##// END OF EJS Templates
3.1.0.1...
paul -
r292:d9dfd2a081bc R3_plus draft
parent child
Show More
@@ -1,123 +1,123
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options =
4 4 # verbose
5 5 # boot_messages
6 6 # debug_messages
7 7 # cpu_usage_report
8 8 # stack_report
9 9 # vhdl_dev
10 10 # debug_tch
11 11 # lpp_dpu_destid /!\ REMOVE BEFORE DELIVERY TO LESIA /!\
12 12 # debug_watchdog
13 13 CONFIG += console verbose lpp_dpu_destid cpu_usage_report
14 14 CONFIG -= qt
15 15
16 16 include(./sparc.pri)
17 17
18 18 # flight software version
19 19 SWVERSION=-1-0
20 20 DEFINES += SW_VERSION_N1=3 # major
21 21 DEFINES += SW_VERSION_N2=1 # minor
22 22 DEFINES += SW_VERSION_N3=0 # patch
23 DEFINES += SW_VERSION_N4=0 # internal
23 DEFINES += SW_VERSION_N4=1 # internal
24 24
25 25 # <GCOV>
26 26 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
27 27 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
28 28 # </GCOV>
29 29
30 30 # <CHANGE BEFORE FLIGHT>
31 31 contains( CONFIG, lpp_dpu_destid ) {
32 32 DEFINES += LPP_DPU_DESTID
33 33 }
34 34 # </CHANGE BEFORE FLIGHT>
35 35
36 36 contains( CONFIG, debug_tch ) {
37 37 DEFINES += DEBUG_TCH
38 38 }
39 39 DEFINES += MSB_FIRST_TCH
40 40
41 41 contains( CONFIG, vhdl_dev ) {
42 42 DEFINES += VHDL_DEV
43 43 }
44 44
45 45 contains( CONFIG, verbose ) {
46 46 DEFINES += PRINT_MESSAGES_ON_CONSOLE
47 47 }
48 48
49 49 contains( CONFIG, debug_messages ) {
50 50 DEFINES += DEBUG_MESSAGES
51 51 }
52 52
53 53 contains( CONFIG, cpu_usage_report ) {
54 54 DEFINES += PRINT_TASK_STATISTICS
55 55 }
56 56
57 57 contains( CONFIG, stack_report ) {
58 58 DEFINES += PRINT_STACK_REPORT
59 59 }
60 60
61 61 contains( CONFIG, boot_messages ) {
62 62 DEFINES += BOOT_MESSAGES
63 63 }
64 64
65 65 contains( CONFIG, debug_watchdog ) {
66 66 DEFINES += DEBUG_WATCHDOG
67 67 }
68 68
69 69 #doxygen.target = doxygen
70 70 #doxygen.commands = doxygen ../doc/Doxyfile
71 71 #QMAKE_EXTRA_TARGETS += doxygen
72 72
73 73 TARGET = fsw
74 74
75 75 INCLUDEPATH += \
76 76 $${PWD}/../src \
77 77 $${PWD}/../header \
78 78 $${PWD}/../header/lfr_common_headers \
79 79 $${PWD}/../header/processing \
80 80 $${PWD}/../LFR_basic-parameters
81 81
82 82 SOURCES += \
83 83 ../src/wf_handler.c \
84 84 ../src/tc_handler.c \
85 85 ../src/fsw_misc.c \
86 86 ../src/fsw_init.c \
87 87 ../src/fsw_globals.c \
88 88 ../src/fsw_spacewire.c \
89 89 ../src/tc_load_dump_parameters.c \
90 90 ../src/tm_lfr_tc_exe.c \
91 91 ../src/tc_acceptance.c \
92 92 ../src/processing/fsw_processing.c \
93 93 ../src/processing/avf0_prc0.c \
94 94 ../src/processing/avf1_prc1.c \
95 95 ../src/processing/avf2_prc2.c \
96 96 ../src/lfr_cpu_usage_report.c \
97 97 ../LFR_basic-parameters/basic_parameters.c
98 98
99 99 HEADERS += \
100 100 ../header/wf_handler.h \
101 101 ../header/tc_handler.h \
102 102 ../header/grlib_regs.h \
103 103 ../header/fsw_misc.h \
104 104 ../header/fsw_init.h \
105 105 ../header/fsw_spacewire.h \
106 106 ../header/tc_load_dump_parameters.h \
107 107 ../header/tm_lfr_tc_exe.h \
108 108 ../header/tc_acceptance.h \
109 109 ../header/processing/fsw_processing.h \
110 110 ../header/processing/avf0_prc0.h \
111 111 ../header/processing/avf1_prc1.h \
112 112 ../header/processing/avf2_prc2.h \
113 113 ../header/fsw_params_wf_handler.h \
114 114 ../header/lfr_cpu_usage_report.h \
115 115 ../header/lfr_common_headers/ccsds_types.h \
116 116 ../header/lfr_common_headers/fsw_params.h \
117 117 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
118 118 ../header/lfr_common_headers/fsw_params_processing.h \
119 119 ../header/lfr_common_headers/tm_byte_positions.h \
120 120 ../LFR_basic-parameters/basic_parameters.h \
121 121 ../LFR_basic-parameters/basic_parameters_params.h \
122 122 ../header/GscMemoryLPP.hpp
123 123
@@ -1,413 +1,414
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf0_prc0.h"
11 11 #include "fsw_processing.h"
12 12
13 13 nb_sm_before_bp_asm_f0 nb_sm_before_f0;
14 14
15 15 //***
16 16 // F0
17 17 ring_node_asm asm_ring_norm_f0 [ NB_RING_NODES_ASM_NORM_F0 ];
18 18 ring_node_asm asm_ring_burst_sbm_f0 [ NB_RING_NODES_ASM_BURST_SBM_F0 ];
19 19
20 20 ring_node ring_to_send_asm_f0 [ NB_RING_NODES_ASM_F0 ];
21 21 int buffer_asm_f0 [ NB_RING_NODES_ASM_F0 * TOTAL_SIZE_SM ];
22 22
23 23 float asm_f0_patched_norm [ TOTAL_SIZE_SM ];
24 24 float asm_f0_patched_burst_sbm [ TOTAL_SIZE_SM ];
25 25 float asm_f0_reorganized [ TOTAL_SIZE_SM ];
26 26
27 27 char asm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
28 28 float compressed_sm_norm_f0[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F0];
29 29 float compressed_sm_sbm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F0 ];
30 30
31 31 float k_coeff_intercalib_f0_norm[ NB_BINS_COMPRESSED_SM_F0 * NB_K_COEFF_PER_BIN ]; // 11 * 32 = 352
32 32 float k_coeff_intercalib_f0_sbm[ NB_BINS_COMPRESSED_SM_SBM_F0 * NB_K_COEFF_PER_BIN ]; // 22 * 32 = 704
33 33
34 34 //************
35 35 // RTEMS TASKS
36 36
37 37 rtems_task avf0_task( rtems_task_argument lfrRequestedMode )
38 38 {
39 39 int i;
40 40
41 41 rtems_event_set event_out;
42 42 rtems_status_code status;
43 43 rtems_id queue_id_prc0;
44 44 asm_msg msgForPRC;
45 45 ring_node *nodeForAveraging;
46 46 ring_node *ring_node_tab[8];
47 47 ring_node_asm *current_ring_node_asm_burst_sbm_f0;
48 48 ring_node_asm *current_ring_node_asm_norm_f0;
49 49
50 50 unsigned int nb_norm_bp1;
51 51 unsigned int nb_norm_bp2;
52 52 unsigned int nb_norm_asm;
53 53 unsigned int nb_sbm_bp1;
54 54 unsigned int nb_sbm_bp2;
55 55
56 56 nb_norm_bp1 = 0;
57 57 nb_norm_bp2 = 0;
58 58 nb_norm_asm = 0;
59 59 nb_sbm_bp1 = 0;
60 60 nb_sbm_bp2 = 0;
61 61
62 62 reset_nb_sm_f0( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
63 63 ASM_generic_init_ring( asm_ring_norm_f0, NB_RING_NODES_ASM_NORM_F0 );
64 64 ASM_generic_init_ring( asm_ring_burst_sbm_f0, NB_RING_NODES_ASM_BURST_SBM_F0 );
65 65 current_ring_node_asm_norm_f0 = asm_ring_norm_f0;
66 66 current_ring_node_asm_burst_sbm_f0 = asm_ring_burst_sbm_f0;
67 67
68 68 BOOT_PRINTF1("in AVFO *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
69 69
70 70 status = get_message_queue_id_prc0( &queue_id_prc0 );
71 71 if (status != RTEMS_SUCCESSFUL)
72 72 {
73 73 PRINTF1("in MATR *** ERR get_message_queue_id_prc0 %d\n", status)
74 74 }
75 75
76 76 while(1){
77 77 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
78 78
79 79 //****************************************
80 80 // initialize the mesage for the MATR task
81 81 msgForPRC.norm = current_ring_node_asm_norm_f0;
82 82 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f0;
83 83 msgForPRC.event = 0x00; // this composite event will be sent to the PRC0 task
84 84 //
85 85 //****************************************
86 86
87 87 nodeForAveraging = getRingNodeForAveraging( 0 );
88 88
89 89 ring_node_tab[NB_SM_BEFORE_AVF0-1] = nodeForAveraging;
90 90 for ( i = 2; i < (NB_SM_BEFORE_AVF0+1); i++ )
91 91 {
92 92 nodeForAveraging = nodeForAveraging->previous;
93 93 ring_node_tab[NB_SM_BEFORE_AVF0-i] = nodeForAveraging;
94 94 }
95 95
96 96 // compute the average and store it in the averaged_sm_f1 buffer
97 97 SM_average( current_ring_node_asm_norm_f0->matrix,
98 98 current_ring_node_asm_burst_sbm_f0->matrix,
99 99 ring_node_tab,
100 100 nb_norm_bp1, nb_sbm_bp1,
101 101 &msgForPRC, 0 ); // 0 => frequency channel 0
102 102
103 103 // update nb_average
104 104 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF0;
105 105 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF0;
106 106 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF0;
107 107 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF0;
108 108 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF0;
109 109
110 110 if (nb_sbm_bp1 == nb_sm_before_f0.burst_sbm_bp1)
111 111 {
112 112 nb_sbm_bp1 = 0;
113 113 // set another ring for the ASM storage
114 114 current_ring_node_asm_burst_sbm_f0 = current_ring_node_asm_burst_sbm_f0->next;
115 115 if ( lfrCurrentMode == LFR_MODE_BURST )
116 116 {
117 117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F0;
118 118 }
119 119 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
120 120 {
121 121 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F0;
122 122 }
123 123 }
124 124
125 125 if (nb_sbm_bp2 == nb_sm_before_f0.burst_sbm_bp2)
126 126 {
127 127 nb_sbm_bp2 = 0;
128 128 if ( lfrCurrentMode == LFR_MODE_BURST )
129 129 {
130 130 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F0;
131 131 }
132 132 else if ( (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
133 133 {
134 134 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F0;
135 135 }
136 136 }
137 137
138 138 if (nb_norm_bp1 == nb_sm_before_f0.norm_bp1)
139 139 {
140 140 nb_norm_bp1 = 0;
141 141 // set another ring for the ASM storage
142 142 current_ring_node_asm_norm_f0 = current_ring_node_asm_norm_f0->next;
143 143 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
144 144 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
145 145 {
146 146 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F0;
147 147 }
148 148 }
149 149
150 150 if (nb_norm_bp2 == nb_sm_before_f0.norm_bp2)
151 151 {
152 152 nb_norm_bp2 = 0;
153 153 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
154 154 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
155 155 {
156 156 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F0;
157 157 }
158 158 }
159 159
160 160 if (nb_norm_asm == nb_sm_before_f0.norm_asm)
161 161 {
162 162 nb_norm_asm = 0;
163 163 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
164 164 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
165 165 {
166 166 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F0;
167 167 }
168 168 }
169 169
170 170 //*************************
171 171 // send the message to PRC
172 172 if (msgForPRC.event != 0x00)
173 173 {
174 174 status = rtems_message_queue_send( queue_id_prc0, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC0);
175 175 }
176 176
177 177 if (status != RTEMS_SUCCESSFUL) {
178 178 PRINTF1("in AVF0 *** Error sending message to PRC, code %d\n", status)
179 179 }
180 180 }
181 181 }
182 182
183 183 rtems_task prc0_task( rtems_task_argument lfrRequestedMode )
184 184 {
185 185 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
186 186 size_t size; // size of the incoming TC packet
187 187 asm_msg *incomingMsg;
188 188 //
189 189 unsigned char sid;
190 190 rtems_status_code status;
191 191 rtems_id queue_id;
192 192 rtems_id queue_id_q_p0;
193 193 bp_packet_with_spare packet_norm_bp1;
194 194 bp_packet packet_norm_bp2;
195 195 bp_packet packet_sbm_bp1;
196 196 bp_packet packet_sbm_bp2;
197 197 ring_node *current_ring_node_to_send_asm_f0;
198 198 float nbSMInASMNORM;
199 199 float nbSMInASMSBM;
200 200
201 201 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
202 202 init_ring( ring_to_send_asm_f0, NB_RING_NODES_ASM_F0, (volatile int*) buffer_asm_f0, TOTAL_SIZE_SM );
203 203 current_ring_node_to_send_asm_f0 = ring_to_send_asm_f0;
204 204
205 205 //*************
206 206 // NORM headers
207 207 BP_init_header_with_spare( &packet_norm_bp1,
208 208 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F0,
209 209 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0, NB_BINS_COMPRESSED_SM_F0 );
210 210 BP_init_header( &packet_norm_bp2,
211 211 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F0,
212 212 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0, NB_BINS_COMPRESSED_SM_F0);
213 213
214 214 //****************************
215 215 // BURST SBM1 and SBM2 headers
216 216 if ( lfrRequestedMode == LFR_MODE_BURST )
217 217 {
218 218 BP_init_header( &packet_sbm_bp1,
219 219 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F0,
