##// END OF EJS Templates
Last commit before leaving!
paul -
r219:96757b6fa557 R3
parent child
Show More
@@ -1,113 +1,113
1 TEMPLATE = app
1 TEMPLATE = app
2 # CONFIG += console v8 sim
2 # CONFIG += console v8 sim
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 # lpp_dpu_destid
4 # lpp_dpu_destid
5 CONFIG += console verbose lpp_dpu_destid
5 CONFIG += console verbose lpp_dpu_destid
6 CONFIG -= qt
6 CONFIG -= qt
7
7
8 include(./sparc.pri)
8 include(./sparc.pri)
9
9
10 # flight software version
10 # flight software version
11 SWVERSION=-1-0
11 SWVERSION=-1-0
12 DEFINES += SW_VERSION_N1=3 # major
12 DEFINES += SW_VERSION_N1=3 # major
13 DEFINES += SW_VERSION_N2=0 # minor
13 DEFINES += SW_VERSION_N2=0 # minor
14 DEFINES += SW_VERSION_N3=0 # patch
14 DEFINES += SW_VERSION_N3=0 # patch
15 DEFINES += SW_VERSION_N4=8 # internal
15 DEFINES += SW_VERSION_N4=8 # internal
16
16
17 # <GCOV>
17 # <GCOV>
18 QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
18 #QMAKE_CFLAGS_RELEASE += -fprofile-arcs -ftest-coverage
19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
19 #LIBS += -lgcov /opt/GCOV/01A/lib/overload.o -lc
20 LIBS += -lgcov /opt/GCOV/HOWTO_gcov_for_lfr_test/01A/lib/overload.o -lc
20 #LIBS += -lgcov /opt/GCOV/HOWTO_gcov_for_lfr_test/01A/lib/overload.o -lc
21 # </GCOV>
21 # </GCOV>
22
22
23 # <CHANGE BEFORE FLIGHT>
23 # <CHANGE BEFORE FLIGHT>
24 contains( CONFIG, lpp_dpu_destid ) {
24 contains( CONFIG, lpp_dpu_destid ) {
25 DEFINES += LPP_DPU_DESTID
25 DEFINES += LPP_DPU_DESTID
26 }
26 }
27 # </CHANGE BEFORE FLIGHT>
27 # </CHANGE BEFORE FLIGHT>
28
28
29 contains( CONFIG, debug_tch ) {
29 contains( CONFIG, debug_tch ) {
30 DEFINES += DEBUG_TCH
30 DEFINES += DEBUG_TCH
31 }
31 }
32 DEFINES += MSB_FIRST_TCH
32 DEFINES += MSB_FIRST_TCH
33
33
34 contains( CONFIG, vhdl_dev ) {
34 contains( CONFIG, vhdl_dev ) {
35 DEFINES += VHDL_DEV
35 DEFINES += VHDL_DEV
36 }
36 }
37
37
38 contains( CONFIG, verbose ) {
38 contains( CONFIG, verbose ) {
39 DEFINES += PRINT_MESSAGES_ON_CONSOLE
39 DEFINES += PRINT_MESSAGES_ON_CONSOLE
40 }
40 }
41
41
42 contains( CONFIG, debug_messages ) {
42 contains( CONFIG, debug_messages ) {
43 DEFINES += DEBUG_MESSAGES
43 DEFINES += DEBUG_MESSAGES
44 }
44 }
45
45
46 contains( CONFIG, cpu_usage_report ) {
46 contains( CONFIG, cpu_usage_report ) {
47 DEFINES += PRINT_TASK_STATISTICS
47 DEFINES += PRINT_TASK_STATISTICS
48 }
48 }
49
49
50 contains( CONFIG, stack_report ) {
50 contains( CONFIG, stack_report ) {
51 DEFINES += PRINT_STACK_REPORT
51 DEFINES += PRINT_STACK_REPORT
52 }
52 }
53
53
54 contains( CONFIG, boot_messages ) {
54 contains( CONFIG, boot_messages ) {
55 DEFINES += BOOT_MESSAGES
55 DEFINES += BOOT_MESSAGES
56 }
56 }
57
57
58 #doxygen.target = doxygen
58 #doxygen.target = doxygen
59 #doxygen.commands = doxygen ../doc/Doxyfile
59 #doxygen.commands = doxygen ../doc/Doxyfile
60 #QMAKE_EXTRA_TARGETS += doxygen
60 #QMAKE_EXTRA_TARGETS += doxygen
61
61
62 TARGET = fsw
62 TARGET = fsw
63
63
64 INCLUDEPATH += \
64 INCLUDEPATH += \
65 $${PWD}/../src \
65 $${PWD}/../src \
66 $${PWD}/../header \
66 $${PWD}/../header \
67 $${PWD}/../header/lfr_common_headers \
67 $${PWD}/../header/lfr_common_headers \
68 $${PWD}/../header/processing \
68 $${PWD}/../header/processing \
69 $${PWD}/../LFR_basic-parameters
69 $${PWD}/../LFR_basic-parameters
70
70
71 SOURCES += \
71 SOURCES += \
72 ../src/wf_handler.c \
72 ../src/wf_handler.c \
73 ../src/tc_handler.c \
73 ../src/tc_handler.c \
74 ../src/fsw_misc.c \
74 ../src/fsw_misc.c \
75 ../src/fsw_init.c \
75 ../src/fsw_init.c \
76 ../src/fsw_globals.c \
76 ../src/fsw_globals.c \
77 ../src/fsw_spacewire.c \
77 ../src/fsw_spacewire.c \
78 ../src/tc_load_dump_parameters.c \
78 ../src/tc_load_dump_parameters.c \
79 ../src/tm_lfr_tc_exe.c \
79 ../src/tm_lfr_tc_exe.c \
80 ../src/tc_acceptance.c \
80 ../src/tc_acceptance.c \
81 ../src/processing/fsw_processing.c \
81 ../src/processing/fsw_processing.c \
82 ../src/processing/avf0_prc0.c \
82 ../src/processing/avf0_prc0.c \
83 ../src/processing/avf1_prc1.c \
83 ../src/processing/avf1_prc1.c \
84 ../src/processing/avf2_prc2.c \
84 ../src/processing/avf2_prc2.c \
85 ../src/lfr_cpu_usage_report.c \
85 ../src/lfr_cpu_usage_report.c \
86 ../LFR_basic-parameters/basic_parameters.c
86 ../LFR_basic-parameters/basic_parameters.c
87
87
88 HEADERS += \
88 HEADERS += \
89 ../header/wf_handler.h \
89 ../header/wf_handler.h \
90 ../header/tc_handler.h \
90 ../header/tc_handler.h \
91 ../header/grlib_regs.h \
91 ../header/grlib_regs.h \
92 ../header/fsw_misc.h \
92 ../header/fsw_misc.h \
93 ../header/fsw_init.h \
93 ../header/fsw_init.h \
94 ../header/fsw_spacewire.h \
94 ../header/fsw_spacewire.h \
95 ../header/tc_load_dump_parameters.h \
95 ../header/tc_load_dump_parameters.h \
96 ../header/tm_lfr_tc_exe.h \
96 ../header/tm_lfr_tc_exe.h \
97 ../header/tc_acceptance.h \
97 ../header/tc_acceptance.h \
98 ../header/processing/fsw_processing.h \
98 ../header/processing/fsw_processing.h \
99 ../header/processing/avf0_prc0.h \
99 ../header/processing/avf0_prc0.h \
100 ../header/processing/avf1_prc1.h \
100 ../header/processing/avf1_prc1.h \
101 ../header/processing/avf2_prc2.h \
101 ../header/processing/avf2_prc2.h \
102 ../header/fsw_params_wf_handler.h \
102 ../header/fsw_params_wf_handler.h \
103 ../header/lfr_cpu_usage_report.h \
103 ../header/lfr_cpu_usage_report.h \
104 ../header/lfr_common_headers/ccsds_types.h \
104 ../header/lfr_common_headers/ccsds_types.h \
105 ../header/lfr_common_headers/fsw_params.h \
105 ../header/lfr_common_headers/fsw_params.h \
106 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
106 ../header/lfr_common_headers/fsw_params_nb_bytes.h \
107 ../header/lfr_common_headers/fsw_params_processing.h \
107 ../header/lfr_common_headers/fsw_params_processing.h \
108 ../header/lfr_common_headers/TC_types.h \
108 ../header/lfr_common_headers/TC_types.h \
109 ../header/lfr_common_headers/tm_byte_positions.h \
109 ../header/lfr_common_headers/tm_byte_positions.h \
110 ../LFR_basic-parameters/basic_parameters.h \
110 ../LFR_basic-parameters/basic_parameters.h \
111 ../LFR_basic-parameters/basic_parameters_params.h \
111 ../LFR_basic-parameters/basic_parameters_params.h \
112 ../header/GscMemoryLPP.hpp
112 ../header/GscMemoryLPP.hpp
113
113
@@ -1,1164 +1,1169
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[6];
35 unsigned char time[6];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 status = get_message_queue_id_recv( &queue_rcv_id );
39 status = get_message_queue_id_recv( &queue_rcv_id );
40 if (status != RTEMS_SUCCESSFUL)
40 if (status != RTEMS_SUCCESSFUL)
41 {
41 {
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 }
43 }
44
44
45 status = get_message_queue_id_send( &queue_snd_id );
45 status = get_message_queue_id_send( &queue_snd_id );
46 if (status != RTEMS_SUCCESSFUL)
46 if (status != RTEMS_SUCCESSFUL)
47 {
47 {
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 }
49 }
50
50
51 result = LFR_SUCCESSFUL;
51 result = LFR_SUCCESSFUL;
