@@ -1,107 +1,107 | |||||
1 | cmake_minimum_required (VERSION 2.6) |
|
1 | cmake_minimum_required (VERSION 2.6) | |
2 | project (fsw) |
|
2 | project (fsw) | |
3 |
|
3 | |||
4 | include(sparc-rtems) |
|
4 | include(sparc-rtems) | |
5 | include(cppcheck) |
|
5 | include(cppcheck) | |
6 |
|
6 | |||
7 | include_directories("../header" |
|
7 | include_directories("../header" | |
8 | "../header/lfr_common_headers" |
|
8 | "../header/lfr_common_headers" | |
9 | "../header/processing" |
|
9 | "../header/processing" | |
10 | "../LFR_basic-parameters" |
|
10 | "../LFR_basic-parameters" | |
11 | "../src") |
|
11 | "../src") | |
12 |
|
12 | |||
13 | set(SOURCES wf_handler.c |
|
13 | set(SOURCES wf_handler.c | |
14 | tc_handler.c |
|
14 | tc_handler.c | |
15 | fsw_misc.c |
|
15 | fsw_misc.c | |
16 | fsw_init.c |
|
16 | fsw_init.c | |
17 | fsw_globals.c |
|
17 | fsw_globals.c | |
18 | fsw_spacewire.c |
|
18 | fsw_spacewire.c | |
19 | tc_load_dump_parameters.c |
|
19 | tc_load_dump_parameters.c | |
20 | tm_lfr_tc_exe.c |
|
20 | tm_lfr_tc_exe.c | |
21 | tc_acceptance.c |
|
21 | tc_acceptance.c | |
22 | processing/fsw_processing.c |
|
22 | processing/fsw_processing.c | |
23 | processing/avf0_prc0.c |
|
23 | processing/avf0_prc0.c | |
24 | processing/avf1_prc1.c |
|
24 | processing/avf1_prc1.c | |
25 | processing/avf2_prc2.c |
|
25 | processing/avf2_prc2.c | |
26 | lfr_cpu_usage_report.c |
|
26 | lfr_cpu_usage_report.c | |
27 | ${LFR_BP_SRC} |
|
27 | ${LFR_BP_SRC} | |
28 | ../header/wf_handler.h |
|
28 | ../header/wf_handler.h | |
29 | ../header/tc_handler.h |
|
29 | ../header/tc_handler.h | |
30 | ../header/grlib_regs.h |
|
30 | ../header/grlib_regs.h | |
31 | ../header/fsw_misc.h |
|
31 | ../header/fsw_misc.h | |
32 | ../header/fsw_init.h |
|
32 | ../header/fsw_init.h | |
33 | ../header/fsw_spacewire.h |
|
33 | ../header/fsw_spacewire.h | |
34 | ../header/tc_load_dump_parameters.h |
|
34 | ../header/tc_load_dump_parameters.h | |
35 | ../header/tm_lfr_tc_exe.h |
|
35 | ../header/tm_lfr_tc_exe.h | |
36 | ../header/tc_acceptance.h |
|
36 | ../header/tc_acceptance.h | |
37 | ../header/processing/fsw_processing.h |
|
37 | ../header/processing/fsw_processing.h | |
38 | ../header/processing/avf0_prc0.h |
|
38 | ../header/processing/avf0_prc0.h | |
39 | ../header/processing/avf1_prc1.h |
|
39 | ../header/processing/avf1_prc1.h | |
40 | ../header/processing/avf2_prc2.h |
|
40 | ../header/processing/avf2_prc2.h | |
41 | ../header/fsw_params_wf_handler.h |
|
41 | ../header/fsw_params_wf_handler.h | |
42 | ../header/lfr_cpu_usage_report.h |
|
42 | ../header/lfr_cpu_usage_report.h | |
43 | ../header/lfr_common_headers/ccsds_types.h |
|
43 | ../header/lfr_common_headers/ccsds_types.h | |
44 | ../header/lfr_common_headers/fsw_params.h |
|
44 | ../header/lfr_common_headers/fsw_params.h | |
45 | ../header/lfr_common_headers/fsw_params_nb_bytes.h |
|
45 | ../header/lfr_common_headers/fsw_params_nb_bytes.h | |
46 | ../header/lfr_common_headers/fsw_params_processing.h |
|
46 | ../header/lfr_common_headers/fsw_params_processing.h | |
47 | ../header/lfr_common_headers/tm_byte_positions.h |
|
47 | ../header/lfr_common_headers/tm_byte_positions.h | |
48 | ../LFR_basic-parameters/basic_parameters.h |
|
48 | ../LFR_basic-parameters/basic_parameters.h | |
49 | ../LFR_basic-parameters/basic_parameters_params.h |
|
49 | ../LFR_basic-parameters/basic_parameters_params.h | |
50 | ../header/GscMemoryLPP.hpp |
|
50 | ../header/GscMemoryLPP.hpp | |
51 | ) |
|
51 | ) | |
52 |
|
52 | |||
53 |
|
53 | |||
54 | option(FSW_verbose "Enable verbose LFR" OFF) |
|
54 | option(FSW_verbose "Enable verbose LFR" OFF) | |
55 | option(FSW_boot_messages "Enable LFR boot messages" OFF) |
|
55 | option(FSW_boot_messages "Enable LFR boot messages" OFF) | |
56 | option(FSW_debug_messages "Enable LFR debug messages" OFF) |
|
56 | option(FSW_debug_messages "Enable LFR debug messages" OFF) | |
57 | option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF) |
|
57 | option(FSW_cpu_usage_report "Enable LFR cpu usage report" OFF) | |
58 | option(FSW_stack_report "Enable LFR stack report" OFF) |
|
58 | option(FSW_stack_report "Enable LFR stack report" OFF) | |
59 | option(FSW_vhdl_dev "?" OFF) |
|
59 | option(FSW_vhdl_dev "?" OFF) | |
60 | option(FSW_lpp_dpu_destid "Set to debug at LPP" ON) |
|
60 | option(FSW_lpp_dpu_destid "Set to debug at LPP" ON) | |
61 | option(FSW_debug_watchdog "Enable debug watchdog" OFF) |
|
61 | option(FSW_debug_watchdog "Enable debug watchdog" OFF) | |
62 | option(FSW_debug_tch "?" OFF) |
|
62 | option(FSW_debug_tch "?" OFF) | |
63 |
|
63 | |||
64 | set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE) |
|
64 | set(SW_VERSION_N1 "3" CACHE STRING "Choose N1 FSW Version." FORCE) | |
65 | set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE) |
|
65 | set(SW_VERSION_N2 "2" CACHE STRING "Choose N2 FSW Version." FORCE) | |
66 | set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE) |
|
66 | set(SW_VERSION_N3 "0" CACHE STRING "Choose N3 FSW Version." FORCE) | |
67 |
set(SW_VERSION_N4 " |
|
67 | set(SW_VERSION_N4 "1" CACHE STRING "Choose N4 FSW Version." FORCE) | |
68 |
|
68 | |||
69 | if(FSW_verbose) |
|
69 | if(FSW_verbose) | |
70 | add_definitions(-DPRINT_MESSAGES_ON_CONSOLE) |
|
70 | add_definitions(-DPRINT_MESSAGES_ON_CONSOLE) | |
71 | endif() |
|
71 | endif() | |
72 | if(FSW_boot_messages) |
|
72 | if(FSW_boot_messages) | |
73 | add_definitions(-DBOOT_MESSAGES) |
|
73 | add_definitions(-DBOOT_MESSAGES) | |
74 | endif() |
|
74 | endif() | |
75 | if(FSW_debug_messages) |
|
75 | if(FSW_debug_messages) | |
76 | add_definitions(-DDEBUG_MESSAGES) |
|
76 | add_definitions(-DDEBUG_MESSAGES) | |
77 | endif() |
|
77 | endif() | |
78 | if(FSW_cpu_usage_report) |
|
78 | if(FSW_cpu_usage_report) | |
79 | add_definitions(-DPRINT_TASK_STATISTICS) |
|
79 | add_definitions(-DPRINT_TASK_STATISTICS) | |
80 | endif() |
|
80 | endif() | |
81 | if(FSW_stack_report) |
|
81 | if(FSW_stack_report) | |
82 | add_definitions(-DPRINT_STACK_REPORT) |
|
82 | add_definitions(-DPRINT_STACK_REPORT) | |
83 | endif() |
|
83 | endif() | |
84 | if(FSW_vhdl_dev) |
|
84 | if(FSW_vhdl_dev) | |
85 | add_definitions(-DVHDL_DEV) |
|
85 | add_definitions(-DVHDL_DEV) | |
86 | endif() |
|
86 | endif() | |
87 | if(FSW_lpp_dpu_destid) |
|
87 | if(FSW_lpp_dpu_destid) | |
88 | add_definitions(-DLPP_DPU_DESTID) |
|
88 | add_definitions(-DLPP_DPU_DESTID) | |
89 | endif() |
|
89 | endif() | |
90 | if(FSW_debug_watchdog) |
|
90 | if(FSW_debug_watchdog) | |
91 | add_definitions(-DDEBUG_WATCHDOG) |
|
91 | add_definitions(-DDEBUG_WATCHDOG) | |
92 | endif() |
|
92 | endif() | |
93 | if(FSW_debug_tch) |
|
93 | if(FSW_debug_tch) | |
94 | add_definitions(-DDEBUG_TCH) |
|
94 | add_definitions(-DDEBUG_TCH) | |
95 | endif() |
|
95 | endif() | |
96 |
|
96 | |||
97 | add_definitions(-DMSB_FIRST_TCH) |
|
97 | add_definitions(-DMSB_FIRST_TCH) | |
98 |
|
98 | |||
99 | add_definitions(-DSWVERSION=-1-0) |
|
99 | add_definitions(-DSWVERSION=-1-0) | |
100 | add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1}) |
|
100 | add_definitions(-DSW_VERSION_N1=${SW_VERSION_N1}) | |
101 | add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2}) |
|
101 | add_definitions(-DSW_VERSION_N2=${SW_VERSION_N2}) | |
102 | add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3}) |
|
102 | add_definitions(-DSW_VERSION_N3=${SW_VERSION_N3}) | |
103 | add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4}) |
|
103 | add_definitions(-DSW_VERSION_N4=${SW_VERSION_N4}) | |
104 |
|
104 | |||
105 | add_executable(fsw ${SOURCES}) |
|
105 | add_executable(fsw ${SOURCES}) | |
106 | add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE) |
|
106 | add_test_cppcheck(fsw STYLE UNUSED_FUNCTIONS POSSIBLE_ERROR MISSING_INCLUDE) | |
107 |
|
107 |
@@ -1,958 +1,975 | |||||
1 | /** This is the RTEMS initialization module. |
|
1 | /** This is the RTEMS initialization module. | |
2 | * |
|
2 | * | |
3 | * @file |
|
3 | * @file | |
4 | * @author P. LEROY |
|
4 | * @author P. LEROY | |
5 | * |
|
5 | * | |
6 | * This module contains two very different information: |
|
6 | * This module contains two very different information: | |
7 | * - specific instructions to configure the compilation of the RTEMS executive |
|
7 | * - specific instructions to configure the compilation of the RTEMS executive | |
8 | * - functions related to the fligth softwre initialization, especially the INIT RTEMS task |
|
8 | * - functions related to the fligth softwre initialization, especially the INIT RTEMS task | |
9 | * |
|
9 | * | |
10 | */ |
|
10 | */ | |
11 |
|
11 | |||
12 | //************************* |
|
12 | //************************* | |
13 | // GPL reminder to be added |
|
13 | // GPL reminder to be added | |
14 | //************************* |
|
14 | //************************* | |
15 |
|
15 | |||
16 | #include <rtems.h> |
|
16 | #include <rtems.h> | |
17 |
|
17 | |||
18 | /* configuration information */ |
|
18 | /* configuration information */ | |
19 |
|
19 | |||
20 | #define CONFIGURE_INIT |
|
20 | #define CONFIGURE_INIT | |
21 |
|
21 | |||
22 | #include <bsp.h> /* for device driver prototypes */ |
|
22 | #include <bsp.h> /* for device driver prototypes */ | |
23 |
|
23 | |||
24 | /* configuration information */ |
|
24 | /* configuration information */ | |
25 |
|
25 | |||
26 | #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER |
|
26 | #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER | |
27 | #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER |
|
27 | #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER | |
28 |
|
28 | |||
29 | #define CONFIGURE_MAXIMUM_TASKS 20 |
|
29 | #define CONFIGURE_MAXIMUM_TASKS 21 // number of tasks concurrently active including INIT | |
30 | #define CONFIGURE_RTEMS_INIT_TASKS_TABLE |
|
30 | #define CONFIGURE_RTEMS_INIT_TASKS_TABLE | |
31 | #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE) |
|
31 | #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE) | |
32 | #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32 |
|
32 | #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32 | |
33 | #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100 |
|
33 | #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100 | |
34 | #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT) |
|
34 | #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT) | |
35 | #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT) |
|
35 | #define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT) | |
36 | #define CONFIGURE_MAXIMUM_DRIVERS 16 |
|
36 | #define CONFIGURE_MAXIMUM_DRIVERS 16 | |
37 | #define CONFIGURE_MAXIMUM_PERIODS 5 |
|
37 | #define CONFIGURE_MAXIMUM_PERIODS 5 // [hous] [load] [avgv] | |
38 | #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link] |
|
38 | #define CONFIGURE_MAXIMUM_TIMERS 5 // [spiq] [link] [spacewire_reset_link] | |
39 | #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5 |
|
39 | #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 5 | |
40 | #ifdef PRINT_STACK_REPORT |
|
40 | #ifdef PRINT_STACK_REPORT | |
41 | #define CONFIGURE_STACK_CHECKER_ENABLED |
|
41 | #define CONFIGURE_STACK_CHECKER_ENABLED | |
42 | #endif |
|
42 | #endif | |
43 |
|
43 | |||
44 | #include <rtems/confdefs.h> |
|
44 | #include <rtems/confdefs.h> | |
45 |
|
45 | |||
46 | /* If --drvmgr was enabled during the configuration of the RTEMS kernel */ |
|
46 | /* If --drvmgr was enabled during the configuration of the RTEMS kernel */ | |
47 | #ifdef RTEMS_DRVMGR_STARTUP |
|
47 | #ifdef RTEMS_DRVMGR_STARTUP | |
48 | #ifdef LEON3 |
|
48 | #ifdef LEON3 | |
49 | /* Add Timer and UART Driver */ |
|
49 | /* Add Timer and UART Driver */ | |
50 |
|
50 | |||
51 | #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER |
|
51 | #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER | |
52 | #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER |
|
52 | #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER | |
53 | #endif |
|
53 | #endif | |
54 |
|
54 | |||
55 | #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER |
|
55 | #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER | |
56 | #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART |
|
56 | #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART | |
57 | #endif |
|
57 | #endif | |
58 |
|
58 | |||
59 | #endif |
|
59 | #endif | |
60 | #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */ |
|
60 | #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */ | |
61 |
|
61 | |||
62 | #include <drvmgr/drvmgr_confdefs.h> |
|
62 | #include <drvmgr/drvmgr_confdefs.h> | |
63 | #endif |
|
63 | #endif | |
64 |
|
64 | |||
65 | #include "fsw_init.h" |
|
65 | #include "fsw_init.h" | |
66 | #include "fsw_config.c" |
|
66 | #include "fsw_config.c" | |
67 | #include "GscMemoryLPP.hpp" |
|
67 | #include "GscMemoryLPP.hpp" | |
68 |
|
68 | |||
69 | void initCache() |
|
69 | void initCache() | |
70 | { |
|
70 | { | |
71 | // ASI 2 contains a few control registers that have not been assigned as ancillary state registers. |
|
71 | // ASI 2 contains a few control registers that have not been assigned as ancillary state registers. | |
72 | // These should only be read and written using 32-bit LDA/STA instructions. |
|
72 | // These should only be read and written using 32-bit LDA/STA instructions. | |
73 | // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2. |
|
73 | // All cache registers are accessed through load/store operations to the alternate address space (LDA/STA), using ASI = 2. | |
74 | // The table below shows the register addresses: |
|
74 | // The table below shows the register addresses: | |
75 | // 0x00 Cache control register |
|
75 | // 0x00 Cache control register | |
76 | // 0x04 Reserved |
|
76 | // 0x04 Reserved | |
77 | // 0x08 Instruction cache configuration register |
|
77 | // 0x08 Instruction cache configuration register | |
78 | // 0x0C Data cache configuration register |
|
78 | // 0x0C Data cache configuration register | |
79 |
|
79 | |||
80 | // Cache Control Register Leon3 / Leon3FT |
|
80 | // Cache Control Register Leon3 / Leon3FT | |
81 | // 31..30 29 28 27..24 23 22 21 20..19 18 17 16 |
|
81 | // 31..30 29 28 27..24 23 22 21 20..19 18 17 16 | |
82 | // RFT PS TB DS FD FI FT ST IB |
|
82 | // RFT PS TB DS FD FI FT ST IB | |
83 | // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0 |
|
83 | // 15 14 13..12 11..10 9..8 7..6 5 4 3..2 1..0 | |
84 | // IP DP ITE IDE DTE DDE DF IF DCS ICS |
|
84 | // IP DP ITE IDE DTE DDE DF IF DCS ICS | |
85 |
|
85 | |||
86 | unsigned int cacheControlRegister; |
|
86 | unsigned int cacheControlRegister; | |
87 |
|
87 | |||
88 | CCR_resetCacheControlRegister(); |
|
88 | CCR_resetCacheControlRegister(); | |
89 | ASR16_resetRegisterProtectionControlRegister(); |
|
89 | ASR16_resetRegisterProtectionControlRegister(); | |
90 |
|
90 | |||
91 | cacheControlRegister = CCR_getValue(); |
|
91 | cacheControlRegister = CCR_getValue(); | |
92 | PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister); |
|
92 | PRINTF1("(0) CCR - Cache Control Register = %x\n", cacheControlRegister); | |
93 | PRINTF1("(0) ASR16 = %x\n", *asr16Ptr); |
|
93 | PRINTF1("(0) ASR16 = %x\n", *asr16Ptr); | |
94 |
|
94 | |||
95 | CCR_enableInstructionCache(); // ICS bits |
|
95 | CCR_enableInstructionCache(); // ICS bits | |
96 | CCR_enableDataCache(); // DCS bits |
|
96 | CCR_enableDataCache(); // DCS bits | |
97 | CCR_enableInstructionBurstFetch(); // IB bit |
|
97 | CCR_enableInstructionBurstFetch(); // IB bit | |
98 |
|
98 | |||
99 | faultTolerantScheme(); |
|
99 | faultTolerantScheme(); | |
100 |
|
100 | |||
101 | cacheControlRegister = CCR_getValue(); |
|
101 | cacheControlRegister = CCR_getValue(); | |
102 | PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister); |
|
102 | PRINTF1("(1) CCR - Cache Control Register = %x\n", cacheControlRegister); | |
103 | PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr); |
|
103 | PRINTF1("(1) ASR16 Register protection control register = %x\n", *asr16Ptr); | |
104 |
|
104 | |||
105 | PRINTF("\n"); |
|
105 | PRINTF("\n"); | |
106 | } |
|
106 | } | |
107 |
|
107 | |||
108 | rtems_task Init( rtems_task_argument ignored ) |
|
108 | rtems_task Init( rtems_task_argument ignored ) | |
109 | { |
|
109 | { | |
110 | /** This is the RTEMS INIT taks, it is the first task launched by the system. |
|
110 | /** This is the RTEMS INIT taks, it is the first task launched by the system. | |
111 | * |
|
111 | * | |
112 | * @param unused is the starting argument of the RTEMS task |
|
112 | * @param unused is the starting argument of the RTEMS task | |
113 | * |
|
113 | * | |
114 | * The INIT task create and run all other RTEMS tasks. |
|
114 | * The INIT task create and run all other RTEMS tasks. | |
115 | * |
|
115 | * | |
116 | */ |
|
116 | */ | |
117 |
|
117 | |||
118 | //*********** |
|
118 | //*********** | |
119 | // INIT CACHE |
|
119 | // INIT CACHE | |
120 |
|
120 | |||
121 | unsigned char *vhdlVersion; |
|
121 | unsigned char *vhdlVersion; | |
122 |
|
122 | |||
123 | reset_lfr(); |
|
123 | reset_lfr(); | |
124 |
|
124 | |||
125 | reset_local_time(); |
|
125 | reset_local_time(); | |
126 |
|
126 | |||
127 | rtems_cpu_usage_reset(); |
|
127 | rtems_cpu_usage_reset(); | |
128 |
|
128 | |||
129 | rtems_status_code status; |
|
129 | rtems_status_code status; | |
130 | rtems_status_code status_spw; |
|
130 | rtems_status_code status_spw; | |
131 | rtems_isr_entry old_isr_handler; |
|
131 | rtems_isr_entry old_isr_handler; | |
132 |
|
132 | |||
133 | old_isr_handler = NULL; |
|
133 | old_isr_handler = NULL; | |
134 |
|
134 | |||
135 | // UART settings |
|
135 | // UART settings | |
136 | enable_apbuart_transmitter(); |
|
136 | enable_apbuart_transmitter(); | |
137 | set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE); |
|
137 | set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE); | |
138 |
|
138 | |||
139 | DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n") |
|
139 | DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n") | |
140 |
|
140 | |||
141 |
|
141 | |||
142 | PRINTF("\n\n\n\n\n") |
|
142 | PRINTF("\n\n\n\n\n") | |
143 |
|
143 | |||
144 | initCache(); |
|
144 | initCache(); | |
145 |
|
145 | |||
146 | PRINTF("*************************\n") |
|
146 | PRINTF("*************************\n") | |
147 | PRINTF("** LFR Flight Software **\n") |
|
147 | PRINTF("** LFR Flight Software **\n") | |
148 |
|
148 | |||
149 | PRINTF1("** %d-", SW_VERSION_N1) |
|
149 | PRINTF1("** %d-", SW_VERSION_N1) | |
150 | PRINTF1("%d-" , SW_VERSION_N2) |
|
150 | PRINTF1("%d-" , SW_VERSION_N2) | |
151 | PRINTF1("%d-" , SW_VERSION_N3) |
|
151 | PRINTF1("%d-" , SW_VERSION_N3) | |
152 | PRINTF1("%d **\n", SW_VERSION_N4) |
|
152 | PRINTF1("%d **\n", SW_VERSION_N4) | |
153 |
|
153 | |||
154 | vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION); |
|
154 | vhdlVersion = (unsigned char *) (REGS_ADDR_VHDL_VERSION); | |
155 | PRINTF("** VHDL **\n") |
|
155 | PRINTF("** VHDL **\n") | |
156 | PRINTF1("** %d-", vhdlVersion[1]) |
|
156 | PRINTF1("** %d-", vhdlVersion[1]) | |
157 | PRINTF1("%d-" , vhdlVersion[2]) |
|
157 | PRINTF1("%d-" , vhdlVersion[2]) | |
158 | PRINTF1("%d **\n", vhdlVersion[3]) |
|
158 | PRINTF1("%d **\n", vhdlVersion[3]) | |
159 | PRINTF("*************************\n") |
|
159 | PRINTF("*************************\n") | |
160 | PRINTF("\n\n") |
|
160 | PRINTF("\n\n") | |
161 |
|
161 | |||
162 | init_parameter_dump(); |
|
162 | init_parameter_dump(); | |
163 | init_kcoefficients_dump(); |
|
163 | init_kcoefficients_dump(); | |
164 | init_local_mode_parameters(); |
|
164 | init_local_mode_parameters(); | |
165 | init_housekeeping_parameters(); |
|
165 | init_housekeeping_parameters(); | |
166 | init_k_coefficients_prc0(); |
|
166 | init_k_coefficients_prc0(); | |
167 | init_k_coefficients_prc1(); |
|
167 | init_k_coefficients_prc1(); | |
168 | init_k_coefficients_prc2(); |
|
168 | init_k_coefficients_prc2(); | |
169 | pa_bia_status_info = INIT_CHAR; |
|
169 | pa_bia_status_info = INIT_CHAR; | |
170 |
|
170 | |||
171 | // initialize all reaction wheels frequencies to NaN |
|
171 | // initialize all reaction wheels frequencies to NaN | |
172 | rw_f.cp_rpw_sc_rw1_f1 = NAN; |
|
172 | rw_f.cp_rpw_sc_rw1_f1 = NAN; | |
173 | rw_f.cp_rpw_sc_rw1_f2 = NAN; |
|
173 | rw_f.cp_rpw_sc_rw1_f2 = NAN; | |
174 | rw_f.cp_rpw_sc_rw1_f3 = NAN; |
|
174 | rw_f.cp_rpw_sc_rw1_f3 = NAN; | |
175 | rw_f.cp_rpw_sc_rw1_f4 = NAN; |
|
175 | rw_f.cp_rpw_sc_rw1_f4 = NAN; | |
176 | rw_f.cp_rpw_sc_rw2_f1 = NAN; |
|
176 | rw_f.cp_rpw_sc_rw2_f1 = NAN; | |
177 | rw_f.cp_rpw_sc_rw2_f2 = NAN; |
|
177 | rw_f.cp_rpw_sc_rw2_f2 = NAN; | |
178 | rw_f.cp_rpw_sc_rw2_f3 = NAN; |
|
178 | rw_f.cp_rpw_sc_rw2_f3 = NAN; | |
179 | rw_f.cp_rpw_sc_rw2_f4 = NAN; |
|
179 | rw_f.cp_rpw_sc_rw2_f4 = NAN; | |
180 | rw_f.cp_rpw_sc_rw3_f1 = NAN; |
|
180 | rw_f.cp_rpw_sc_rw3_f1 = NAN; | |
181 | rw_f.cp_rpw_sc_rw3_f2 = NAN; |