220 220 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
221 221 BP_init_header( &packet_sbm_bp2,
222 222 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F0,
223 223 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
224 224 }
225 225 else if ( lfrRequestedMode == LFR_MODE_SBM1 )
226 226 {
227 227 BP_init_header( &packet_sbm_bp1,
228 228 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP1_F0,
229 229 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
230 230 BP_init_header( &packet_sbm_bp2,
231 231 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM1_BP2_F0,
232 232 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
233 233 }
234 234 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
235 235 {
236 236 BP_init_header( &packet_sbm_bp1,
237 237 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F0,
238 238 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
239 239 BP_init_header( &packet_sbm_bp2,
240 240 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F0,
241 241 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0, NB_BINS_COMPRESSED_SM_SBM_F0);
242 242 }
243 243 else
244 244 {
245 245 PRINTF1("in PRC0 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
246 246 }
247 247
248 248 status = get_message_queue_id_send( &queue_id );
249 249 if (status != RTEMS_SUCCESSFUL)
250 250 {
251 251 PRINTF1("in PRC0 *** ERR get_message_queue_id_send %d\n", status)
252 252 }
253 253 status = get_message_queue_id_prc0( &queue_id_q_p0);
254 254 if (status != RTEMS_SUCCESSFUL)
255 255 {
256 256 PRINTF1("in PRC0 *** ERR get_message_queue_id_prc0 %d\n", status)
257 257 }
258 258
259 259 BOOT_PRINTF1("in PRC0 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
260 260
261 261 while(1){
262 262 status = rtems_message_queue_receive( queue_id_q_p0, incomingData, &size, //************************************
263 263 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
264 264
265 265 incomingMsg = (asm_msg*) incomingData;
266 266
267 267 ASM_patch( incomingMsg->norm->matrix, asm_f0_patched_norm );
268 268 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f0_patched_burst_sbm );
269 269
270 270 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
271 271 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
272 272
273 273 //****************
274 274 //****************
275 275 // BURST SBM1 SBM2
276 276 //****************
277 277 //****************
278 278 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F0 ) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F0 ) )
279 279 {
280 280 sid = getSID( incomingMsg->event );
281 281 // 1) compress the matrix for Basic Parameters calculation
282 282 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_burst_sbm, compressed_sm_sbm_f0,
283 283 nbSMInASMSBM,
284 284 NB_BINS_COMPRESSED_SM_SBM_F0, NB_BINS_TO_AVERAGE_ASM_SBM_F0,
285 285 ASM_F0_INDICE_START, CHANNELF0);
286 286 // 2) compute the BP1 set
287 287 BP1_set( compressed_sm_sbm_f0, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp1.data );
288 288 // 3) send the BP1 set
289 289 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
290 290 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
291 291 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
292 292 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
293 293 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id,
294 294 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F0 + PACKET_LENGTH_DELTA,
295 295 sid);
296 296 // 4) compute the BP2 set if needed
297 297 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F0) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F0) )
298 298 {
299 299 // 1) compute the BP2 set
300 300 BP2_set( compressed_sm_sbm_f0, NB_BINS_COMPRESSED_SM_SBM_F0, packet_sbm_bp2.data );
301 301 // 2) send the BP2 set
302 302 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
303 303 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
304 304 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
305 305 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
306 306 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id,
307 307 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F0 + PACKET_LENGTH_DELTA,
308 308 sid);
309 309 }
310 310 }
311 311
312 312 //*****
313 313 //*****
314 314 // NORM
315 315 //*****
316 316 //*****
317 317 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F0)
318 318 {
319 319 // 1) compress the matrix for Basic Parameters calculation
320 320 ASM_compress_reorganize_and_divide_mask( asm_f0_patched_norm, compressed_sm_norm_f0,
321 321 nbSMInASMNORM,
322 322 NB_BINS_COMPRESSED_SM_F0, NB_BINS_TO_AVERAGE_ASM_F0,
323 323 ASM_F0_INDICE_START, CHANNELF0 );
324 324 // 2) compute the BP1 set
325 325 BP1_set( compressed_sm_norm_f0, k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp1.data );
326 326 // 3) send the BP1 set
327 327 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
328 328 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
329 329 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
330 330 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
331 331 BP_send( (char *) &packet_norm_bp1, queue_id,
332 332 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F0 + PACKET_LENGTH_DELTA,
333 333 SID_NORM_BP1_F0 );
334 334 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F0)
335 335 {
336 336 // 1) compute the BP2 set using the same ASM as the one used for BP1
337 337 BP2_set( compressed_sm_norm_f0, NB_BINS_COMPRESSED_SM_F0, packet_norm_bp2.data );
338 338 // 2) send the BP2 set
339 339 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
340 340 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
341 341 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
342 342 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
343 343 BP_send( (char *) &packet_norm_bp2, queue_id,
344 344 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F0 + PACKET_LENGTH_DELTA,
345 345 SID_NORM_BP2_F0);
346 346 }
347 347 }
348 348
349 349 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F0)
350 350 {
351 351 // 1) reorganize the ASM and divide
352 352 ASM_reorganize_and_divide( asm_f0_patched_norm,
353 353 (float*) current_ring_node_to_send_asm_f0->buffer_address,
354 354 nbSMInASMNORM );
355 355 current_ring_node_to_send_asm_f0->coarseTime = incomingMsg->coarseTimeNORM;
356 356 current_ring_node_to_send_asm_f0->fineTime = incomingMsg->fineTimeNORM;
357 357 current_ring_node_to_send_asm_f0->sid = SID_NORM_ASM_F0;
358 358
359 359 // 3) send the spectral matrix packets
360 360 status = rtems_message_queue_send( queue_id, &current_ring_node_to_send_asm_f0, sizeof( ring_node* ) );
361
361 362 // change asm ring node
362 363 current_ring_node_to_send_asm_f0 = current_ring_node_to_send_asm_f0->next;
363 364 }
364 365
365 366 update_queue_max_count( queue_id_q_p0, &hk_lfr_q_p0_fifo_size_max );
366 367
367 368 }
368 369 }
369 370
370 371 //**********
371 372 // FUNCTIONS
372 373
373 374 void reset_nb_sm_f0( unsigned char lfrMode )
374 375 {
375 376 nb_sm_before_f0.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 96;
376 377 nb_sm_before_f0.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 96;
377 378 nb_sm_before_f0.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 96;
378 379 nb_sm_before_f0.sbm1_bp1 = parameter_dump_packet.sy_lfr_s1_bp_p0 * 24; // 0.25 s per digit
379 380 nb_sm_before_f0.sbm1_bp2 = parameter_dump_packet.sy_lfr_s1_bp_p1 * 96;
380 381 nb_sm_before_f0.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 96;
381 382 nb_sm_before_f0.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 96;
382 383 nb_sm_before_f0.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 96;
383 384 nb_sm_before_f0.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 96;
384 385
385 386 if (lfrMode == LFR_MODE_SBM1)
386 387 {
387 388 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm1_bp1;
388 389 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm1_bp2;
389 390 }
390 391 else if (lfrMode == LFR_MODE_SBM2)
391 392 {
392 393 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.sbm2_bp1;
393 394 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.sbm2_bp2;
394 395 }
395 396 else if (lfrMode == LFR_MODE_BURST)
396 397 {
397 398 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
398 399 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
399 400 }
400 401 else
401 402 {
402 403 nb_sm_before_f0.burst_sbm_bp1 = nb_sm_before_f0.burst_bp1;
403 404 nb_sm_before_f0.burst_sbm_bp2 = nb_sm_before_f0.burst_bp2;
404 405 }
405 406 }
406 407
407 408 void init_k_coefficients_prc0( void )
408 409 {
409 410 init_k_coefficients( k_coeff_intercalib_f0_norm, NB_BINS_COMPRESSED_SM_F0 );
410 411
411 412 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f0_norm, k_coeff_intercalib_f0_sbm, NB_BINS_COMPRESSED_SM_F0);
412 413 }
413 414
@@ -1,396 +1,398
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf1_prc1.h"
11 11
12 12 nb_sm_before_bp_asm_f1 nb_sm_before_f1;
13 13
14 14 extern ring_node sm_ring_f1[ ];
15 15
16 16 //***
17 17 // F1
18 18 ring_node_asm asm_ring_norm_f1 [ NB_RING_NODES_ASM_NORM_F1 ];
19 19 ring_node_asm asm_ring_burst_sbm_f1 [ NB_RING_NODES_ASM_BURST_SBM_F1 ];
20 20
21 21 ring_node ring_to_send_asm_f1 [ NB_RING_NODES_ASM_F1 ];
22 22 int buffer_asm_f1 [ NB_RING_NODES_ASM_F1 * TOTAL_SIZE_SM ];
23 23
24 24 float asm_f1_patched_norm [ TOTAL_SIZE_SM ];
25 25 float asm_f1_patched_burst_sbm [ TOTAL_SIZE_SM ];
26 26 float asm_f1_reorganized [ TOTAL_SIZE_SM ];
27 27
28 28 char asm_f1_char [ TOTAL_SIZE_SM * 2 ];
29 29 float compressed_sm_norm_f1[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F1];
30 30 float compressed_sm_sbm_f1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM_F1 ];
31 31
32 32 float k_coeff_intercalib_f1_norm[ NB_BINS_COMPRESSED_SM_F1 * NB_K_COEFF_PER_BIN ]; // 13 * 32 = 416
33 33 float k_coeff_intercalib_f1_sbm[ NB_BINS_COMPRESSED_SM_SBM_F1 * NB_K_COEFF_PER_BIN ]; // 26 * 32 = 832
34 34
35 35 //************
36 36 // RTEMS TASKS
37 37
38 38 rtems_task avf1_task( rtems_task_argument lfrRequestedMode )
39 39 {
40 40 int i;
41 41
42 42 rtems_event_set event_out;
43 43 rtems_status_code status;
44 44 rtems_id queue_id_prc1;
45 45 asm_msg msgForPRC;
46 46 ring_node *nodeForAveraging;
47 47 ring_node *ring_node_tab[NB_SM_BEFORE_AVF0];
48 48 ring_node_asm *current_ring_node_asm_burst_sbm_f1;
49 49 ring_node_asm *current_ring_node_asm_norm_f1;
50 50
51 51 unsigned int nb_norm_bp1;
52 52 unsigned int nb_norm_bp2;
53 53 unsigned int nb_norm_asm;
54 54 unsigned int nb_sbm_bp1;
55 55 unsigned int nb_sbm_bp2;
56 56
57 57 nb_norm_bp1 = 0;
58 58 nb_norm_bp2 = 0;
59 59 nb_norm_asm = 0;
60 60 nb_sbm_bp1 = 0;
61 61 nb_sbm_bp2 = 0;
62 62
63 63 reset_nb_sm_f1( lfrRequestedMode ); // reset the sm counters that drive the BP and ASM computations / transmissions
64 64 ASM_generic_init_ring( asm_ring_norm_f1, NB_RING_NODES_ASM_NORM_F1 );
65 65 ASM_generic_init_ring( asm_ring_burst_sbm_f1, NB_RING_NODES_ASM_BURST_SBM_F1 );
66 66 current_ring_node_asm_norm_f1 = asm_ring_norm_f1;
67 67 current_ring_node_asm_burst_sbm_f1 = asm_ring_burst_sbm_f1;
68 68
69 69 BOOT_PRINTF1("in AVF1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
70 70
71 71 status = get_message_queue_id_prc1( &queue_id_prc1 );
72 72 if (status != RTEMS_SUCCESSFUL)
73 73 {
74 74 PRINTF1("in AVF1 *** ERR get_message_queue_id_prc1 %d\n", status)
75 75 }
76 76
77 77 while(1){
78 78 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
79 79
80 80 //****************************************
81 81 // initialize the mesage for the MATR task
82 82 msgForPRC.norm = current_ring_node_asm_norm_f1;