52 subtype = 0; // subtype of the current TC packet
52 subtype = 0; // subtype of the current TC packet
53
53
54 BOOT_PRINTF("in ACTN *** \n")
54 BOOT_PRINTF("in ACTN *** \n")
55
55
56 while(1)
56 while(1)
57 {
57 {
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 getTime( time ); // set time to the current time
60 getTime( time ); // set time to the current time
61 if (status!=RTEMS_SUCCESSFUL)
61 if (status!=RTEMS_SUCCESSFUL)
62 {
62 {
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 }
64 }
65 else
65 else
66 {
66 {
67 subtype = TC.serviceSubType;
67 subtype = TC.serviceSubType;
68 switch(subtype)
68 switch(subtype)
69 {
69 {
70 case TC_SUBTYPE_RESET:
70 case TC_SUBTYPE_RESET:
71 result = action_reset( &TC, queue_snd_id, time );
71 result = action_reset( &TC, queue_snd_id, time );
72 close_action( &TC, result, queue_snd_id );
72 close_action( &TC, result, queue_snd_id );
73 break;
73 break;
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 case TC_SUBTYPE_LOAD_NORM:
78 case TC_SUBTYPE_LOAD_NORM:
79 result = action_load_normal_par( &TC, queue_snd_id, time );
79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 close_action( &TC, result, queue_snd_id );
80 close_action( &TC, result, queue_snd_id );
81 break;
81 break;
82 case TC_SUBTYPE_LOAD_BURST:
82 case TC_SUBTYPE_LOAD_BURST:
83 result = action_load_burst_par( &TC, queue_snd_id, time );
83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 close_action( &TC, result, queue_snd_id );
84 close_action( &TC, result, queue_snd_id );
85 break;
85 break;
86 case TC_SUBTYPE_LOAD_SBM1:
86 case TC_SUBTYPE_LOAD_SBM1:
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 close_action( &TC, result, queue_snd_id );
88 close_action( &TC, result, queue_snd_id );
89 break;
89 break;
90 case TC_SUBTYPE_LOAD_SBM2:
90 case TC_SUBTYPE_LOAD_SBM2:
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 close_action( &TC, result, queue_snd_id );
92 close_action( &TC, result, queue_snd_id );
93 break;
93 break;
94 case TC_SUBTYPE_DUMP:
94 case TC_SUBTYPE_DUMP:
95 result = action_dump_par( queue_snd_id );
95 result = action_dump_par( queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 case TC_SUBTYPE_ENTER:
98 case TC_SUBTYPE_ENTER:
99 result = action_enter_mode( &TC, queue_snd_id );
99 result = action_enter_mode( &TC, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
101 break;
101 break;
102 case TC_SUBTYPE_UPDT_INFO:
102 case TC_SUBTYPE_UPDT_INFO:
103 result = action_update_info( &TC, queue_snd_id );
103 result = action_update_info( &TC, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
105 break;
105 break;
106 case TC_SUBTYPE_EN_CAL:
106 case TC_SUBTYPE_EN_CAL:
107 result = action_enable_calibration( &TC, queue_snd_id, time );
107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 close_action( &TC, result, queue_snd_id );
108 close_action( &TC, result, queue_snd_id );
109 break;
109 break;
110 case TC_SUBTYPE_DIS_CAL:
110 case TC_SUBTYPE_DIS_CAL:
111 result = action_disable_calibration( &TC, queue_snd_id, time );
111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 close_action( &TC, result, queue_snd_id );
112 close_action( &TC, result, queue_snd_id );
113 break;
113 break;
114 case TC_SUBTYPE_LOAD_K:
114 case TC_SUBTYPE_LOAD_K:
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 case TC_SUBTYPE_DUMP_K:
118 case TC_SUBTYPE_DUMP_K:
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 close_action( &TC, result, queue_snd_id );
120 close_action( &TC, result, queue_snd_id );
121 break;
121 break;
122 case TC_SUBTYPE_LOAD_FBINS:
122 case TC_SUBTYPE_LOAD_FBINS:
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 close_action( &TC, result, queue_snd_id );
124 close_action( &TC, result, queue_snd_id );
125 break;
125 break;
126 case TC_SUBTYPE_UPDT_TIME:
126 case TC_SUBTYPE_UPDT_TIME:
127 result = action_update_time( &TC );
127 result = action_update_time( &TC );
128 close_action( &TC, result, queue_snd_id );
128 close_action( &TC, result, queue_snd_id );
129 break;
129 break;
130 default:
130 default:
131 break;
131 break;
132 }
132 }
133 }
133 }
134 }
134 }
135 }
135 }
136
136
137 //***********
137 //***********
138 // TC ACTIONS
138 // TC ACTIONS
139
139
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 {
141 {
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 *
143 *
144 * @param TC points to the TeleCommand packet that is being processed
144 * @param TC points to the TeleCommand packet that is being processed
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 *
146 *
147 */
147 */
148
148
149 printf("this is the end!!!\n");
149 printf("this is the end!!!\n");
150 exit(0);
150 exit(0);
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 return LFR_DEFAULT;
152 return LFR_DEFAULT;
153 }
153 }
154
154
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 {
156 {
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 *
158 *
159 * @param TC points to the TeleCommand packet that is being processed
159 * @param TC points to the TeleCommand packet that is being processed
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 *
161 *
162 */
162 */
163
163
164 rtems_status_code status;
164 rtems_status_code status;
165 unsigned char requestedMode;
165 unsigned char requestedMode;
166 unsigned int *transitionCoarseTime_ptr;
166 unsigned int *transitionCoarseTime_ptr;
167 unsigned int transitionCoarseTime;
167 unsigned int transitionCoarseTime;
168 unsigned char * bytePosPtr;
168 unsigned char * bytePosPtr;
169
169
170 bytePosPtr = (unsigned char *) &TC->packetID;
170 bytePosPtr = (unsigned char *) &TC->packetID;
171
171
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175
175
176 status = check_mode_value( requestedMode );
176 status = check_mode_value( requestedMode );
177
177
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 {
179 {
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 }
181 }
182 else // the mode value is consistent, check the transition
182 else // the mode value is valid, check the transition
183 {
183 {
184 status = check_mode_transition(requestedMode);
184 status = check_mode_transition(requestedMode);
185 if (status != LFR_SUCCESSFUL)
185 if (status != LFR_SUCCESSFUL)
186 {
186 {
187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
187 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
188 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 }
189 }
190 }
190 }
191
191
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
192 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
193 {
193 {
194 status = check_transition_date( transitionCoarseTime );
194 status = check_transition_date( transitionCoarseTime );
195 if (status != LFR_SUCCESSFUL)
195 if (status != LFR_SUCCESSFUL)
196 {
196 {
197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
197 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
198 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
199 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