|
181 | rw_f.cp_rpw_sc_rw3_f2 = NAN; | |
182 | rw_f.cp_rpw_sc_rw3_f3 = NAN; |
|
182 | rw_f.cp_rpw_sc_rw3_f3 = NAN; | |
183 | rw_f.cp_rpw_sc_rw3_f4 = NAN; |
|
183 | rw_f.cp_rpw_sc_rw3_f4 = NAN; | |
184 | rw_f.cp_rpw_sc_rw4_f1 = NAN; |
|
184 | rw_f.cp_rpw_sc_rw4_f1 = NAN; | |
185 | rw_f.cp_rpw_sc_rw4_f2 = NAN; |
|
185 | rw_f.cp_rpw_sc_rw4_f2 = NAN; | |
186 | rw_f.cp_rpw_sc_rw4_f3 = NAN; |
|
186 | rw_f.cp_rpw_sc_rw4_f3 = NAN; | |
187 | rw_f.cp_rpw_sc_rw4_f4 = NAN; |
|
187 | rw_f.cp_rpw_sc_rw4_f4 = NAN; | |
188 |
|
188 | |||
189 | cp_rpw_sc_rw1_rw2_f_flags = INIT_CHAR; |
|
189 | cp_rpw_sc_rw1_rw2_f_flags = INIT_CHAR; | |
190 | cp_rpw_sc_rw3_rw4_f_flags = INIT_CHAR; |
|
190 | cp_rpw_sc_rw3_rw4_f_flags = INIT_CHAR; | |
191 |
|
191 | |||
192 | // initialize filtering parameters |
|
192 | // initialize filtering parameters | |
193 | filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED; |
|
193 | filterPar.spare_sy_lfr_pas_filter_enabled = DEFAULT_SY_LFR_PAS_FILTER_ENABLED; | |
194 | filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS; |
|
194 | filterPar.sy_lfr_pas_filter_modulus = DEFAULT_SY_LFR_PAS_FILTER_MODULUS; | |
195 | filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD; |
|
195 | filterPar.sy_lfr_pas_filter_tbad = DEFAULT_SY_LFR_PAS_FILTER_TBAD; | |
196 | filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET; |
|
196 | filterPar.sy_lfr_pas_filter_offset = DEFAULT_SY_LFR_PAS_FILTER_OFFSET; | |
197 | filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT; |
|
197 | filterPar.sy_lfr_pas_filter_shift = DEFAULT_SY_LFR_PAS_FILTER_SHIFT; | |
198 | filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F; |
|
198 | filterPar.sy_lfr_sc_rw_delta_f = DEFAULT_SY_LFR_SC_RW_DELTA_F; | |
199 | update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE ); |
|
199 | update_last_valid_transition_date( DEFAULT_LAST_VALID_TRANSITION_DATE ); | |
200 |
|
200 | |||
201 | // waveform picker initialization |
|
201 | // waveform picker initialization | |
202 | WFP_init_rings(); |
|
202 | WFP_init_rings(); | |
203 | LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings |
|
203 | LEON_Clear_interrupt( IRQ_SPARC_GPTIMER_WATCHDOG ); // initialize the waveform rings | |
204 | WFP_reset_current_ring_nodes(); |
|
204 | WFP_reset_current_ring_nodes(); | |
205 | reset_waveform_picker_regs(); |
|
205 | reset_waveform_picker_regs(); | |
206 |
|
206 | |||
207 | // spectral matrices initialization |
|
207 | // spectral matrices initialization | |
208 | SM_init_rings(); // initialize spectral matrices rings |
|
208 | SM_init_rings(); // initialize spectral matrices rings | |
209 | SM_reset_current_ring_nodes(); |
|
209 | SM_reset_current_ring_nodes(); | |
210 | reset_spectral_matrix_regs(); |
|
210 | reset_spectral_matrix_regs(); | |
211 |
|
211 | |||
212 | // configure calibration |
|
212 | // configure calibration | |
213 | configureCalibration( false ); // true means interleaved mode, false is for normal mode |
|
213 | configureCalibration( false ); // true means interleaved mode, false is for normal mode | |
214 |
|
214 | |||
215 | updateLFRCurrentMode( LFR_MODE_STANDBY ); |
|
215 | updateLFRCurrentMode( LFR_MODE_STANDBY ); | |
216 |
|
216 | |||
217 | BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode) |
|
217 | BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode) | |
218 |
|
218 | |||
219 | create_names(); // create all names |
|
219 | create_names(); // create all names | |
220 |
|
220 | |||
221 | status = create_timecode_timer(); // create the timer used by timecode_irq_handler |
|
221 | status = create_timecode_timer(); // create the timer used by timecode_irq_handler | |
222 | if (status != RTEMS_SUCCESSFUL) |
|
222 | if (status != RTEMS_SUCCESSFUL) | |
223 | { |
|
223 | { | |
224 | PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status) |
|
224 | PRINTF1("in INIT *** ERR in create_timer_timecode, code %d", status) | |
225 | } |
|
225 | } | |
226 |
|
226 | |||
227 | status = create_message_queues(); // create message queues |
|
227 | status = create_message_queues(); // create message queues | |
228 | if (status != RTEMS_SUCCESSFUL) |
|
228 | if (status != RTEMS_SUCCESSFUL) | |
229 | { |
|
229 | { | |
230 | PRINTF1("in INIT *** ERR in create_message_queues, code %d", status) |
|
230 | PRINTF1("in INIT *** ERR in create_message_queues, code %d", status) | |
231 | } |
|
231 | } | |
232 |
|
232 | |||
233 | status = create_all_tasks(); // create all tasks |
|
233 | status = create_all_tasks(); // create all tasks | |
234 | if (status != RTEMS_SUCCESSFUL) |
|
234 | if (status != RTEMS_SUCCESSFUL) | |
235 | { |
|
235 | { | |
236 | PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status) |
|
236 | PRINTF1("in INIT *** ERR in create_all_tasks, code %d\n", status) | |
237 | } |
|
237 | } | |
238 |
|
238 | |||
239 | // ************************** |
|
239 | // ************************** | |
240 | // <SPACEWIRE INITIALIZATION> |
|
240 | // <SPACEWIRE INITIALIZATION> | |
241 | status_spw = spacewire_open_link(); // (1) open the link |
|
241 | status_spw = spacewire_open_link(); // (1) open the link | |
242 | if ( status_spw != RTEMS_SUCCESSFUL ) |
|
242 | if ( status_spw != RTEMS_SUCCESSFUL ) | |
243 | { |
|
243 | { | |
244 | PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw ) |
|
244 | PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw ) | |
245 | } |
|
245 | } | |
246 |
|
246 | |||
247 | if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link |
|
247 | if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link | |
248 | { |
|
248 | { | |
249 | status_spw = spacewire_configure_link( fdSPW ); |
|
249 | status_spw = spacewire_configure_link( fdSPW ); | |
250 | if ( status_spw != RTEMS_SUCCESSFUL ) |
|
250 | if ( status_spw != RTEMS_SUCCESSFUL ) | |
251 | { |
|
251 | { | |
252 | PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw ) |
|
252 | PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw ) | |
253 | } |
|
253 | } | |
254 | } |
|
254 | } | |
255 |
|
255 | |||
256 | if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link |
|
256 | if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link | |
257 | { |
|
257 | { | |
258 | status_spw = spacewire_start_link( fdSPW ); |
|
258 | status_spw = spacewire_start_link( fdSPW ); | |
259 | if ( status_spw != RTEMS_SUCCESSFUL ) |
|
259 | if ( status_spw != RTEMS_SUCCESSFUL ) | |
260 | { |
|
260 | { | |
261 | PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw ) |
|
261 | PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw ) | |
262 | } |
|
262 | } | |
263 | } |
|
263 | } | |
264 | // </SPACEWIRE INITIALIZATION> |
|
264 | // </SPACEWIRE INITIALIZATION> | |
265 | // *************************** |
|
265 | // *************************** | |
266 |
|
266 | |||
267 | status = start_all_tasks(); // start all tasks |
|
267 | status = start_all_tasks(); // start all tasks | |
268 | if (status != RTEMS_SUCCESSFUL) |
|
268 | if (status != RTEMS_SUCCESSFUL) | |
269 | { |
|
269 | { | |
270 | PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status) |
|
270 | PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status) | |
271 | } |
|
271 | } | |
272 |
|
272 | |||
273 | // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization |
|
273 | // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization | |
274 | status = start_recv_send_tasks(); |
|
274 | status = start_recv_send_tasks(); | |
275 | if ( status != RTEMS_SUCCESSFUL ) |
|
275 | if ( status != RTEMS_SUCCESSFUL ) | |
276 | { |
|
276 | { | |
277 | PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status ) |
|
277 | PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status ) | |
278 | } |
|
278 | } | |
279 |
|
279 | |||
280 | // suspend science tasks, they will be restarted later depending on the mode |
|
280 | // suspend science tasks, they will be restarted later depending on the mode | |
281 | status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY) |
|
281 | status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY) | |
282 | if (status != RTEMS_SUCCESSFUL) |
|
282 | if (status != RTEMS_SUCCESSFUL) | |
283 | { |
|
283 | { | |
284 | PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status) |
|
284 | PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status) | |
285 | } |
|
285 | } | |
286 |
|
286 | |||
287 | // configure IRQ handling for the waveform picker unit |
|
287 | // configure IRQ handling for the waveform picker unit | |
288 | status = rtems_interrupt_catch( waveforms_isr, |
|
288 | status = rtems_interrupt_catch( waveforms_isr, | |
289 | IRQ_SPARC_WAVEFORM_PICKER, |
|
289 | IRQ_SPARC_WAVEFORM_PICKER, | |
290 | &old_isr_handler) ; |
|
290 | &old_isr_handler) ; | |
291 | // configure IRQ handling for the spectral matrices unit |
|
291 | // configure IRQ handling for the spectral matrices unit | |
292 | status = rtems_interrupt_catch( spectral_matrices_isr, |
|
292 | status = rtems_interrupt_catch( spectral_matrices_isr, | |
293 | IRQ_SPARC_SPECTRAL_MATRIX, |
|
293 | IRQ_SPARC_SPECTRAL_MATRIX, | |
294 | &old_isr_handler) ; |
|
294 | &old_isr_handler) ; | |
295 |
|
295 | |||
296 | // if the spacewire link is not up then send an event to the SPIQ task for link recovery |
|
296 | // if the spacewire link is not up then send an event to the SPIQ task for link recovery | |
297 | if ( status_spw != RTEMS_SUCCESSFUL ) |
|
297 | if ( status_spw != RTEMS_SUCCESSFUL ) | |
298 | { |
|
298 | { | |
299 | status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT ); |
|
299 | status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT ); | |
300 | if ( status != RTEMS_SUCCESSFUL ) { |
|
300 | if ( status != RTEMS_SUCCESSFUL ) { | |
301 | PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status ) |
|
301 | PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status ) | |
302 | } |
|
302 | } | |
303 | } |
|
303 | } | |
304 |
|
304 | |||
305 | BOOT_PRINTF("delete INIT\n") |
|
305 | BOOT_PRINTF("delete INIT\n") | |
306 |
|
306 | |||
307 | set_hk_lfr_sc_potential_flag( true ); |
|
307 | set_hk_lfr_sc_potential_flag( true ); | |
308 |
|
308 | |||
309 | // start the timer to detect a missing spacewire timecode |
|
309 | // start the timer to detect a missing spacewire timecode | |
310 | // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout |
|
310 | // the timeout is larger because the spw IP needs to receive several valid timecodes before generating a tickout | |
311 | // if a tickout is generated, the timer is restarted |
|
311 | // if a tickout is generated, the timer is restarted | |
312 | status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL ); |
|
312 | status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT_INIT, timecode_timer_routine, NULL ); | |
313 |
|
313 | |||
314 | grspw_timecode_callback = &timecode_irq_handler; |
|
314 | grspw_timecode_callback = &timecode_irq_handler; | |
315 |
|
315 | |||
316 | status = rtems_task_delete(RTEMS_SELF); |
|
316 | status = rtems_task_delete(RTEMS_SELF); | |
317 |
|
317 | |||
318 | } |
|
318 | } | |
319 |
|
319 | |||
320 | void init_local_mode_parameters( void ) |
|
320 | void init_local_mode_parameters( void ) | |
321 | { |
|
321 | { | |
322 | /** This function initialize the param_local global variable with default values. |
|
322 | /** This function initialize the param_local global variable with default values. | |
323 | * |
|
323 | * | |
324 | */ |
|
324 | */ | |
325 |
|
325 | |||
326 | unsigned int i; |
|
326 | unsigned int i; | |
327 |
|
327 | |||
328 | // LOCAL PARAMETERS |
|
328 | // LOCAL PARAMETERS | |
329 |
|
329 | |||
330 | BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max) |
|
330 | BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max) | |
331 | BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max) |
|
331 | BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max) | |
332 |
|
332 | |||
333 | // init sequence counters |
|
333 | // init sequence counters | |
334 |
|
334 | |||
335 | for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++) |
|
335 | for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++) | |
336 | { |
|
336 | { | |
337 | sequenceCounters_TC_EXE[i] = INIT_CHAR; |
|
337 | sequenceCounters_TC_EXE[i] = INIT_CHAR; | |
338 | sequenceCounters_TM_DUMP[i] = INIT_CHAR; |
|
338 | sequenceCounters_TM_DUMP[i] = INIT_CHAR; | |
339 | } |
|
339 | } | |
340 | sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR; |
|
340 | sequenceCounters_SCIENCE_NORMAL_BURST = INIT_CHAR; | |
341 | sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR; |
|
341 | sequenceCounters_SCIENCE_SBM1_SBM2 = INIT_CHAR; | |
342 | sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT; |
|
342 | sequenceCounterHK = TM_PACKET_SEQ_CTRL_STANDALONE << TM_PACKET_SEQ_SHIFT; | |
343 | } |
|
343 | } | |
344 |
|
344 | |||
345 | void reset_local_time( void ) |
|
345 | void reset_local_time( void ) | |
346 | { |
|
346 | { | |
347 | time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000 |
|
347 | time_management_regs->ctrl = time_management_regs->ctrl | VAL_SOFTWARE_RESET; // [0010] software reset, coarse time = 0x80000000 | |
348 | } |
|
348 | } | |
349 |
|
349 | |||
350 | void create_names( void ) // create all names for tasks and queues |
|
350 | void create_names( void ) // create all names for tasks and queues | |
351 | { |
|
351 | { | |
352 | /** This function creates all RTEMS names used in the software for tasks and queues. |
|
352 | /** This function creates all RTEMS names used in the software for tasks and queues. | |
353 | * |
|
353 | * | |
354 | * @return RTEMS directive status codes: |
|
354 | * @return RTEMS directive status codes: | |
355 | * - RTEMS_SUCCESSFUL - successful completion |
|
355 | * - RTEMS_SUCCESSFUL - successful completion | |
356 | * |
|
356 | * | |
357 | */ |
|
357 | */ | |
358 |
|
358 | |||
359 | // task names |
|
359 | // task names | |
|
360 | Task_name[TASKID_AVGV] = rtems_build_name( 'A', 'V', 'G', 'V' ); | |||
360 | Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' ); |
|
361 | Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' ); | |
361 | Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' ); |
|
362 | Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' ); | |
362 | Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' ); |
|
363 | Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' ); | |
363 | Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' ); |
|
364 | Task_name[TASKID_LOAD] = rtems_build_name( 'L', 'O', 'A', 'D' ); | |
364 | Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' ); |
|
365 | Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' ); | |
365 | Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' ); |
|
366 | Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' ); | |
366 | Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' ); |
|
367 | Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' ); | |
367 | Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' ); |
|
368 | Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' ); | |
368 | Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' ); |
|
369 | Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' ); | |
369 | Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' ); |
|
370 | Task_name[TASKID_PRC0] = rtems_build_name( 'P', 'R', 'C', '0' ); | |
370 | Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' ); |
|
371 | Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' ); | |
371 | Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' ); |
|
372 | Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' ); | |
372 | Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' ); |
|
373 | Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' ); | |
373 | Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' ); |
|
374 | Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' ); | |
374 | Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' ); |
|
375 | Task_name[TASKID_LINK] = rtems_build_name( 'L', 'I', 'N', 'K' ); | |
375 | Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' ); |
|
376 | Task_name[TASKID_AVF1] = rtems_build_name( 'A', 'V', 'F', '1' ); | |
376 | Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' ); |
|
377 | Task_name[TASKID_PRC1] = rtems_build_name( 'P', 'R', 'C', '1' ); | |
377 | Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' ); |
|
378 | Task_name[TASKID_AVF2] = rtems_build_name( 'A', 'V', 'F', '2' ); | |
378 | Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' ); |
|
379 | Task_name[TASKID_PRC2] = rtems_build_name( 'P', 'R', 'C', '2' ); | |
379 |
|
380 | |||
380 | // rate monotonic period names |
|
381 | // rate monotonic period names | |
381 | name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' ); |
|
382 | name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' ); | |
|
383 | name_avgv_rate_monotonic = rtems_build_name( 'A', 'V', 'G', 'V' ); | |||
382 |
|
384 | |||
383 | misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' ); |
|
385 | misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' ); | |
384 | misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' ); |
|
386 | misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' ); | |
385 | misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' ); |
|
387 | misc_name[QUEUE_PRC0] = rtems_build_name( 'Q', '_', 'P', '0' ); | |
386 | misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' ); |
|
388 | misc_name[QUEUE_PRC1] = rtems_build_name( 'Q', '_', 'P', '1' ); | |
387 | misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' ); |
|
389 | misc_name[QUEUE_PRC2] = rtems_build_name( 'Q', '_', 'P', '2' ); | |
388 |
|
390 | |||
389 | timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' ); |
|
391 | timecode_timer_name = rtems_build_name( 'S', 'P', 'T', 'C' ); | |
390 | } |
|
392 | } | |
391 |
|
393 | |||
392 | int create_all_tasks( void ) // create all tasks which run in the software |
|
394 | int create_all_tasks( void ) // create all tasks which run in the software | |
393 | { |
|
395 | { | |
394 | /** This function creates all RTEMS tasks used in the software. |
|
396 | /** This function creates all RTEMS tasks used in the software. | |
395 | * |
|
397 | * | |
396 | * @return RTEMS directive status codes: |
|
398 | * @return RTEMS directive status codes: | |
397 | * - RTEMS_SUCCESSFUL - task created successfully |
|
399 | * - RTEMS_SUCCESSFUL - task created successfully | |
398 | * - RTEMS_INVALID_ADDRESS - id is NULL |
|
400 | * - RTEMS_INVALID_ADDRESS - id is NULL | |
399 | * - RTEMS_INVALID_NAME - invalid task name |
|
401 | * - RTEMS_INVALID_NAME - invalid task name | |
400 | * - RTEMS_INVALID_PRIORITY - invalid task priority |
|
402 | * - RTEMS_INVALID_PRIORITY - invalid task priority | |
401 | * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured |
|
403 | * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured | |
402 | * - RTEMS_TOO_MANY - too many tasks created |
|
404 | * - RTEMS_TOO_MANY - too many tasks created | |
403 | * - RTEMS_UNSATISFIED - not enough memory for stack/FP context |
|
405 | * - RTEMS_UNSATISFIED - not enough memory for stack/FP context | |
404 | * - RTEMS_TOO_MANY - too many global objects |
|
406 | * - RTEMS_TOO_MANY - too many global objects | |
405 | * |
|
407 | * | |
406 | */ |
|
408 | */ | |
407 |
|
409 | |||
408 | rtems_status_code status; |
|
410 | rtems_status_code status; | |
409 |
|
411 | |||
410 | //********** |
|
412 | //********** | |
411 | // SPACEWIRE |
|
413 | // SPACEWIRE | |
412 | // RECV |
|
414 | // RECV | |
413 | status = rtems_task_create( |
|
415 | status = rtems_task_create( | |
414 | Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE, |
|
416 | Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE, | |
415 | RTEMS_DEFAULT_MODES, |
|
417 | RTEMS_DEFAULT_MODES, | |
416 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV] |
|
418 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV] | |
417 | ); |
|
419 | ); | |
418 | if (status == RTEMS_SUCCESSFUL) // SEND |
|
420 | if (status == RTEMS_SUCCESSFUL) // SEND | |
419 | { |
|
421 | { | |
420 | status = rtems_task_create( |
|
422 | status = rtems_task_create( | |
421 | Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT, |
|
423 | Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT, | |
422 | RTEMS_DEFAULT_MODES, |
|
424 | RTEMS_DEFAULT_MODES, | |
423 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND] |
|
425 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SEND] | |
424 | ); |
|
426 | ); | |
425 | } |
|
427 | } | |
426 | if (status == RTEMS_SUCCESSFUL) // LINK |
|
428 | if (status == RTEMS_SUCCESSFUL) // LINK | |
427 | { |
|
429 | { | |
428 | status = rtems_task_create( |
|
430 | status = rtems_task_create( | |
429 | Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE, |
|
431 | Task_name[TASKID_LINK], TASK_PRIORITY_LINK, RTEMS_MINIMUM_STACK_SIZE, | |