83 83 msgForPRC.burst_sbm = current_ring_node_asm_burst_sbm_f1;
84 84 msgForPRC.event = 0x00; // this composite event will be sent to the PRC1 task
85 85 //
86 86 //****************************************
87 87
88 88 nodeForAveraging = getRingNodeForAveraging( 1 );
89 89
90 90 ring_node_tab[NB_SM_BEFORE_AVF1-1] = nodeForAveraging;
91 91 for ( i = 2; i < (NB_SM_BEFORE_AVF1+1); i++ )
92 92 {
93 93 nodeForAveraging = nodeForAveraging->previous;
94 94 ring_node_tab[NB_SM_BEFORE_AVF1-i] = nodeForAveraging;
95 95 }
96 96
97 97 // compute the average and store it in the averaged_sm_f1 buffer
98 98 SM_average( current_ring_node_asm_norm_f1->matrix,
99 99 current_ring_node_asm_burst_sbm_f1->matrix,
100 100 ring_node_tab,
101 101 nb_norm_bp1, nb_sbm_bp1,
102 102 &msgForPRC, 1 ); // 1 => frequency channel 1
103 103
104 104 // update nb_average
105 105 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF1;
106 106 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF1;
107 107 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF1;
108 108 nb_sbm_bp1 = nb_sbm_bp1 + NB_SM_BEFORE_AVF1;
109 109 nb_sbm_bp2 = nb_sbm_bp2 + NB_SM_BEFORE_AVF1;
110 110
111 111 if (nb_sbm_bp1 == nb_sm_before_f1.burst_sbm_bp1)
112 112 {
113 113 nb_sbm_bp1 = 0;
114 114 // set another ring for the ASM storage
115 115 current_ring_node_asm_burst_sbm_f1 = current_ring_node_asm_burst_sbm_f1->next;
116 116 if ( lfrCurrentMode == LFR_MODE_BURST )
117 117 {
118 118 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP1_F1;
119 119 }
120 120 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
121 121 {
122 122 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP1_F1;
123 123 }
124 124 }
125 125
126 126 if (nb_sbm_bp2 == nb_sm_before_f1.burst_sbm_bp2)
127 127 {
128 128 nb_sbm_bp2 = 0;
129 129 if ( lfrCurrentMode == LFR_MODE_BURST )
130 130 {
131 131 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_BURST_BP2_F1;
132 132 }
133 133 else if ( lfrCurrentMode == LFR_MODE_SBM2 )
134 134 {
135 135 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_SBM_BP2_F1;
136 136 }
137 137 }
138 138
139 139 if (nb_norm_bp1 == nb_sm_before_f1.norm_bp1)
140 140 {
141 141 nb_norm_bp1 = 0;
142 142 // set another ring for the ASM storage
143 143 current_ring_node_asm_norm_f1 = current_ring_node_asm_norm_f1->next;
144 144 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
145 145 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
146 146 {
147 147 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F1;
148 148 }
149 149 }
150 150
151 151 if (nb_norm_bp2 == nb_sm_before_f1.norm_bp2)
152 152 {
153 153 nb_norm_bp2 = 0;
154 154 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
155 155 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
156 156 {
157 157 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F1;
158 158 }
159 159 }
160 160
161 161 if (nb_norm_asm == nb_sm_before_f1.norm_asm)
162 162 {
163 163 nb_norm_asm = 0;
164 164 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
165 165 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
166 166 {
167 167 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F1;
168 168 }
169 169 }
170 170
171 171 //*************************
172 172 // send the message to PRC
173 173 if (msgForPRC.event != 0x00)
174 174 {
175 175 status = rtems_message_queue_send( queue_id_prc1, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC1);
176 176 }
177 177
178 178 if (status != RTEMS_SUCCESSFUL) {
179 179 PRINTF1("in AVF1 *** Error sending message to PRC1, code %d\n", status)
180 180 }
181 181 }
182 182 }
183 183
184 184 rtems_task prc1_task( rtems_task_argument lfrRequestedMode )
185 185 {
186 186 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
187 187 size_t size; // size of the incoming TC packet
188 188 asm_msg *incomingMsg;
189 189 //
190 190 unsigned char sid;
191 191 rtems_status_code status;
192 192 rtems_id queue_id_send;
193 193 rtems_id queue_id_q_p1;
194 194 bp_packet_with_spare packet_norm_bp1;
195 195 bp_packet packet_norm_bp2;
196 196 bp_packet packet_sbm_bp1;
197 197 bp_packet packet_sbm_bp2;
198 198 ring_node *current_ring_node_to_send_asm_f1;
199 199 float nbSMInASMNORM;
200 200 float nbSMInASMSBM;
201 201
202 202 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
203 203 init_ring( ring_to_send_asm_f1, NB_RING_NODES_ASM_F1, (volatile int*) buffer_asm_f1, TOTAL_SIZE_SM );
204 204 current_ring_node_to_send_asm_f1 = ring_to_send_asm_f1;
205 205
206 206 //*************
207 207 // NORM headers
208 208 BP_init_header_with_spare( &packet_norm_bp1,
209 209 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F1,
210 210 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1, NB_BINS_COMPRESSED_SM_F1 );
211 211 BP_init_header( &packet_norm_bp2,
212 212 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F1,
213 213 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1, NB_BINS_COMPRESSED_SM_F1);
214 214
215 215 //***********************
216 216 // BURST and SBM2 headers
217 217 if ( lfrRequestedMode == LFR_MODE_BURST )
218 218 {
219 219 BP_init_header( &packet_sbm_bp1,
220 220 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP1_F1,
221 221 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
222 222 BP_init_header( &packet_sbm_bp2,
223 223 APID_TM_SCIENCE_NORMAL_BURST, SID_BURST_BP2_F1,
224 224 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
225 225 }
226 226 else if ( lfrRequestedMode == LFR_MODE_SBM2 )
227 227 {
228 228 BP_init_header( &packet_sbm_bp1,
229 229 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP1_F1,
230 230 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
231 231 BP_init_header( &packet_sbm_bp2,
232 232 APID_TM_SCIENCE_SBM1_SBM2, SID_SBM2_BP2_F1,
233 233 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1, NB_BINS_COMPRESSED_SM_SBM_F1);
234 234 }
235 235 else
236 236 {
237 237 PRINTF1("in PRC1 *** lfrRequestedMode is %d, several headers not initialized\n", (unsigned int) lfrRequestedMode)
238 238 }
239 239
240 240 status = get_message_queue_id_send( &queue_id_send );
241 241 if (status != RTEMS_SUCCESSFUL)
242 242 {
243 243 PRINTF1("in PRC1 *** ERR get_message_queue_id_send %d\n", status)
244 244 }
245 245 status = get_message_queue_id_prc1( &queue_id_q_p1);
246 246 if (status != RTEMS_SUCCESSFUL)
247 247 {
248 248 PRINTF1("in PRC1 *** ERR get_message_queue_id_prc1 %d\n", status)
249 249 }
250 250
251 251 BOOT_PRINTF1("in PRC1 *** lfrRequestedMode = %d\n", (int) lfrRequestedMode)
252 252
253 253 while(1){
254 254 status = rtems_message_queue_receive( queue_id_q_p1, incomingData, &size, //************************************
255 255 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF0
256 256
257 257 incomingMsg = (asm_msg*) incomingData;
258 258
259 259 ASM_patch( incomingMsg->norm->matrix, asm_f1_patched_norm );
260 260 ASM_patch( incomingMsg->burst_sbm->matrix, asm_f1_patched_burst_sbm );
261 261
262 262 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
263 263 nbSMInASMSBM = incomingMsg->numberOfSMInASMSBM;
264 264
265 265 //***********
266 266 //***********
267 267 // BURST SBM2
268 268 //***********
269 269 //***********
270 270 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP1_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP1_F1) )
271 271 {
272 272 sid = getSID( incomingMsg->event );
273 273 // 1) compress the matrix for Basic Parameters calculation
274 274 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_burst_sbm, compressed_sm_sbm_f1,
275 275 nbSMInASMSBM,
276 276 NB_BINS_COMPRESSED_SM_SBM_F1, NB_BINS_TO_AVERAGE_ASM_SBM_F1,
277 277 ASM_F1_INDICE_START, CHANNELF1);
278 278 // 2) compute the BP1 set
279 279 BP1_set( compressed_sm_sbm_f1, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp1.data );
280 280 // 3) send the BP1 set
281 281 set_time( packet_sbm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
282 282 set_time( packet_sbm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
283 283 packet_sbm_bp1.pa_bia_status_info = pa_bia_status_info;
284 284 packet_sbm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
285 285 BP_send_s1_s2( (char *) &packet_sbm_bp1, queue_id_send,
286 286 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP1_F1 + PACKET_LENGTH_DELTA,
287 287 sid );
288 288 // 4) compute the BP2 set if needed
289 289 if ( (incomingMsg->event & RTEMS_EVENT_BURST_BP2_F1) || (incomingMsg->event & RTEMS_EVENT_SBM_BP2_F1) )
290 290 {
291 291 // 1) compute the BP2 set
292 292 BP2_set( compressed_sm_sbm_f1, NB_BINS_COMPRESSED_SM_SBM_F1, packet_sbm_bp2.data );
293 293 // 2) send the BP2 set
294 294 set_time( packet_sbm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeSBM );
295 295 set_time( packet_sbm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeSBM );
296 296 packet_sbm_bp2.pa_bia_status_info = pa_bia_status_info;
297 297 packet_sbm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
298 298 BP_send_s1_s2( (char *) &packet_sbm_bp2, queue_id_send,
299 299 PACKET_LENGTH_TM_LFR_SCIENCE_SBM_BP2_F1 + PACKET_LENGTH_DELTA,
300 300 sid );
301 301 }
302 302 }
303 303
304 304 //*****
305 305 //*****
306 306 // NORM
307 307 //*****
308 308 //*****
309 309 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F1)
310 310 {
311 311 // 1) compress the matrix for Basic Parameters calculation
312 312 ASM_compress_reorganize_and_divide_mask( asm_f1_patched_norm, compressed_sm_norm_f1,
313 313 nbSMInASMNORM,
314 314 NB_BINS_COMPRESSED_SM_F1, NB_BINS_TO_AVERAGE_ASM_F1,
315 315 ASM_F1_INDICE_START, CHANNELF1 );
316 316 // 2) compute the BP1 set
317 317 BP1_set( compressed_sm_norm_f1, k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp1.data );
318 318 // 3) send the BP1 set
319 319 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
320 320 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
321 321 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
322 322 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
323 323 BP_send( (char *) &packet_norm_bp1, queue_id_send,
324 324 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F1 + PACKET_LENGTH_DELTA,
325 325 SID_NORM_BP1_F1 );
326 326 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F1)
327 327 {
328 328 // 1) compute the BP2 set
329 329 BP2_set( compressed_sm_norm_f1, NB_BINS_COMPRESSED_SM_F1, packet_norm_bp2.data );
330 330 // 2) send the BP2 set
331 331 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
332 332 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
333 333 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
334 334 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
335 335 BP_send( (char *) &packet_norm_bp2, queue_id_send,
336 336 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F1 + PACKET_LENGTH_DELTA,
337 337 SID_NORM_BP2_F1 );
338 338 }
339 339 }
340 340
341 341 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F1)
342 342 {
343 343 // 1) reorganize the ASM and divide
344 344 ASM_reorganize_and_divide( asm_f1_patched_norm,
345 345 (float*) current_ring_node_to_send_asm_f1->buffer_address,
346 346 nbSMInASMNORM );
347 347 current_ring_node_to_send_asm_f1->coarseTime = incomingMsg->coarseTimeNORM;
348 348 current_ring_node_to_send_asm_f1->fineTime = incomingMsg->fineTimeNORM;
349 349 current_ring_node_to_send_asm_f1->sid = SID_NORM_ASM_F1;
350
350 351 // 3) send the spectral matrix packets
351 352 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f1, sizeof( ring_node* ) );
353
352 354 // change asm ring node
353 355 current_ring_node_to_send_asm_f1 = current_ring_node_to_send_asm_f1->next;
354 356 }
355 357
356 358 update_queue_max_count( queue_id_q_p1, &hk_lfr_q_p1_fifo_size_max );
357 359
358 360 }