200 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 }
201 }
202 }
202 }
203
203
204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
204 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 {
205 {
206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
206 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 status = enter_mode( requestedMode, transitionCoarseTime );
207 status = enter_mode( requestedMode, transitionCoarseTime );
208 }
208 }
209
209
210 return status;
210 return status;
211 }
211 }
212
212
213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
213 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
214 {
214 {
215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
215 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
216 *
216 *
217 * @param TC points to the TeleCommand packet that is being processed
217 * @param TC points to the TeleCommand packet that is being processed
218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
218 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
219 *
219 *
220 * @return LFR directive status code:
220 * @return LFR directive status code:
221 * - LFR_DEFAULT
221 * - LFR_DEFAULT
222 * - LFR_SUCCESSFUL
222 * - LFR_SUCCESSFUL
223 *
223 *
224 */
224 */
225
225
226 unsigned int val;
226 unsigned int val;
227 int result;
227 int result;
228 unsigned int status;
228 unsigned int status;
229 unsigned char mode;
229 unsigned char mode;
230 unsigned char * bytePosPtr;
230 unsigned char * bytePosPtr;
231
231
232 bytePosPtr = (unsigned char *) &TC->packetID;
232 bytePosPtr = (unsigned char *) &TC->packetID;
233
233
234 // check LFR mode
234 // check LFR mode
235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
235 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
236 status = check_update_info_hk_lfr_mode( mode );
236 status = check_update_info_hk_lfr_mode( mode );
237 if (status == LFR_SUCCESSFUL) // check TDS mode
237 if (status == LFR_SUCCESSFUL) // check TDS mode
238 {
238 {
239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
239 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
240 status = check_update_info_hk_tds_mode( mode );
240 status = check_update_info_hk_tds_mode( mode );
241 }
241 }
242 if (status == LFR_SUCCESSFUL) // check THR mode
242 if (status == LFR_SUCCESSFUL) // check THR mode
243 {
243 {
244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
244 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
245 status = check_update_info_hk_thr_mode( mode );
245 status = check_update_info_hk_thr_mode( mode );
246 }
246 }
247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
247 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
248 {
248 {
249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
249 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
250 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
251 val++;
251 val++;
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
252 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
253 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
254 }
254 }
255
255
256 result = status;
256 result = status;
257
257
258 return result;
258 return result;
259 }
259 }
260
260
261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
261 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
262 {
262 {
263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
263 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
264 *
264 *
265 * @param TC points to the TeleCommand packet that is being processed
265 * @param TC points to the TeleCommand packet that is being processed
266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
266 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
267 *
267 *
268 */
268 */
269
269
270 int result;
270 int result;
271
271
272 result = LFR_DEFAULT;
272 result = LFR_DEFAULT;
273
273
274 setCalibration( true );
274 setCalibration( true );
275
275
276 result = LFR_SUCCESSFUL;
276 result = LFR_SUCCESSFUL;
277
277
278 return result;
278 return result;
279 }
279 }
280
280
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
281 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
282 {
282 {
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
283 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
284 *
284 *
285 * @param TC points to the TeleCommand packet that is being processed
285 * @param TC points to the TeleCommand packet that is being processed
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
286 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
287 *
287 *
288 */
288 */
289
289
290 int result;
290 int result;
291
291
292 result = LFR_DEFAULT;
292 result = LFR_DEFAULT;
293
293
294 setCalibration( false );
294 setCalibration( false );
295
295
296 result = LFR_SUCCESSFUL;
296 result = LFR_SUCCESSFUL;
297
297
298 return result;
298 return result;
299 }
299 }
300
300
301 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 int action_update_time(ccsdsTelecommandPacket_t *TC)
302 {
302 {
303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
304 *
304 *
305 * @param TC points to the TeleCommand packet that is being processed
305 * @param TC points to the TeleCommand packet that is being processed
306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
307 *
307 *
308 * @return LFR_SUCCESSFUL
308 * @return LFR_SUCCESSFUL
309 *
309 *
310 */
310 */
311
311
312 unsigned int val;
312 unsigned int val;
313
313
314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
315 + (TC->dataAndCRC[1] << 16)
315 + (TC->dataAndCRC[1] << 16)
316 + (TC->dataAndCRC[2] << 8)
316 + (TC->dataAndCRC[2] << 8)
317 + TC->dataAndCRC[3];
317 + TC->dataAndCRC[3];
318
318
319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
319 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
320 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
321 val++;
321 val++;
322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
322 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
323 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
324
324
325 return LFR_SUCCESSFUL;
325 return LFR_SUCCESSFUL;
326 }
326 }
327
327
328 //*******************
328 //*******************
329 // ENTERING THE MODES
329 // ENTERING THE MODES
330 int check_mode_value( unsigned char requestedMode )
330 int check_mode_value( unsigned char requestedMode )
331 {
331 {
332 int status;
332 int status;
333
333
334 if ( (requestedMode != LFR_MODE_STANDBY)
334 if ( (requestedMode != LFR_MODE_STANDBY)
335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
335 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
336 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
337 {
337 {
338 status = LFR_DEFAULT;
338 status = LFR_DEFAULT;
339 }
339 }
340 else
340 else
341 {
341 {
342 status = LFR_SUCCESSFUL;
342 status = LFR_SUCCESSFUL;
343 }
343 }
344
344
345 return status;
345 return status;
346 }
346 }
347
347
348 int check_mode_transition( unsigned char requestedMode )
348 int check_mode_transition( unsigned char requestedMode )
349 {
349 {
