766
766
767 return ret;
767 return ret;
768 }
768 }
769
769
770 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
770 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 {
771 {
772 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
772 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
773 *
773 *
774 * @param waveform points to the buffer containing the data that will be send.
774 * @param waveform points to the buffer containing the data that will be send.
775 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
775 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
776 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
776 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
777 * contain information to setup the transmission of the data packets.
777 * contain information to setup the transmission of the data packets.
778 *
778 *
779 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
779 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
780 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
780 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
781 *
781 *
782 */
782 */
783
783
784 unsigned int i;
784 unsigned int i;
785 int ret;
785 int ret;
786 unsigned int coarseTime;
786 unsigned int coarseTime;
787 unsigned int fineTime;
787 unsigned int fineTime;
788 rtems_status_code status;
788 rtems_status_code status;
789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 char *sample;
790 char *sample;
791
791
792 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
792 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
793 spw_ioctl_send_CWF.options = 0;
793 spw_ioctl_send_CWF.options = 0;
794
794
795 ret = LFR_DEFAULT;
795 ret = LFR_DEFAULT;
796
796
797 //**********************
797 //**********************
798 // BUILD CWF3_light DATA
798 // BUILD CWF3_light DATA
799 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
799 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
800 {
800 {
801 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
801 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
802 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
802 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
803 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
803 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
804 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
805 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
806 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
807 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
808 }
808 }
809
809
810 coarseTime = waveform[0];
810 coarseTime = waveform[0];
811 fineTime = waveform[1];
811 fineTime = waveform[1];
812
812
813 //*********************
813 //*********************
814 // SEND CWF3_light DATA
814 // SEND CWF3_light DATA
815 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
815 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
816 {
816 {
817 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
817 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
818 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
818 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
819 // BUILD THE DATA
819 // BUILD THE DATA
820 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
820 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
821 // SET PACKET SEQUENCE COUNTER
821 // SET PACKET SEQUENCE COUNTER
822 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
822 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
823 // SET PACKET TIME
823 // SET PACKET TIME
824 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
824 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
825 //
825 //
826 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
826 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
827 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
827 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
828 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
828 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
829 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
829 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
830 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
830 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
831 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
831 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
832 // SEND PACKET
832 // SEND PACKET
833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
833 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
834 if (status != RTEMS_SUCCESSFUL) {
834 if (status != RTEMS_SUCCESSFUL) {
835 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
835 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
836 ret = LFR_DEFAULT;
836 ret = LFR_DEFAULT;
837 }
837 }
838 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
838 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
839 }
839 }
840
840
841 return ret;
841 return ret;
842 }
842 }
843
843
844 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
844 void compute_acquisition_time_old( unsigned int coarseTime, unsigned int fineTime,
845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
845 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
846 {
846 {
847 unsigned long long int acquisitionTimeAsLong;
847 unsigned long long int acquisitionTimeAsLong;
848 unsigned char localAcquisitionTime[6];