359 361 }
360 362
361 363 //**********
362 364 // FUNCTIONS
363 365
364 366 void reset_nb_sm_f1( unsigned char lfrMode )
365 367 {
366 368 nb_sm_before_f1.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0 * 16;
367 369 nb_sm_before_f1.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1 * 16;
368 370 nb_sm_before_f1.norm_asm = (parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1]) * 16;
369 371 nb_sm_before_f1.sbm2_bp1 = parameter_dump_packet.sy_lfr_s2_bp_p0 * 16;
370 372 nb_sm_before_f1.sbm2_bp2 = parameter_dump_packet.sy_lfr_s2_bp_p1 * 16;
371 373 nb_sm_before_f1.burst_bp1 = parameter_dump_packet.sy_lfr_b_bp_p0 * 16;
372 374 nb_sm_before_f1.burst_bp2 = parameter_dump_packet.sy_lfr_b_bp_p1 * 16;
373 375
374 376 if (lfrMode == LFR_MODE_SBM2)
375 377 {
376 378 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.sbm2_bp1;
377 379 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.sbm2_bp2;
378 380 }
379 381 else if (lfrMode == LFR_MODE_BURST)
380 382 {
381 383 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
382 384 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
383 385 }
384 386 else
385 387 {
386 388 nb_sm_before_f1.burst_sbm_bp1 = nb_sm_before_f1.burst_bp1;
387 389 nb_sm_before_f1.burst_sbm_bp2 = nb_sm_before_f1.burst_bp2;
388 390 }
389 391 }
390 392
391 393 void init_k_coefficients_prc1( void )
392 394 {
393 395 init_k_coefficients( k_coeff_intercalib_f1_norm, NB_BINS_COMPRESSED_SM_F1 );
394 396
395 397 init_kcoeff_sbm_from_kcoeff_norm( k_coeff_intercalib_f1_norm, k_coeff_intercalib_f1_sbm, NB_BINS_COMPRESSED_SM_F1);
396 398 }
@@ -1,325 +1,327
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include "avf2_prc2.h"
11 11
12 12 nb_sm_before_bp_asm_f2 nb_sm_before_f2;
13 13
14 14 extern ring_node sm_ring_f2[ ];
15 15
16 16 //***
17 17 // F2
18 18 ring_node_asm asm_ring_norm_f2 [ NB_RING_NODES_ASM_NORM_F2 ];
19 19
20 20 ring_node ring_to_send_asm_f2 [ NB_RING_NODES_ASM_F2 ];
21 21 int buffer_asm_f2 [ NB_RING_NODES_ASM_F2 * TOTAL_SIZE_SM ];
22 22
23 23 float asm_f2_patched_norm [ TOTAL_SIZE_SM ];
24 24 float asm_f2_reorganized [ TOTAL_SIZE_SM ];
25 25
26 26 char asm_f2_char [ TOTAL_SIZE_SM * 2 ];
27 27 float compressed_sm_norm_f2[ TOTAL_SIZE_COMPRESSED_ASM_NORM_F2];
28 28
29 29 float k_coeff_intercalib_f2[ NB_BINS_COMPRESSED_SM_F2 * NB_K_COEFF_PER_BIN ]; // 12 * 32 = 384
30 30
31 31 //************
32 32 // RTEMS TASKS
33 33
34 34 //***
35 35 // F2
36 36 rtems_task avf2_task( rtems_task_argument argument )
37 37 {
38 38 rtems_event_set event_out;
39 39 rtems_status_code status;
40 40 rtems_id queue_id_prc2;
41 41 asm_msg msgForPRC;
42 42 ring_node *nodeForAveraging;
43 43 ring_node_asm *current_ring_node_asm_norm_f2;
44 44
45 45 unsigned int nb_norm_bp1;
46 46 unsigned int nb_norm_bp2;
47 47 unsigned int nb_norm_asm;
48 48
49 49 nb_norm_bp1 = 0;
50 50 nb_norm_bp2 = 0;
51 51 nb_norm_asm = 0;
52 52
53 53 reset_nb_sm_f2( ); // reset the sm counters that drive the BP and ASM computations / transmissions
54 54 ASM_generic_init_ring( asm_ring_norm_f2, NB_RING_NODES_ASM_NORM_F2 );
55 55 current_ring_node_asm_norm_f2 = asm_ring_norm_f2;
56 56
57 57 BOOT_PRINTF("in AVF2 ***\n")
58 58
59 59 status = get_message_queue_id_prc2( &queue_id_prc2 );
60 60 if (status != RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("in AVF2 *** ERR get_message_queue_id_prc2 %d\n", status)
63 63 }
64 64
65 65 while(1){
66 66 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
67 67
68 68 //****************************************
69 69 // initialize the mesage for the MATR task
70 70 msgForPRC.norm = current_ring_node_asm_norm_f2;
71 71 msgForPRC.burst_sbm = NULL;
72 72 msgForPRC.event = 0x00; // this composite event will be sent to the PRC2 task
73 73 //
74 74 //****************************************
75 75
76 76 nodeForAveraging = getRingNodeForAveraging( 2 );
77 77
78 78 // compute the average and store it in the averaged_sm_f2 buffer
79 79 SM_average_f2( current_ring_node_asm_norm_f2->matrix,
80 80 nodeForAveraging,
81 81 nb_norm_bp1,
82 82 &msgForPRC );
83 83
84 84 // update nb_average
85 85 nb_norm_bp1 = nb_norm_bp1 + NB_SM_BEFORE_AVF2;
86 86 nb_norm_bp2 = nb_norm_bp2 + NB_SM_BEFORE_AVF2;
87 87 nb_norm_asm = nb_norm_asm + NB_SM_BEFORE_AVF2;
88 88
89 89 if (nb_norm_bp1 == nb_sm_before_f2.norm_bp1)
90 90 {
91 91 nb_norm_bp1 = 0;
92 92 // set another ring for the ASM storage
93 93 current_ring_node_asm_norm_f2 = current_ring_node_asm_norm_f2->next;
94 94 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
95 95 || (lfrCurrentMode == LFR_MODE_SBM2) )
96 96 {
97 97 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP1_F2;
98 98 }
99 99 }
100 100
101 101 if (nb_norm_bp2 == nb_sm_before_f2.norm_bp2)
102 102 {
103 103 nb_norm_bp2 = 0;
104 104 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
105 105 || (lfrCurrentMode == LFR_MODE_SBM2) )
106 106 {
107 107 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_BP2_F2;
108 108 }
109 109 }
110 110
111 111 if (nb_norm_asm == nb_sm_before_f2.norm_asm)
112 112 {
113 113 nb_norm_asm = 0;
114 114 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_SBM1)
115 115 || (lfrCurrentMode == LFR_MODE_SBM2) )
116 116 {
117 117 msgForPRC.event = msgForPRC.event | RTEMS_EVENT_NORM_ASM_F2;
118 118 }
119 119 }
120 120
121 121 //*************************
122 122 // send the message to PRC2
123 123 if (msgForPRC.event != 0x00)
124 124 {
125 125 status = rtems_message_queue_send( queue_id_prc2, (char *) &msgForPRC, MSG_QUEUE_SIZE_PRC2);
126 126 }
127 127
128 128 if (status != RTEMS_SUCCESSFUL) {
129 129 PRINTF1("in AVF2 *** Error sending message to PRC2, code %d\n", status)
130 130 }
131 131 }
132 132 }
133 133
134 134 rtems_task prc2_task( rtems_task_argument argument )
135 135 {
136 136 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
137 137 size_t size; // size of the incoming TC packet
138 138 asm_msg *incomingMsg;
139 139 //
140 140 rtems_status_code status;
141 141 rtems_id queue_id_send;
142 142 rtems_id queue_id_q_p2;
143 143 bp_packet packet_norm_bp1;
144 144 bp_packet packet_norm_bp2;
145 145 ring_node *current_ring_node_to_send_asm_f2;
146 146 float nbSMInASMNORM;
147 147
148 148 unsigned long long int localTime;
149 149
150 150 // init the ring of the averaged spectral matrices which will be transmitted to the DPU
151 151 init_ring( ring_to_send_asm_f2, NB_RING_NODES_ASM_F2, (volatile int*) buffer_asm_f2, TOTAL_SIZE_SM );
152 152 current_ring_node_to_send_asm_f2 = ring_to_send_asm_f2;
153 153
154 154 //*************
155 155 // NORM headers
156 156 BP_init_header( &packet_norm_bp1,
157 157 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP1_F2,
158 158 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2, NB_BINS_COMPRESSED_SM_F2 );
159 159 BP_init_header( &packet_norm_bp2,
160 160 APID_TM_SCIENCE_NORMAL_BURST, SID_NORM_BP2_F2,
161 161 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2, NB_BINS_COMPRESSED_SM_F2 );
162 162
163 163 status = get_message_queue_id_send( &queue_id_send );
164 164 if (status != RTEMS_SUCCESSFUL)
165 165 {
166 166 PRINTF1("in PRC2 *** ERR get_message_queue_id_send %d\n", status)
167 167 }
168 168 status = get_message_queue_id_prc2( &queue_id_q_p2);
169 169 if (status != RTEMS_SUCCESSFUL)
170 170 {
171 171 PRINTF1("in PRC2 *** ERR get_message_queue_id_prc2 %d\n", status)
172 172 }
173 173
174 174 BOOT_PRINTF("in PRC2 ***\n")
175 175
176 176 while(1){
177 177 status = rtems_message_queue_receive( queue_id_q_p2, incomingData, &size, //************************************
178 178 RTEMS_WAIT, RTEMS_NO_TIMEOUT ); // wait for a message coming from AVF2
179 179
180 180 incomingMsg = (asm_msg*) incomingData;
181 181
182 182 ASM_patch( incomingMsg->norm->matrix, asm_f2_patched_norm );
183 183
184 184 localTime = getTimeAsUnsignedLongLongInt( );
185 185
186 186 nbSMInASMNORM = incomingMsg->numberOfSMInASMNORM;
187 187
188 188 //*****
189 189 //*****
190 190 // NORM
191 191 //*****
192 192 //*****
193 193 // 1) compress the matrix for Basic Parameters calculation
194 194 ASM_compress_reorganize_and_divide_mask( asm_f2_patched_norm, compressed_sm_norm_f2,
195 195 nbSMInASMNORM,
196 196 NB_BINS_COMPRESSED_SM_F2, NB_BINS_TO_AVERAGE_ASM_F2,
197 197 ASM_F2_INDICE_START, CHANNELF2 );
198 198 // BP1_F2
199 199 if (incomingMsg->event & RTEMS_EVENT_NORM_BP1_F2)
200 200 {
201 201 // 1) compute the BP1 set
202 202 BP1_set( compressed_sm_norm_f2, k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp1.data );
203 203 // 2) send the BP1 set
204 204 set_time( packet_norm_bp1.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
205 205 set_time( packet_norm_bp1.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
206 206 packet_norm_bp1.pa_bia_status_info = pa_bia_status_info;
207 207 packet_norm_bp1.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
208 208 BP_send( (char *) &packet_norm_bp1, queue_id_send,
209 209 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP1_F2 + PACKET_LENGTH_DELTA,
210 210 SID_NORM_BP1_F2 );
211 211 }
212 212 // BP2_F2
213 213 if (incomingMsg->event & RTEMS_EVENT_NORM_BP2_F2)
214 214 {
215 215 // 1) compute the BP2 set
216 216 BP2_set( compressed_sm_norm_f2, NB_BINS_COMPRESSED_SM_F2, packet_norm_bp2.data );
217 217 // 2) send the BP2 set
218 218 set_time( packet_norm_bp2.time, (unsigned char *) &incomingMsg->coarseTimeNORM );
219 219 set_time( packet_norm_bp2.acquisitionTime, (unsigned char *) &incomingMsg->coarseTimeNORM );
220 220 packet_norm_bp2.pa_bia_status_info = pa_bia_status_info;
221 221 packet_norm_bp2.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
222 222 BP_send( (char *) &packet_norm_bp2, queue_id_send,
223 223 PACKET_LENGTH_TM_LFR_SCIENCE_NORM_BP2_F2 + PACKET_LENGTH_DELTA,
224 224 SID_NORM_BP2_F2 );
225 225 }
226 226
227 227 if (incomingMsg->event & RTEMS_EVENT_NORM_ASM_F2)
228 228 {
229 229 // 1) reorganize the ASM and divide
230 230 ASM_reorganize_and_divide( asm_f2_patched_norm,
231 231 (float*) current_ring_node_to_send_asm_f2->buffer_address,
232 232 nb_sm_before_f2.norm_bp1 );
233 233 current_ring_node_to_send_asm_f2->coarseTime = incomingMsg->coarseTimeNORM;
234 234 current_ring_node_to_send_asm_f2->fineTime = incomingMsg->fineTimeNORM;
235 235 current_ring_node_to_send_asm_f2->sid = SID_NORM_ASM_F2;
236
236 237 // 3) send the spectral matrix packets
237 238 status = rtems_message_queue_send( queue_id_send, &current_ring_node_to_send_asm_f2, sizeof( ring_node* ) );
239
238 240 // change asm ring node
239 241 current_ring_node_to_send_asm_f2 = current_ring_node_to_send_asm_f2->next;
240 242 }
241 243
242 244 update_queue_max_count( queue_id_q_p2, &hk_lfr_q_p2_fifo_size_max );
243 245
244 246 }
245 247 }
246 248
247 249 //**********
248 250 // FUNCTIONS
249 251
250 252 void reset_nb_sm_f2( void )
251 253 {
252 254 nb_sm_before_f2.norm_bp1 = parameter_dump_packet.sy_lfr_n_bp_p0;
253 255 nb_sm_before_f2.norm_bp2 = parameter_dump_packet.sy_lfr_n_bp_p1;
254 256 nb_sm_before_f2.norm_asm = parameter_dump_packet.sy_lfr_n_asm_p[0] * 256 + parameter_dump_packet.sy_lfr_n_asm_p[1];
255 257 }
256 258
257 259 void SM_average_f2( float *averaged_spec_mat_f2,
258 260 ring_node *ring_node,
259 261 unsigned int nbAverageNormF2,
260 262 asm_msg *msgForMATR )
261 263 {
262 264 float sum;
263 265 unsigned int i;
264 266 unsigned char keepMatrix;
265 267
266 268 // test acquisitionTime validity
267 269 keepMatrix = acquisitionTimeIsValid( ring_node->coarseTime, ring_node->fineTime, 2 );
268 270
269 271 for(i=0; i<TOTAL_SIZE_SM; i++)
270 272 {
271 273 sum = ( (int *) (ring_node->buffer_address) ) [ i ];
272 274 if ( (nbAverageNormF2 == 0) ) // average initialization
273 275 {