350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
350 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
351 *
351 *
352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
352 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
353 *
353 *
354 * @return LFR directive status codes:
354 * @return LFR directive status codes:
355 * - LFR_SUCCESSFUL - the transition is authorized
355 * - LFR_SUCCESSFUL - the transition is authorized
356 * - LFR_DEFAULT - the transition is not authorized
356 * - LFR_DEFAULT - the transition is not authorized
357 *
357 *
358 */
358 */
359
359
360 int status;
360 int status;
361
361
362 switch (requestedMode)
362 switch (requestedMode)
363 {
363 {
364 case LFR_MODE_STANDBY:
364 case LFR_MODE_STANDBY:
365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
365 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
366 status = LFR_DEFAULT;
366 status = LFR_DEFAULT;
367 }
367 }
368 else
368 else
369 {
369 {
370 status = LFR_SUCCESSFUL;
370 status = LFR_SUCCESSFUL;
371 }
371 }
372 break;
372 break;
373 case LFR_MODE_NORMAL:
373 case LFR_MODE_NORMAL:
374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
374 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
375 status = LFR_DEFAULT;
375 status = LFR_DEFAULT;
376 }
376 }
377 else {
377 else {
378 status = LFR_SUCCESSFUL;
378 status = LFR_SUCCESSFUL;
379 }
379 }
380 break;
380 break;
381 case LFR_MODE_BURST:
381 case LFR_MODE_BURST:
382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
382 if ( lfrCurrentMode == LFR_MODE_BURST ) {
383 status = LFR_DEFAULT;
383 status = LFR_DEFAULT;
384 }
384 }
385 else {
385 else {
386 status = LFR_SUCCESSFUL;
386 status = LFR_SUCCESSFUL;
387 }
387 }
388 break;
388 break;
389 case LFR_MODE_SBM1:
389 case LFR_MODE_SBM1:
390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
390 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
391 status = LFR_DEFAULT;
391 status = LFR_DEFAULT;
392 }
392 }
393 else {
393 else {
394 status = LFR_SUCCESSFUL;
394 status = LFR_SUCCESSFUL;
395 }
395 }
396 break;
396 break;
397 case LFR_MODE_SBM2:
397 case LFR_MODE_SBM2:
398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
398 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
399 status = LFR_DEFAULT;
399 status = LFR_DEFAULT;
400 }
400 }
401 else {
401 else {
402 status = LFR_SUCCESSFUL;
402 status = LFR_SUCCESSFUL;
403 }
403 }
404 break;
404 break;
405 default:
405 default:
406 status = LFR_DEFAULT;
406 status = LFR_DEFAULT;
407 break;
407 break;
408 }
408 }
409
409
410 return status;
410 return status;
411 }
411 }
412
412
413 int check_transition_date( unsigned int transitionCoarseTime )
413 int check_transition_date( unsigned int transitionCoarseTime )
414 {
414 {
415 int status;
415 int status;
416 unsigned int localCoarseTime;
416 unsigned int localCoarseTime;
417 unsigned int deltaCoarseTime;
417 unsigned int deltaCoarseTime;
418
418
419 status = LFR_SUCCESSFUL;
419 status = LFR_SUCCESSFUL;
420
420
421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
421 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
422 {
422 {
423 status = LFR_SUCCESSFUL;
423 status = LFR_SUCCESSFUL;
424 }
424 }
425 else
425 else
426 {
426 {
427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
427 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
428
428
429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
429 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
430
430
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 {
432 {
433 status = LFR_DEFAULT;
433 status = LFR_DEFAULT;
434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
434 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
435 }
435 }
436
436
437 if (status == LFR_SUCCESSFUL)
437 if (status == LFR_SUCCESSFUL)
438 {
438 {
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 {
441 {
442 status = LFR_DEFAULT;
442 status = LFR_DEFAULT;
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 }
444 }
445 }
445 }
446 }
446 }
447
447
448 return status;
448 return status;
449 }
449 }
450
450
451 int stop_current_mode( void )
451 int stop_current_mode( void )
452 {
452 {
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 *
454 *
455 * @return RTEMS directive status codes:
455 * @return RTEMS directive status codes:
456 * - RTEMS_SUCCESSFUL - task restarted successfully
456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 * - RTEMS_INVALID_ID - task id invalid
457 * - RTEMS_INVALID_ID - task id invalid
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 *
459 *
460 */
460 */
461
461
462 rtems_status_code status;
462 rtems_status_code status;
463
463
464 status = RTEMS_SUCCESSFUL;
464 status = RTEMS_SUCCESSFUL;
465
465
466 // (1) mask interruptions
466 // (1) mask interruptions
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469
469
470 // (2) reset waveform picker registers
470 // (2) reset waveform picker registers
471 reset_wfp_burst_enable(); // reset burst and enable bits
471 reset_wfp_burst_enable(); // reset burst and enable bits
472 reset_wfp_status(); // reset all the status bits
472 reset_wfp_status(); // reset all the status bits
473
473
474 // (3) reset spectral matrices registers
474 // (3) reset spectral matrices registers
475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
475 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
476 reset_sm_status();
476 reset_sm_status();
477
477
478 // reset lfr VHDL module
478 // reset lfr VHDL module
479 reset_lfr();
479 reset_lfr();
480
480
481 reset_extractSWF(); // reset the extractSWF flag to false
481 reset_extractSWF(); // reset the extractSWF flag to false
482
482
483 // (4) clear interruptions
483 // (4) clear interruptions
484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
484 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
485 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
486
486
487 // <Spectral Matrices simulator>
487 // <Spectral Matrices simulator>
488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
488 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
489 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
490 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
491 // </Spectral Matrices simulator>
491 // </Spectral Matrices simulator>
492
492
493 // suspend several tasks
493 // suspend several tasks
494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
494 if (lfrCurrentMode != LFR_MODE_STANDBY) {
495 status = suspend_science_tasks();
495 status = suspend_science_tasks();
496 }
496 }
497
497
498 if (status != RTEMS_SUCCESSFUL)
498 if (status != RTEMS_SUCCESSFUL)
499 {
499 {
500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
500 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
501 }
501 }
502
502
503 return status;
503 return status;
504 }
504 }
505
505
506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
506 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
507 {
507 {
508 /** This function is launched after a mode transition validation.