848 unsigned char localAcquisitionTime[6];
849 double deltaT;
849 double deltaT;
850
850
851 deltaT = 0.;
851 deltaT = 0.;
852
852
853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
853 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
854 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
854 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
855 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
856 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
856 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
857 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
858 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
858 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
859
859
860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
860 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
861 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
862 + ( localAcquisitionTime[2] << 24 )
862 + ( localAcquisitionTime[2] << 24 )
863 + ( localAcquisitionTime[3] << 16 )
863 + ( localAcquisitionTime[3] << 16 )
864 + ( localAcquisitionTime[4] << 8 )
864 + ( localAcquisitionTime[4] << 8 )
865 + ( localAcquisitionTime[5] );
865 + ( localAcquisitionTime[5] );
866
866
867 switch( sid )
867 switch( sid )
868 {
868 {
869 case SID_NORM_SWF_F0:
869 case SID_NORM_SWF_F0:
870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
870 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
871 break;
871 break;
872
872
873 case SID_NORM_SWF_F1:
873 case SID_NORM_SWF_F1:
874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
874 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
875 break;
875 break;
876
876
877 case SID_NORM_SWF_F2:
877 case SID_NORM_SWF_F2:
878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
878 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
879 break;
879 break;
880
880
881 case SID_SBM1_CWF_F1:
881 case SID_SBM1_CWF_F1:
882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
882 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
883 break;
883 break;
884
884
885 case SID_SBM2_CWF_F2:
885 case SID_SBM2_CWF_F2:
886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
886 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
887 break;
887 break;
888
888
889 case SID_BURST_CWF_F2:
889 case SID_BURST_CWF_F2:
890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
890 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
891 break;
891 break;
892
892
893 case SID_NORM_CWF_F3:
893 case SID_NORM_CWF_F3:
894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
894 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
895 break;
895 break;
896
896
897 case SID_NORM_CWF_LONG_F3:
897 case SID_NORM_CWF_LONG_F3:
898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
898 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
899 break;
899 break;
900
900
901 default:
901 default:
902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
902 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
903 deltaT = 0.;
903 deltaT = 0.;
904 break;
904 break;
905 }
905 }
906
906
907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
907 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
908 //
908 //
909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
909 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
910 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
911 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
912 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
913 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
914 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
915
915
916 }
916 }
917
917
918 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
919 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
920 {
921 unsigned long long int acquisitionTimeAsLong;
922 unsigned char localAcquisitionTime[6];
923 double deltaT;
924
925 deltaT = 0.;
926
927 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
928 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
929 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
930 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
931 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
932 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
933
934 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
935 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
936 + ( localAcquisitionTime[2] << 24 )
937 + ( localAcquisitionTime[3] << 16 )
938 + ( localAcquisitionTime[4] << 8 )
939 + ( localAcquisitionTime[5] );
940
941 switch( sid )
942 {
943 case SID_NORM_SWF_F0:
944 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
945 break;
946
947 case SID_NORM_SWF_F1:
948 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
949 break;
950
951 case SID_NORM_SWF_F2:
952 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
953 break;
954
955 case SID_SBM1_CWF_F1:
956 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
957 break;
958
959 case SID_SBM2_CWF_F2:
960 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
961 break;
962
963 case SID_BURST_CWF_F2:
964 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
965 break;
966
967 case SID_NORM_CWF_F3:
968 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
969 break;
970
971 case SID_NORM_CWF_LONG_F3:
972 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
973 break;
974
975 default:
976 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
977 deltaT = 0.;