430 | RTEMS_DEFAULT_MODES, |
|
432 | RTEMS_DEFAULT_MODES, | |
431 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK] |
|
433 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LINK] | |
432 | ); |
|
434 | ); | |
433 | } |
|
435 | } | |
434 | if (status == RTEMS_SUCCESSFUL) // ACTN |
|
436 | if (status == RTEMS_SUCCESSFUL) // ACTN | |
435 | { |
|
437 | { | |
436 | status = rtems_task_create( |
|
438 | status = rtems_task_create( | |
437 | Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE, |
|
439 | Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE, | |
438 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, |
|
440 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, | |
439 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN] |
|
441 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN] | |
440 | ); |
|
442 | ); | |
441 | } |
|
443 | } | |
442 | if (status == RTEMS_SUCCESSFUL) // SPIQ |
|
444 | if (status == RTEMS_SUCCESSFUL) // SPIQ | |
443 | { |
|
445 | { | |
444 | status = rtems_task_create( |
|
446 | status = rtems_task_create( | |
445 | Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE, |
|
447 | Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE, | |
446 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, |
|
448 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, | |
447 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ] |
|
449 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ] | |
448 | ); |
|
450 | ); | |
449 | } |
|
451 | } | |
450 |
|
452 | |||
451 | //****************** |
|
453 | //****************** | |
452 | // SPECTRAL MATRICES |
|
454 | // SPECTRAL MATRICES | |
453 | if (status == RTEMS_SUCCESSFUL) // AVF0 |
|
455 | if (status == RTEMS_SUCCESSFUL) // AVF0 | |
454 | { |
|
456 | { | |
455 | status = rtems_task_create( |
|
457 | status = rtems_task_create( | |
456 | Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE, |
|
458 | Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE, | |
457 | RTEMS_DEFAULT_MODES, |
|
459 | RTEMS_DEFAULT_MODES, | |
458 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0] |
|
460 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0] | |
459 | ); |
|
461 | ); | |
460 | } |
|
462 | } | |
461 | if (status == RTEMS_SUCCESSFUL) // PRC0 |
|
463 | if (status == RTEMS_SUCCESSFUL) // PRC0 | |
462 | { |
|
464 | { | |
463 | status = rtems_task_create( |
|
465 | status = rtems_task_create( | |
464 | Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT, |
|
466 | Task_name[TASKID_PRC0], TASK_PRIORITY_PRC0, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT, | |
465 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, |
|
467 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, | |
466 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0] |
|
468 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC0] | |
467 | ); |
|
469 | ); | |
468 | } |
|
470 | } | |
469 | if (status == RTEMS_SUCCESSFUL) // AVF1 |
|
471 | if (status == RTEMS_SUCCESSFUL) // AVF1 | |
470 | { |
|
472 | { | |
471 | status = rtems_task_create( |
|
473 | status = rtems_task_create( | |
472 | Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE, |
|
474 | Task_name[TASKID_AVF1], TASK_PRIORITY_AVF1, RTEMS_MINIMUM_STACK_SIZE, | |
473 | RTEMS_DEFAULT_MODES, |
|
475 | RTEMS_DEFAULT_MODES, | |
474 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1] |
|
476 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF1] | |
475 | ); |
|
477 | ); | |
476 | } |
|
478 | } | |
477 | if (status == RTEMS_SUCCESSFUL) // PRC1 |
|
479 | if (status == RTEMS_SUCCESSFUL) // PRC1 | |
478 | { |
|
480 | { | |
479 | status = rtems_task_create( |
|
481 | status = rtems_task_create( | |
480 | Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT, |
|
482 | Task_name[TASKID_PRC1], TASK_PRIORITY_PRC1, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT, | |
481 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, |
|
483 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, | |
482 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1] |
|
484 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC1] | |
483 | ); |
|
485 | ); | |
484 | } |
|
486 | } | |
485 | if (status == RTEMS_SUCCESSFUL) // AVF2 |
|
487 | if (status == RTEMS_SUCCESSFUL) // AVF2 | |
486 | { |
|
488 | { | |
487 | status = rtems_task_create( |
|
489 | status = rtems_task_create( | |
488 | Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE, |
|
490 | Task_name[TASKID_AVF2], TASK_PRIORITY_AVF2, RTEMS_MINIMUM_STACK_SIZE, | |
489 | RTEMS_DEFAULT_MODES, |
|
491 | RTEMS_DEFAULT_MODES, | |
490 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2] |
|
492 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF2] | |
491 | ); |
|
493 | ); | |
492 | } |
|
494 | } | |
493 | if (status == RTEMS_SUCCESSFUL) // PRC2 |
|
495 | if (status == RTEMS_SUCCESSFUL) // PRC2 | |
494 | { |
|
496 | { | |
495 | status = rtems_task_create( |
|
497 | status = rtems_task_create( | |
496 | Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT, |
|
498 | Task_name[TASKID_PRC2], TASK_PRIORITY_PRC2, RTEMS_MINIMUM_STACK_SIZE * STACK_SIZE_MULT, | |
497 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, |
|
499 | RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT, | |
498 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2] |
|
500 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_PRC2] | |
499 | ); |
|
501 | ); | |
500 | } |
|
502 | } | |
501 |
|
503 | |||
502 | //**************** |
|
504 | //**************** | |
503 | // WAVEFORM PICKER |
|
505 | // WAVEFORM PICKER | |
504 | if (status == RTEMS_SUCCESSFUL) // WFRM |
|
506 | if (status == RTEMS_SUCCESSFUL) // WFRM | |
505 | { |
|
507 | { | |
506 | status = rtems_task_create( |
|
508 | status = rtems_task_create( | |
507 | Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE, |
|
509 | Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE, | |
508 | RTEMS_DEFAULT_MODES, |
|
510 | RTEMS_DEFAULT_MODES, | |
509 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM] |
|
511 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM] | |
510 | ); |
|
512 | ); | |
511 | } |
|
513 | } | |
512 | if (status == RTEMS_SUCCESSFUL) // CWF3 |
|
514 | if (status == RTEMS_SUCCESSFUL) // CWF3 | |
513 | { |
|
515 | { | |
514 | status = rtems_task_create( |
|
516 | status = rtems_task_create( | |
515 | Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE, |
|
517 | Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE, | |
516 | RTEMS_DEFAULT_MODES, |
|
518 | RTEMS_DEFAULT_MODES, | |
517 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3] |
|
519 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3] | |
518 | ); |
|
520 | ); | |
519 | } |
|
521 | } | |
520 | if (status == RTEMS_SUCCESSFUL) // CWF2 |
|
522 | if (status == RTEMS_SUCCESSFUL) // CWF2 | |
521 | { |
|
523 | { | |
522 | status = rtems_task_create( |
|
524 | status = rtems_task_create( | |
523 | Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE, |
|
525 | Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE, | |
524 | RTEMS_DEFAULT_MODES, |
|
526 | RTEMS_DEFAULT_MODES, | |
525 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2] |
|
527 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2] | |
526 | ); |
|
528 | ); | |
527 | } |
|
529 | } | |
528 | if (status == RTEMS_SUCCESSFUL) // CWF1 |
|
530 | if (status == RTEMS_SUCCESSFUL) // CWF1 | |
529 | { |
|
531 | { | |
530 | status = rtems_task_create( |
|
532 | status = rtems_task_create( | |
531 | Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE, |
|
533 | Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE, | |
532 | RTEMS_DEFAULT_MODES, |
|
534 | RTEMS_DEFAULT_MODES, | |
533 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1] |
|
535 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1] | |
534 | ); |
|
536 | ); | |
535 | } |
|
537 | } | |
536 | if (status == RTEMS_SUCCESSFUL) // SWBD |
|
538 | if (status == RTEMS_SUCCESSFUL) // SWBD | |
537 | { |
|
539 | { | |
538 | status = rtems_task_create( |
|
540 | status = rtems_task_create( | |
539 | Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE, |
|
541 | Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE, | |
540 | RTEMS_DEFAULT_MODES, |
|
542 | RTEMS_DEFAULT_MODES, | |
541 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD] |
|
543 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD] | |
542 | ); |
|
544 | ); | |
543 | } |
|
545 | } | |
544 |
|
546 | |||
545 | //***** |
|
547 | //***** | |
546 | // MISC |
|
548 | // MISC | |
547 | if (status == RTEMS_SUCCESSFUL) // LOAD |
|
549 | if (status == RTEMS_SUCCESSFUL) // LOAD | |
548 | { |
|
550 | { | |
549 | status = rtems_task_create( |
|
551 | status = rtems_task_create( | |
550 | Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE, |
|
552 | Task_name[TASKID_LOAD], TASK_PRIORITY_LOAD, RTEMS_MINIMUM_STACK_SIZE, | |
551 | RTEMS_DEFAULT_MODES, |
|
553 | RTEMS_DEFAULT_MODES, | |
552 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD] |
|
554 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_LOAD] | |
553 | ); |
|
555 | ); | |
554 | } |
|
556 | } | |
555 | if (status == RTEMS_SUCCESSFUL) // DUMB |
|
557 | if (status == RTEMS_SUCCESSFUL) // DUMB | |
556 | { |
|
558 | { | |
557 | status = rtems_task_create( |
|
559 | status = rtems_task_create( | |
558 | Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE, |
|
560 | Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE, | |
559 | RTEMS_DEFAULT_MODES, |
|
561 | RTEMS_DEFAULT_MODES, | |
560 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB] |
|
562 | RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB] | |
561 | ); |
|
563 | ); | |
562 | } |
|
564 | } | |
563 | if (status == RTEMS_SUCCESSFUL) // HOUS |
|
565 | if (status == RTEMS_SUCCESSFUL) // HOUS | |
564 | { |
|
566 | { | |
565 | status = rtems_task_create( |
|
567 | status = rtems_task_create( | |
566 | Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE, |
|
568 | Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE, | |
567 | RTEMS_DEFAULT_MODES, |
|
569 | RTEMS_DEFAULT_MODES, | |
568 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS] |
|
570 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_HOUS] | |
569 | ); |
|
571 | ); | |
570 | } |
|
572 | } | |
|
573 | if (status == RTEMS_SUCCESSFUL) // AVGV | |||
|
574 | { | |||
|
575 | status = rtems_task_create( | |||
|
576 | Task_name[TASKID_AVGV], TASK_PRIORITY_AVGV, RTEMS_MINIMUM_STACK_SIZE, | |||
|
577 | RTEMS_DEFAULT_MODES, | |||
|
578 | RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVGV] | |||
|
579 | ); | |||
|
580 | } | |||
571 |
|
581 | |||
572 | return status; |
|
582 | return status; | |
573 | } |
|
583 | } | |
574 |
|
584 | |||
575 | int start_recv_send_tasks( void ) |
|
585 | int start_recv_send_tasks( void ) | |
576 | { |
|
586 | { | |
577 | rtems_status_code status; |
|
587 | rtems_status_code status; | |
578 |
|
588 | |||
579 | status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 ); |
|
589 | status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 ); | |
580 | if (status!=RTEMS_SUCCESSFUL) { |
|
590 | if (status!=RTEMS_SUCCESSFUL) { | |
581 | BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n") |
|
591 | BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n") | |
582 | } |
|
592 | } | |
583 |
|
593 | |||
584 | if (status == RTEMS_SUCCESSFUL) // SEND |
|
594 | if (status == RTEMS_SUCCESSFUL) // SEND | |
585 | { |
|
595 | { | |
586 | status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 ); |
|
596 | status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 ); | |
587 | if (status!=RTEMS_SUCCESSFUL) { |
|
597 | if (status!=RTEMS_SUCCESSFUL) { | |
588 | BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n") |
|
598 | BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n") | |
589 | } |
|
599 | } | |
590 | } |
|
600 | } | |
591 |
|
601 | |||
592 | return status; |
|
602 | return status; | |
593 | } |
|
603 | } | |
594 |
|
604 | |||
595 | int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS |
|
605 | int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS | |
596 | { |
|
606 | { | |
597 | /** This function starts all RTEMS tasks used in the software. |
|
607 | /** This function starts all RTEMS tasks used in the software. | |
598 | * |
|
608 | * | |
599 | * @return RTEMS directive status codes: |
|
609 | * @return RTEMS directive status codes: | |
600 | * - RTEMS_SUCCESSFUL - ask started successfully |
|
610 | * - RTEMS_SUCCESSFUL - ask started successfully | |
601 | * - RTEMS_INVALID_ADDRESS - invalid task entry point |
|
611 | * - RTEMS_INVALID_ADDRESS - invalid task entry point | |
602 | * - RTEMS_INVALID_ID - invalid task id |
|
612 | * - RTEMS_INVALID_ID - invalid task id | |
603 | * - RTEMS_INCORRECT_STATE - task not in the dormant state |
|
613 | * - RTEMS_INCORRECT_STATE - task not in the dormant state | |
604 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task |
|
614 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task | |
605 | * |
|
615 | * | |
606 | */ |
|
616 | */ | |
607 | // starts all the tasks fot eh flight software |
|
617 | // starts all the tasks fot eh flight software | |
608 |
|
618 | |||
609 | rtems_status_code status; |
|
619 | rtems_status_code status; | |
610 |
|
620 | |||
611 | //********** |
|
621 | //********** | |
612 | // SPACEWIRE |
|
622 | // SPACEWIRE | |
613 | status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 ); |
|
623 | status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 ); | |
614 | if (status!=RTEMS_SUCCESSFUL) { |
|
624 | if (status!=RTEMS_SUCCESSFUL) { | |
615 | BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n") |
|
625 | BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n") | |
616 | } |
|
626 | } | |
617 |
|
627 | |||
618 | if (status == RTEMS_SUCCESSFUL) // LINK |
|
628 | if (status == RTEMS_SUCCESSFUL) // LINK | |
619 | { |
|
629 | { | |
620 | status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 ); |
|
630 | status = rtems_task_start( Task_id[TASKID_LINK], link_task, 1 ); | |
621 | if (status!=RTEMS_SUCCESSFUL) { |
|
631 | if (status!=RTEMS_SUCCESSFUL) { | |
622 | BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n") |
|
632 | BOOT_PRINTF("in INIT *** Error starting TASK_LINK\n") | |
623 | } |
|
633 | } | |
624 | } |
|
634 | } | |
625 |
|
635 | |||
626 | if (status == RTEMS_SUCCESSFUL) // ACTN |
|
636 | if (status == RTEMS_SUCCESSFUL) // ACTN | |
627 | { |
|
637 | { | |
628 | status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 ); |
|
638 | status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 ); | |
629 | if (status!=RTEMS_SUCCESSFUL) { |
|
639 | if (status!=RTEMS_SUCCESSFUL) { | |
630 | BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n") |
|
640 | BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n") | |
631 | } |
|
641 | } | |
632 | } |
|
642 | } | |
633 |
|
643 | |||
634 | //****************** |
|
644 | //****************** | |
635 | // SPECTRAL MATRICES |
|
645 | // SPECTRAL MATRICES | |
636 | if (status == RTEMS_SUCCESSFUL) // AVF0 |
|
646 | if (status == RTEMS_SUCCESSFUL) // AVF0 | |
637 | { |
|
647 | { | |
638 | status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY ); |
|
648 | status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, LFR_MODE_STANDBY ); | |
639 | if (status!=RTEMS_SUCCESSFUL) { |
|
649 | if (status!=RTEMS_SUCCESSFUL) { | |
640 | BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n") |
|
650 | BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n") | |
641 | } |
|
651 | } | |
642 | } |
|
652 | } | |
643 | if (status == RTEMS_SUCCESSFUL) // PRC0 |
|
653 | if (status == RTEMS_SUCCESSFUL) // PRC0 | |
644 | { |
|
654 | { | |
645 | status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY ); |
|
655 | status = rtems_task_start( Task_id[TASKID_PRC0], prc0_task, LFR_MODE_STANDBY ); | |
646 | if (status!=RTEMS_SUCCESSFUL) { |
|
656 | if (status!=RTEMS_SUCCESSFUL) { | |
647 | BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n") |
|
657 | BOOT_PRINTF("in INIT *** Error starting TASK_PRC0\n") | |
648 | } |
|
658 | } | |
649 | } |
|
659 | } | |
650 | if (status == RTEMS_SUCCESSFUL) // AVF1 |
|
660 | if (status == RTEMS_SUCCESSFUL) // AVF1 | |
651 | { |
|
661 | { | |
652 | status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY ); |
|
662 | status = rtems_task_start( Task_id[TASKID_AVF1], avf1_task, LFR_MODE_STANDBY ); | |
653 | if (status!=RTEMS_SUCCESSFUL) { |
|
663 | if (status!=RTEMS_SUCCESSFUL) { | |
654 | BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n") |
|
664 | BOOT_PRINTF("in INIT *** Error starting TASK_AVF1\n") | |
655 | } |
|
665 | } | |
656 | } |
|
666 | } | |
657 | if (status == RTEMS_SUCCESSFUL) // PRC1 |
|
667 | if (status == RTEMS_SUCCESSFUL) // PRC1 | |
658 | { |
|
668 | { | |
659 | status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY ); |
|
669 | status = rtems_task_start( Task_id[TASKID_PRC1], prc1_task, LFR_MODE_STANDBY ); | |
660 | if (status!=RTEMS_SUCCESSFUL) { |
|
670 | if (status!=RTEMS_SUCCESSFUL) { | |
661 | BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n") |
|
671 | BOOT_PRINTF("in INIT *** Error starting TASK_PRC1\n") | |
662 | } |
|
672 | } | |
663 | } |
|
673 | } | |
664 | if (status == RTEMS_SUCCESSFUL) // AVF2 |
|
674 | if (status == RTEMS_SUCCESSFUL) // AVF2 | |
665 | { |
|
675 | { | |
666 | status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 ); |
|
676 | status = rtems_task_start( Task_id[TASKID_AVF2], avf2_task, 1 ); | |
667 | if (status!=RTEMS_SUCCESSFUL) { |
|
677 | if (status!=RTEMS_SUCCESSFUL) { | |
668 | BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n") |
|
678 | BOOT_PRINTF("in INIT *** Error starting TASK_AVF2\n") | |
669 | } |
|
679 | } | |
670 | } |
|
680 | } | |
671 | if (status == RTEMS_SUCCESSFUL) // PRC2 |
|
681 | if (status == RTEMS_SUCCESSFUL) // PRC2 | |
672 | { |
|
682 | { | |
673 | status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 ); |
|
683 | status = rtems_task_start( Task_id[TASKID_PRC2], prc2_task, 1 ); | |
674 | if (status!=RTEMS_SUCCESSFUL) { |
|
684 | if (status!=RTEMS_SUCCESSFUL) { | |
675 | BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n") |
|
685 | BOOT_PRINTF("in INIT *** Error starting TASK_PRC2\n") | |
676 | } |
|
686 | } | |
677 | } |
|
687 | } | |
678 |
|
688 | |||
679 | //**************** |
|
689 | //**************** | |
680 | // WAVEFORM PICKER |
|
690 | // WAVEFORM PICKER | |
681 | if (status == RTEMS_SUCCESSFUL) // WFRM |
|
691 | if (status == RTEMS_SUCCESSFUL) // WFRM | |
682 | { |
|
692 | { | |
683 | status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 ); |
|
693 | status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 ); | |
684 | if (status!=RTEMS_SUCCESSFUL) { |
|
694 | if (status!=RTEMS_SUCCESSFUL) { | |
685 | BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n") |
|
695 | BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n") | |
686 | } |
|
696 | } | |
687 | } |
|
697 | } | |
688 | if (status == RTEMS_SUCCESSFUL) // CWF3 |
|
698 | if (status == RTEMS_SUCCESSFUL) // CWF3 | |
689 | { |
|
699 | { | |
690 | status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 ); |
|
700 | status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 ); | |
691 | if (status!=RTEMS_SUCCESSFUL) { |
|
701 | if (status!=RTEMS_SUCCESSFUL) { | |
692 | BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n") |
|
702 | BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n") | |
693 | } |
|
703 | } | |
694 | } |
|
704 | } | |
695 | if (status == RTEMS_SUCCESSFUL) // CWF2 |
|
705 | if (status == RTEMS_SUCCESSFUL) // CWF2 | |
696 | { |
|
706 | { | |
697 | status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 ); |
|
707 | status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 ); | |
698 | if (status!=RTEMS_SUCCESSFUL) { |
|
708 | if (status!=RTEMS_SUCCESSFUL) { | |
699 | BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n") |
|
709 | BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n") | |
700 | } |
|
710 | } | |
701 | } |
|
711 | } | |
702 | if (status == RTEMS_SUCCESSFUL) // CWF1 |
|
712 | if (status == RTEMS_SUCCESSFUL) // CWF1 | |
703 | { |
|
713 | { | |
704 | status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 ); |
|
714 | status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 ); | |
705 | if (status!=RTEMS_SUCCESSFUL) { |
|
715 | if (status!=RTEMS_SUCCESSFUL) { | |
706 | BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n") |
|
716 | BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n") | |
707 | } |
|
717 | } | |
708 | } |
|
718 | } | |
709 | if (status == RTEMS_SUCCESSFUL) // SWBD |
|
719 | if (status == RTEMS_SUCCESSFUL) // SWBD | |
710 | { |
|
720 | { | |
711 | status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 ); |
|
721 | status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 ); | |
712 | if (status!=RTEMS_SUCCESSFUL) { |
|