508 /** This function is launched after a mode transition validation.
509 *
509 *
510 * @param mode is the mode in which LFR will be put.
510 * @param mode is the mode in which LFR will be put.
511 *
511 *
512 * @return RTEMS directive status codes:
512 * @return RTEMS directive status codes:
513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
513 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
514 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
515 *
515 *
516 */
516 */
517
517
518 rtems_status_code status;
518 rtems_status_code status;
519
519
520 //**********************
520 //**********************
521 // STOP THE CURRENT MODE
521 // STOP THE CURRENT MODE
522 status = stop_current_mode();
522 status = stop_current_mode();
523 if (status != RTEMS_SUCCESSFUL)
523 if (status != RTEMS_SUCCESSFUL)
524 {
524 {
525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
525 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
526 }
526 }
527
527
528 //*************************
528 //*************************
529 // ENTER THE REQUESTED MODE
529 // ENTER THE REQUESTED MODE
530 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
530 if (status == RTEMS_SUCCESSFUL) // if the current mode has been successfully stopped
531 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
532 {
531 {
532 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
533 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
534 {
533 #ifdef PRINT_TASK_STATISTICS
535 #ifdef PRINT_TASK_STATISTICS
534 rtems_cpu_usage_reset();
536 rtems_cpu_usage_reset();
535 #endif
537 #endif
536 status = restart_science_tasks( mode );
538 status = restart_science_tasks( mode );
537 launch_spectral_matrix( );
539 if (status == RTEMS_SUCCESSFUL)
538 launch_waveform_picker( mode, transitionCoarseTime );
540 {
539 // launch_spectral_matrix_simu( );
541 launch_spectral_matrix( );
540 }
542 launch_waveform_picker( mode, transitionCoarseTime );
541 else if ( mode == LFR_MODE_STANDBY )
543 }
542 {
544 }
545 else if ( mode == LFR_MODE_STANDBY )
546 {
543 #ifdef PRINT_TASK_STATISTICS
547 #ifdef PRINT_TASK_STATISTICS
544 rtems_cpu_usage_report();
548 rtems_cpu_usage_report();
545 #endif
549 #endif
546
550
547 #ifdef PRINT_STACK_REPORT
551 #ifdef PRINT_STACK_REPORT
548 PRINTF("stack report selected\n")
552 PRINTF("stack report selected\n")
549 rtems_stack_checker_report_usage();
553 rtems_stack_checker_report_usage();
550 #endif
554 #endif
551 }
555 }
552 else
556 else
553 {
557 {
554 status = RTEMS_UNSATISFIED;
558 status = RTEMS_UNSATISFIED;
559 }
555 }
560 }
556
561
557 if (status != RTEMS_SUCCESSFUL)
562 if (status != RTEMS_SUCCESSFUL)
558 {
563 {
559 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
564 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
560 status = RTEMS_UNSATISFIED;
565 status = RTEMS_UNSATISFIED;
561 }
566 }
562
567
563 return status;
568 return status;
564 }
569 }
565
570
566 int restart_science_tasks(unsigned char lfrRequestedMode )
571 int restart_science_tasks(unsigned char lfrRequestedMode )
567 {
572 {
568 /** This function is used to restart all science tasks.
573 /** This function is used to restart all science tasks.
569 *
574 *
570 * @return RTEMS directive status codes:
575 * @return RTEMS directive status codes:
571 * - RTEMS_SUCCESSFUL - task restarted successfully
576 * - RTEMS_SUCCESSFUL - task restarted successfully
572 * - RTEMS_INVALID_ID - task id invalid
577 * - RTEMS_INVALID_ID - task id invalid
573 * - RTEMS_INCORRECT_STATE - task never started
578 * - RTEMS_INCORRECT_STATE - task never started
574 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
579 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
575 *
580 *
576 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
581 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
577 *
582 *
578 */
583 */
579
584
580 rtems_status_code status[10];
585 rtems_status_code status[10];
581 rtems_status_code ret;
586 rtems_status_code ret;
582
587
583 ret = RTEMS_SUCCESSFUL;
588 ret = RTEMS_SUCCESSFUL;
584
589
585 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
590 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
586 if (status[0] != RTEMS_SUCCESSFUL)
591 if (status[0] != RTEMS_SUCCESSFUL)
587 {
592 {
588 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
593 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
589 }
594 }
590
595
591 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
596 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
592 if (status[1] != RTEMS_SUCCESSFUL)
597 if (status[1] != RTEMS_SUCCESSFUL)
593 {
598 {
594 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
599 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
595 }
600 }
596
601
597 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
602 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
598 if (status[2] != RTEMS_SUCCESSFUL)
603 if (status[2] != RTEMS_SUCCESSFUL)
599 {
604 {
600 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
605 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
601 }
606 }
602
607
603 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
608 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
604 if (status[3] != RTEMS_SUCCESSFUL)
609 if (status[3] != RTEMS_SUCCESSFUL)
605 {
610 {
606 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
611 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
607 }
612 }
608
613
609 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
614 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
610 if (status[4] != RTEMS_SUCCESSFUL)
615 if (status[4] != RTEMS_SUCCESSFUL)
611 {
616 {
612 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
617 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
613 }
618 }
614
619
615 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
620 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
616 if (status[5] != RTEMS_SUCCESSFUL)
621 if (status[5] != RTEMS_SUCCESSFUL)
617 {
622 {
618 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
623 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
619 }
624 }
620
625
621 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
626 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
622 if (status[6] != RTEMS_SUCCESSFUL)
627 if (status[6] != RTEMS_SUCCESSFUL)
623 {
628 {
624 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
629 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
625 }
630 }
626
631
627 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
632 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
628 if (status[7] != RTEMS_SUCCESSFUL)
633 if (status[7] != RTEMS_SUCCESSFUL)
629 {
634 {
630 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
635 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
631 }
636 }
632
637
633 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
638 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
634 if (status[8] != RTEMS_SUCCESSFUL)
639 if (status[8] != RTEMS_SUCCESSFUL)
635 {
640 {
636 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
641 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
637 }
642 }
638
643
639 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
644 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
640 if (status[9] != RTEMS_SUCCESSFUL)
645 if (status[9] != RTEMS_SUCCESSFUL)
641 {
646 {
642 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
647 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
643 }
648 }
644
649
645 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
650 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
646 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
651 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
647 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
652 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
648 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
653 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
649 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
654 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
650 {
655 {
651 ret = RTEMS_UNSATISFIED;
656 ret = RTEMS_UNSATISFIED;
652 }
657 }
653
658
654 return ret;
659 return ret;
655 }
660 }
656
661
657 int suspend_science_tasks()
662 int suspend_science_tasks()
658 {
663 {
659 /** This function suspends the science tasks.