978 break;
979 }
980
981 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
982 //
983 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
984 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
985 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
986 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
987 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
988 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
989
990 }
991
918 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
992 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
919 {
993 {
920 unsigned int i;
994 unsigned int i;
921 unsigned long long int centerTime_asLong;
995 unsigned long long int centerTime_asLong;
922 unsigned long long int acquisitionTimeF0_asLong;
996 unsigned long long int acquisitionTimeF0_asLong;
923 unsigned long long int acquisitionTime_asLong;
997 unsigned long long int acquisitionTime_asLong;
924 unsigned long long int bufferAcquisitionTime_asLong;
998 unsigned long long int bufferAcquisitionTime_asLong;
925 unsigned char *ptr1;
999 unsigned char *ptr1;
926 unsigned char *ptr2;
1000 unsigned char *ptr2;
927 unsigned char nb_ring_nodes;
1001 unsigned char nb_ring_nodes;
928 unsigned long long int frequency_asLong;
1002 unsigned long long int frequency_asLong;
929 unsigned long long int nbTicksPerSample_asLong;
1003 unsigned long long int nbTicksPerSample_asLong;
930 unsigned long long int nbSamplesPart1_asLong;
1004 unsigned long long int nbSamplesPart1_asLong;
931 unsigned long long int sampleOffset_asLong;
1005 unsigned long long int sampleOffset_asLong;
932
1006
933 unsigned int deltaT_F0;
1007 unsigned int deltaT_F0;
934 unsigned int deltaT_F1;
1008 unsigned int deltaT_F1;
935 unsigned long long int deltaT_F2;
1009 unsigned long long int deltaT_F2;
936
1010
937 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1011 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
938 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1012 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
939 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1013 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
940 sampleOffset_asLong = 0x00;
1014 sampleOffset_asLong = 0x00;
941
1015
942 // (1) get the f0 acquisition time
1016 // (1) get the f0 acquisition time
943 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1017 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
944
1018
945 // (2) compute the central reference time
1019 // (2) compute the central reference time
946 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1020 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
947
1021
948 // (3) compute the acquisition time of the current snapshot
1022 // (3) compute the acquisition time of the current snapshot
949 switch(frequencyChannel)
1023 switch(frequencyChannel)
950 {
1024 {
951 case 1: // 1 is for F1 = 4096 Hz
1025 case 1: // 1 is for F1 = 4096 Hz
952 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1026 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
953 nb_ring_nodes = NB_RING_NODES_F1;
1027 nb_ring_nodes = NB_RING_NODES_F1;
954 frequency_asLong = 4096;
1028 frequency_asLong = 4096;
955 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1029 nbTicksPerSample_asLong = 16; // 65536 / 4096;
956 break;
1030 break;
957 case 2: // 2 is for F2 = 256 Hz
1031 case 2: // 2 is for F2 = 256 Hz
958 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1032 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
959 nb_ring_nodes = NB_RING_NODES_F2;
1033 nb_ring_nodes = NB_RING_NODES_F2;
960 frequency_asLong = 256;
1034 frequency_asLong = 256;
961 nbTicksPerSample_asLong = 256; // 65536 / 256;
1035 nbTicksPerSample_asLong = 256; // 65536 / 256;
962 break;
1036 break;
963 default:
1037 default:
964 acquisitionTime_asLong = centerTime_asLong;
1038 acquisitionTime_asLong = centerTime_asLong;
965 frequency_asLong = 256;
1039 frequency_asLong = 256;
966 nbTicksPerSample_asLong = 256;
1040 nbTicksPerSample_asLong = 256;
967 break;
1041 break;
968 }
1042 }
969
1043
970 //****************************************************************************
1044 //****************************************************************************
971 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1045 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
972 for (i=0; i<nb_ring_nodes; i++)
1046 for (i=0; i<nb_ring_nodes; i++)
973 {
1047 {
974 PRINTF1("%d ... ", i)
1048 PRINTF1("%d ... ", i)
975 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1049 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
976 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1050 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
977 {
1051 {
978 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1052 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
979 break;
1053 break;
980 }
1054 }
981 ring_node_to_send = ring_node_to_send->previous;
1055 ring_node_to_send = ring_node_to_send->previous;
982 }
1056 }
983
1057
984 // (5) compute the number of samples to take in the current buffer
1058 // (5) compute the number of samples to take in the current buffer
985 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1059 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
986 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1060 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