274 276 if (keepMatrix == 1) // keep the matrix and add it to the average
275 277 {
276 278 averaged_spec_mat_f2[ i ] = sum;
277 279 }
278 280 else // drop the matrix and initialize the average
279 281 {
280 282 averaged_spec_mat_f2[ i ] = 0.;
281 283 }
282 284 msgForMATR->coarseTimeNORM = ring_node->coarseTime;
283 285 msgForMATR->fineTimeNORM = ring_node->fineTime;
284 286 }
285 287 else
286 288 {
287 289 if (keepMatrix == 1) // keep the matrix and add it to the average
288 290 {
289 291 averaged_spec_mat_f2[ i ] = ( averaged_spec_mat_f2[ i ] + sum );
290 292 }
291 293 else
292 294 {
293 295 // nothing to do, the matrix is not valid
294 296 }
295 297 }
296 298 }
297 299
298 300 if (keepMatrix == 1)
299 301 {
300 302 if ( (nbAverageNormF2 == 0) )
301 303 {
302 304 msgForMATR->numberOfSMInASMNORM = 1;
303 305 }
304 306 else
305 307 {
306 308 msgForMATR->numberOfSMInASMNORM++;
307 309 }
308 310 }
309 311 else
310 312 {
311 313 if ( (nbAverageNormF2 == 0) )
312 314 {
313 315 msgForMATR->numberOfSMInASMNORM = 0;
314 316 }
315 317 else
316 318 {
317 319 // nothing to do
318 320 }
319 321 }
320 322 }
321 323
322 324 void init_k_coefficients_prc2( void )
323 325 {
324 326 init_k_coefficients( k_coeff_intercalib_f2, NB_BINS_COMPRESSED_SM_F2);
325 327 }
@@ -1,1310 +1,1314
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //***************
13 13 // waveform rings
14 14 // F0
15 15 ring_node waveform_ring_f0[NB_RING_NODES_F0];
16 16 ring_node *current_ring_node_f0;
17 17 ring_node *ring_node_to_send_swf_f0;
18 18 // F1
19 19 ring_node waveform_ring_f1[NB_RING_NODES_F1];
20 20 ring_node *current_ring_node_f1;
21 21 ring_node *ring_node_to_send_swf_f1;
22 22 ring_node *ring_node_to_send_cwf_f1;
23 23 // F2
24 24 ring_node waveform_ring_f2[NB_RING_NODES_F2];
25 25 ring_node *current_ring_node_f2;
26 26 ring_node *ring_node_to_send_swf_f2;
27 27 ring_node *ring_node_to_send_cwf_f2;
28 28 // F3
29 29 ring_node waveform_ring_f3[NB_RING_NODES_F3];
30 30 ring_node *current_ring_node_f3;
31 31 ring_node *ring_node_to_send_cwf_f3;
32 32 char wf_cont_f3_light[ (NB_SAMPLES_PER_SNAPSHOT) * NB_BYTES_CWF3_LIGHT_BLK ];
33 33
34 34 bool extractSWF1 = false;
35 35 bool extractSWF2 = false;
36 36 bool swf0_ready_flag_f1 = false;
37 37 bool swf0_ready_flag_f2 = false;
38 38 bool swf1_ready = false;
39 39 bool swf2_ready = false;
40 40
41 41 int swf1_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
42 42 int swf2_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) ];
43 43 ring_node ring_node_swf1_extracted;
44 44 ring_node ring_node_swf2_extracted;
45 45
46 46 typedef enum resynchro_state_t
47 47 {
48 48 MEASURE,
49 49 CORRECTION
50 50 } resynchro_state;
51 51
52 52 //*********************
53 53 // Interrupt SubRoutine
54 54
55 55 ring_node * getRingNodeToSendCWF( unsigned char frequencyChannel)
56 56 {
57 57 ring_node *node;
58 58
59 59 node = NULL;
60 60 switch ( frequencyChannel ) {
61 61 case 1:
62 62 node = ring_node_to_send_cwf_f1;
63 63 break;
64 64 case 2:
65 65 node = ring_node_to_send_cwf_f2;
66 66 break;
67 67 case 3:
68 68 node = ring_node_to_send_cwf_f3;
69 69 break;
70 70 default:
71 71 break;
72 72 }
73 73
74 74 return node;
75 75 }
76 76
77 77 ring_node * getRingNodeToSendSWF( unsigned char frequencyChannel)
78 78 {
79 79 ring_node *node;
80 80
81 81 node = NULL;
82 82 switch ( frequencyChannel ) {
83 83 case 0:
84 84 node = ring_node_to_send_swf_f0;
85 85 break;
86 86 case 1:
87 87 node = ring_node_to_send_swf_f1;
88 88 break;
89 89 case 2:
90 90 node = ring_node_to_send_swf_f2;
91 91 break;
92 92 default:
93 93 break;
94 94 }
95 95
96 96 return node;
97 97 }
98 98
99 99 void reset_extractSWF( void )
100 100 {
101 101 extractSWF1 = false;
102 102 extractSWF2 = false;
103 103 swf0_ready_flag_f1 = false;
104 104 swf0_ready_flag_f2 = false;
105 105 swf1_ready = false;
106 106 swf2_ready = false;
107 107 }
108 108
109 109 inline void waveforms_isr_f3( void )
110 110 {
111 111 rtems_status_code spare_status;
112 112
113 113 if ( (lfrCurrentMode == LFR_MODE_NORMAL) || (lfrCurrentMode == LFR_MODE_BURST) // in BURST the data are used to place v, e1 and e2 in the HK packet
114 114 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
115 115 { // in modes other than STANDBY and BURST, send the CWF_F3 data
116 116 //***
117 117 // F3
118 118 if ( (waveform_picker_regs->status & 0xc0) != 0x00 ) { // [1100 0000] check the f3 full bits
119 119 ring_node_to_send_cwf_f3 = current_ring_node_f3->previous;
120 120 current_ring_node_f3 = current_ring_node_f3->next;
121 121 if ((waveform_picker_regs->status & 0x40) == 0x40){ // [0100 0000] f3 buffer 0 is full
122 122 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_0_coarse_time;
123 123 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_0_fine_time;
124 124 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->buffer_address;
125 125 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008840; // [1000 1000 0100 0000]
126 126 }
127 127 else if ((waveform_picker_regs->status & 0x80) == 0x80){ // [1000 0000] f3 buffer 1 is full
128 128 ring_node_to_send_cwf_f3->coarseTime = waveform_picker_regs->f3_1_coarse_time;
129 129 ring_node_to_send_cwf_f3->fineTime = waveform_picker_regs->f3_1_fine_time;
130 130 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address;
131 131 waveform_picker_regs->status = waveform_picker_regs->status & 0x00008880; // [1000 1000 1000 0000]
132 132 }
133 133 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
134 134 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
135 135 }
136 136 }
137 137 }
138 138 }
139 139
140 140 inline void waveforms_isr_burst( void )
141 141 {
142 142 unsigned char status;
143 143 rtems_status_code spare_status;
144 144
145 145 status = (waveform_picker_regs->status & 0x30) >> 4; // [0011 0000] get the status bits for f2
146 146
147 147
148 148 switch(status)
149 149 {
150 150 case 1:
151 151 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
152 152 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
153 153 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
154 154 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
155 155 current_ring_node_f2 = current_ring_node_f2->next;
156 156 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
157 157 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
158 158 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
159 159 }
160 160 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
161 161 break;
162 162 case 2:
163 163 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
164 164 ring_node_to_send_cwf_f2->sid = SID_BURST_CWF_F2;
165 165 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
166 166 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
167 167 current_ring_node_f2 = current_ring_node_f2->next;
168 168 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
169 169 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
170 170 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 );
171 171 }
172 172 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
173 173 break;
174 174 default:
175 175 break;
176 176 }
177 177 }
178 178
179 179 inline void waveform_isr_normal_sbm1_sbm2( void )
180 180 {
181 181 rtems_status_code status;
182 182
183 183 //***
184 184 // F0
185 185 if ( (waveform_picker_regs->status & 0x03) != 0x00 ) // [0000 0011] check the f0 full bits
186 186 {
187 187 swf0_ready_flag_f1 = true;
188 188 swf0_ready_flag_f2 = true;
189 189 ring_node_to_send_swf_f0 = current_ring_node_f0->previous;
190 190 current_ring_node_f0 = current_ring_node_f0->next;
191 191 if ( (waveform_picker_regs->status & 0x01) == 0x01)
192 192 {
193 193
194 194 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_0_coarse_time;
195 195 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_0_fine_time;
196 196 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->buffer_address;
197 197 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001101; // [0001 0001 0000 0001]
198 198 }
199 199 else if ( (waveform_picker_regs->status & 0x02) == 0x02)
200 200 {
201 201 ring_node_to_send_swf_f0->coarseTime = waveform_picker_regs->f0_1_coarse_time;
202 202 ring_node_to_send_swf_f0->fineTime = waveform_picker_regs->f0_1_fine_time;
203 203 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address;
204 204 waveform_picker_regs->status = waveform_picker_regs->status & 0x00001102; // [0001 0001 0000 0010]
205 205 }
206 206 // send an event to the WFRM task for resynchro activities
207 207 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_SWF_RESYNCH );
208 208 }
209 209
210 210 //***
211 211 // F1
212 212 if ( (waveform_picker_regs->status & 0x0c) != 0x00 ) { // [0000 1100] check the f1 full bits
213 213 // (1) change the receiving buffer for the waveform picker
214 214 ring_node_to_send_cwf_f1 = current_ring_node_f1->previous;
215 215 current_ring_node_f1 = current_ring_node_f1->next;
216 216 if ( (waveform_picker_regs->status & 0x04) == 0x04)
217 217 {
218 218 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_0_coarse_time;
219 219 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_0_fine_time;
220 220 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->buffer_address;
221 221 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002204; // [0010 0010 0000 0100] f1 bits = 0
222 222 }
223 223 else if ( (waveform_picker_regs->status & 0x08) == 0x08)
224 224 {
225 225 ring_node_to_send_cwf_f1->coarseTime = waveform_picker_regs->f1_1_coarse_time;
226 226 ring_node_to_send_cwf_f1->fineTime = waveform_picker_regs->f1_1_fine_time;
227 227 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address;
228 228 waveform_picker_regs->status = waveform_picker_regs->status & 0x00002208; // [0010 0010 0000 1000] f1 bits = 0
229 229 }
230 230 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
231 231 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_NORM_S1_S2 );
232 232 }
233 233
234 234 //***
235 235 // F2
236 236 if ( (waveform_picker_regs->status & 0x30) != 0x00 ) { // [0011 0000] check the f2 full bit
237 237 // (1) change the receiving buffer for the waveform picker
238 238 ring_node_to_send_cwf_f2 = current_ring_node_f2->previous;
239 239 ring_node_to_send_cwf_f2->sid = SID_SBM2_CWF_F2;
240 240 current_ring_node_f2 = current_ring_node_f2->next;
241 241 if ( (waveform_picker_regs->status & 0x10) == 0x10)
242 242 {
243 243 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_0_coarse_time;
244 244 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_0_fine_time;
245 245 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->buffer_address;
246 246 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004410; // [0100 0100 0001 0000]
247 247 }
248 248 else if ( (waveform_picker_regs->status & 0x20) == 0x20)
249 249 {
250 250 ring_node_to_send_cwf_f2->coarseTime = waveform_picker_regs->f2_1_coarse_time;
251 251 ring_node_to_send_cwf_f2->fineTime = waveform_picker_regs->f2_1_fine_time;
252 252 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address;
253 253 waveform_picker_regs->status = waveform_picker_regs->status & 0x00004420; // [0100 0100 0010 0000]
254 254 }
255 255 // (2) send an event for the waveforms transmission
256 256 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_NORM_S1_S2 );
257 257 }
258 258 }
259 259
260 260 rtems_isr waveforms_isr( rtems_vector_number vector )
261 261 {
262 262 /** This is the interrupt sub routine called by the waveform picker core.
263 263 *
264 264 * This ISR launch different actions depending mainly on two pieces of information:
265 265 * 1. the values read in the registers of the waveform picker.
266 266 * 2. the current LFR mode.