664 /** This function suspends the science tasks.
660 *
665 *
661 * @return RTEMS directive status codes:
666 * @return RTEMS directive status codes:
662 * - RTEMS_SUCCESSFUL - task restarted successfully
667 * - RTEMS_SUCCESSFUL - task restarted successfully
663 * - RTEMS_INVALID_ID - task id invalid
668 * - RTEMS_INVALID_ID - task id invalid
664 * - RTEMS_ALREADY_SUSPENDED - task already suspended
669 * - RTEMS_ALREADY_SUSPENDED - task already suspended
665 *
670 *
666 */
671 */
667
672
668 rtems_status_code status;
673 rtems_status_code status;
669
674
670 printf("in suspend_science_tasks\n");
675 printf("in suspend_science_tasks\n");
671
676
672 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
677 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
673 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
678 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
674 {
679 {
675 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
680 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
676 }
681 }
677 else
682 else
678 {
683 {
679 status = RTEMS_SUCCESSFUL;
684 status = RTEMS_SUCCESSFUL;
680 }
685 }
681 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
686 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
682 {
687 {
683 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
688 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
684 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
689 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
685 {
690 {
686 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
691 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
687 }
692 }
688 else
693 else
689 {
694 {
690 status = RTEMS_SUCCESSFUL;
695 status = RTEMS_SUCCESSFUL;
691 }
696 }
692 }
697 }
693 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
698 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
694 {
699 {
695 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
700 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
696 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
701 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
697 {
702 {
698 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
703 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
699 }
704 }
700 else
705 else
701 {
706 {
702 status = RTEMS_SUCCESSFUL;
707 status = RTEMS_SUCCESSFUL;
703 }
708 }
704 }
709 }
705 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
710 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
706 {
711 {
707 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
712 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
708 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
713 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
709 {
714 {
710 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
715 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
711 }
716 }
712 else
717 else
713 {
718 {
714 status = RTEMS_SUCCESSFUL;
719 status = RTEMS_SUCCESSFUL;
715 }
720 }
716 }
721 }
717 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
722 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
718 {
723 {
719 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
724 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
720 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
725 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
721 {
726 {
722 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
727 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
723 }
728 }
724 else
729 else
725 {
730 {
726 status = RTEMS_SUCCESSFUL;
731 status = RTEMS_SUCCESSFUL;
727 }
732 }
728 }
733 }
729 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
734 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
730 {
735 {
731 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
736 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
732 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
737 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
733 {
738 {
734 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
739 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
735 }
740 }
736 else
741 else
737 {
742 {
738 status = RTEMS_SUCCESSFUL;
743 status = RTEMS_SUCCESSFUL;
739 }
744 }
740 }
745 }
741 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
746 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
742 {
747 {
743 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
748 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
744 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
749 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
745 {
750 {
746 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
751 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
747 }
752 }
748 else
753 else
749 {
754 {
750 status = RTEMS_SUCCESSFUL;
755 status = RTEMS_SUCCESSFUL;
751 }
756 }
752 }
757 }
753 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
758 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
754 {
759 {
755 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
760 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
756 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
761 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
757 {
762 {
758 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
763 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
759 }
764 }
760 else
765 else
761 {
766 {
762 status = RTEMS_SUCCESSFUL;
767 status = RTEMS_SUCCESSFUL;
763 }
768 }
764 }
769 }
765 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
770 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
766 {
771 {
767 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
772 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
768 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
773 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
769 {
774 {
770 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
775 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
771 }
776 }
772 else
777 else
773 {
778 {
774 status = RTEMS_SUCCESSFUL;
779 status = RTEMS_SUCCESSFUL;
775 }
780 }
776 }
781 }
777 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
782 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
778 {
783 {
779 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
784 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
780 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
785 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
781 {
786 {
782 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
787 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
783 }
788 }
784 else
789 else
785 {
790 {
786 status = RTEMS_SUCCESSFUL;
791 status = RTEMS_SUCCESSFUL;
787 }
792 }
788 }
793 }
789
794
790 return status;
795 return status;
791 }
796 }
792
797
793 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
798 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
794 {
799 {
795 WFP_reset_current_ring_nodes();
800 WFP_reset_current_ring_nodes();
796
801
797 reset_waveform_picker_regs();
802 reset_waveform_picker_regs();
798
803
799 set_wfp_burst_enable_register( mode );
804 set_wfp_burst_enable_register( mode );
800
805
801 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
806 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
802 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
807 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
803
808
804 if (transitionCoarseTime == 0)
809 if (transitionCoarseTime == 0)
805 {
810 {
806 waveform_picker_regs->start_date = time_management_regs->coarse_time;
811 waveform_picker_regs->start_date = time_management_regs->coarse_time;
807 }
812 }
808 else
813 else
809 {
814 {
810 waveform_picker_regs->start_date = transitionCoarseTime;
815 waveform_picker_regs->start_date = transitionCoarseTime;
811 }
816 }
812
817
813 }
818 }
814
819
815 void launch_spectral_matrix( void )
820 void launch_spectral_matrix( void )
816 {
821 {
817 SM_reset_current_ring_nodes();
822 SM_reset_current_ring_nodes();
818
823
819 reset_spectral_matrix_regs();
824 reset_spectral_matrix_regs();
820
825
821 reset_nb_sm();
826 reset_nb_sm();
822
827
823 set_sm_irq_onNewMatrix( 1 );
828 set_sm_irq_onNewMatrix( 1 );
824
829
825 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
830 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
826 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
831 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
827
832
828 }
833 }
829
834
830 void launch_spectral_matrix_simu( void )
835 void launch_spectral_matrix_simu( void )
831 {
836 {
832 SM_reset_current_ring_nodes();
837 SM_reset_current_ring_nodes();
833 reset_spectral_matrix_regs();
838 reset_spectral_matrix_regs();
834 reset_nb_sm();
839 reset_nb_sm();
835
840
836 // Spectral Matrices simulator
841 // Spectral Matrices simulator
837 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