987 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1061 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
988
1062
989 // (6) compute the final acquisition time
1063 // (6) compute the final acquisition time
990 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1064 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
991 sampleOffset_asLong * nbTicksPerSample_asLong;
1065 sampleOffset_asLong * nbTicksPerSample_asLong;
992
1066
993 // (7) copy the acquisition time at the beginning of the extrated snapshot
1067 // (7) copy the acquisition time at the beginning of the extrated snapshot
994 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1068 ptr1 = (unsigned char*) &acquisitionTime_asLong;
995 ptr2 = (unsigned char*) wf_snap_extracted;
1069 ptr2 = (unsigned char*) wf_snap_extracted;
996 ptr2[0] = ptr1[ 2 + 2 ];
1070 ptr2[0] = ptr1[ 2 + 2 ];
997 ptr2[1] = ptr1[ 3 + 2 ];
1071 ptr2[1] = ptr1[ 3 + 2 ];
998 ptr2[2] = ptr1[ 0 + 2 ];
1072 ptr2[2] = ptr1[ 0 + 2 ];
999 ptr2[3] = ptr1[ 1 + 2 ];
1073 ptr2[3] = ptr1[ 1 + 2 ];
1000 ptr2[4] = ptr1[ 4 + 2 ];
1074 ptr2[4] = ptr1[ 4 + 2 ];
1001 ptr2[5] = ptr1[ 5 + 2 ];
1075 ptr2[5] = ptr1[ 5 + 2 ];
1002
1076
1003 // re set the synchronization bit
1077 // re set the synchronization bit
1004
1078
1005
1079
1006 // copy the part 1 of the snapshot in the extracted buffer
1080 // copy the part 1 of the snapshot in the extracted buffer
1007 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1081 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1008 {
1082 {
1009 wf_snap_extracted[i + TIME_OFFSET] =
1083 wf_snap_extracted[i + TIME_OFFSET] =
1010 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1084 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1011 }
1085 }
1012 // copy the part 2 of the snapshot in the extracted buffer
1086 // copy the part 2 of the snapshot in the extracted buffer
1013 ring_node_to_send = ring_node_to_send->next;
1087 ring_node_to_send = ring_node_to_send->next;
1014 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1088 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1015 {
1089 {
1016 wf_snap_extracted[i + TIME_OFFSET] =
1090 wf_snap_extracted[i + TIME_OFFSET] =
1017 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1091 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1018 }
1092 }
1019 }
1093 }
1020
1094
1021 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1095 void build_acquisition_time_old( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1022 {
1096 {
1023 unsigned char *acquisitionTimeCharPtr;
1097 unsigned char *acquisitionTimeCharPtr;
1024
1098
1025 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1099 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1026
1100
1027 *acquisitionTimeAslong = 0x00;
1101 *acquisitionTimeAslong = 0x00;
1028 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1102 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1029 + ( acquisitionTimeCharPtr[1] << 16 )
1103 + ( acquisitionTimeCharPtr[1] << 16 )
1030 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1104 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1031 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1105 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1032 + ( acquisitionTimeCharPtr[4] << 8 )
1106 + ( acquisitionTimeCharPtr[4] << 8 )
1033 + ( acquisitionTimeCharPtr[5] );
1107 + ( acquisitionTimeCharPtr[5] );
1034 }
1108 }
1035
1109
1110 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1111 {
1112 unsigned char *acquisitionTimeCharPtr;
1113
1114 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1115
1116 *acquisitionTimeAslong = 0x00;
1117 *acquisitionTimeAslong = ( (unsigned long long int) (acquisitionTimeCharPtr[0] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1118 + ( (unsigned long long int) acquisitionTimeCharPtr[1] << 32 )
1119 + ( acquisitionTimeCharPtr[2] << 24 )
1120 + ( acquisitionTimeCharPtr[3] << 16 )
1121 + ( acquisitionTimeCharPtr[4] << 8 )
1122 + ( acquisitionTimeCharPtr[5] );
1123 }
1124
1036 //**************
1125 //**************
1037 // wfp registers
1126 // wfp registers
1038 void reset_wfp_burst_enable(void)
1127 void reset_wfp_burst_enable(void)
1039 {
1128 {
1040 /** This function resets the waveform picker burst_enable register.
1129 /** This function resets the waveform picker burst_enable register.
1041 *
1130 *
1042 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1131 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1043 *
1132 *
1044 */
1133 */
1045
1134
1046 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1135 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1047 }
1136 }
1048
1137
1049 void reset_wfp_status( void )
1138 void reset_wfp_status( void )
1050 {
1139 {
1051 /** This function resets the waveform picker status register.
1140 /** This function resets the waveform picker status register.
1052 *
1141 *
1053 * All status bits are set to 0 [new_err full_err full].
1142 * All status bits are set to 0 [new_err full_err full].
1054 *
1143 *
1055 */
1144 */
1056
1145
1057 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1146 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1058 }
1147 }
1059
1148
1060 void reset_waveform_picker_regs(void)
1149 void reset_waveform_picker_regs(void)
1061 {
1150 {
1062 /** This function resets the waveform picker module registers.
1151 /** This function resets the waveform picker module registers.