267 267 *
268 268 */
269 269
270 270 // STATUS
271 271 // new error error buffer full
272 272 // 15 14 13 12 11 10 9 8
273 273 // f3 f2 f1 f0 f3 f2 f1 f0
274 274 //
275 275 // ready buffer
276 276 // 7 6 5 4 3 2 1 0
277 277 // f3_1 f3_0 f2_1 f2_0 f1_1 f1_0 f0_1 f0_0
278 278
279 279 rtems_status_code spare_status;
280 280
281 281 waveforms_isr_f3();
282 282
283 283 //*************************************************
284 284 // copy the status bits in the housekeeping packets
285 285 housekeeping_packet.hk_lfr_vhdl_iir_cal =
286 286 (unsigned char) ((waveform_picker_regs->status & 0xff00) >> 8);
287 287
288 288 if ( (waveform_picker_regs->status & 0xff00) != 0x00) // [1111 1111 0000 0000] check the error bits
289 289 {
290 290 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_10 );
291 291 }
292 292
293 293 switch(lfrCurrentMode)
294 294 {
295 295 //********
296 296 // STANDBY
297 297 case LFR_MODE_STANDBY:
298 298 break;
299 299 //**************************
300 300 // LFR NORMAL, SBM1 and SBM2
301 301 case LFR_MODE_NORMAL:
302 302 case LFR_MODE_SBM1:
303 303 case LFR_MODE_SBM2:
304 304 waveform_isr_normal_sbm1_sbm2();
305 305 break;
306 306 //******
307 307 // BURST
308 308 case LFR_MODE_BURST:
309 309 waveforms_isr_burst();
310 310 break;
311 311 //********
312 312 // DEFAULT
313 313 default:
314 314 break;
315 315 }
316 316 }
317 317
318 318 //************
319 319 // RTEMS TASKS
320 320
321 321 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
322 322 {
323 323 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
324 324 *
325 325 * @param unused is the starting argument of the RTEMS task
326 326 *
327 327 * The following data packets are sent by this task:
328 328 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
329 329 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
330 330 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
331 331 *
332 332 */
333 333
334 334 rtems_event_set event_out;
335 335 rtems_id queue_id;
336 336 rtems_status_code status;
337 337 ring_node *ring_node_swf1_extracted_ptr;
338 338 ring_node *ring_node_swf2_extracted_ptr;
339 339
340 340 ring_node_swf1_extracted_ptr = (ring_node *) &ring_node_swf1_extracted;
341 341 ring_node_swf2_extracted_ptr = (ring_node *) &ring_node_swf2_extracted;
342 342
343 343 status = get_message_queue_id_send( &queue_id );
344 344 if (status != RTEMS_SUCCESSFUL)
345 345 {
346 346 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status);
347 347 }
348 348
349 349 BOOT_PRINTF("in WFRM ***\n");
350 350
351 351 while(1){
352 352 // wait for an RTEMS_EVENT
353 353 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_SWF_RESYNCH,
354 354 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
355 355
356 356 if (event_out == RTEMS_EVENT_MODE_NORMAL)
357 357 {
358 358 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n");
359 359 ring_node_to_send_swf_f0->sid = SID_NORM_SWF_F0;
360 360 ring_node_swf1_extracted_ptr->sid = SID_NORM_SWF_F1;
361 361 ring_node_swf2_extracted_ptr->sid = SID_NORM_SWF_F2;
362 362 status = rtems_message_queue_send( queue_id, &ring_node_to_send_swf_f0, sizeof( ring_node* ) );
363 363 status = rtems_message_queue_send( queue_id, &ring_node_swf1_extracted_ptr, sizeof( ring_node* ) );
364 364 status = rtems_message_queue_send( queue_id, &ring_node_swf2_extracted_ptr, sizeof( ring_node* ) );
365 365 }
366 366 if (event_out == RTEMS_EVENT_SWF_RESYNCH)
367 367 {
368 368 snapshot_resynchronization( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
369 369 }
370 370 }
371 371 }
372 372
373 373 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
374 374 {
375 375 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
376 376 *
377 377 * @param unused is the starting argument of the RTEMS task
378 378 *
379 379 * The following data packet is sent by this task:
380 380 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
381 381 *
382 382 */
383 383
384 384 rtems_event_set event_out;
385 385 rtems_id queue_id;
386 386 rtems_status_code status;
387 387 ring_node ring_node_cwf3_light;
388 388 ring_node *ring_node_to_send_cwf;
389 389
390 390 status = get_message_queue_id_send( &queue_id );
391 391 if (status != RTEMS_SUCCESSFUL)
392 392 {
393 393 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
394 394 }
395 395
396 396 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
397 397
398 398 // init the ring_node_cwf3_light structure
399 399 ring_node_cwf3_light.buffer_address = (int) wf_cont_f3_light;
400 400 ring_node_cwf3_light.coarseTime = 0x00;
401 401 ring_node_cwf3_light.fineTime = 0x00;
402 402 ring_node_cwf3_light.next = NULL;
403 403 ring_node_cwf3_light.previous = NULL;
404 404 ring_node_cwf3_light.sid = SID_NORM_CWF_F3;
405 405 ring_node_cwf3_light.status = 0x00;
406 406
407 BOOT_PRINTF("in CWF3 ***\n")
407 BOOT_PRINTF("in CWF3 ***\n");
408 408
409 409 while(1){
410 410 // wait for an RTEMS_EVENT
411 411 rtems_event_receive( RTEMS_EVENT_0,
412 412 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
413 413 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
414 414 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode==LFR_MODE_SBM2) )
415 415 {
416 416 ring_node_to_send_cwf = getRingNodeToSendCWF( 3 );
417 417 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
418 418 {
419 PRINTF("send CWF_LONG_F3\n")
419 PRINTF("send CWF_LONG_F3\n");
420 420 ring_node_to_send_cwf_f3->sid = SID_NORM_CWF_LONG_F3;
421 421 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
422 422 }
423 423 else
424 424 {
425 PRINTF("send CWF_F3 (light)\n")
425 PRINTF("send CWF_F3 (light)\n");
426 426 send_waveform_CWF3_light( ring_node_to_send_cwf, &ring_node_cwf3_light, queue_id );
427 427 }
428 428
429 429 }
430 430 else
431 431 {
432 432 PRINTF1("in CWF3 *** lfrCurrentMode is %d, no data will be sent\n", lfrCurrentMode)
433 433 }
434 434 }
435 435 }
436 436
437 437 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
438 438 {
439 439 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
440 440 *
441 441 * @param unused is the starting argument of the RTEMS task
442 442 *
443 443 * The following data packet is sent by this function:
444 444 * - TM_LFR_SCIENCE_BURST_CWF_F2
445 445 * - TM_LFR_SCIENCE_SBM2_CWF_F2
446 446 *
447 447 */
448 448
449 449 rtems_event_set event_out;
450 450 rtems_id queue_id;
451 451 rtems_status_code status;
452 452 ring_node *ring_node_to_send;
453 453 unsigned long long int acquisitionTimeF0_asLong;
454 454
455 455 acquisitionTimeF0_asLong = 0x00;
456 456
457 457 status = get_message_queue_id_send( &queue_id );
458 458 if (status != RTEMS_SUCCESSFUL)
459 459 {
460 460 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
461 461 }
462 462
463 BOOT_PRINTF("in CWF2 ***\n")
463 BOOT_PRINTF("in CWF2 ***\n");
464 464
465 465 while(1){
466 466 // wait for an RTEMS_EVENT// send the snapshot when built
467 467 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
468 468 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2 | RTEMS_EVENT_MODE_BURST,
469 469 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
470 470 ring_node_to_send = getRingNodeToSendCWF( 2 );
471 471 if (event_out == RTEMS_EVENT_MODE_BURST)
472 {
472 { // data are sent whatever the transition time
473 473 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
474 474 }
475 475 else if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
476 476 {
477 477 if ( lfrCurrentMode == LFR_MODE_SBM2 )
478 478 {
479 // data are sent depending on the transition time
480 if ( time_management_regs->coarse_time >= lastValidEnterModeTime)
481 {
479 482 status = rtems_message_queue_send( queue_id, &ring_node_to_send, sizeof( ring_node* ) );
480 483 }
484 }
481 485 // launch snapshot extraction if needed
482 486 if (extractSWF2 == true)
483 487 {
484 488 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
485 489 // extract the snapshot
486 490 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2, acquisitionTimeF0_asLong,
487 491 &ring_node_swf2_extracted, swf2_extracted );
488 492 extractSWF2 = false;
489 493 swf2_ready = true; // once the snapshot at f2 is ready the CWF1 task will send an event to WFRM
490 494 }
491 495 if (swf0_ready_flag_f2 == true)
492 496 {
493 497 extractSWF2 = true;
494 498 // record the acquition time of the f0 snapshot to use to build the snapshot at f2
495 499 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
496 500 swf0_ready_flag_f2 = false;
497 501 }
498 502 }
499 503 }
500 504 }
501 505
502 506 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
503 507 {
504 508 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
505 509 *
506 510 * @param unused is the starting argument of the RTEMS task
507 511 *
508 512 * The following data packet is sent by this function:
509 513 * - TM_LFR_SCIENCE_SBM1_CWF_F1
510 514 *
511 515 */
512 516
513 517 rtems_event_set event_out;
514 518 rtems_id queue_id;
515 519 rtems_status_code status;
516 520
517 521 ring_node *ring_node_to_send_cwf;
518 522
519 523 status = get_message_queue_id_send( &queue_id );
520 524 if (status != RTEMS_SUCCESSFUL)
521 525 {
522 526 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
523 527 }
524 528
525 529 BOOT_PRINTF("in CWF1 ***\n");
526 530
527 531 while(1){
528 532 // wait for an RTEMS_EVENT
529 533 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
530 534 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
531 535 ring_node_to_send_cwf = getRingNodeToSendCWF( 1 );
532 536 ring_node_to_send_cwf_f1->sid = SID_SBM1_CWF_F1;
533 537 if (lfrCurrentMode == LFR_MODE_SBM1)
534 538 {
539 // data are sent depending on the transition time
540 if ( time_management_regs->coarse_time >= lastValidEnterModeTime )
541 {
535 542 status = rtems_message_queue_send( queue_id, &ring_node_to_send_cwf, sizeof( ring_node* ) );
536 if (status != 0)
537 {
538 PRINTF("cwf sending failed\n")
539 543 }
540 544 }
541 545 // launch snapshot extraction if needed
542 546 if (extractSWF1 == true)
543 547 {
544 548 ring_node_to_send_swf_f1 = ring_node_to_send_cwf;
545 549 // launch the snapshot extraction
546 550 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_NORM_S1_S2 );
547 551 extractSWF1 = false;
548 552 }
549 553 if (swf0_ready_flag_f1 == true)
550 554 {
551 555 extractSWF1 = true;
552 556 swf0_ready_flag_f1 = false; // this step shall be executed only one time
553 557 }
554 558 if ((swf1_ready == true) && (swf2_ready == true)) // swf_f1 is ready after the extraction
555 559 {
556 560 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL );
557 561 swf1_ready = false;
558 562 swf2_ready = false;
559 563 }
560 564 }
561 565 }
562 566
563 567 rtems_task swbd_task(rtems_task_argument argument)
564 568 {
565 569 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
566 570 *
567 571 * @param unused is the starting argument of the RTEMS task
568 572 *
569 573 */
570 574
571 575 rtems_event_set event_out;
572 576 unsigned long long int acquisitionTimeF0_asLong;
573 577
574 578 acquisitionTimeF0_asLong = 0x00;
575 579
576 580 BOOT_PRINTF("in SWBD ***\n")
577 581
578 582 while(1){
579 583 // wait for an RTEMS_EVENT
580 584 rtems_event_receive( RTEMS_EVENT_MODE_NORM_S1_S2,
581 585 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
582 586 if (event_out == RTEMS_EVENT_MODE_NORM_S1_S2)
583 587 {
584 588 acquisitionTimeF0_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send_swf_f0->coarseTime );
585 589 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1, acquisitionTimeF0_asLong,
586 590 &ring_node_swf1_extracted, swf1_extracted );
587 591 swf1_ready = true; // the snapshot has been extracted and is ready to be sent
588 592 }
589 593 else
590 594 {
591 595 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
592 596 }
593 597 }
594 598 }
595 599
596 600 //******************
597 601 // general functions
598 602
599 603 void WFP_init_rings( void )
600 604 {
601 605 // F0 RING
602 606 init_ring( waveform_ring_f0, NB_RING_NODES_F0, wf_buffer_f0, WFRM_BUFFER );
603 607 // F1 RING
604 608 init_ring( waveform_ring_f1, NB_RING_NODES_F1, wf_buffer_f1, WFRM_BUFFER );
605 609 // F2 RING
606 610 init_ring( waveform_ring_f2, NB_RING_NODES_F2, wf_buffer_f2, WFRM_BUFFER );
607 611 // F3 RING
608 612 init_ring( waveform_ring_f3, NB_RING_NODES_F3, wf_buffer_f3, WFRM_BUFFER );
609 613
610 614 ring_node_swf1_extracted.buffer_address = (int) swf1_extracted;
611 615 ring_node_swf2_extracted.buffer_address = (int) swf2_extracted;
612 616
613 617 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
614 618 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
615 619 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
616 620 DEBUG_PRINTF1("waveform_ring_f3 @%x\n", (unsigned int) waveform_ring_f3)
617 621 DEBUG_PRINTF1("wf_buffer_f0 @%x\n", (unsigned int) wf_buffer_f0)
618 622 DEBUG_PRINTF1("wf_buffer_f1 @%x\n", (unsigned int) wf_buffer_f1)
619 623 DEBUG_PRINTF1("wf_buffer_f2 @%x\n", (unsigned int) wf_buffer_f2)
620 624 DEBUG_PRINTF1("wf_buffer_f3 @%x\n", (unsigned int) wf_buffer_f3)
621 625
622 626 }
623 627
624 628 void WFP_reset_current_ring_nodes( void )
625 629 {
626 630 current_ring_node_f0 = waveform_ring_f0[0].next;
627 631 current_ring_node_f1 = waveform_ring_f1[0].next;
628 632 current_ring_node_f2 = waveform_ring_f2[0].next;
629 633 current_ring_node_f3 = waveform_ring_f3[0].next;
630 634
631 635 ring_node_to_send_swf_f0 = waveform_ring_f0;
632 636 ring_node_to_send_swf_f1 = waveform_ring_f1;
633 637 ring_node_to_send_swf_f2 = waveform_ring_f2;
634 638
635 639 ring_node_to_send_cwf_f1 = waveform_ring_f1;
636 640 ring_node_to_send_cwf_f2 = waveform_ring_f2;
637 641 ring_node_to_send_cwf_f3 = waveform_ring_f3;
638 642 }
639 643
640 644 int send_waveform_CWF3_light( ring_node *ring_node_to_send, ring_node *ring_node_cwf3_light, rtems_id queue_id )
641 645 {
642 646 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
643 647 *
644 648 * @param waveform points to the buffer containing the data that will be send.