842 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
838 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
843 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
839 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
844 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
840 }
845 }
841
846
842 void set_sm_irq_onNewMatrix( unsigned char value )
847 void set_sm_irq_onNewMatrix( unsigned char value )
843 {
848 {
844 if (value == 1)
849 if (value == 1)
845 {
850 {
846 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
851 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
847 }
852 }
848 else
853 else
849 {
854 {
850 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
855 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
851 }
856 }
852 }
857 }
853
858
854 void set_sm_irq_onError( unsigned char value )
859 void set_sm_irq_onError( unsigned char value )
855 {
860 {
856 if (value == 1)
861 if (value == 1)
857 {
862 {
858 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
863 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
859 }
864 }
860 else
865 else
861 {
866 {
862 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
867 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
863 }
868 }
864 }
869 }
865
870
866 //*****************************
871 //*****************************
867 // CONFIGURE CALIBRATION SIGNAL
872 // CONFIGURE CALIBRATION SIGNAL
868 void setCalibrationPrescaler( unsigned int prescaler )
873 void setCalibrationPrescaler( unsigned int prescaler )
869 {
874 {
870 // prescaling of the master clock (25 MHz)
875 // prescaling of the master clock (25 MHz)
871 // master clock is divided by 2^prescaler
876 // master clock is divided by 2^prescaler
872 time_management_regs->calPrescaler = prescaler;
877 time_management_regs->calPrescaler = prescaler;
873 }
878 }
874
879
875 void setCalibrationDivisor( unsigned int divisionFactor )
880 void setCalibrationDivisor( unsigned int divisionFactor )
876 {
881 {
877 // division of the prescaled clock by the division factor
882 // division of the prescaled clock by the division factor
878 time_management_regs->calDivisor = divisionFactor;
883 time_management_regs->calDivisor = divisionFactor;
879 }
884 }
880
885
881 void setCalibrationData( void ){
886 void setCalibrationData( void ){
882 unsigned int k;
887 unsigned int k;
883 unsigned short data;
888 unsigned short data;
884 float val;
889 float val;
885 float f0;
890 float f0;
886 float f1;
891 float f1;
887 float fs;
892 float fs;
888 float Ts;
893 float Ts;
889 float scaleFactor;
894 float scaleFactor;
890
895
891 f0 = 625;
896 f0 = 625;
892 f1 = 10000;
897 f1 = 10000;
893 fs = 160256.410;
898 fs = 160256.410;
894 Ts = 1. / fs;
899 Ts = 1. / fs;
895 scaleFactor = 0.125 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 250 mVpp each, amplitude = 125 mV
900 scaleFactor = 0.125 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 250 mVpp each, amplitude = 125 mV
896
901
897 time_management_regs->calDataPtr = 0x00;
902 time_management_regs->calDataPtr = 0x00;
898
903
899 // build the signal for the SCM calibration
904 // build the signal for the SCM calibration
900 for (k=0; k<256; k++)
905 for (k=0; k<256; k++)
901 {
906 {
902 val = sin( 2 * pi * f0 * k * Ts )
907 val = sin( 2 * pi * f0 * k * Ts )
903 + sin( 2 * pi * f1 * k * Ts );
908 + sin( 2 * pi * f1 * k * Ts );
904 data = (unsigned short) ((val * scaleFactor) + 2048);
909 data = (unsigned short) ((val * scaleFactor) + 2048);
905 time_management_regs->calData = data & 0xfff;
910 time_management_regs->calData = data & 0xfff;
906 }
911 }
907 }
912 }
908
913
909 void setCalibrationDataInterleaved( void ){
914 void setCalibrationDataInterleaved( void ){
910 unsigned int k;
915 unsigned int k;
911 float val;
916 float val;
912 float f0;
917 float f0;
913 float f1;
918 float f1;
914 float fs;
919 float fs;
915 float Ts;
920 float Ts;
916 unsigned short data[384];
921 unsigned short data[384];
917 unsigned char *dataPtr;
922 unsigned char *dataPtr;
918
923
919 f0 = 625;
924 f0 = 625;
920 f1 = 10000;
925 f1 = 10000;
921 fs = 240384.615;
926 fs = 240384.615;
922 Ts = 1. / fs;
927 Ts = 1. / fs;
923
928
924 time_management_regs->calDataPtr = 0x00;
929 time_management_regs->calDataPtr = 0x00;
925
930
926 // build the signal for the SCM calibration
931 // build the signal for the SCM calibration
927 for (k=0; k<384; k++)
932 for (k=0; k<384; k++)
928 {
933 {
929 val = sin( 2 * pi * f0 * k * Ts )
934 val = sin( 2 * pi * f0 * k * Ts )
930 + sin( 2 * pi * f1 * k * Ts );
935 + sin( 2 * pi * f1 * k * Ts );
931 data[k] = (unsigned short) (val * 512 + 2048);
936 data[k] = (unsigned short) (val * 512 + 2048);
932 }
937 }
933
938
934 // write the signal in interleaved mode
939 // write the signal in interleaved mode
935 for (k=0; k<128; k++)
940 for (k=0; k<128; k++)
936 {
941 {
937 dataPtr = (unsigned char*) &data[k*3 + 2];
942 dataPtr = (unsigned char*) &data[k*3 + 2];
938 time_management_regs->calData = (data[k*3] & 0xfff)
943 time_management_regs->calData = (data[k*3] & 0xfff)
939 + ( (dataPtr[0] & 0x3f) << 12);
944 + ( (dataPtr[0] & 0x3f) << 12);
940 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
945 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
941 + ( (dataPtr[1] & 0x3f) << 12);
946 + ( (dataPtr[1] & 0x3f) << 12);
942 }
947 }
943 }
948 }
944
949
945 void setCalibrationReload( bool state)
950 void setCalibrationReload( bool state)
946 {
951 {
947 if (state == true)
952 if (state == true)
948 {
953 {
949 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
954 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
950 }
955 }
951 else
956 else
952 {
957 {
953 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
958 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
954 }
959 }
955 }
960 }
956
961
957 void setCalibrationEnable( bool state )
962 void setCalibrationEnable( bool state )
958 {
963 {
959 // this bit drives the multiplexer
964 // this bit drives the multiplexer
960 if (state == true)
965 if (state == true)
961 {
966 {
962 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
967 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
963 }
968 }
964 else
969 else
965 {
970 {
966 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
971 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
967 }
972 }
968 }
973 }
969
974
970 void setCalibrationInterleaved( bool state )
975 void setCalibrationInterleaved( bool state )
971 {
976 {
972 // this bit drives the multiplexer
977 // this bit drives the multiplexer
973 if (state == true)
978 if (state == true)
974 {
979 {
975 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
980 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
976 }
981 }
977 else
982 else
978 {
983 {
979 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
984 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
980 }
985 }
981 }
986 }
982
987
983 void setCalibration( bool state )
988 void setCalibration( bool state )
984 {
989 {
985 if (state == true)
990 if (state == true)
986 {
991 {
987 setCalibrationEnable( true );
992 setCalibrationEnable( true );
988 setCalibrationReload( false );
993 setCalibrationReload( false );
989 set_hk_lfr_calib_enable( true );
994 set_hk_lfr_calib_enable( true );
990 }
995 }
991 else
996 else
992 {
997 {
993 setCalibrationEnable( false );
998 setCalibrationEnable( false );
994 setCalibrationReload( true );
999 setCalibrationReload( true );
995 set_hk_lfr_calib_enable( false );
1000 set_hk_lfr_calib_enable( false );
996 }
1001 }
997 }
1002 }
998
1003
999 void configureCalibration( bool interleaved )
1004 void configureCalibration( bool interleaved )
1000 {
1005 {
1001 setCalibration( false );
1006 setCalibration( false );
1002 if ( interleaved == true )
1007 if ( interleaved == true )
1003 {
1008 {
1004 setCalibrationInterleaved( true );
1009 setCalibrationInterleaved( true );
1005 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1010 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1006 setCalibrationDivisor( 26 ); // => 240 384
1011 setCalibrationDivisor( 26 ); // => 240 384
1007 setCalibrationDataInterleaved();
1012 setCalibrationDataInterleaved();
1008 }
1013 }
1009 else
1014 else
1010 {
1015 {
1011 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1016 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1012 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1017 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1013 setCalibrationData();
1018 setCalibrationData();
1014 }
1019 }
1015 }
1020 }
1016
1021
1017 //****************
1022 //****************
1018 // CLOSING ACTIONS
1023 // CLOSING ACTIONS
1019 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1024 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1020 {
1025 {
1021 /** This function is used to update the HK packets statistics after a successful TC execution.