1063 *
1152 *
1064 * The registers affected by this function are located at the following offset addresses:
1153 * The registers affected by this function are located at the following offset addresses:
1065 * - 0x00 data_shaping
1154 * - 0x00 data_shaping
1066 * - 0x04 run_burst_enable
1155 * - 0x04 run_burst_enable
1067 * - 0x08 addr_data_f0
1156 * - 0x08 addr_data_f0
1068 * - 0x0C addr_data_f1
1157 * - 0x0C addr_data_f1
1069 * - 0x10 addr_data_f2
1158 * - 0x10 addr_data_f2
1070 * - 0x14 addr_data_f3
1159 * - 0x14 addr_data_f3
1071 * - 0x18 status
1160 * - 0x18 status
1072 * - 0x1C delta_snapshot
1161 * - 0x1C delta_snapshot
1073 * - 0x20 delta_f0
1162 * - 0x20 delta_f0
1074 * - 0x24 delta_f0_2
1163 * - 0x24 delta_f0_2
1075 * - 0x28 delta_f1
1164 * - 0x28 delta_f1
1076 * - 0x2c delta_f2
1165 * - 0x2c delta_f2
1077 * - 0x30 nb_data_by_buffer
1166 * - 0x30 nb_data_by_buffer
1078 * - 0x34 nb_snapshot_param
1167 * - 0x34 nb_snapshot_param
1079 * - 0x38 start_date
1168 * - 0x38 start_date
1080 * - 0x3c nb_word_in_buffer
1169 * - 0x3c nb_word_in_buffer
1081 *
1170 *
1082 */
1171 */
1083
1172
1084 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1173 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1085 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1174 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1086 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1175 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1087 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1176 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1088 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1177 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1089 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1178 waveform_picker_regs->addr_data_f3 = current_ring_node_f3->buffer_address; // 0x14
1090 reset_wfp_status(); // 0x18
1179 reset_wfp_status(); // 0x18
1091 //
1180 //
1092 set_wfp_delta_snapshot(); // 0x1c
1181 set_wfp_delta_snapshot(); // 0x1c
1093 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1182 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1094 set_wfp_delta_f1(); // 0x28
1183 set_wfp_delta_f1(); // 0x28
1095 set_wfp_delta_f2(); // 0x2c
1184 set_wfp_delta_f2(); // 0x2c
1096 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1185 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1097 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1186 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1098 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1187 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1099 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1188 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1100 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1189 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1101 // 2688 = 8 * 336
1190 // 2688 = 8 * 336
1102 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1191 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1103 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1192 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1104 waveform_picker_regs->start_date = 0x00; // 0x38
1193 waveform_picker_regs->start_date = 0x00; // 0x38
1105 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1194 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1106 }
1195 }
1107
1196
1108 void set_wfp_data_shaping( void )
1197 void set_wfp_data_shaping( void )
1109 {
1198 {
1110 /** This function sets the data_shaping register of the waveform picker module.
1199 /** This function sets the data_shaping register of the waveform picker module.
1111 *
1200 *
1112 * The value is read from one field of the parameter_dump_packet structure:\n
1201 * The value is read from one field of the parameter_dump_packet structure:\n
1113 * bw_sp0_sp1_r0_r1
1202 * bw_sp0_sp1_r0_r1
1114 *
1203 *
1115 */
1204 */
1116
1205
1117 unsigned char data_shaping;
1206 unsigned char data_shaping;
1118
1207
1119 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1208 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1120 // waveform picker : [R1 R0 SP1 SP0 BW]
1209 // waveform picker : [R1 R0 SP1 SP0 BW]
1121
1210
1122 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1211 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1123
1212
1124 waveform_picker_regs->data_shaping =
1213 waveform_picker_regs->data_shaping =
1125 ( (data_shaping & 0x10) >> 4 ) // BW
1214 ( (data_shaping & 0x10) >> 4 ) // BW
1126 + ( (data_shaping & 0x08) >> 2 ) // SP0
1215 + ( (data_shaping & 0x08) >> 2 ) // SP0
1127 + ( (data_shaping & 0x04) ) // SP1
1216 + ( (data_shaping & 0x04) ) // SP1
1128 + ( (data_shaping & 0x02) << 2 ) // R0
1217 + ( (data_shaping & 0x02) << 2 ) // R0
1129 + ( (data_shaping & 0x01) << 4 ); // R1
1218 + ( (data_shaping & 0x01) << 4 ); // R1
1130 }
1219 }
1131
1220
1132 void set_wfp_burst_enable_register( unsigned char mode )
1221 void set_wfp_burst_enable_register( unsigned char mode )
1133 {
1222 {
1134 /** This function sets the waveform picker burst_enable register depending on the mode.