645 649 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
646 650 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
647 651 * contain information to setup the transmission of the data packets.
648 652 *
649 653 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
650 654 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
651 655 *
652 656 */
653 657
654 658 unsigned int i;
655 659 int ret;
656 660 rtems_status_code status;
657 661
658 662 char *sample;
659 663 int *dataPtr;
660 664
661 665 ret = LFR_DEFAULT;
662 666
663 667 dataPtr = (int*) ring_node_to_send->buffer_address;
664 668
665 669 ring_node_cwf3_light->coarseTime = ring_node_to_send->coarseTime;
666 670 ring_node_cwf3_light->fineTime = ring_node_to_send->fineTime;
667 671
668 672 //**********************
669 673 // BUILD CWF3_light DATA
670 674 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
671 675 {
672 676 sample = (char*) &dataPtr[ (i * NB_WORDS_SWF_BLK) ];
673 677 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) ] = sample[ 0 ];
674 678 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 ] = sample[ 1 ];
675 679 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 ] = sample[ 2 ];
676 680 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 ] = sample[ 3 ];
677 681 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 ] = sample[ 4 ];
678 682 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 ] = sample[ 5 ];
679 683 }
680 684
681 685 // SEND PACKET
682 686 status = rtems_message_queue_send( queue_id, &ring_node_cwf3_light, sizeof( ring_node* ) );
683 687 if (status != RTEMS_SUCCESSFUL) {
684 688 ret = LFR_DEFAULT;
685 689 }
686 690
687 691 return ret;
688 692 }
689 693
690 694 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
691 695 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
692 696 {
693 697 unsigned long long int acquisitionTimeAsLong;
694 698 unsigned char localAcquisitionTime[6];
695 699 double deltaT;
696 700
697 701 deltaT = 0.;
698 702
699 703 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 24 );
700 704 localAcquisitionTime[1] = (unsigned char) ( coarseTime >> 16 );
701 705 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 8 );
702 706 localAcquisitionTime[3] = (unsigned char) ( coarseTime );
703 707 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 8 );
704 708 localAcquisitionTime[5] = (unsigned char) ( fineTime );
705 709
706 710 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
707 711 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
708 712 + ( (unsigned long long int) localAcquisitionTime[2] << 24 )
709 713 + ( (unsigned long long int) localAcquisitionTime[3] << 16 )
710 714 + ( (unsigned long long int) localAcquisitionTime[4] << 8 )
711 715 + ( (unsigned long long int) localAcquisitionTime[5] );
712 716
713 717 switch( sid )
714 718 {
715 719 case SID_NORM_SWF_F0:
716 720 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
717 721 break;
718 722
719 723 case SID_NORM_SWF_F1:
720 724 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
721 725 break;
722 726
723 727 case SID_NORM_SWF_F2:
724 728 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
725 729 break;
726 730
727 731 case SID_SBM1_CWF_F1:
728 732 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
729 733 break;
730 734
731 735 case SID_SBM2_CWF_F2:
732 736 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
733 737 break;
734 738
735 739 case SID_BURST_CWF_F2:
736 740 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
737 741 break;
738 742
739 743 case SID_NORM_CWF_F3:
740 744 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
741 745 break;
742 746
743 747 case SID_NORM_CWF_LONG_F3:
744 748 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
745 749 break;
746 750
747 751 default:
748 752 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d\n", sid)
749 753 deltaT = 0.;
750 754 break;
751 755 }
752 756
753 757 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
754 758 //
755 759 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
756 760 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
757 761 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
758 762 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
759 763 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
760 764 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
761 765
762 766 }
763 767
764 768 void build_snapshot_from_ring( ring_node *ring_node_to_send,
765 769 unsigned char frequencyChannel,
766 770 unsigned long long int acquisitionTimeF0_asLong,
767 771 ring_node *ring_node_swf_extracted,
768 772 int *swf_extracted)
769 773 {
770 774 unsigned int i;
771 775 unsigned long long int centerTime_asLong;
772 776 unsigned long long int acquisitionTime_asLong;
773 777 unsigned long long int bufferAcquisitionTime_asLong;
774 778 unsigned char *ptr1;
775 779 unsigned char *ptr2;
776 780 unsigned char *timeCharPtr;
777 781 unsigned char nb_ring_nodes;
778 782 unsigned long long int frequency_asLong;
779 783 unsigned long long int nbTicksPerSample_asLong;
780 784 unsigned long long int nbSamplesPart1_asLong;
781 785 unsigned long long int sampleOffset_asLong;
782 786
783 787 unsigned int deltaT_F0;
784 788 unsigned int deltaT_F1;
785 789 unsigned long long int deltaT_F2;
786 790
787 791 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
788 792 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
789 793 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
790 794 sampleOffset_asLong = 0x00;
791 795
792 796 // (1) get the f0 acquisition time => the value is passed in argument
793 797
794 798 // (2) compute the central reference time
795 799 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
796 800
797 801 // (3) compute the acquisition time of the current snapshot
798 802 switch(frequencyChannel)
799 803 {
800 804 case 1: // 1 is for F1 = 4096 Hz
801 805 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
802 806 nb_ring_nodes = NB_RING_NODES_F1;
803 807 frequency_asLong = 4096;
804 808 nbTicksPerSample_asLong = 16; // 65536 / 4096;
805 809 break;
806 810 case 2: // 2 is for F2 = 256 Hz
807 811 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
808 812 nb_ring_nodes = NB_RING_NODES_F2;
809 813 frequency_asLong = 256;
810 814 nbTicksPerSample_asLong = 256; // 65536 / 256;
811 815 break;
812 816 default:
813 817 acquisitionTime_asLong = centerTime_asLong;
814 818 frequency_asLong = 256;
815 819 nbTicksPerSample_asLong = 256;
816 820 break;
817 821 }
818 822
819 823 //****************************************************************************
820 824 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
821 825 for (i=0; i<nb_ring_nodes; i++)
822 826 {
823 827 //PRINTF1("%d ... ", i);
824 828 bufferAcquisitionTime_asLong = get_acquisition_time( (unsigned char *) &ring_node_to_send->coarseTime );
825 829 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
826 830 {
827 831 //PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong);
828 832 break;
829 833 }
830 834 ring_node_to_send = ring_node_to_send->previous;
831 835 }
832 836
833 837 // (5) compute the number of samples to take in the current buffer
834 838 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
835 839 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
836 840 //PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong);
837 841
838 842 // (6) compute the final acquisition time
839 843 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
840 844 sampleOffset_asLong * nbTicksPerSample_asLong;
841 845
842 846 // (7) copy the acquisition time at the beginning of the extrated snapshot
843 847 ptr1 = (unsigned char*) &acquisitionTime_asLong;
844 848 // fine time
845 849 ptr2 = (unsigned char*) &ring_node_swf_extracted->fineTime;
846 850 ptr2[2] = ptr1[ 4 + 2 ];
847 851 ptr2[3] = ptr1[ 5 + 2 ];
848 852 // coarse time
849 853 ptr2 = (unsigned char*) &ring_node_swf_extracted->coarseTime;
850 854 ptr2[0] = ptr1[ 0 + 2 ];
851 855 ptr2[1] = ptr1[ 1 + 2 ];
852 856 ptr2[2] = ptr1[ 2 + 2 ];
853 857 ptr2[3] = ptr1[ 3 + 2 ];
854 858
855 859 // re set the synchronization bit
856 860 timeCharPtr = (unsigned char*) &ring_node_to_send->coarseTime;
857 861 ptr2[0] = ptr2[0] | (timeCharPtr[0] & 0x80); // [1000 0000]
858 862
859 863 if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
860 864 {
861 865 nbSamplesPart1_asLong = 0;
862 866 }
863 867 // copy the part 1 of the snapshot in the extracted buffer
864 868 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
865 869 {
866 870 swf_extracted[i] =
867 871 ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
868 872 }
869 873 // copy the part 2 of the snapshot in the extracted buffer
870 874 ring_node_to_send = ring_node_to_send->next;
871 875 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
872 876 {
873 877 swf_extracted[i] =
874 878 ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
875 879 }
876 880 }
877 881
878 882 double computeCorrection( unsigned char *timePtr )
879 883 {
880 884 unsigned long long int acquisitionTime;
881 885 unsigned long long int centerTime;
882 886 unsigned long long int previousTick;
883 887 unsigned long long int nextTick;
884 888 unsigned long long int deltaPreviousTick;
885 889 unsigned long long int deltaNextTick;
886 890 double deltaPrevious_ms;
887 891 double deltaNext_ms;
888 892 double correctionInF2;
889 893
890 894 // get acquisition time in fine time ticks
891 895 acquisitionTime = get_acquisition_time( timePtr );
892 896
893 897 // compute center time
894 898 centerTime = acquisitionTime + 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
895 899 previousTick = centerTime - (centerTime & 0xffff);
896 900 nextTick = previousTick + 65536;
897 901
898 902 deltaPreviousTick = centerTime - previousTick;
899 903 deltaNextTick = nextTick - centerTime;
900 904
901 905 deltaPrevious_ms = ((double) deltaPreviousTick) / 65536. * 1000.;
902 906 deltaNext_ms = ((double) deltaNextTick) / 65536. * 1000.;
903 907
904 908 PRINTF2(" delta previous = %.3f ms, delta next = %.2f ms\n", deltaPrevious_ms, deltaNext_ms);
905 909
906 910 // which tick is the closest?
907 911 if (deltaPreviousTick > deltaNextTick)
908 912 {
909 913 // the snapshot center is just before the second => increase delta_snapshot
910 914 correctionInF2 = + (deltaNext_ms * 256. / 1000. );
911 915 }
912 916 else
913 917 {
914 918 // the snapshot center is just after the second => decrease delta_snapshot
915 919 correctionInF2 = - (deltaPrevious_ms * 256. / 1000. );
916 920 }
917 921
918 922 PRINTF1(" correctionInF2 = %.2f\n", correctionInF2);
919 923
920 924 return correctionInF2;
921 925 }
922 926
923 927 void applyCorrection( double correction )
924 928 {
925 929 int correctionInt;
926 930
927 931 if (correction >= 0.)
928 932 {
929 933 if ( (1. > correction) && (correction > 0.5) )
930 934 {
931 935 correctionInt = 1;
932 936 }
933 937 else
934 938 {
935 939 correctionInt = 2 * floor(correction);
936 940 }
937 941 }
938 942 else
939 943 {
940 944 if ( (-1. < correction) && (correction < -0.5) )
941 945 {
942 946 correctionInt = -1;
943 947 }
944 948 else
945 949 {
946 950 correctionInt = 2 * ceil(correction);
947 951 }
948 952 }
949 953 waveform_picker_regs->delta_snapshot = waveform_picker_regs->delta_snapshot + correctionInt;
950 954 }
951 955
952 956 void snapshot_resynchronization( unsigned char *timePtr )
953 957 {
954 958 /** This function compute a correction to apply on delta_snapshot.
955 959 *
956 960 *
957 961 * @param timePtr is a pointer to the acquisition time of the snapshot being considered.
958 962 *
959 963 * @return void
960 964 *
961 965 */
962 966
963 967 static double correction = 0.;
964 968 static resynchro_state state = MEASURE;
965 969 static unsigned int nbSnapshots = 0;
966 970
967 971 int correctionInt;
968 972
969 973 correctionInt = 0;
970 974
971 975 switch (state)
972 976 {
973 977
974 978 case MEASURE:
975 979 // ********
976 980 PRINTF1("MEASURE === %d\n", nbSnapshots);
977 981 state = CORRECTION;
978 982 correction = computeCorrection( timePtr );
979 983 PRINTF1("MEASURE === correction = %.2f\n", correction );
980 984 applyCorrection( correction );
981 985 PRINTF1("MEASURE === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
982 986 //****
983 987 break;
984 988
985 989 case CORRECTION:
986 990 //************
987 991 PRINTF1("CORRECTION === %d\n", nbSnapshots);
988 992 state = MEASURE;
989 993 computeCorrection( timePtr );
990 994 set_wfp_delta_snapshot();
991 995 PRINTF1("CORRECTION === delta_snapshot = %d\n", waveform_picker_regs->delta_snapshot);
992 996 //****
993 997 break;
994 998
995 999 default:
996 1000 break;
997 1001
998 1002 }
999 1003
1000 1004 nbSnapshots++;
1001 1005 }
1002 1006
1003 1007 //**************
1004 1008 // wfp registers
1005 1009 void reset_wfp_burst_enable( void )
1006 1010 {
1007 1011 /** This function resets the waveform picker burst_enable register.