722 | if (status!=RTEMS_SUCCESSFUL) { | |
713 | BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n") |
|
723 | BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n") | |
714 | } |
|
724 | } | |
715 | } |
|
725 | } | |
716 |
|
726 | |||
717 | //***** |
|
727 | //***** | |
718 | // MISC |
|
728 | // MISC | |
719 | if (status == RTEMS_SUCCESSFUL) // HOUS |
|
729 | if (status == RTEMS_SUCCESSFUL) // HOUS | |
720 | { |
|
730 | { | |
721 | status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 ); |
|
731 | status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 ); | |
722 | if (status!=RTEMS_SUCCESSFUL) { |
|
732 | if (status!=RTEMS_SUCCESSFUL) { | |
723 | BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n") |
|
733 | BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n") | |
724 | } |
|
734 | } | |
725 | } |
|
735 | } | |
|
736 | if (status == RTEMS_SUCCESSFUL) // AVGV | |||
|
737 | { | |||
|
738 | status = rtems_task_start( Task_id[TASKID_AVGV], avgv_task, 1 ); | |||
|
739 | if (status!=RTEMS_SUCCESSFUL) { | |||
|
740 | BOOT_PRINTF("in INIT *** Error starting TASK_AVGV\n") | |||
|
741 | } | |||
|
742 | } | |||
726 | if (status == RTEMS_SUCCESSFUL) // DUMB |
|
743 | if (status == RTEMS_SUCCESSFUL) // DUMB | |
727 | { |
|
744 | { | |
728 | status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 ); |
|
745 | status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 ); | |
729 | if (status!=RTEMS_SUCCESSFUL) { |
|
746 | if (status!=RTEMS_SUCCESSFUL) { | |
730 | BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n") |
|
747 | BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n") | |
731 | } |
|
748 | } | |
732 | } |
|
749 | } | |
733 | if (status == RTEMS_SUCCESSFUL) // LOAD |
|
750 | if (status == RTEMS_SUCCESSFUL) // LOAD | |
734 | { |
|
751 | { | |
735 | status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 ); |
|
752 | status = rtems_task_start( Task_id[TASKID_LOAD], load_task, 1 ); | |
736 | if (status!=RTEMS_SUCCESSFUL) { |
|
753 | if (status!=RTEMS_SUCCESSFUL) { | |
737 | BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n") |
|
754 | BOOT_PRINTF("in INIT *** Error starting TASK_LOAD\n") | |
738 | } |
|
755 | } | |
739 | } |
|
756 | } | |
740 |
|
757 | |||
741 | return status; |
|
758 | return status; | |
742 | } |
|
759 | } | |
743 |
|
760 | |||
744 | rtems_status_code create_message_queues( void ) // create the two message queues used in the software |
|
761 | rtems_status_code create_message_queues( void ) // create the two message queues used in the software | |
745 | { |
|
762 | { | |
746 | rtems_status_code status_recv; |
|
763 | rtems_status_code status_recv; | |
747 | rtems_status_code status_send; |
|
764 | rtems_status_code status_send; | |
748 | rtems_status_code status_q_p0; |
|
765 | rtems_status_code status_q_p0; | |
749 | rtems_status_code status_q_p1; |
|
766 | rtems_status_code status_q_p1; | |
750 | rtems_status_code status_q_p2; |
|
767 | rtems_status_code status_q_p2; | |
751 | rtems_status_code ret; |
|
768 | rtems_status_code ret; | |
752 | rtems_id queue_id; |
|
769 | rtems_id queue_id; | |
753 |
|
770 | |||
754 | ret = RTEMS_SUCCESSFUL; |
|
771 | ret = RTEMS_SUCCESSFUL; | |
755 | queue_id = RTEMS_ID_NONE; |
|
772 | queue_id = RTEMS_ID_NONE; | |
756 |
|
773 | |||
757 | //**************************************** |
|
774 | //**************************************** | |
758 | // create the queue for handling valid TCs |
|
775 | // create the queue for handling valid TCs | |
759 | status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV], |
|
776 | status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV], | |
760 | MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE, |
|
777 | MSG_QUEUE_COUNT_RECV, CCSDS_TC_PKT_MAX_SIZE, | |
761 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); |
|
778 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); | |
762 | if ( status_recv != RTEMS_SUCCESSFUL ) { |
|
779 | if ( status_recv != RTEMS_SUCCESSFUL ) { | |
763 | PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv) |
|
780 | PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv) | |
764 | } |
|
781 | } | |
765 |
|
782 | |||
766 | //************************************************ |
|
783 | //************************************************ | |
767 | // create the queue for handling TM packet sending |
|
784 | // create the queue for handling TM packet sending | |
768 | status_send = rtems_message_queue_create( misc_name[QUEUE_SEND], |
|
785 | status_send = rtems_message_queue_create( misc_name[QUEUE_SEND], | |
769 | MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND, |
|
786 | MSG_QUEUE_COUNT_SEND, MSG_QUEUE_SIZE_SEND, | |
770 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); |
|
787 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); | |
771 | if ( status_send != RTEMS_SUCCESSFUL ) { |
|
788 | if ( status_send != RTEMS_SUCCESSFUL ) { | |
772 | PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send) |
|
789 | PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send) | |
773 | } |
|
790 | } | |
774 |
|
791 | |||
775 | //***************************************************************************** |
|
792 | //***************************************************************************** | |
776 | // create the queue for handling averaged spectral matrices for processing @ f0 |
|
793 | // create the queue for handling averaged spectral matrices for processing @ f0 | |
777 | status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0], |
|
794 | status_q_p0 = rtems_message_queue_create( misc_name[QUEUE_PRC0], | |
778 | MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0, |
|
795 | MSG_QUEUE_COUNT_PRC0, MSG_QUEUE_SIZE_PRC0, | |
779 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); |
|
796 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); | |
780 | if ( status_q_p0 != RTEMS_SUCCESSFUL ) { |
|
797 | if ( status_q_p0 != RTEMS_SUCCESSFUL ) { | |
781 | PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0) |
|
798 | PRINTF1("in create_message_queues *** ERR creating Q_P0 queue, %d\n", status_q_p0) | |
782 | } |
|
799 | } | |
783 |
|
800 | |||
784 | //***************************************************************************** |
|
801 | //***************************************************************************** | |
785 | // create the queue for handling averaged spectral matrices for processing @ f1 |
|
802 | // create the queue for handling averaged spectral matrices for processing @ f1 | |
786 | status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1], |
|
803 | status_q_p1 = rtems_message_queue_create( misc_name[QUEUE_PRC1], | |
787 | MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1, |
|
804 | MSG_QUEUE_COUNT_PRC1, MSG_QUEUE_SIZE_PRC1, | |
788 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); |
|
805 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); | |
789 | if ( status_q_p1 != RTEMS_SUCCESSFUL ) { |
|
806 | if ( status_q_p1 != RTEMS_SUCCESSFUL ) { | |
790 | PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1) |
|
807 | PRINTF1("in create_message_queues *** ERR creating Q_P1 queue, %d\n", status_q_p1) | |
791 | } |
|
808 | } | |
792 |
|
809 | |||
793 | //***************************************************************************** |
|
810 | //***************************************************************************** | |
794 | // create the queue for handling averaged spectral matrices for processing @ f2 |
|
811 | // create the queue for handling averaged spectral matrices for processing @ f2 | |
795 | status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2], |
|
812 | status_q_p2 = rtems_message_queue_create( misc_name[QUEUE_PRC2], | |
796 | MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2, |
|
813 | MSG_QUEUE_COUNT_PRC2, MSG_QUEUE_SIZE_PRC2, | |
797 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); |
|
814 | RTEMS_FIFO | RTEMS_LOCAL, &queue_id ); | |
798 | if ( status_q_p2 != RTEMS_SUCCESSFUL ) { |
|
815 | if ( status_q_p2 != RTEMS_SUCCESSFUL ) { | |
799 | PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2) |
|
816 | PRINTF1("in create_message_queues *** ERR creating Q_P2 queue, %d\n", status_q_p2) | |
800 | } |
|
817 | } | |
801 |
|
818 | |||
802 | if ( status_recv != RTEMS_SUCCESSFUL ) |
|
819 | if ( status_recv != RTEMS_SUCCESSFUL ) | |
803 | { |
|
820 | { | |
804 | ret = status_recv; |
|
821 | ret = status_recv; | |
805 | } |
|
822 | } | |
806 | else if( status_send != RTEMS_SUCCESSFUL ) |
|
823 | else if( status_send != RTEMS_SUCCESSFUL ) | |
807 | { |
|
824 | { | |
808 | ret = status_send; |
|
825 | ret = status_send; | |
809 | } |
|
826 | } | |
810 | else if( status_q_p0 != RTEMS_SUCCESSFUL ) |
|
827 | else if( status_q_p0 != RTEMS_SUCCESSFUL ) | |
811 | { |
|
828 | { | |
812 | ret = status_q_p0; |
|
829 | ret = status_q_p0; | |
813 | } |
|
830 | } | |
814 | else if( status_q_p1 != RTEMS_SUCCESSFUL ) |
|
831 | else if( status_q_p1 != RTEMS_SUCCESSFUL ) | |
815 | { |
|
832 | { | |
816 | ret = status_q_p1; |
|
833 | ret = status_q_p1; | |
817 | } |
|
834 | } | |
818 | else |
|
835 | else | |
819 | { |
|
836 | { | |
820 | ret = status_q_p2; |
|
837 | ret = status_q_p2; | |
821 | } |
|
838 | } | |
822 |
|
839 | |||
823 | return ret; |
|
840 | return ret; | |
824 | } |
|
841 | } | |
825 |
|
842 | |||
826 | rtems_status_code create_timecode_timer( void ) |
|
843 | rtems_status_code create_timecode_timer( void ) | |
827 | { |
|
844 | { | |
828 | rtems_status_code status; |
|
845 | rtems_status_code status; | |
829 |
|
846 | |||
830 | status = rtems_timer_create( timecode_timer_name, &timecode_timer_id ); |
|
847 | status = rtems_timer_create( timecode_timer_name, &timecode_timer_id ); | |
831 |
|
848 | |||
832 | if ( status != RTEMS_SUCCESSFUL ) |
|
849 | if ( status != RTEMS_SUCCESSFUL ) | |
833 | { |
|
850 | { | |
834 | PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status) |
|
851 | PRINTF1("in create_timer_timecode *** ERR creating SPTC timer, %d\n", status) | |
835 | } |
|
852 | } | |
836 | else |
|
853 | else | |
837 | { |
|
854 | { | |
838 | PRINTF("in create_timer_timecode *** OK creating SPTC timer\n") |
|
855 | PRINTF("in create_timer_timecode *** OK creating SPTC timer\n") | |
839 | } |
|
856 | } | |
840 |
|
857 | |||
841 | return status; |
|
858 | return status; | |
842 | } |
|
859 | } | |
843 |
|
860 | |||
844 | rtems_status_code get_message_queue_id_send( rtems_id *queue_id ) |
|
861 | rtems_status_code get_message_queue_id_send( rtems_id *queue_id ) | |
845 | { |
|
862 | { | |
846 | rtems_status_code status; |
|
863 | rtems_status_code status; | |
847 | rtems_name queue_name; |
|
864 | rtems_name queue_name; | |
848 |
|
865 | |||
849 | queue_name = rtems_build_name( 'Q', '_', 'S', 'D' ); |
|
866 | queue_name = rtems_build_name( 'Q', '_', 'S', 'D' ); | |
850 |
|
867 | |||
851 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); |
|
868 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); | |
852 |
|
869 | |||
853 | return status; |
|
870 | return status; | |
854 | } |
|
871 | } | |
855 |
|
872 | |||
856 | rtems_status_code get_message_queue_id_recv( rtems_id *queue_id ) |
|
873 | rtems_status_code get_message_queue_id_recv( rtems_id *queue_id ) | |
857 | { |
|
874 | { | |
858 | rtems_status_code status; |
|
875 | rtems_status_code status; | |
859 | rtems_name queue_name; |
|
876 | rtems_name queue_name; | |
860 |
|
877 | |||
861 | queue_name = rtems_build_name( 'Q', '_', 'R', 'V' ); |
|
878 | queue_name = rtems_build_name( 'Q', '_', 'R', 'V' ); | |
862 |
|
879 | |||
863 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); |
|
880 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); | |
864 |
|
881 | |||
865 | return status; |
|
882 | return status; | |
866 | } |
|
883 | } | |
867 |
|
884 | |||
868 | rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id ) |
|
885 | rtems_status_code get_message_queue_id_prc0( rtems_id *queue_id ) | |
869 | { |
|
886 | { | |
870 | rtems_status_code status; |
|
887 | rtems_status_code status; | |
871 | rtems_name queue_name; |
|
888 | rtems_name queue_name; | |
872 |
|
889 | |||
873 | queue_name = rtems_build_name( 'Q', '_', 'P', '0' ); |
|
890 | queue_name = rtems_build_name( 'Q', '_', 'P', '0' ); | |
874 |
|
891 | |||
875 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); |
|
892 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); | |
876 |
|
893 | |||
877 | return status; |
|
894 | return status; | |
878 | } |
|
895 | } | |
879 |
|
896 | |||
880 | rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id ) |
|
897 | rtems_status_code get_message_queue_id_prc1( rtems_id *queue_id ) | |
881 | { |
|
898 | { | |
882 | rtems_status_code status; |
|
899 | rtems_status_code status; | |
883 | rtems_name queue_name; |
|
900 | rtems_name queue_name; | |
884 |
|
901 | |||
885 | queue_name = rtems_build_name( 'Q', '_', 'P', '1' ); |
|
902 | queue_name = rtems_build_name( 'Q', '_', 'P', '1' ); | |
886 |
|
903 | |||
887 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); |
|
904 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); | |
888 |
|
905 | |||
889 | return status; |
|
906 | return status; | |
890 | } |
|
907 | } | |
891 |
|
908 | |||
892 | rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id ) |
|
909 | rtems_status_code get_message_queue_id_prc2( rtems_id *queue_id ) | |
893 | { |
|
910 | { | |
894 | rtems_status_code status; |
|
911 | rtems_status_code status; | |
895 | rtems_name queue_name; |
|
912 | rtems_name queue_name; | |
896 |
|
913 | |||
897 | queue_name = rtems_build_name( 'Q', '_', 'P', '2' ); |
|
914 | queue_name = rtems_build_name( 'Q', '_', 'P', '2' ); | |
898 |
|
915 | |||
899 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); |
|
916 | status = rtems_message_queue_ident( queue_name, 0, queue_id ); | |
900 |
|
917 | |||
901 | return status; |
|
918 | return status; | |
902 | } |
|
919 | } | |
903 |
|
920 | |||
904 | void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max ) |
|
921 | void update_queue_max_count( rtems_id queue_id, unsigned char*fifo_size_max ) | |
905 | { |
|
922 | { | |
906 | u_int32_t count; |
|
923 | u_int32_t count; | |
907 | rtems_status_code status; |
|
924 | rtems_status_code status; | |
908 |
|
925 | |||
909 | count = 0; |
|
926 | count = 0; | |
910 |
|
927 | |||
911 | status = rtems_message_queue_get_number_pending( queue_id, &count ); |
|
928 | status = rtems_message_queue_get_number_pending( queue_id, &count ); | |
912 |
|
929 | |||
913 | count = count + 1; |
|
930 | count = count + 1; | |
914 |
|
931 | |||
915 | if (status != RTEMS_SUCCESSFUL) |
|
932 | if (status != RTEMS_SUCCESSFUL) | |
916 | { |
|
933 | { | |
917 | PRINTF1("in update_queue_max_count *** ERR = %d\n", status) |
|
934 | PRINTF1("in update_queue_max_count *** ERR = %d\n", status) | |
918 | } |
|
935 | } | |
919 | else |
|
936 | else | |
920 | { |
|
937 | { | |
921 | if (count > *fifo_size_max) |
|
938 | if (count > *fifo_size_max) | |
922 | { |
|
939 | { | |
923 | *fifo_size_max = count; |
|
940 | *fifo_size_max = count; | |
924 | } |
|
941 | } | |
925 | } |
|
942 | } | |
926 | } |
|
943 | } | |
927 |
|
944 | |||
928 | void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize ) |
|
945 | void init_ring(ring_node ring[], unsigned char nbNodes, volatile int buffer[], unsigned int bufferSize ) | |
929 | { |
|
946 | { | |
930 | unsigned char i; |
|
947 | unsigned char i; | |
931 |
|
948 | |||
932 | //*************** |
|
949 | //*************** | |
933 | // BUFFER ADDRESS |
|
950 | // BUFFER ADDRESS | |
934 | for(i=0; i<nbNodes; i++) |
|
951 | for(i=0; i<nbNodes; i++) | |
935 | { |
|
952 | { | |
936 | ring[i].coarseTime = INT32_ALL_F; |
|
953 | ring[i].coarseTime = INT32_ALL_F; | |
937 | ring[i].fineTime = INT32_ALL_F; |
|
954 | ring[i].fineTime = INT32_ALL_F; | |
938 | ring[i].sid = INIT_CHAR; |
|
955 | ring[i].sid = INIT_CHAR; | |
939 | ring[i].status = INIT_CHAR; |
|
956 | ring[i].status = INIT_CHAR; | |
940 | ring[i].buffer_address = (int) &buffer[ i * bufferSize ]; |
|
957 | ring[i].buffer_address = (int) &buffer[ i * bufferSize ]; | |
941 | } |
|
958 | } | |
942 |
|
959 | |||
943 | //***** |
|
960 | //***** | |
944 | // NEXT |
|
961 | // NEXT | |
945 | ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ]; |
|
962 | ring[ nbNodes - 1 ].next = (ring_node*) &ring[ 0 ]; | |
946 | for(i=0; i<nbNodes-1; i++) |
|
963 | for(i=0; i<nbNodes-1; i++) | |
947 | { |
|
964 | { | |
948 | ring[i].next = (ring_node*) &ring[ i + 1 ]; |
|
965 | ring[i].next = (ring_node*) &ring[ i + 1 ]; | |
949 | } |
|
966 | } | |
950 |
|
967 | |||
951 | //********* |
|
968 | //********* | |
952 | // PREVIOUS |
|
969 | // PREVIOUS | |
953 | ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ]; |
|
970 | ring[ 0 ].previous = (ring_node*) &ring[ nbNodes - 1 ]; | |
954 | for(i=1; i<nbNodes; i++) |
|
971 | for(i=1; i<nbNodes; i++) | |
955 | { |
|
972 | { | |
956 | ring[i].previous = (ring_node*) &ring[ i - 1 ]; |
|
973 | ring[i].previous = (ring_node*) &ring[ i - 1 ]; | |
957 | } |
|
974 | } | |
958 | } |
|
975 | } |
@@ -1,1005 +1,1004 | |||||
1 | /** General usage functions and RTEMS tasks. |
|
1 | /** General usage functions and RTEMS tasks. | |
2 | * |
|
2 | * | |
3 | * @file |
|
3 | * @file | |
4 | * @author P. LEROY |
|
4 | * @author P. LEROY | |
5 | * |
|
5 | * | |
6 | */ |
|
6 | */ | |
7 |
|
7 | |||
8 | #include "fsw_misc.h" |
|
8 | #include "fsw_misc.h" | |
9 |
|
9 | |||
10 | int16_t hk_lfr_sc_v_f3_as_int16 = 0; |
|
10 | int16_t hk_lfr_sc_v_f3_as_int16 = 0; | |
11 | int16_t hk_lfr_sc_e1_f3_as_int16 = 0; |
|
11 | int16_t hk_lfr_sc_e1_f3_as_int16 = 0; | |
12 | int16_t hk_lfr_sc_e2_f3_as_int16 = 0; |
|
12 | int16_t hk_lfr_sc_e2_f3_as_int16 = 0; | |
13 |
|
13 | |||
14 | void timer_configure(unsigned char timer, unsigned int clock_divider, |
|
14 | void timer_configure(unsigned char timer, unsigned int clock_divider, | |
15 | unsigned char interrupt_level, rtems_isr (*timer_isr)() ) |
|
15 | unsigned char interrupt_level, rtems_isr (*timer_isr)() ) | |
16 | { |
|
16 | { | |
17 | /** This function configures a GPTIMER timer instantiated in the VHDL design. |
|
17 | /** This function configures a GPTIMER timer instantiated in the VHDL design. | |
18 | * |
|
18 | * | |
19 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
19 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
20 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
20 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
21 | * @param clock_divider is the divider of the 1 MHz clock that will be configured. |
|
21 | * @param clock_divider is the divider of the 1 MHz clock that will be configured. | |
22 | * @param interrupt_level is the interrupt level that the timer drives. |
|
22 | * @param interrupt_level is the interrupt level that the timer drives. | |
23 | * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer. |
|
23 | * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer. | |
24 | * |
|
24 | * | |
25 | * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76 |
|
25 | * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76 | |
26 | * |
|
26 | * | |
27 | */ |
|
27 | */ | |
28 |
|
28 | |||
29 | rtems_status_code status; |
|
29 | rtems_status_code status; | |
30 | rtems_isr_entry old_isr_handler; |
|
30 | rtems_isr_entry old_isr_handler; | |
31 |
|
31 | |||
32 | old_isr_handler = NULL; |
|
32 | old_isr_handler = NULL; | |
33 |
|
33 | |||
34 | gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register |
|
34 | gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register | |
35 |
|
35 | |||
36 | status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels |
|
36 | status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels | |
37 | if (status!=RTEMS_SUCCESSFUL) |
|
37 | if (status!=RTEMS_SUCCESSFUL) | |
38 | { |
|
38 | { | |
39 | PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n") |
|
39 | PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n") | |
40 | } |
|
40 | } | |
41 |
|
41 | |||
42 | timer_set_clock_divider( timer, clock_divider); |
|
42 | timer_set_clock_divider( timer, clock_divider); | |
43 | } |
|
43 | } | |
44 |
|
44 | |||
45 | void timer_start(unsigned char timer) |
|
45 | void timer_start(unsigned char timer) | |
46 | { |
|
46 | { | |
47 | /** This function starts a GPTIMER timer. |
|
47 | /** This function starts a GPTIMER timer. | |
48 | * |
|
48 | * | |
49 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
49 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
50 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
50 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
51 | * |
|
51 | * | |
52 | */ |
|
52 | */ | |
53 |
|
53 | |||
54 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; |
|
54 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; | |
55 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD; |