1223 /** This function sets the waveform picker burst_enable register depending on the mode.
1135 *
1224 *
1136 * @param mode is the LFR mode to launch.
1225 * @param mode is the LFR mode to launch.
1137 *
1226 *
1138 * The burst bits shall be before the enable bits.
1227 * The burst bits shall be before the enable bits.
1139 *
1228 *
1140 */
1229 */
1141
1230
1142 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1231 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1143 // the burst bits shall be set first, before the enable bits
1232 // the burst bits shall be set first, before the enable bits
1144 switch(mode) {
1233 switch(mode) {
1145 case(LFR_MODE_NORMAL):
1234 case(LFR_MODE_NORMAL):
1146 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1235 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1147 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1236 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1148 break;
1237 break;
1149 case(LFR_MODE_BURST):
1238 case(LFR_MODE_BURST):
1150 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1239 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1151 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1240 // waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1152 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1241 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 AND f2
1153 break;
1242 break;
1154 case(LFR_MODE_SBM1):
1243 case(LFR_MODE_SBM1):
1155 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1244 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1156 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1245 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1157 break;
1246 break;
1158 case(LFR_MODE_SBM2):
1247 case(LFR_MODE_SBM2):
1159 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1248 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1160 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1249 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1161 break;
1250 break;
1162 default:
1251 default:
1163 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1252 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1164 break;
1253 break;
1165 }
1254 }
1166 }
1255 }
1167
1256
1168 void set_wfp_delta_snapshot( void )
1257 void set_wfp_delta_snapshot( void )
1169 {
1258 {
1170 /** This function sets the delta_snapshot register of the waveform picker module.
1259 /** This function sets the delta_snapshot register of the waveform picker module.
1171 *
1260 *
1172 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1261 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1173 * - sy_lfr_n_swf_p[0]
1262 * - sy_lfr_n_swf_p[0]
1174 * - sy_lfr_n_swf_p[1]
1263 * - sy_lfr_n_swf_p[1]
1175 *
1264 *
1176 */
1265 */
1177
1266
1178 unsigned int delta_snapshot;
1267 unsigned int delta_snapshot;
1179 unsigned int delta_snapshot_in_T2;
1268 unsigned int delta_snapshot_in_T2;
1180
1269
1181 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1270 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1182 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1271 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1183
1272
1184 delta_snapshot_in_T2 = delta_snapshot * 256;
1273 delta_snapshot_in_T2 = delta_snapshot * 256;
1185 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1274 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1186 }
1275 }
1187
1276
1188 void set_wfp_delta_f0_f0_2( void )
1277 void set_wfp_delta_f0_f0_2( void )
1189 {
1278 {
1190 unsigned int delta_snapshot;
1279 unsigned int delta_snapshot;
1191 unsigned int nb_samples_per_snapshot;
1280 unsigned int nb_samples_per_snapshot;
1192 float delta_f0_in_float;
1281 float delta_f0_in_float;
1193
1282
1194 delta_snapshot = waveform_picker_regs->delta_snapshot;
1283 delta_snapshot = waveform_picker_regs->delta_snapshot;
1195 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1284 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1196 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1285 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1197
1286
1198 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1287 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1199 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1288 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1200 }
1289 }
1201
1290
1202 void set_wfp_delta_f1( void )
1291 void set_wfp_delta_f1( void )
1203 {
1292 {
1204 unsigned int delta_snapshot;
1293 unsigned int delta_snapshot;
1205 unsigned int nb_samples_per_snapshot;
1294 unsigned int nb_samples_per_snapshot;
1206 float delta_f1_in_float;
1295 float delta_f1_in_float;
1207
1296
1208 delta_snapshot = waveform_picker_regs->delta_snapshot;
1297 delta_snapshot = waveform_picker_regs->delta_snapshot;
1209 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1298 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1210 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1299 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1211
1300
1212 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1301 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1213 }
1302 }
1214
1303
1215 void set_wfp_delta_f2()
1304 void set_wfp_delta_f2()
1216 {
1305 {
1217 unsigned int delta_snapshot;
1306 unsigned int delta_snapshot;
1218 unsigned int nb_samples_per_snapshot;
1307 unsigned int nb_samples_per_snapshot;
1219
1308
1220 delta_snapshot = waveform_picker_regs->delta_snapshot;
1309 delta_snapshot = waveform_picker_regs->delta_snapshot;
1221 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1310 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1222
1311
1223 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1312 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1224 }
1313 }
1225
1314
1226 //*****************
1315 //*****************
1227 // local parameters
1316 // local parameters
1228
1317
1229 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1318 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1230 {
1319 {
1231 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1320 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1232 *
1321 *
1233 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1322 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1234 * @param sid is the source identifier of the packet being updated.