1008 1012 *
1009 1013 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1010 1014 *
1011 1015 */
1012 1016
1013 1017 // [1000 000] burst f2, f1, f0 enable f3, f2, f1, f0
1014 1018 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable & 0x80;
1015 1019 }
1016 1020
1017 1021 void reset_wfp_status( void )
1018 1022 {
1019 1023 /** This function resets the waveform picker status register.
1020 1024 *
1021 1025 * All status bits are set to 0 [new_err full_err full].
1022 1026 *
1023 1027 */
1024 1028
1025 1029 waveform_picker_regs->status = 0xffff;
1026 1030 }
1027 1031
1028 1032 void reset_wfp_buffer_addresses( void )
1029 1033 {
1030 1034 // F0
1031 1035 waveform_picker_regs->addr_data_f0_0 = current_ring_node_f0->previous->buffer_address; // 0x08
1032 1036 waveform_picker_regs->addr_data_f0_1 = current_ring_node_f0->buffer_address; // 0x0c
1033 1037 // F1
1034 1038 waveform_picker_regs->addr_data_f1_0 = current_ring_node_f1->previous->buffer_address; // 0x10
1035 1039 waveform_picker_regs->addr_data_f1_1 = current_ring_node_f1->buffer_address; // 0x14
1036 1040 // F2
1037 1041 waveform_picker_regs->addr_data_f2_0 = current_ring_node_f2->previous->buffer_address; // 0x18
1038 1042 waveform_picker_regs->addr_data_f2_1 = current_ring_node_f2->buffer_address; // 0x1c
1039 1043 // F3
1040 1044 waveform_picker_regs->addr_data_f3_0 = current_ring_node_f3->previous->buffer_address; // 0x20
1041 1045 waveform_picker_regs->addr_data_f3_1 = current_ring_node_f3->buffer_address; // 0x24
1042 1046 }
1043 1047
1044 1048 void reset_waveform_picker_regs( void )
1045 1049 {
1046 1050 /** This function resets the waveform picker module registers.
1047 1051 *
1048 1052 * The registers affected by this function are located at the following offset addresses:
1049 1053 * - 0x00 data_shaping
1050 1054 * - 0x04 run_burst_enable
1051 1055 * - 0x08 addr_data_f0
1052 1056 * - 0x0C addr_data_f1
1053 1057 * - 0x10 addr_data_f2
1054 1058 * - 0x14 addr_data_f3
1055 1059 * - 0x18 status
1056 1060 * - 0x1C delta_snapshot
1057 1061 * - 0x20 delta_f0
1058 1062 * - 0x24 delta_f0_2
1059 1063 * - 0x28 delta_f1 (obsolet parameter)
1060 1064 * - 0x2c delta_f2
1061 1065 * - 0x30 nb_data_by_buffer
1062 1066 * - 0x34 nb_snapshot_param
1063 1067 * - 0x38 start_date
1064 1068 * - 0x3c nb_word_in_buffer
1065 1069 *
1066 1070 */
1067 1071
1068 1072 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1069 1073
1070 1074 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1071 1075
1072 1076 reset_wfp_buffer_addresses();
1073 1077
1074 1078 reset_wfp_status(); // 0x18
1075 1079
1076 1080 set_wfp_delta_snapshot(); // 0x1c *** 300 s => 0x12bff
1077 1081
1078 1082 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1079 1083
1080 1084 //the parameter delta_f1 [0x28] is not used anymore
1081 1085
1082 1086 set_wfp_delta_f2(); // 0x2c
1083 1087
1084 1088 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot);
1085 1089 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0);
1086 1090 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2);
1087 1091 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1);
1088 1092 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2);
1089 1093 // 2688 = 8 * 336
1090 1094 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1091 1095 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1092 1096 waveform_picker_regs->start_date = 0x7fffffff; // 0x38
1093 1097 //
1094 1098 // coarse time and fine time registers are not initialized, they are volatile
1095 1099 //
1096 1100 waveform_picker_regs->buffer_length = 0x1f8;// buffer length in burst = 3 * 2688 / 16 = 504 = 0x1f8
1097 1101 }
1098 1102
1099 1103 void set_wfp_data_shaping( void )
1100 1104 {
1101 1105 /** This function sets the data_shaping register of the waveform picker module.
1102 1106 *
1103 1107 * The value is read from one field of the parameter_dump_packet structure:\n
1104 1108 * bw_sp0_sp1_r0_r1
1105 1109 *
1106 1110 */
1107 1111
1108 1112 unsigned char data_shaping;
1109 1113
1110 1114 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1111 1115 // waveform picker : [R1 R0 SP1 SP0 BW]
1112 1116
1113 1117 data_shaping = parameter_dump_packet.sy_lfr_common_parameters;
1114 1118
1115 1119 waveform_picker_regs->data_shaping =
1116 1120 ( (data_shaping & 0x20) >> 5 ) // BW
1117 1121 + ( (data_shaping & 0x10) >> 3 ) // SP0
1118 1122 + ( (data_shaping & 0x08) >> 1 ) // SP1
1119 1123 + ( (data_shaping & 0x04) << 1 ) // R0
1120 1124 + ( (data_shaping & 0x02) << 3 ) // R1
1121 1125 + ( (data_shaping & 0x01) << 5 ); // R2
1122 1126 }
1123 1127
1124 1128 void set_wfp_burst_enable_register( unsigned char mode )
1125 1129 {
1126 1130 /** This function sets the waveform picker burst_enable register depending on the mode.
1127 1131 *
1128 1132 * @param mode is the LFR mode to launch.
1129 1133 *
1130 1134 * The burst bits shall be before the enable bits.
1131 1135 *
1132 1136 */
1133 1137
1134 1138 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1135 1139 // the burst bits shall be set first, before the enable bits
1136 1140 switch(mode) {
1137 1141 case LFR_MODE_NORMAL:
1138 1142 case LFR_MODE_SBM1:
1139 1143 case LFR_MODE_SBM2:
1140 1144 waveform_picker_regs->run_burst_enable = 0x60; // [0110 0000] enable f2 and f1 burst
1141 1145 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1142 1146 break;
1143 1147 case LFR_MODE_BURST:
1144 1148 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1145 1149 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0c; // [1100] enable f3 and f2
1146 1150 break;
1147 1151 default:
1148 1152 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1149 1153 break;
1150 1154 }
1151 1155 }
1152 1156
1153 1157 void set_wfp_delta_snapshot( void )
1154 1158 {
1155 1159 /** This function sets the delta_snapshot register of the waveform picker module.
1156 1160 *
1157 1161 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1158 1162 * - sy_lfr_n_swf_p[0]
1159 1163 * - sy_lfr_n_swf_p[1]
1160 1164 *
1161 1165 */
1162 1166
1163 1167 unsigned int delta_snapshot;
1164 1168 unsigned int delta_snapshot_in_T2;
1165 1169
1166 1170 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1167 1171 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1168 1172
1169 1173 delta_snapshot_in_T2 = delta_snapshot * 256;
1170 1174 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2 - 1; // max 4 bytes
1171 1175 }
1172 1176
1173 1177 void set_wfp_delta_f0_f0_2( void )
1174 1178 {
1175 1179 unsigned int delta_snapshot;
1176 1180 unsigned int nb_samples_per_snapshot;
1177 1181 float delta_f0_in_float;
1178 1182
1179 1183 delta_snapshot = waveform_picker_regs->delta_snapshot;
1180 1184 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1181 1185 delta_f0_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1182 1186
1183 1187 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1184 1188 waveform_picker_regs->delta_f0_2 = 0x30; // 48 = 11 0000, max 7 bits
1185 1189 }
1186 1190
1187 1191 void set_wfp_delta_f1( void )
1188 1192 {
1189 1193 /** Sets the value of the delta_f1 parameter
1190 1194 *
1191 1195 * @param void
1192 1196 *
1193 1197 * @return void
1194 1198 *
1195 1199 * delta_f1 is not used, the snapshots are extracted from CWF_F1 waveforms.
1196 1200 *
1197 1201 */
1198 1202
1199 1203 unsigned int delta_snapshot;
1200 1204 unsigned int nb_samples_per_snapshot;
1201 1205 float delta_f1_in_float;
1202 1206
1203 1207 delta_snapshot = waveform_picker_regs->delta_snapshot;
1204 1208 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1205 1209 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1206 1210
1207 1211 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1208 1212 }
1209 1213
1210 1214 void set_wfp_delta_f2( void ) // parameter not used, only delta_f0 and delta_f0_2 are used
1211 1215 {
1212 1216 /** Sets the value of the delta_f2 parameter
1213 1217 *
1214 1218 * @param void
1215 1219 *
1216 1220 * @return void
1217 1221 *
1218 1222 * delta_f2 is used only for the first snapshot generation, even when the snapshots are extracted from CWF_F2
1219 1223 * waveforms (see lpp_waveform_snapshot_controler.vhd for details).
1220 1224 *
1221 1225 */
1222 1226
1223 1227 unsigned int delta_snapshot;
1224 1228 unsigned int nb_samples_per_snapshot;
1225 1229
1226 1230 delta_snapshot = waveform_picker_regs->delta_snapshot;
1227 1231 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1228 1232
1229 1233 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2 - 1;
1230 1234 }
1231 1235
1232 1236 //*****************
1233 1237 // local parameters
1234 1238
1235 1239 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1236 1240 {
1237 1241 /** This function increments the parameter "sequence_cnt" depending on the sid passed in argument.
1238 1242 *
1239 1243 * @param packet_sequence_control is a pointer toward the parameter sequence_cnt to update.
1240 1244 * @param sid is the source identifier of the packet being updated.
1241 1245 *
1242 1246 * REQ-LFR-SRS-5240 / SSS-CP-FS-590
1243 1247 * The sequence counters shall wrap around from 2^14 to zero.
1244 1248 * The sequence counter shall start at zero at startup.
1245 1249 *
1246 1250 * REQ-LFR-SRS-5239 / SSS-CP-FS-580
1247 1251 * All TM_LFR_SCIENCE_ packets are sent to ground, i.e. destination id = 0
1248 1252 *
1249 1253 */
1250 1254
1251 1255 unsigned short *sequence_cnt;
1252 1256 unsigned short segmentation_grouping_flag;
1253 1257 unsigned short new_packet_sequence_control;
1254 1258 rtems_mode initial_mode_set;
1255 1259 rtems_mode current_mode_set;
1256 1260 rtems_status_code status;
1257 1261
1258 1262 //******************************************
1259 1263 // CHANGE THE MODE OF THE CALLING RTEMS TASK
1260 1264 status = rtems_task_mode( RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &initial_mode_set );
1261 1265
1262 1266 if ( (sid == SID_NORM_SWF_F0) || (sid == SID_NORM_SWF_F1) || (sid == SID_NORM_SWF_F2)
1263 1267 || (sid == SID_NORM_CWF_F3) || (sid == SID_NORM_CWF_LONG_F3)
1264 1268 || (sid == SID_BURST_CWF_F2)
1265 1269 || (sid == SID_NORM_ASM_F0) || (sid == SID_NORM_ASM_F1) || (sid == SID_NORM_ASM_F2)
1266 1270 || (sid == SID_NORM_BP1_F0) || (sid == SID_NORM_BP1_F1) || (sid == SID_NORM_BP1_F2)
1267 1271 || (sid == SID_NORM_BP2_F0) || (sid == SID_NORM_BP2_F1) || (sid == SID_NORM_BP2_F2)
1268 1272 || (sid == SID_BURST_BP1_F0) || (sid == SID_BURST_BP2_F0)
1269 1273 || (sid == SID_BURST_BP1_F1) || (sid == SID_BURST_BP2_F1) )
1270 1274 {
1271 1275 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_NORMAL_BURST;
1272 1276 }
1273 1277 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2)
1274 1278 || (sid == SID_SBM1_BP1_F0) || (sid == SID_SBM1_BP2_F0)
1275 1279 || (sid == SID_SBM2_BP1_F0) || (sid == SID_SBM2_BP2_F0)
1276 1280 || (sid == SID_SBM2_BP1_F1) || (sid == SID_SBM2_BP2_F1) )
1277 1281 {
1278 1282 sequence_cnt = (unsigned short *) &sequenceCounters_SCIENCE_SBM1_SBM2;
1279 1283 }
1280 1284 else
1281 1285 {
1282 1286 sequence_cnt = (unsigned short *) NULL;
1283 1287 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1284 1288 }
1285 1289
1286 1290 if (sequence_cnt != NULL)
1287 1291 {
1288 1292 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << 8;
1289 1293 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1290 1294
1291 1295 new_packet_sequence_control = segmentation_grouping_flag | (*sequence_cnt) ;
1292 1296
1293 1297 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1294 1298 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1295 1299
1296 1300 // increment the sequence counter
1297 1301 if ( *sequence_cnt < SEQ_CNT_MAX)
1298 1302 {
1299 1303 *sequence_cnt = *sequence_cnt + 1;
1300 1304 }
1301 1305 else
1302 1306 {
1303 1307 *sequence_cnt = 0;
1304 1308 }
1305 1309 }
1306 1310
1307 1311 //*************************************
1308 1312 // RESTORE THE MODE OF THE CALLING TASK
1309 1313 status = rtems_task_mode( initial_mode_set, RTEMS_PREEMPT_MASK, &current_mode_set );
1310 1314 }
General Comments 0
You need to be logged in to leave comments. Login now