|
55 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD; | |
56 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN; |
|
56 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN; | |
57 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS; |
|
57 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS; | |
58 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE; |
|
58 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE; | |
59 | } |
|
59 | } | |
60 |
|
60 | |||
61 | void timer_stop(unsigned char timer) |
|
61 | void timer_stop(unsigned char timer) | |
62 | { |
|
62 | { | |
63 | /** This function stops a GPTIMER timer. |
|
63 | /** This function stops a GPTIMER timer. | |
64 | * |
|
64 | * | |
65 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
65 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
66 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
66 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
67 | * |
|
67 | * | |
68 | */ |
|
68 | */ | |
69 |
|
69 | |||
70 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK; |
|
70 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK; | |
71 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK; |
|
71 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK; | |
72 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; |
|
72 | gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ; | |
73 | } |
|
73 | } | |
74 |
|
74 | |||
75 | void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider) |
|
75 | void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider) | |
76 | { |
|
76 | { | |
77 | /** This function sets the clock divider of a GPTIMER timer. |
|
77 | /** This function sets the clock divider of a GPTIMER timer. | |
78 | * |
|
78 | * | |
79 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
79 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
80 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
80 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
81 | * @param clock_divider is the divider of the 1 MHz clock that will be configured. |
|
81 | * @param clock_divider is the divider of the 1 MHz clock that will be configured. | |
82 | * |
|
82 | * | |
83 | */ |
|
83 | */ | |
84 |
|
84 | |||
85 | gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz |
|
85 | gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz | |
86 | } |
|
86 | } | |
87 |
|
87 | |||
88 | // WATCHDOG |
|
88 | // WATCHDOG | |
89 |
|
89 | |||
90 | rtems_isr watchdog_isr( rtems_vector_number vector ) |
|
90 | rtems_isr watchdog_isr( rtems_vector_number vector ) | |
91 | { |
|
91 | { | |
92 | rtems_status_code status_code; |
|
92 | rtems_status_code status_code; | |
93 |
|
93 | |||
94 | status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 ); |
|
94 | status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 ); | |
95 |
|
95 | |||
96 | PRINTF("watchdog_isr *** this is the end, exit(0)\n"); |
|
96 | PRINTF("watchdog_isr *** this is the end, exit(0)\n"); | |
97 |
|
97 | |||
98 | exit(0); |
|
98 | exit(0); | |
99 | } |
|
99 | } | |
100 |
|
100 | |||
101 | void watchdog_configure(void) |
|
101 | void watchdog_configure(void) | |
102 | { |
|
102 | { | |
103 | /** This function configure the watchdog. |
|
103 | /** This function configure the watchdog. | |
104 | * |
|
104 | * | |
105 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
105 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
106 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
106 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
107 | * |
|
107 | * | |
108 | * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB. |
|
108 | * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB. | |
109 | * |
|
109 | * | |
110 | */ |
|
110 | */ | |
111 |
|
111 | |||
112 | LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration |
|
112 | LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration | |
113 |
|
113 | |||
114 | timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr ); |
|
114 | timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr ); | |
115 |
|
115 | |||
116 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt |
|
116 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt | |
117 | } |
|
117 | } | |
118 |
|
118 | |||
119 | void watchdog_stop(void) |
|
119 | void watchdog_stop(void) | |
120 | { |
|
120 | { | |
121 | LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line |
|
121 | LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line | |
122 | timer_stop( TIMER_WATCHDOG ); |
|
122 | timer_stop( TIMER_WATCHDOG ); | |
123 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt |
|
123 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt | |
124 | } |
|
124 | } | |
125 |
|
125 | |||
126 | void watchdog_reload(void) |
|
126 | void watchdog_reload(void) | |
127 | { |
|
127 | { | |
128 | /** This function reloads the watchdog timer counter with the timer reload value. |
|
128 | /** This function reloads the watchdog timer counter with the timer reload value. | |
129 | * |
|
129 | * | |
130 | * @param void |
|
130 | * @param void | |
131 | * |
|
131 | * | |
132 | * @return void |
|
132 | * @return void | |
133 | * |
|
133 | * | |
134 | */ |
|
134 | */ | |
135 |
|
135 | |||
136 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; |
|
136 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; | |
137 | } |
|
137 | } | |
138 |
|
138 | |||
139 | void watchdog_start(void) |
|
139 | void watchdog_start(void) | |
140 | { |
|
140 | { | |
141 | /** This function starts the watchdog timer. |
|
141 | /** This function starts the watchdog timer. | |
142 | * |
|
142 | * | |
143 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. |
|
143 | * @param gptimer_regs points to the APB registers of the GPTIMER IP core. | |
144 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). |
|
144 | * @param timer is the number of the timer in the IP core (several timers can be instantiated). | |
145 | * |
|
145 | * | |
146 | */ |
|
146 | */ | |
147 |
|
147 | |||
148 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); |
|
148 | LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); | |
149 |
|
149 | |||
150 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ; |
|
150 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ; | |
151 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; |
|
151 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD; | |
152 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN; |
|
152 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN; | |
153 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE; |
|
153 | gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE; | |
154 |
|
154 | |||
155 | LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG ); |
|
155 | LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG ); | |
156 |
|
156 | |||
157 | } |
|
157 | } | |
158 |
|
158 | |||
159 | int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register |
|
159 | int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register | |
160 | { |
|
160 | { | |
161 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; |
|
161 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART; | |
162 |
|
162 | |||
163 | apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE; |
|
163 | apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE; | |
164 |
|
164 | |||
165 | return 0; |
|
165 | return 0; | |
166 | } |
|
166 | } | |
167 |
|
167 | |||
168 | void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value) |
|
168 | void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value) | |
169 | { |
|
169 | { | |
170 | /** This function sets the scaler reload register of the apbuart module |
|
170 | /** This function sets the scaler reload register of the apbuart module | |
171 | * |
|
171 | * | |
172 | * @param regs is the address of the apbuart registers in memory |
|
172 | * @param regs is the address of the apbuart registers in memory | |
173 | * @param value is the value that will be stored in the scaler register |
|
173 | * @param value is the value that will be stored in the scaler register | |
174 | * |
|
174 | * | |
175 | * The value shall be set by the software to get data on the serial interface. |
|
175 | * The value shall be set by the software to get data on the serial interface. | |
176 | * |
|
176 | * | |
177 | */ |
|
177 | */ | |
178 |
|
178 | |||
179 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs; |
|
179 | struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs; | |
180 |
|
180 | |||
181 | apbuart_regs->scaler = value; |
|
181 | apbuart_regs->scaler = value; | |
182 |
|
182 | |||
183 | BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value) |
|
183 | BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value) | |
184 | } |
|
184 | } | |
185 |
|
185 | |||
186 | //************ |
|
186 | //************ | |
187 | // RTEMS TASKS |
|
187 | // RTEMS TASKS | |
188 |
|
188 | |||
189 | rtems_task load_task(rtems_task_argument argument) |
|
189 | rtems_task load_task(rtems_task_argument argument) | |
190 | { |
|
190 | { | |
191 | BOOT_PRINTF("in LOAD *** \n") |
|
191 | BOOT_PRINTF("in LOAD *** \n") | |
192 |
|
192 | |||
193 | rtems_status_code status; |
|
193 | rtems_status_code status; | |
194 | unsigned int i; |
|
194 | unsigned int i; | |
195 | unsigned int j; |
|
195 | unsigned int j; | |
196 | rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic |
|
196 | rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic | |
197 | rtems_id watchdog_period_id; // id of the watchdog rate monotonic period |
|
197 | rtems_id watchdog_period_id; // id of the watchdog rate monotonic period | |
198 |
|
198 | |||
199 | watchdog_period_id = RTEMS_ID_NONE; |
|
199 | watchdog_period_id = RTEMS_ID_NONE; | |
200 |
|
200 | |||
201 | name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' ); |
|
201 | name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' ); | |
202 |
|
202 | |||
203 | status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id ); |
|
203 | status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id ); | |
204 | if( status != RTEMS_SUCCESSFUL ) { |
|
204 | if( status != RTEMS_SUCCESSFUL ) { | |
205 | PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status ) |
|
205 | PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status ) | |
206 | } |
|
206 | } | |
207 |
|
207 | |||
208 | i = 0; |
|
208 | i = 0; | |
209 | j = 0; |
|
209 | j = 0; | |
210 |
|
210 | |||
211 | watchdog_configure(); |
|
211 | watchdog_configure(); | |
212 |
|
212 | |||
213 | watchdog_start(); |
|
213 | watchdog_start(); | |
214 |
|
214 | |||
215 | set_sy_lfr_watchdog_enabled( true ); |
|
215 | set_sy_lfr_watchdog_enabled( true ); | |
216 |
|
216 | |||
217 | while(1){ |
|
217 | while(1){ | |
218 | status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD ); |
|
218 | status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD ); | |
219 | watchdog_reload(); |
|
219 | watchdog_reload(); | |
220 | i = i + 1; |
|
220 | i = i + 1; | |
221 | if ( i == WATCHDOG_LOOP_PRINTF ) |
|
221 | if ( i == WATCHDOG_LOOP_PRINTF ) | |
222 | { |
|
222 | { | |
223 | i = 0; |
|
223 | i = 0; | |
224 | j = j + 1; |
|
224 | j = j + 1; | |
225 | PRINTF1("%d\n", j) |
|
225 | PRINTF1("%d\n", j) | |
226 | } |
|
226 | } | |
227 | #ifdef DEBUG_WATCHDOG |
|
227 | #ifdef DEBUG_WATCHDOG | |
228 | if (j == WATCHDOG_LOOP_DEBUG ) |
|
228 | if (j == WATCHDOG_LOOP_DEBUG ) | |
229 | { |
|
229 | { | |
230 | status = rtems_task_delete(RTEMS_SELF); |
|
230 | status = rtems_task_delete(RTEMS_SELF); | |
231 | } |
|
231 | } | |
232 | #endif |
|
232 | #endif | |
233 | } |
|
233 | } | |
234 | } |
|
234 | } | |
235 |
|
235 | |||
236 | rtems_task hous_task(rtems_task_argument argument) |
|
236 | rtems_task hous_task(rtems_task_argument argument) | |
237 | { |
|
237 | { | |
238 | rtems_status_code status; |
|
238 | rtems_status_code status; | |
239 | rtems_status_code spare_status; |
|
239 | rtems_status_code spare_status; | |
240 | rtems_id queue_id; |
|
240 | rtems_id queue_id; | |
241 | rtems_rate_monotonic_period_status period_status; |
|
241 | rtems_rate_monotonic_period_status period_status; | |
242 | bool isSynchronized; |
|
242 | bool isSynchronized; | |
243 |
|
243 | |||
244 | queue_id = RTEMS_ID_NONE; |
|
244 | queue_id = RTEMS_ID_NONE; | |
245 | memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status)); |
|
245 | memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status)); | |
246 | isSynchronized = false; |
|
246 | isSynchronized = false; | |
247 |
|
247 | |||
248 | status = get_message_queue_id_send( &queue_id ); |
|
248 | status = get_message_queue_id_send( &queue_id ); | |
249 | if (status != RTEMS_SUCCESSFUL) |
|
249 | if (status != RTEMS_SUCCESSFUL) | |
250 | { |
|
250 | { | |
251 | PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status) |
|
251 | PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status) | |
252 | } |
|
252 | } | |
253 |
|
253 | |||
254 | BOOT_PRINTF("in HOUS ***\n"); |
|
254 | BOOT_PRINTF("in HOUS ***\n"); | |
255 |
|
255 | |||
256 | if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { |
|
256 | if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { | |
257 | status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id ); |
|
257 | status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id ); | |
258 | if( status != RTEMS_SUCCESSFUL ) { |
|
258 | if( status != RTEMS_SUCCESSFUL ) { | |
259 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); |
|
259 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); | |
260 | } |
|
260 | } | |
261 | } |
|
261 | } | |
262 |
|
262 | |||
263 | status = rtems_rate_monotonic_cancel(HK_id); |
|
263 | status = rtems_rate_monotonic_cancel(HK_id); | |
264 | if( status != RTEMS_SUCCESSFUL ) { |
|
264 | if( status != RTEMS_SUCCESSFUL ) { | |
265 | PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status ); |
|
265 | PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status ); | |
266 | } |
|
266 | } | |
267 | else { |
|
267 | else { | |
268 | DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n"); |
|
268 | DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n"); | |
269 | } |
|
269 | } | |
270 |
|
270 | |||
271 | // startup phase |
|
271 | // startup phase | |
272 | status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks ); |
|
272 | status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks ); | |
273 | status = rtems_rate_monotonic_get_status( HK_id, &period_status ); |
|
273 | status = rtems_rate_monotonic_get_status( HK_id, &period_status ); | |
274 | DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) |
|
274 | DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) | |
275 | while( (period_status.state != RATE_MONOTONIC_EXPIRED) |
|
275 | while( (period_status.state != RATE_MONOTONIC_EXPIRED) | |
276 | && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway |
|
276 | && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway | |
277 | { |
|
277 | { | |
278 | if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization |
|
278 | if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization | |
279 | { |
|
279 | { | |
280 | isSynchronized = true; |
|
280 | isSynchronized = true; | |
281 | } |
|
281 | } | |
282 | else |
|
282 | else | |
283 | { |
|
283 | { | |
284 | status = rtems_rate_monotonic_get_status( HK_id, &period_status ); |
|
284 | status = rtems_rate_monotonic_get_status( HK_id, &period_status ); | |
285 |
|
285 | |||
286 | status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms |
|
286 | status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms | |
287 | } |
|
287 | } | |
288 | } |
|
288 | } | |
289 | status = rtems_rate_monotonic_cancel(HK_id); |
|
289 | status = rtems_rate_monotonic_cancel(HK_id); | |
290 | DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) |
|
290 | DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state) | |
291 |
|
291 | |||
292 | set_hk_lfr_reset_cause( POWER_ON ); |
|
292 | set_hk_lfr_reset_cause( POWER_ON ); | |
293 |
|
293 | |||
294 | while(1){ // launch the rate monotonic task |
|
294 | while(1){ // launch the rate monotonic task | |
295 | status = rtems_rate_monotonic_period( HK_id, HK_PERIOD ); |
|
295 | status = rtems_rate_monotonic_period( HK_id, HK_PERIOD ); | |
296 | if ( status != RTEMS_SUCCESSFUL ) { |
|
296 | if ( status != RTEMS_SUCCESSFUL ) { | |
297 | PRINTF1( "in HOUS *** ERR period: %d\n", status); |
|
297 | PRINTF1( "in HOUS *** ERR period: %d\n", status); | |
298 | spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 ); |
|
298 | spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 ); | |
299 | } |
|
299 | } | |
300 | else { |
|
300 | else { | |
301 | housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE); |
|
301 | housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE); | |
302 | housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK ); |
|
302 | housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK ); | |
303 | increment_seq_counter( &sequenceCounterHK ); |
|
303 | increment_seq_counter( &sequenceCounterHK ); | |
304 |
|
304 | |||
305 | housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); |
|
305 | housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); | |
306 | housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); |
|
306 | housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); | |
307 | housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); |
|
307 | housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); | |
308 | housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); |
|
308 | housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); | |
309 | housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); |
|
309 | housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); | |
310 | housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); |
|
310 | housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); | |
311 |
|
311 | |||
312 | spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] ); |
|
312 | spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] ); | |
313 |
|
313 | |||
314 | spacewire_read_statistics(); |
|
314 | spacewire_read_statistics(); | |
315 |
|
315 | |||
316 | update_hk_with_grspw_stats(); |
|
316 | update_hk_with_grspw_stats(); | |
317 |
|
317 | |||
318 | set_hk_lfr_time_not_synchro(); |
|
318 | set_hk_lfr_time_not_synchro(); | |
319 |
|
319 | |||
320 | housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max; |
|
320 | housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max; | |
321 | housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max; |
|
321 | housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max; | |
322 | housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max; |
|
322 | housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max; | |
323 | housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max; |
|
323 | housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max; | |
324 | housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max; |
|
324 | housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max; | |
325 |
|
325 | |||
326 | housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare; |
|
326 | housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare; | |
327 | housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters; |
|
327 | housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters; | |
328 | get_temperatures( housekeeping_packet.hk_lfr_temp_scm ); |
|
328 | get_temperatures( housekeeping_packet.hk_lfr_temp_scm ); | |
329 | get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 ); |
|
329 | get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 ); | |
330 | get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load ); |
|
330 | get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load ); | |
331 |
|
331 | |||
332 | hk_lfr_le_me_he_update(); |
|
332 | hk_lfr_le_me_he_update(); | |
333 |
|
333 | |||
334 | housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags; |
|
334 | housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags; | |
335 | housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags; |
|
335 | housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags; | |
336 |
|
336 | |||
337 | // SEND PACKET |
|
337 | // SEND PACKET | |
338 | status = rtems_message_queue_send( queue_id, &housekeeping_packet, |
|
338 | status = rtems_message_queue_send( queue_id, &housekeeping_packet, | |
339 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); |
|
339 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); | |
340 | if (status != RTEMS_SUCCESSFUL) { |
|
340 | if (status != RTEMS_SUCCESSFUL) { | |
341 | PRINTF1("in HOUS *** ERR send: %d\n", status) |
|
341 | PRINTF1("in HOUS *** ERR send: %d\n", status) | |
342 | } |
|
342 | } | |
343 | } |
|
343 | } | |