1026 /** This function is used to update the HK packets statistics after a successful TC execution.
1022 *
1027 *
1023 * @param TC points to the TC being processed
1028 * @param TC points to the TC being processed
1024 * @param time is the time used to date the TC execution
1029 * @param time is the time used to date the TC execution
1025 *
1030 *
1026 */
1031 */
1027
1032
1028 unsigned int val;
1033 unsigned int val;
1029
1034
1030 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1035 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1031 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1036 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1032 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1037 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1033 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1038 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1034 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1039 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1035 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1040 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1036 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1041 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1037 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1042 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1038 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1043 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1039 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1044 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1040 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1045 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1041 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1046 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1042
1047
1043 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1048 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1044 val++;
1049 val++;
1045 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1050 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1046 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1051 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1047 }
1052 }
1048
1053
1049 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1054 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1050 {
1055 {
1051 /** This function is used to update the HK packets statistics after a TC rejection.
1056 /** This function is used to update the HK packets statistics after a TC rejection.
1052 *
1057 *
1053 * @param TC points to the TC being processed
1058 * @param TC points to the TC being processed
1054 * @param time is the time used to date the TC rejection
1059 * @param time is the time used to date the TC rejection
1055 *
1060 *
1056 */
1061 */
1057
1062
1058 unsigned int val;
1063 unsigned int val;
1059
1064
1060 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1065 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1061 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1066 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1062 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1067 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1063 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1068 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1064 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1069 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1065 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1070 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1066 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1071 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1067 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1072 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1068 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1073 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1069 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1074 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1070 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1075 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1071 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1076 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1072
1077
1073 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1078 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1074 val++;
1079 val++;
1075 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1080 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1076 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1081 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1077 }
1082 }
1078
1083
1079 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1084 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1080 {
1085 {
1081 /** This function is the last step of the TC execution workflow.
1086 /** This function is the last step of the TC execution workflow.
1082 *
1087 *
1083 * @param TC points to the TC being processed
1088 * @param TC points to the TC being processed
1084 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1089 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1085 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1090 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1086 * @param time is the time used to date the TC execution
1091 * @param time is the time used to date the TC execution
1087 *
1092 *
1088 */
1093 */
1089
1094
1090 unsigned char requestedMode;
1095 unsigned char requestedMode;
1091
1096
1092 if (result == LFR_SUCCESSFUL)
1097 if (result == LFR_SUCCESSFUL)
1093 {
1098 {
1094 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1099 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1095 &
1100 &
1096 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1101 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1097 )
1102 )
1098 {
1103 {
1099 send_tm_lfr_tc_exe_success( TC, queue_id );
1104 send_tm_lfr_tc_exe_success( TC, queue_id );
1100 }
1105 }
1101 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1106 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1102 {
1107 {
1103 //**********************************
1108 //**********************************
1104 // UPDATE THE LFRMODE LOCAL VARIABLE
1109 // UPDATE THE LFRMODE LOCAL VARIABLE
1105 requestedMode = TC->dataAndCRC[1];
1110 requestedMode = TC->dataAndCRC[1];
1106 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1111 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1107 updateLFRCurrentMode();
1112 updateLFRCurrentMode();
1108 }
1113 }
1109 }
1114 }
1110 else if (result == LFR_EXE_ERROR)
1115 else if (result == LFR_EXE_ERROR)
1111 {
1116 {
1112 send_tm_lfr_tc_exe_error( TC, queue_id );
1117 send_tm_lfr_tc_exe_error( TC, queue_id );
1113 }
1118 }
1114 }
1119 }
1115
1120
1116 //***************************
1121 //***************************
1117 // Interrupt Service Routines
1122 // Interrupt Service Routines
1118 rtems_isr commutation_isr1( rtems_vector_number vector )
1123 rtems_isr commutation_isr1( rtems_vector_number vector )
1119 {
1124 {
1120 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1125 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1121 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1126 printf("In commutation_isr1 *** Error sending event to DUMB\n");
1122 }
1127 }
1123 }
1128 }
1124
1129
1125 rtems_isr commutation_isr2( rtems_vector_number vector )
1130 rtems_isr commutation_isr2( rtems_vector_number vector )
1126 {
1131 {
1127 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1132 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1128 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1133 printf("In commutation_isr2 *** Error sending event to DUMB\n");
1129 }
1134 }
1130 }
1135 }
1131
1136
1132 //****************
1137 //****************
1133 // OTHER FUNCTIONS
1138 // OTHER FUNCTIONS
1134 void updateLFRCurrentMode()
1139 void updateLFRCurrentMode()
1135 {
1140 {
1136 /** This function updates the value of the global variable lfrCurrentMode.
1141 /** This function updates the value of the global variable lfrCurrentMode.
1137 *
1142 *
1138 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1143 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1139 *
1144 *
1140 */
1145 */
1141 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1146 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1142 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1147 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1143 }
1148 }
1144
1149
1145 void set_lfr_soft_reset( unsigned char value )
1150 void set_lfr_soft_reset( unsigned char value )
1146 {
1151 {
1147 if (value == 1)
1152 if (value == 1)
1148 {
1153 {
1149 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1154 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1150 }
1155 }
1151 else
1156 else
1152 {
1157 {
1153 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1158 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1154 }
1159 }
1155 }
1160 }
1156
1161
1157 void reset_lfr( void )
1162 void reset_lfr( void )
1158 {
1163 {
1159 set_lfr_soft_reset( 1 );
1164 set_lfr_soft_reset( 1 );
1160
1165
1161 set_lfr_soft_reset( 0 );
1166 set_lfr_soft_reset( 0 );
1162
1167
1163 set_hk_lfr_sc_potential_flag( true );
1168 set_hk_lfr_sc_potential_flag( true );
1164 }
1169 }
General Comments 0
You need to be logged in to leave comments. Login now