1323 * @param sid is the source identifier of the packet being updated.
1235 *
1324 *
1236 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1325 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1237 * The sequence counters shall wrap around from 2^14 to zero.
1326 * The sequence counters shall wrap around from 2^14 to zero.
1238 * The sequence counter shall start at zero at startup.
1327 * The sequence counter shall start at zero at startup.
1239 *
1328 *
1240 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1329 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1241 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1330 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1242 *
1331 *
1243 */
1332 */
1244
1333
1245 unsigned short *sequence_cnt;
1334 unsigned short *sequence_cnt;
1246 unsigned short segmentation_grouping_flag;
1335 unsigned short segmentation_grouping_flag;
1247 unsigned short new_packet_sequence_control;
1336 unsigned short new_packet_sequence_control;
1248 rtems_mode initial_mode_set;
1337 rtems_mode initial_mode_set;
1249 rtems_mode current_mode_set;
1338 rtems_mode current_mode_set;
1250 rtems_status_code status;
1339 rtems_status_code status;
1251
1340
1252 //******************************************
1341 //******************************************
1253 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1342 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1254 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1343 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1255
1344
1256 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1345 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1257 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1346 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1258 || (sid == SID_BURST_CWF_F2)
1347 || (sid == SID_BURST_CWF_F2)
1259 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1348 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1260 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1349 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1261 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1350 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1262 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1351 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1263 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1352 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1264 {
1353 {
1265 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1354 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1266 }
1355 }
1267 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1356 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1268 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1357 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1269 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1358 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1270 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1359 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1271 {
1360 {
1272 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1361 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1273 }
1362 }
1274 else
1363 else
1275 {
1364 {
1276 sequence_cnt = (unsigned short *) NULL;
1365 sequence_cnt = (unsigned short *) NULL;
1277 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1366 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1278 }
1367 }
1279
1368
1280 if (sequence_cnt != NULL)
1369 if (sequence_cnt != NULL)
1281 {
1370 {
1282 // increment the sequence counter
1371 // increment the sequence counter
1283 if ( *sequence_cnt < SEQ_CNT_MAX)
1372 if ( *sequence_cnt < SEQ_CNT_MAX)
1284 {
1373 {
1285 *sequence_cnt = *sequence_cnt + 1;
1374 *sequence_cnt = *sequence_cnt + 1;
1286 }
1375 }
1287 else
1376 else
1288 {
1377 {
1289 *sequence_cnt = 0;
1378 *sequence_cnt = 0;
1290 }
1379 }
1291 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1380 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1292 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1381 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1293
1382
1294 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1383 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1295
1384
1296 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1385 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1297 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1386 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1298 }
1387 }
1299
1388
1300 //***********************************
1389 //***********************************
1301 // RESET THE MODE OF THE CALLING TASK
1390 // RESET THE MODE OF THE CALLING TASK
1302 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1391 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1303 }
1392 }
General Comments 0
You need to be logged in to leave comments. Login now