344 | } |
|
344 | } | |
345 |
|
345 | |||
346 | PRINTF("in HOUS *** deleting task\n") |
|
346 | PRINTF("in HOUS *** deleting task\n") | |
347 |
|
347 | |||
348 | status = rtems_task_delete( RTEMS_SELF ); // should not return |
|
348 | status = rtems_task_delete( RTEMS_SELF ); // should not return | |
349 |
|
349 | |||
350 | return; |
|
350 | return; | |
351 | } |
|
351 | } | |
352 |
|
352 | |||
353 | rtems_task avgv_task(rtems_task_argument argument) |
|
353 | rtems_task avgv_task(rtems_task_argument argument) | |
354 | { |
|
354 | { | |
355 | #define MOVING_AVERAGE 16 |
|
355 | #define MOVING_AVERAGE 16 | |
356 | rtems_status_code status; |
|
356 | rtems_status_code status; | |
357 | static unsigned int v[MOVING_AVERAGE] = {0}; |
|
357 | static unsigned int v[MOVING_AVERAGE] = {0}; | |
358 | static unsigned int e1[MOVING_AVERAGE] = {0}; |
|
358 | static unsigned int e1[MOVING_AVERAGE] = {0}; | |
359 | static unsigned int e2[MOVING_AVERAGE] = {0}; |
|
359 | static unsigned int e2[MOVING_AVERAGE] = {0}; | |
360 | float average_v; |
|
360 | float average_v; | |
361 | float average_e1; |
|
361 | float average_e1; | |
362 | float average_e2; |
|
362 | float average_e2; | |
363 | float newValue_v; |
|
363 | float newValue_v; | |
364 | float newValue_e1; |
|
364 | float newValue_e1; | |
365 | float newValue_e2; |
|
365 | float newValue_e2; | |
366 | unsigned char k; |
|
366 | unsigned char k; | |
367 | unsigned char indexOfOldValue; |
|
367 | unsigned char indexOfOldValue; | |
368 |
|
368 | |||
369 | BOOT_PRINTF("in AVGV ***\n"); |
|
369 | BOOT_PRINTF("in AVGV ***\n"); | |
370 |
|
370 | |||
371 | if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { |
|
371 | if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) { | |
372 | status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id ); |
|
372 | status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id ); | |
373 | if( status != RTEMS_SUCCESSFUL ) { |
|
373 | if( status != RTEMS_SUCCESSFUL ) { | |
374 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); |
|
374 | PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status ); | |
375 | } |
|
375 | } | |
376 | } |
|
376 | } | |
377 |
|
377 | |||
378 | status = rtems_rate_monotonic_cancel(AVGV_id); |
|
378 | status = rtems_rate_monotonic_cancel(AVGV_id); | |
379 | if( status != RTEMS_SUCCESSFUL ) { |
|
379 | if( status != RTEMS_SUCCESSFUL ) { | |
380 | PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status ); |
|
380 | PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status ); | |
381 | } |
|
381 | } | |
382 | else { |
|
382 | else { | |
383 | DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n"); |
|
383 | DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n"); | |
384 | } |
|
384 | } | |
385 |
|
385 | |||
386 | // initialize values |
|
386 | // initialize values | |
387 | indexOfOldValue = MOVING_AVERAGE - 1; |
|
387 | indexOfOldValue = MOVING_AVERAGE - 1; | |
388 | average_v = INIT_FLOAT; |
|
388 | average_v = INIT_FLOAT; | |
389 | average_e1 = INIT_FLOAT; |
|
389 | average_e1 = INIT_FLOAT; | |
390 | average_e2 = INIT_FLOAT; |
|
390 | average_e2 = INIT_FLOAT; | |
391 | newValue_v = INIT_FLOAT; |
|
391 | newValue_v = INIT_FLOAT; | |
392 | newValue_e1 = INIT_FLOAT; |
|
392 | newValue_e1 = INIT_FLOAT; | |
393 | newValue_e2 = INIT_FLOAT; |
|
393 | newValue_e2 = INIT_FLOAT; | |
394 |
|
394 | |||
395 | k = INIT_CHAR; |
|
395 | k = INIT_CHAR; | |
396 |
|
396 | |||
397 | while(1) |
|
397 | while(1) | |
398 | { // launch the rate monotonic task |
|
398 | { // launch the rate monotonic task | |
399 | status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD ); |
|
399 | status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD ); | |
400 | if ( status != RTEMS_SUCCESSFUL ) |
|
400 | if ( status != RTEMS_SUCCESSFUL ) | |
401 | { |
|
401 | { | |
402 | PRINTF1( "in AVGV *** ERR period: %d\n", status); |
|
402 | PRINTF1( "in AVGV *** ERR period: %d\n", status); | |
403 | } |
|
403 | } | |
404 | else |
|
404 | else | |
405 | { |
|
405 | { | |
406 | // get new values |
|
406 | // get new values | |
407 | newValue_v = waveform_picker_regs->v; |
|
407 | newValue_v = waveform_picker_regs->v; | |
408 | newValue_e1 = waveform_picker_regs->e1; |
|
408 | newValue_e1 = waveform_picker_regs->e1; | |
409 | newValue_e2 = waveform_picker_regs->e2; |
|
409 | newValue_e2 = waveform_picker_regs->e2; | |
410 |
|
410 | |||
411 | // compute the moving average |
|
411 | // compute the moving average | |
412 | average_v = average_v + newValue_v - v[k]; |
|
412 | average_v = average_v + newValue_v - v[k]; | |
413 | average_e1 = average_e1 + newValue_e1 - e1[k]; |
|
413 | average_e1 = average_e1 + newValue_e1 - e1[k]; | |
414 | average_e2 = average_e2 + newValue_e2 - e2[k]; |
|
414 | average_e2 = average_e2 + newValue_e2 - e2[k]; | |
415 |
|
415 | |||
416 | // store new values in buffers |
|
416 | // store new values in buffers | |
417 | v[k] = newValue_v; |
|
417 | v[k] = newValue_v; | |
418 | e1[k] = newValue_e1; |
|
418 | e1[k] = newValue_e1; | |
419 | e2[k] = newValue_e2; |
|
419 | e2[k] = newValue_e2; | |
420 | } |
|
420 | } | |
421 | if (k == (MOVING_AVERAGE-1)) |
|
421 | if (k == (MOVING_AVERAGE-1)) | |
422 | { |
|
422 | { | |
423 | k = 0; |
|
423 | k = 0; | |
424 | PRINTF("tick\n"); |
|
|||
425 | } |
|
424 | } | |
426 | else |
|
425 | else | |
427 | { |
|
426 | { | |
428 | k++; |
|
427 | k++; | |
429 | } |
|
428 | } | |
430 | //update int16 values |
|
429 | //update int16 values | |
431 | hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) ); |
|
430 | hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) ); | |
432 | hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) ); |
|
431 | hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) ); | |
433 | hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) ); |
|
432 | hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) ); | |
434 | } |
|
433 | } | |
435 |
|
434 | |||
436 | PRINTF("in AVGV *** deleting task\n"); |
|
435 | PRINTF("in AVGV *** deleting task\n"); | |
437 |
|
436 | |||
438 | status = rtems_task_delete( RTEMS_SELF ); // should not return |
|
437 | status = rtems_task_delete( RTEMS_SELF ); // should not return | |
439 |
|
438 | |||
440 | return; |
|
439 | return; | |
441 | } |
|
440 | } | |
442 |
|
441 | |||
443 | rtems_task dumb_task( rtems_task_argument unused ) |
|
442 | rtems_task dumb_task( rtems_task_argument unused ) | |
444 | { |
|
443 | { | |
445 | /** This RTEMS taks is used to print messages without affecting the general behaviour of the software. |
|
444 | /** This RTEMS taks is used to print messages without affecting the general behaviour of the software. | |
446 | * |
|
445 | * | |
447 | * @param unused is the starting argument of the RTEMS task |
|
446 | * @param unused is the starting argument of the RTEMS task | |
448 | * |
|
447 | * | |
449 | * The DUMB taks waits for RTEMS events and print messages depending on the incoming events. |
|
448 | * The DUMB taks waits for RTEMS events and print messages depending on the incoming events. | |
450 | * |
|
449 | * | |
451 | */ |
|
450 | */ | |
452 |
|
451 | |||
453 | unsigned int i; |
|
452 | unsigned int i; | |
454 | unsigned int intEventOut; |
|
453 | unsigned int intEventOut; | |
455 | unsigned int coarse_time = 0; |
|
454 | unsigned int coarse_time = 0; | |
456 | unsigned int fine_time = 0; |
|
455 | unsigned int fine_time = 0; | |
457 | rtems_event_set event_out; |
|
456 | rtems_event_set event_out; | |
458 |
|
457 | |||
459 | event_out = EVENT_SETS_NONE_PENDING; |
|
458 | event_out = EVENT_SETS_NONE_PENDING; | |
460 |
|
459 | |||
461 | BOOT_PRINTF("in DUMB *** \n") |
|
460 | BOOT_PRINTF("in DUMB *** \n") | |
462 |
|
461 | |||
463 | while(1){ |
|
462 | while(1){ | |
464 | rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 |
|
463 | rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3 | |
465 | | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7 |
|
464 | | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7 | |
466 | | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13 |
|
465 | | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13 | |
467 | | RTEMS_EVENT_14, |
|
466 | | RTEMS_EVENT_14, | |
468 | RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT |
|
467 | RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT | |
469 | intEventOut = (unsigned int) event_out; |
|
468 | intEventOut = (unsigned int) event_out; | |
470 | for ( i=0; i<NB_RTEMS_EVENTS; i++) |
|
469 | for ( i=0; i<NB_RTEMS_EVENTS; i++) | |
471 | { |
|
470 | { | |
472 | if ( ((intEventOut >> i) & 1) != 0) |
|
471 | if ( ((intEventOut >> i) & 1) != 0) | |
473 | { |
|
472 | { | |
474 | coarse_time = time_management_regs->coarse_time; |
|
473 | coarse_time = time_management_regs->coarse_time; | |
475 | fine_time = time_management_regs->fine_time; |
|
474 | fine_time = time_management_regs->fine_time; | |
476 | if (i==EVENT_12) |
|
475 | if (i==EVENT_12) | |
477 | { |
|
476 | { | |
478 | PRINTF1("%s\n", DUMB_MESSAGE_12) |
|
477 | PRINTF1("%s\n", DUMB_MESSAGE_12) | |
479 | } |
|
478 | } | |
480 | if (i==EVENT_13) |
|
479 | if (i==EVENT_13) | |
481 | { |
|
480 | { | |
482 | PRINTF1("%s\n", DUMB_MESSAGE_13) |
|
481 | PRINTF1("%s\n", DUMB_MESSAGE_13) | |
483 | } |
|
482 | } | |
484 | if (i==EVENT_14) |
|
483 | if (i==EVENT_14) | |
485 | { |
|
484 | { | |
486 | PRINTF1("%s\n", DUMB_MESSAGE_1) |
|
485 | PRINTF1("%s\n", DUMB_MESSAGE_1) | |
487 | } |
|
486 | } | |
488 | } |
|
487 | } | |
489 | } |
|
488 | } | |
490 | } |
|
489 | } | |
491 | } |
|
490 | } | |
492 |
|
491 | |||
493 | //***************************** |
|
492 | //***************************** | |
494 | // init housekeeping parameters |
|
493 | // init housekeeping parameters | |
495 |
|
494 | |||
496 | void init_housekeeping_parameters( void ) |
|
495 | void init_housekeeping_parameters( void ) | |
497 | { |
|
496 | { | |
498 | /** This function initialize the housekeeping_packet global variable with default values. |
|
497 | /** This function initialize the housekeeping_packet global variable with default values. | |
499 | * |
|
498 | * | |
500 | */ |
|
499 | */ | |
501 |
|
500 | |||
502 | unsigned int i = 0; |
|
501 | unsigned int i = 0; | |
503 | unsigned char *parameters; |
|
502 | unsigned char *parameters; | |
504 | unsigned char sizeOfHK; |
|
503 | unsigned char sizeOfHK; | |
505 |
|
504 | |||
506 | sizeOfHK = sizeof( Packet_TM_LFR_HK_t ); |
|
505 | sizeOfHK = sizeof( Packet_TM_LFR_HK_t ); | |
507 |
|
506 | |||
508 | parameters = (unsigned char*) &housekeeping_packet; |
|
507 | parameters = (unsigned char*) &housekeeping_packet; | |
509 |
|
508 | |||
510 | for(i = 0; i< sizeOfHK; i++) |
|
509 | for(i = 0; i< sizeOfHK; i++) | |
511 | { |
|
510 | { | |
512 | parameters[i] = INIT_CHAR; |
|
511 | parameters[i] = INIT_CHAR; | |
513 | } |
|
512 | } | |
514 |
|
513 | |||
515 | housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; |
|
514 | housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; | |
516 | housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; |
|
515 | housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; | |
517 | housekeeping_packet.reserved = DEFAULT_RESERVED; |
|
516 | housekeeping_packet.reserved = DEFAULT_RESERVED; | |
518 | housekeeping_packet.userApplication = CCSDS_USER_APP; |
|
517 | housekeeping_packet.userApplication = CCSDS_USER_APP; | |
519 | housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); |
|
518 | housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); | |
520 | housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK); |
|
519 | housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK); | |
521 | housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; |
|
520 | housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; | |
522 | housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; |
|
521 | housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; | |
523 | housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); |
|
522 | housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); | |
524 | housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); |
|
523 | housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); | |
525 | housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; |
|
524 | housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; | |
526 | housekeeping_packet.serviceType = TM_TYPE_HK; |
|
525 | housekeeping_packet.serviceType = TM_TYPE_HK; | |
527 | housekeeping_packet.serviceSubType = TM_SUBTYPE_HK; |
|
526 | housekeeping_packet.serviceSubType = TM_SUBTYPE_HK; | |
528 | housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND; |
|
527 | housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND; | |
529 | housekeeping_packet.sid = SID_HK; |
|
528 | housekeeping_packet.sid = SID_HK; | |
530 |
|
529 | |||
531 | // init status word |
|
530 | // init status word | |
532 | housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0; |
|
531 | housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0; | |
533 | housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1; |
|
532 | housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1; | |
534 | // init software version |
|
533 | // init software version | |
535 | housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1; |
|
534 | housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1; | |
536 | housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2; |
|
535 | housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2; | |
537 | housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; |
|
536 | housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; | |
538 | housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; |
|
537 | housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; | |
539 | // init fpga version |
|
538 | // init fpga version | |
540 | parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION); |
|
539 | parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION); | |
541 | housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 |
|
540 | housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 | |
542 | housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 |
|
541 | housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 | |
543 | housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 |
|
542 | housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 | |
544 |
|
543 | |||
545 | housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND; |
|
544 | housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND; | |
546 | housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV; |
|
545 | housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV; | |
547 | housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0; |
|
546 | housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0; | |
548 | housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1; |
|
547 | housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1; | |
549 | housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2; |
|
548 | housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2; | |
550 | } |
|
549 | } | |
551 |
|
550 | |||
552 | void increment_seq_counter( unsigned short *packetSequenceControl ) |
|
551 | void increment_seq_counter( unsigned short *packetSequenceControl ) | |
553 | { |
|
552 | { | |
554 | /** This function increment the sequence counter passes in argument. |
|
553 | /** This function increment the sequence counter passes in argument. | |
555 | * |
|
554 | * | |
556 | * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0. |
|
555 | * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0. | |
557 | * |
|
556 | * | |
558 | */ |
|
557 | */ | |
559 |
|
558 | |||
560 | unsigned short segmentation_grouping_flag; |
|
559 | unsigned short segmentation_grouping_flag; | |
561 | unsigned short sequence_cnt; |
|
560 | unsigned short sequence_cnt; | |
562 |
|
561 | |||
563 | segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6 |
|
562 | segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6 | |
564 | sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111] |
|
563 | sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111] | |
565 |
|
564 | |||
566 | if ( sequence_cnt < SEQ_CNT_MAX) |
|
565 | if ( sequence_cnt < SEQ_CNT_MAX) | |
567 | { |
|
566 | { | |
568 | sequence_cnt = sequence_cnt + 1; |
|
567 | sequence_cnt = sequence_cnt + 1; | |
569 | } |
|
568 | } | |
570 | else |
|
569 | else | |
571 | { |
|
570 | { | |
572 | sequence_cnt = 0; |
|
571 | sequence_cnt = 0; | |
573 | } |
|
572 | } | |
574 |
|
573 | |||
575 | *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ; |
|
574 | *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ; | |
576 | } |
|
575 | } | |
577 |
|
576 | |||
578 | void getTime( unsigned char *time) |
|
577 | void getTime( unsigned char *time) | |
579 | { |
|
578 | { | |
580 | /** This function write the current local time in the time buffer passed in argument. |
|
579 | /** This function write the current local time in the time buffer passed in argument. | |
581 | * |
|
580 | * | |
582 | */ |
|
581 | */ | |
583 |
|
582 | |||
584 | time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES); |
|
583 | time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES); | |
585 | time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES); |
|
584 | time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES); | |
586 | time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE); |
|
585 | time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE); | |
587 | time[3] = (unsigned char) (time_management_regs->coarse_time); |
|
586 | time[3] = (unsigned char) (time_management_regs->coarse_time); | |
588 | time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE); |
|
587 | time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE); | |
589 | time[5] = (unsigned char) (time_management_regs->fine_time); |
|
588 | time[5] = (unsigned char) (time_management_regs->fine_time); | |
590 | } |
|
589 | } | |
591 |
|
590 | |||
592 | unsigned long long int getTimeAsUnsignedLongLongInt( ) |
|
591 | unsigned long long int getTimeAsUnsignedLongLongInt( ) | |
593 | { |
|
592 | { | |
594 | /** This function write the current local time in the time buffer passed in argument. |
|
593 | /** This function write the current local time in the time buffer passed in argument. | |
595 | * |
|
594 | * | |
596 | */ |
|
595 | */ | |
597 | unsigned long long int time; |
|
596 | unsigned long long int time; | |
598 |
|
597 | |||
599 | time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES ) |
|
598 | time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES ) | |
600 | + time_management_regs->fine_time; |
|
599 | + time_management_regs->fine_time; | |
601 |
|
600 | |||
602 | return time; |
|
601 | return time; | |
603 | } |
|
602 | } | |
604 |
|
603 | |||
605 | void send_dumb_hk( void ) |
|
604 | void send_dumb_hk( void ) | |
606 | { |
|
605 | { | |
607 | Packet_TM_LFR_HK_t dummy_hk_packet; |
|
606 | Packet_TM_LFR_HK_t dummy_hk_packet; | |
608 | unsigned char *parameters; |
|
607 | unsigned char *parameters; | |
609 | unsigned int i; |
|
608 | unsigned int i; | |
610 | rtems_id queue_id; |
|
609 | rtems_id queue_id; | |
611 |
|
610 | |||
612 | queue_id = RTEMS_ID_NONE; |
|
611 | queue_id = RTEMS_ID_NONE; | |
613 |
|
612 | |||
614 | dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; |
|
613 | dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID; | |
615 | dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; |
|
614 | dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID; | |
616 | dummy_hk_packet.reserved = DEFAULT_RESERVED; |
|
615 | dummy_hk_packet.reserved = DEFAULT_RESERVED; | |
617 | dummy_hk_packet.userApplication = CCSDS_USER_APP; |
|
616 | dummy_hk_packet.userApplication = CCSDS_USER_APP; | |
618 | dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); |
|
617 | dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE); | |
619 | dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK); |
|
618 | dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK); | |
620 | dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; |
|
619 | dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE; | |
621 | dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; |
|
620 | dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT; | |
622 | dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); |
|
621 | dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE); | |
623 | dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); |
|
622 | dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK ); | |
624 | dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; |
|
623 | dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2; | |
625 | dummy_hk_packet.serviceType = TM_TYPE_HK; |
|
624 | dummy_hk_packet.serviceType = TM_TYPE_HK; | |
626 | dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK; |
|
625 | dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK; | |
627 | dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND; |
|
626 | dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND; | |
628 | dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); |
|
627 | dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES); | |
629 | dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); |
|
628 | dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES); | |
630 | dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); |
|
629 | dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE); | |
631 | dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); |
|
630 | dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time); | |
632 | dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); |
|
631 | dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE); | |
633 | dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); |
|
632 | dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time); | |
634 | dummy_hk_packet.sid = SID_HK; |
|
633 | dummy_hk_packet.sid = SID_HK; | |
635 |
|
634 | |||
636 | // init status word |
|
635 | // init status word | |
637 | dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F; |
|
636 | dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F; | |
638 | dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F; |
|
637 | dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F; | |
639 | // init software version |
|
638 | // init software version | |
640 | dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1; |
|
639 | dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1; | |
641 | dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2; |
|
640 | dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2; | |
642 | dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; |
|
641 | dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3; | |
643 | dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; |
|
642 | dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4; | |
644 | // init fpga version |
|
643 | // init fpga version | |
645 | parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV); |
|
644 | parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV); | |
646 | dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 |
|
645 | dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1 | |
647 | dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 |
|
646 | dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2 | |
648 | dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 |
|
647 | dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3 | |
649 |
|
648 | |||
650 | parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load; |
|
649 | parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load; | |
651 |
|
650 | |||
652 | for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++) |
|
651 | for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++) | |
653 | { |
|
652 | { | |
654 | parameters[i] = INT8_ALL_F; |
|
653 | parameters[i] = INT8_ALL_F; | |
655 | } |
|
654 | } | |
656 |
|
655 | |||
657 | get_message_queue_id_send( &queue_id ); |
|
656 | get_message_queue_id_send( &queue_id ); | |
658 |
|
657 | |||
659 | rtems_message_queue_send( queue_id, &dummy_hk_packet, |
|
658 | rtems_message_queue_send( queue_id, &dummy_hk_packet, | |
660 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); |
|
659 | PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES); | |
661 | } |
|
660 | } | |
662 |
|
661 | |||
663 | void get_temperatures( unsigned char *temperatures ) |
|
662 | void get_temperatures( unsigned char *temperatures ) | |
664 | { |
|
663 | { | |
665 | unsigned char* temp_scm_ptr; |
|
664 | unsigned char* temp_scm_ptr; | |
666 | unsigned char* temp_pcb_ptr; |
|
665 | unsigned char* temp_pcb_ptr; | |
667 | unsigned char* temp_fpga_ptr; |
|
666 | unsigned char* temp_fpga_ptr; | |
668 |
|
667 | |||
669 | // SEL1 SEL0 |
|
668 | // SEL1 SEL0 | |
670 | // 0 0 => PCB |
|
669 | // 0 0 => PCB | |
671 | // 0 1 => FPGA |
|
670 | // 0 1 => FPGA | |
672 | // 1 0 => SCM |
|
671 | // 1 0 => SCM | |
673 |
|
672 | |||
674 | temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm; |
|
673 | temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm; | |
675 | temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb; |
|
674 | temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb; | |
676 | temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga; |
|
675 | temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga; | |
677 |
|
676 | |||
678 | temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ]; |
|
677 | temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ]; | |
679 | temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ]; |
|
678 | temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ]; | |
680 | temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ]; |
|
679 | temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ]; | |
681 | temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ]; |
|
680 | temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ]; | |
682 | temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ]; |
|
681 | temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ]; | |
683 | temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ]; |
|
682 | temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ]; | |
684 | } |
|
683 | } | |
685 |
|
684 | |||
686 | void get_v_e1_e2_f3( unsigned char *spacecraft_potential ) |
|
685 | void get_v_e1_e2_f3( unsigned char *spacecraft_potential ) | |
687 | { |
|
686 | { | |
688 | unsigned char* v_ptr; |
|
687 | unsigned char* v_ptr; | |
689 | unsigned char* e1_ptr; |
|
688 | unsigned char* e1_ptr; | |
690 | unsigned char* e2_ptr; |
|
689 | unsigned char* e2_ptr; | |
691 |
|
690 | |||
692 | v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16; |
|
691 | v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16; | |
693 | e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16; |
|
692 | e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16; | |
694 | e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16; |
|
693 | e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16; | |
695 |
|
694 | |||
696 | spacecraft_potential[BYTE_0] = v_ptr[0]; |
|
695 | spacecraft_potential[BYTE_0] = v_ptr[0]; | |
697 | spacecraft_potential[BYTE_1] = v_ptr[1]; |
|
696 | spacecraft_potential[BYTE_1] = v_ptr[1]; | |
698 | spacecraft_potential[BYTE_2] = e1_ptr[0]; |
|
697 | spacecraft_potential[BYTE_2] = e1_ptr[0]; | |
699 | spacecraft_potential[BYTE_3] = e1_ptr[1]; |
|
698 | spacecraft_potential[BYTE_3] = e1_ptr[1]; | |
700 | spacecraft_potential[BYTE_4] = e2_ptr[0]; |
|
699 | spacecraft_potential[BYTE_4] = e2_ptr[0]; | |
701 | spacecraft_potential[BYTE_5] = e2_ptr[1]; |
|
700 | spacecraft_potential[BYTE_5] = e2_ptr[1]; | |
702 | } |
|
701 | } | |
703 |
|
702 | |||
704 | void get_cpu_load( unsigned char *resource_statistics ) |
|
703 | void get_cpu_load( unsigned char *resource_statistics ) | |
705 | { |
|
704 | { | |
706 | unsigned char cpu_load; |
|
705 | unsigned char cpu_load; | |
707 |
|
706 | |||
708 | cpu_load = lfr_rtems_cpu_usage_report(); |
|
707 | cpu_load = lfr_rtems_cpu_usage_report(); | |
709 |
|
708 | |||
710 | // HK_LFR_CPU_LOAD |
|
709 | // HK_LFR_CPU_LOAD | |
711 | resource_statistics[0] = cpu_load; |
|
710 | resource_statistics[0] = cpu_load; | |
712 |
|
711 | |||
713 | // HK_LFR_CPU_LOAD_MAX |
|
712 | // HK_LFR_CPU_LOAD_MAX | |
714 | if (cpu_load > resource_statistics[1]) |
|
713 | if (cpu_load > resource_statistics[1]) | |
715 | { |
|
714 | { | |
716 | resource_statistics[1] = cpu_load; |
|
715 | resource_statistics[1] = cpu_load; | |
717 | } |
|
716 | } | |
718 |
|
717 | |||
719 | // CPU_LOAD_AVE |
|
718 | // CPU_LOAD_AVE | |
720 | resource_statistics[BYTE_2] = 0; |
|
719 | resource_statistics[BYTE_2] = 0; | |
721 |
|
720 | |||
722 | #ifndef PRINT_TASK_STATISTICS |
|
721 | #ifndef PRINT_TASK_STATISTICS | |
723 | rtems_cpu_usage_reset(); |
|
722 | rtems_cpu_usage_reset(); | |
724 | #endif |
|
723 | #endif | |
725 |
|
724 | |||
726 | } |
|
725 | } | |
727 |
|
726 | |||
728 | void set_hk_lfr_sc_potential_flag( bool state ) |
|
727 | void set_hk_lfr_sc_potential_flag( bool state ) | |
729 | { |
|
728 | { | |
730 | if (state == true) |
|
729 | if (state == true) | |
731 | { |
|
730 | { | |
732 | housekeeping_packet.lfr_status_word[1] = |
|
731 | housekeeping_packet.lfr_status_word[1] = | |
733 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000] |
|
732 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000] | |
734 | } |
|
733 | } | |
735 | else |
|
734 | else | |
736 | { |
|
735 | { | |
737 | housekeeping_packet.lfr_status_word[1] = |
|
736 | housekeeping_packet.lfr_status_word[1] = | |
738 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111] |
|
737 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111] | |
739 | } |
|
738 | } | |
740 | } |
|
739 | } | |
741 |
|
740 | |||
742 | void set_sy_lfr_pas_filter_enabled( bool state ) |
|
741 | void set_sy_lfr_pas_filter_enabled( bool state ) | |
743 | { |
|
742 | { | |
744 | if (state == true) |
|
743 | if (state == true) | |
745 | { |
|
744 | { | |
746 | housekeeping_packet.lfr_status_word[1] = |
|
745 | housekeeping_packet.lfr_status_word[1] = | |
747 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000] |
|
746 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000] | |
748 | } |
|
747 | } | |
749 | else |
|
748 | else | |
750 | { |
|
749 | { | |
751 | housekeeping_packet.lfr_status_word[1] = |
|
750 | housekeeping_packet.lfr_status_word[1] = | |
752 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111] |
|
751 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111] | |
753 | } |
|
752 | } | |
754 | } |
|
753 | } | |
755 |
|
754 | |||
756 | void set_sy_lfr_watchdog_enabled( bool state ) |
|
755 | void set_sy_lfr_watchdog_enabled( bool state ) | |
757 | { |
|
756 | { | |
758 | if (state == true) |
|
757 | if (state == true) | |
759 | { |
|
758 | { | |
760 | housekeeping_packet.lfr_status_word[1] = |
|
759 | housekeeping_packet.lfr_status_word[1] = | |
761 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000] |
|
760 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000] | |
762 | } |
|
761 | } | |
763 | else |
|
762 | else | |
764 | { |
|
763 | { | |
765 | housekeeping_packet.lfr_status_word[1] = |
|
764 | housekeeping_packet.lfr_status_word[1] = | |
766 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111] |
|
765 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111] | |
767 | } |
|
766 | } | |
768 | } |
|
767 | } | |
769 |
|
768 | |||
770 | void set_hk_lfr_calib_enable( bool state ) |
|
769 | void set_hk_lfr_calib_enable( bool state ) | |
771 | { |
|
770 | { | |
772 | if (state == true) |
|
771 | if (state == true) | |
773 | { |
|
772 | { | |
774 | housekeeping_packet.lfr_status_word[1] = |
|
773 | housekeeping_packet.lfr_status_word[1] = | |
775 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000] |
|
774 | housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000] | |
776 | } |
|
775 | } | |
777 | else |
|
776 | else | |
778 | { |
|
777 | { | |
779 | housekeeping_packet.lfr_status_word[1] = |
|
778 | housekeeping_packet.lfr_status_word[1] = | |
780 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111] |
|
779 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111] | |
781 | } |
|
780 | } | |
782 | } |
|
781 | } | |
783 |
|
782 | |||
784 | void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause ) |
|
783 | void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause ) | |
785 | { |
|
784 | { | |
786 | housekeeping_packet.lfr_status_word[1] = |
|
785 | housekeeping_packet.lfr_status_word[1] = | |
787 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000] |
|
786 | housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000] | |
788 |
|
787 | |||
789 | housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] |
|
788 | housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1] | |
790 | | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111] |
|
789 | | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111] | |
791 |
|
790 | |||
792 | } |
|
791 | } | |
793 |
|
792 | |||
794 | void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter ) |
|
793 | void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter ) | |
795 | { |
|
794 | { | |
796 | int delta; |
|
795 | int delta; | |
797 |
|
796 | |||
798 | delta = 0; |
|
797 | delta = 0; | |
799 |
|
798 | |||
800 | if (newValue >= oldValue) |
|
799 | if (newValue >= oldValue) | |
801 | { |
|
800 | { | |
802 | delta = newValue - oldValue; |
|
801 | delta = newValue - oldValue; | |
803 | } |
|
802 | } | |
804 | else |
|
803 | else | |
805 | { |
|
804 | { | |
806 | delta = (CONST_256 - oldValue) + newValue; |
|
805 | delta = (CONST_256 - oldValue) + newValue; | |
807 | } |
|
806 | } | |
808 |
|
807 | |||
809 | *counter = *counter + delta; |
|
808 | *counter = *counter + delta; | |
810 | } |
|
809 | } | |
811 |
|
810 | |||
812 | void hk_lfr_le_update( void ) |
|
811 | void hk_lfr_le_update( void ) | |
813 | { |
|
812 | { | |
814 | static hk_lfr_le_t old_hk_lfr_le = {0}; |
|
813 | static hk_lfr_le_t old_hk_lfr_le = {0}; | |
815 | hk_lfr_le_t new_hk_lfr_le; |
|
814 | hk_lfr_le_t new_hk_lfr_le; | |
816 | unsigned int counter; |
|
815 | unsigned int counter; | |
817 |
|
816 | |||
818 | counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1]; |
|
817 | counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1]; | |
819 |
|
818 | |||
820 | // DPU |
|
819 | // DPU | |
821 | new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity; |
|
820 | new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity; | |
822 | new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect; |
|
821 | new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect; | |
823 | new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape; |
|
822 | new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape; | |
824 | new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit; |
|
823 | new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit; | |
825 | new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync; |
|
824 | new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync; | |
826 | // TIMECODE |
|
825 | // TIMECODE | |
827 | new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous; |
|
826 | new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous; | |
828 | new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing; |
|
827 | new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing; | |
829 | new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid; |
|
828 | new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid; | |
830 | // TIME |
|
829 | // TIME | |
831 | new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it; |
|
830 | new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it; | |
832 | new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro; |
|
831 | new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro; | |
833 | new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr; |
|
832 | new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr; | |
834 | //AHB |
|
833 | //AHB | |
835 | new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable; |
|
834 | new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable; | |
836 | // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver |
|
835 | // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver | |
837 | // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver |
|
836 | // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver | |
838 |
|
837 | |||
839 | // update the le counter |
|
838 | // update the le counter | |
840 | // DPU |
|
839 | // DPU | |
841 | increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter ); |
|
840 | increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter ); | |
842 | increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter ); |
|
841 | increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter ); | |
843 | increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter ); |
|
842 | increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter ); | |
844 | increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter ); |
|
843 | increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter ); | |
845 | increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter ); |
|
844 | increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter ); | |
846 | // TIMECODE |
|
845 | // TIMECODE | |
847 | increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter ); |
|
846 | increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter ); | |
848 | increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter ); |
|
847 | increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter ); | |
849 | increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter ); |
|
848 | increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter ); | |
850 | // TIME |
|
849 | // TIME | |
851 | increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter ); |
|
850 | increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter ); | |
852 | increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter ); |
|
851 | increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter ); | |
853 | increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter ); |
|
852 | increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter ); | |
854 | // AHB |
|
853 | // AHB | |
855 | increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter ); |
|
854 | increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter ); | |
856 |
|
855 | |||
857 | // DPU |
|
856 | // DPU | |
858 | old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity; |
|
857 | old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity; | |
859 | old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect; |
|
858 | old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect; | |
860 | old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape; |
|
859 | old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape; | |
861 | old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit; |
|
860 | old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit; | |
862 | old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync; |
|
861 | old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync; | |
863 | // TIMECODE |
|
862 | // TIMECODE | |
864 | old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous; |
|
863 | old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous; | |
865 | old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing; |
|
864 | old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing; | |
866 | old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid; |
|
865 | old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid; | |
867 | // TIME |
|
866 | // TIME | |
868 | old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it; |
|
867 | old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it; | |
869 | old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro; |
|
868 | old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro; | |
870 | old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr; |
|
869 | old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr; | |
871 | //AHB |
|
870 | //AHB | |
872 | old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable; |
|
871 | old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable; | |
873 | // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver |
|
872 | // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver | |
874 | // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver |
|
873 | // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver | |
875 |
|
874 | |||
876 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers |
|
875 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers | |
877 | // LE |
|
876 | // LE | |
878 | housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); |
|
877 | housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); | |
879 | housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK); |
|
878 | housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK); | |
880 | } |
|
879 | } | |
881 |
|
880 | |||
882 | void hk_lfr_me_update( void ) |
|
881 | void hk_lfr_me_update( void ) | |
883 | { |
|
882 | { | |
884 | static hk_lfr_me_t old_hk_lfr_me = {0}; |
|
883 | static hk_lfr_me_t old_hk_lfr_me = {0}; | |
885 | hk_lfr_me_t new_hk_lfr_me; |
|
884 | hk_lfr_me_t new_hk_lfr_me; | |
886 | unsigned int counter; |
|
885 | unsigned int counter; | |
887 |
|
886 | |||
888 | counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1]; |
|
887 | counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1]; | |
889 |
|
888 | |||
890 | // get the current values |
|
889 | // get the current values | |
891 | new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop; |
|
890 | new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop; | |
892 | new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr; |
|
891 | new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr; | |
893 | new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep; |
|
892 | new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep; | |
894 | new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big; |
|
893 | new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big; | |
895 |
|
894 | |||
896 | // update the me counter |
|
895 | // update the me counter | |
897 | increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter ); |
|
896 | increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter ); | |
898 | increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter ); |
|
897 | increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter ); | |
899 | increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter ); |
|
898 | increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter ); | |
900 | increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter ); |
|
899 | increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter ); | |
901 |
|
900 | |||
902 | // store the counters for the next time |
|
901 | // store the counters for the next time | |
903 | old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop; |
|
902 | old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop; | |
904 | old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr; |
|
903 | old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr; | |
905 | old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep; |
|
904 | old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep; | |
906 | old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big; |
|
905 | old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big; | |
907 |
|
906 | |||
908 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers |
|
907 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers | |
909 | // ME |
|
908 | // ME | |
910 | housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); |
|
909 | housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE); | |
911 | housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK); |
|
910 | housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK); | |
912 | } |
|
911 | } | |
913 |
|
912 | |||
914 | void hk_lfr_le_me_he_update() |
|
913 | void hk_lfr_le_me_he_update() | |
915 | { |
|
914 | { | |
916 |
|
915 | |||
917 | unsigned int hk_lfr_he_cnt; |
|
916 | unsigned int hk_lfr_he_cnt; | |
918 |
|
917 | |||
919 | hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1]; |
|
918 | hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1]; | |
920 |
|
919 | |||
921 | //update the low severity error counter |
|
920 | //update the low severity error counter | |
922 | hk_lfr_le_update( ); |
|
921 | hk_lfr_le_update( ); | |
923 |
|
922 | |||
924 | //update the medium severity error counter |
|
923 | //update the medium severity error counter | |
925 | hk_lfr_me_update(); |
|
924 | hk_lfr_me_update(); | |
926 |
|
925 | |||
927 | //update the high severity error counter |
|
926 | //update the high severity error counter | |
928 | hk_lfr_he_cnt = 0; |
|
927 | hk_lfr_he_cnt = 0; | |
929 |
|
928 | |||
930 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers |
|
929 | // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers | |
931 | // HE |
|
930 | // HE | |
932 | housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE); |
|
931 | housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE); | |
933 | housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK); |
|
932 | housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK); | |
934 |
|
933 | |||
935 | } |
|
934 | } | |
936 |
|
935 | |||
937 | void set_hk_lfr_time_not_synchro() |
|
936 | void set_hk_lfr_time_not_synchro() | |
938 | { |
|
937 | { | |
939 | static unsigned char synchroLost = 1; |
|
938 | static unsigned char synchroLost = 1; | |
940 | int synchronizationBit; |
|
939 | int synchronizationBit; | |
941 |
|
940 | |||
942 | // get the synchronization bit |
|
941 | // get the synchronization bit | |
943 | synchronizationBit = |
|
942 | synchronizationBit = | |
944 | (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000 |
|
943 | (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000 | |
945 |
|
944 | |||
946 | switch (synchronizationBit) |
|
945 | switch (synchronizationBit) | |
947 | { |
|
946 | { | |
948 | case 0: |
|
947 | case 0: | |
949 | if (synchroLost == 1) |
|
948 | if (synchroLost == 1) | |
950 | { |
|
949 | { | |
951 | synchroLost = 0; |
|
950 | synchroLost = 0; | |
952 | } |
|
951 | } | |
953 | break; |
|
952 | break; | |
954 | case 1: |
|
953 | case 1: | |
955 | if (synchroLost == 0 ) |
|
954 | if (synchroLost == 0 ) | |
956 | { |
|
955 | { | |
957 | synchroLost = 1; |
|
956 | synchroLost = 1; | |
958 | increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro); |
|
957 | increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro); | |
959 | update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO ); |
|
958 | update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO ); | |
960 | } |
|
959 | } | |
961 | break; |
|
960 | break; | |
962 | default: |
|
961 | default: | |
963 | PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit); |
|
962 | PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit); | |
964 | break; |
|
963 | break; | |
965 | } |
|
964 | } | |
966 |
|
965 | |||
967 | } |
|
966 | } | |
968 |
|
967 | |||
969 | void set_hk_lfr_ahb_correctable() // CRITICITY L |
|
968 | void set_hk_lfr_ahb_correctable() // CRITICITY L | |
970 | { |
|
969 | { | |
971 | /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided |
|
970 | /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided | |
972 | * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the |
|
971 | * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the | |
973 | * detected errors in the cache, in the integer unit and in the floating point unit. |
|
972 | * detected errors in the cache, in the integer unit and in the floating point unit. | |
974 | * |
|
973 | * | |
975 | * @param void |
|
974 | * @param void | |
976 | * |
|
975 | * | |
977 | * @return void |
|
976 | * @return void | |
978 | * |
|
977 | * | |
979 | * All errors are summed to set the value of the hk_lfr_ahb_correctable counter. |
|
978 | * All errors are summed to set the value of the hk_lfr_ahb_correctable counter. | |
980 | * |
|
979 | * | |
981 | */ |
|
980 | */ | |
982 |
|
981 | |||
983 | unsigned int ahb_correctable; |
|
982 | unsigned int ahb_correctable; | |
984 | unsigned int instructionErrorCounter; |
|
983 | unsigned int instructionErrorCounter; | |
985 | unsigned int dataErrorCounter; |
|
984 | unsigned int dataErrorCounter; | |
986 | unsigned int fprfErrorCounter; |
|
985 | unsigned int fprfErrorCounter; | |
987 | unsigned int iurfErrorCounter; |
|
986 | unsigned int iurfErrorCounter; | |
988 |
|
987 | |||
989 | instructionErrorCounter = 0; |
|
988 | instructionErrorCounter = 0; | |
990 | dataErrorCounter = 0; |
|
989 | dataErrorCounter = 0; | |
991 | fprfErrorCounter = 0; |
|
990 | fprfErrorCounter = 0; | |
992 | iurfErrorCounter = 0; |
|
991 | iurfErrorCounter = 0; | |
993 |
|
992 | |||
994 | CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter); |
|
993 | CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter); | |
995 | ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter); |
|
994 | ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter); | |
996 |
|
995 | |||
997 | ahb_correctable = instructionErrorCounter |
|
996 | ahb_correctable = instructionErrorCounter | |
998 | + dataErrorCounter |
|
997 | + dataErrorCounter | |
999 | + fprfErrorCounter |
|
998 | + fprfErrorCounter | |
1000 | + iurfErrorCounter |
|
999 | + iurfErrorCounter | |
1001 | + housekeeping_packet.hk_lfr_ahb_correctable; |
|
1000 | + housekeeping_packet.hk_lfr_ahb_correctable; | |
1002 |
|
1001 | |||
1003 | housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111] |
|
1002 | housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111] | |
1004 |
|
1003 | |||
1005 | } |
|
1004 | } |
@@ -1,1661 +1,1659 | |||||
1 | /** Functions and tasks related to TeleCommand handling. |
|
1 | /** Functions and tasks related to TeleCommand handling. | |
2 | * |
|
2 | * | |
3 | * @file |
|
3 | * @file | |
4 | * @author P. LEROY |
|
4 | * @author P. LEROY | |
5 | * |
|
5 | * | |
6 | * A group of functions to handle TeleCommands:\n |
|
6 | * A group of functions to handle TeleCommands:\n | |
7 | * action launching\n |
|
7 | * action launching\n | |
8 | * TC parsing\n |
|
8 | * TC parsing\n | |
9 | * ... |
|
9 | * ... | |
10 | * |
|
10 | * | |
11 | */ |
|
11 | */ | |
12 |
|
12 | |||
13 | #include "tc_handler.h" |
|
13 | #include "tc_handler.h" | |
14 | #include "math.h" |
|
14 | #include "math.h" | |
15 |
|
15 | |||
16 | //*********** |
|
16 | //*********** | |
17 | // RTEMS TASK |
|
17 | // RTEMS TASK | |
18 |
|
18 | |||
19 | rtems_task actn_task( rtems_task_argument unused ) |
|
19 | rtems_task actn_task( rtems_task_argument unused ) | |
20 | { |
|
20 | { | |
21 | /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands. |
|
21 | /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands. | |
22 | * |
|
22 | * | |
23 | * @param unused is the starting argument of the RTEMS task |
|
23 | * @param unused is the starting argument of the RTEMS task | |
24 | * |
|
24 | * | |
25 | * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending |
|
25 | * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending | |
26 | * on the incoming TeleCommand. |
|
26 | * on the incoming TeleCommand. | |
27 | * |
|
27 | * | |
28 | */ |
|
28 | */ | |
29 |
|
29 | |||
30 | int result; |
|
30 | int result; | |
31 | rtems_status_code status; // RTEMS status code |
|
31 | rtems_status_code status; // RTEMS status code | |
32 | ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task |
|
32 | ccsdsTelecommandPacket_t __attribute__((aligned(4))) TC; // TC sent to the ACTN task | |
33 | size_t size; // size of the incoming TC packet |
|
33 | size_t size; // size of the incoming TC packet | |
34 | unsigned char subtype; // subtype of the current TC packet |
|
34 | unsigned char subtype; // subtype of the current TC packet | |
35 | unsigned char time[BYTES_PER_TIME]; |
|
35 | unsigned char time[BYTES_PER_TIME]; | |
36 | rtems_id queue_rcv_id; |
|
36 | rtems_id queue_rcv_id; | |
37 | rtems_id queue_snd_id; |
|
37 | rtems_id queue_snd_id; | |
38 |
|
38 | |||
39 | memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t)); |
|
39 | memset(&TC, 0, sizeof(ccsdsTelecommandPacket_t)); | |
40 | size = 0; |
|
40 | size = 0; | |
41 | queue_rcv_id = RTEMS_ID_NONE; |
|
41 | queue_rcv_id = RTEMS_ID_NONE; | |
42 | queue_snd_id = RTEMS_ID_NONE; |
|
42 | queue_snd_id = RTEMS_ID_NONE; | |
43 |
|
43 | |||
44 | status = get_message_queue_id_recv( &queue_rcv_id ); |
|
44 | status = get_message_queue_id_recv( &queue_rcv_id ); | |
45 | if (status != RTEMS_SUCCESSFUL) |
|
45 | if (status != RTEMS_SUCCESSFUL) | |
46 | { |
|
46 | { | |
47 | PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status) |
|
47 | PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status) | |
48 | } |
|
48 | } | |
49 |
|
49 | |||
50 | status = get_message_queue_id_send( &queue_snd_id ); |
|
50 | status = get_message_queue_id_send( &queue_snd_id ); | |
51 | if (status != RTEMS_SUCCESSFUL) |
|
51 | if (status != RTEMS_SUCCESSFUL) | |
52 | { |
|
52 | { | |
53 | PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status) |
|
53 | PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status) | |
54 | } |
|
54 | } | |
55 |
|
55 | |||
56 | result = LFR_SUCCESSFUL; |
|
56 | result = LFR_SUCCESSFUL; | |
57 | subtype = 0; // subtype of the current TC packet |
|
57 | subtype = 0; // subtype of the current TC packet | |
58 |
|
58 | |||
59 | BOOT_PRINTF("in ACTN *** \n"); |
|
59 | BOOT_PRINTF("in ACTN *** \n"); | |
60 |
|
60 | |||
61 | while(1) |
|
61 | while(1) | |
62 | { |
|
62 | { | |
63 | status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size, |
|
63 | status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size, | |
64 | RTEMS_WAIT, RTEMS_NO_TIMEOUT); |
|
64 | RTEMS_WAIT, RTEMS_NO_TIMEOUT); | |
65 | getTime( time ); // set time to the current time |
|
65 | getTime( time ); // set time to the current time | |
66 | if (status!=RTEMS_SUCCESSFUL) |
|
66 | if (status!=RTEMS_SUCCESSFUL) | |
67 | { |
|
67 | { | |
68 | PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status) |
|
68 | PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status) | |
69 | } |
|
69 | } | |
70 | else |
|
70 | else | |
71 | { |
|
71 | { | |
72 | subtype = TC.serviceSubType; |
|
72 | subtype = TC.serviceSubType; | |
73 | switch(subtype) |
|
73 | switch(subtype) | |
74 | { |
|
74 | { | |
75 | case TC_SUBTYPE_RESET: |
|
75 | case TC_SUBTYPE_RESET: | |
76 | result = action_reset( &TC, queue_snd_id, time ); |
|
76 | result = action_reset( &TC, queue_snd_id, time ); | |
77 | close_action( &TC, result, queue_snd_id ); |
|
77 | close_action( &TC, result, queue_snd_id ); | |
78 | break; |
|
78 | break; | |
79 | case TC_SUBTYPE_LOAD_COMM: |
|
79 | case TC_SUBTYPE_LOAD_COMM: | |
80 | result = action_load_common_par( &TC ); |
|
80 | result = action_load_common_par( &TC ); | |
81 | close_action( &TC, result, queue_snd_id ); |
|
81 | close_action( &TC, result, queue_snd_id ); | |
82 | break; |
|
82 | break; | |
83 | case TC_SUBTYPE_LOAD_NORM: |
|
83 | case TC_SUBTYPE_LOAD_NORM: | |
84 | result = action_load_normal_par( &TC, queue_snd_id, time ); |
|
84 | result = action_load_normal_par( &TC, queue_snd_id, time ); | |
85 | close_action( &TC, result, queue_snd_id ); |
|
85 | close_action( &TC, result, queue_snd_id ); | |
86 | break; |
|
86 | break; | |
87 | case TC_SUBTYPE_LOAD_BURST: |
|
87 | case TC_SUBTYPE_LOAD_BURST: | |
88 | result = action_load_burst_par( &TC, queue_snd_id, time ); |
|
88 | result = action_load_burst_par( &TC, queue_snd_id, time ); | |
89 | close_action( &TC, result, queue_snd_id ); |
|
89 | close_action( &TC, result, queue_snd_id ); | |
90 | break; |
|
90 | break; | |
91 | case TC_SUBTYPE_LOAD_SBM1: |
|
91 | case TC_SUBTYPE_LOAD_SBM1: | |
92 | result = action_load_sbm1_par( &TC, queue_snd_id, time ); |
|
92 | result = action_load_sbm1_par( &TC, queue_snd_id, time ); | |
93 | close_action( &TC, result, queue_snd_id ); |
|
93 | close_action( &TC, result, queue_snd_id ); | |
94 | break; |
|
94 | break; | |
95 | case TC_SUBTYPE_LOAD_SBM2: |
|
95 | case TC_SUBTYPE_LOAD_SBM2: | |
96 | result = action_load_sbm2_par( &TC, queue_snd_id, time ); |
|
96 | result = action_load_sbm2_par( &TC, queue_snd_id, time ); | |
97 | close_action( &TC, result, queue_snd_id ); |
|
97 | close_action( &TC, result, queue_snd_id ); | |
98 | break; |
|
98 | break; | |
99 | case TC_SUBTYPE_DUMP: |
|
99 | case TC_SUBTYPE_DUMP: | |
100 | result = action_dump_par( &TC, queue_snd_id ); |
|
100 | result = action_dump_par( &TC, queue_snd_id ); | |
101 | close_action( &TC, result, queue_snd_id ); |
|
101 | close_action( &TC, result, queue_snd_id ); | |
102 | break; |
|
102 | break; | |
103 | case TC_SUBTYPE_ENTER: |
|
103 | case TC_SUBTYPE_ENTER: | |
104 | result = action_enter_mode( &TC, queue_snd_id ); |
|
104 | result = action_enter_mode( &TC, queue_snd_id ); | |
105 | close_action( &TC, result, queue_snd_id ); |
|
105 | close_action( &TC, result, queue_snd_id ); | |
106 | break; |
|
106 | break; | |
107 | case TC_SUBTYPE_UPDT_INFO: |
|
107 | case TC_SUBTYPE_UPDT_INFO: | |
108 | result = action_update_info( &TC, queue_snd_id ); |
|
108 | result = action_update_info( &TC, queue_snd_id ); | |
109 | close_action( &TC, result, queue_snd_id ); |
|
109 | close_action( &TC, result, queue_snd_id ); | |
110 | break; |
|
110 | break; | |
111 | case TC_SUBTYPE_EN_CAL: |
|
111 | case TC_SUBTYPE_EN_CAL: | |
112 | result = action_enable_calibration( &TC, queue_snd_id, time ); |
|
112 | result = action_enable_calibration( &TC, queue_snd_id, time ); | |
113 | close_action( &TC, result, queue_snd_id ); |
|
113 | close_action( &TC, result, queue_snd_id ); | |
114 | break; |
|
114 | break; | |
115 | case TC_SUBTYPE_DIS_CAL: |
|
115 | case TC_SUBTYPE_DIS_CAL: | |
116 | result = action_disable_calibration( &TC, queue_snd_id, time ); |
|
116 | result = action_disable_calibration( &TC, queue_snd_id, time ); | |
117 | close_action( &TC, result, queue_snd_id ); |
|
117 | close_action( &TC, result, queue_snd_id ); | |
118 | break; |
|
118 | break; | |
119 | case TC_SUBTYPE_LOAD_K: |
|
119 | case TC_SUBTYPE_LOAD_K: | |
120 | result = action_load_kcoefficients( &TC, queue_snd_id, time ); |
|
120 | result = action_load_kcoefficients( &TC, queue_snd_id, time ); | |
121 | close_action( &TC, result, queue_snd_id ); |
|
121 | close_action( &TC, result, queue_snd_id ); | |
122 | break; |
|
122 | break; | |
123 | case TC_SUBTYPE_DUMP_K: |
|
123 | case TC_SUBTYPE_DUMP_K: | |
124 | result = action_dump_kcoefficients( &TC, queue_snd_id, time ); |
|
124 | result = action_dump_kcoefficients( &TC, queue_snd_id, time ); | |
125 | close_action( &TC, result, queue_snd_id ); |
|
125 | close_action( &TC, result, queue_snd_id ); | |
126 | break; |
|
126 | break; | |
127 | case TC_SUBTYPE_LOAD_FBINS: |
|
127 | case TC_SUBTYPE_LOAD_FBINS: | |
128 | result = action_load_fbins_mask( &TC, queue_snd_id, time ); |
|
128 | result = action_load_fbins_mask( &TC, queue_snd_id, time ); | |
129 | close_action( &TC, result, queue_snd_id ); |
|
129 | close_action( &TC, result, queue_snd_id ); | |
130 | break; |
|
130 | break; | |
131 | case TC_SUBTYPE_LOAD_FILTER_PAR: |
|
131 | case TC_SUBTYPE_LOAD_FILTER_PAR: | |
132 | result = action_load_filter_par( &TC, queue_snd_id, time ); |
|
132 | result = action_load_filter_par( &TC, queue_snd_id, time ); | |
133 | close_action( &TC, result, queue_snd_id ); |
|
133 | close_action( &TC, result, queue_snd_id ); | |
134 | break; |
|
134 | break; | |
135 | case TC_SUBTYPE_UPDT_TIME: |
|
135 | case TC_SUBTYPE_UPDT_TIME: | |
136 | result = action_update_time( &TC ); |
|
136 | result = action_update_time( &TC ); | |
137 | close_action( &TC, result, queue_snd_id ); |
|
137 | close_action( &TC, result, queue_snd_id ); | |
138 | break; |
|
138 | break; | |
139 | default: |
|
139 | default: | |
140 | break; |
|
140 | break; | |
141 | } |
|
141 | } | |
142 | } |
|
142 | } | |
143 | } |
|
143 | } | |
144 | } |
|
144 | } | |
145 |
|
145 | |||
146 | //*********** |
|
146 | //*********** | |
147 | // TC ACTIONS |
|
147 | // TC ACTIONS | |
148 |
|
148 | |||
149 | int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) |
|
149 | int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) | |
150 | { |
|
150 | { | |
151 | /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received. |
|
151 | /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received. | |
152 | * |
|
152 | * | |
153 | * @param TC points to the TeleCommand packet that is being processed |
|
153 | * @param TC points to the TeleCommand packet that is being processed | |
154 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver |
|
154 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver | |
155 | * |
|
155 | * | |
156 | */ |
|
156 | */ | |
157 |
|
157 | |||
158 | PRINTF("this is the end!!!\n"); |
|
158 | PRINTF("this is the end!!!\n"); | |
159 | exit(0); |
|
159 | exit(0); | |
160 |
|
160 | |||
161 | send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time ); |
|
161 | send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time ); | |
162 |
|
162 | |||
163 | return LFR_DEFAULT; |
|
163 | return LFR_DEFAULT; | |
164 | } |
|
164 | } | |
165 |
|
165 | |||
166 | int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id ) |
|
166 | int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id ) | |
167 | { |
|
167 | { | |
168 | /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received. |
|
168 | /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received. | |
169 | * |
|
169 | * | |
170 | * @param TC points to the TeleCommand packet that is being processed |
|
170 | * @param TC points to the TeleCommand packet that is being processed | |
171 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver |
|
171 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver | |
172 | * |
|
172 | * | |
173 | */ |
|
173 | */ | |
174 |
|
174 | |||
175 | rtems_status_code status; |
|
175 | rtems_status_code status; | |
176 | unsigned char requestedMode; |
|
176 | unsigned char requestedMode; | |
177 | unsigned int transitionCoarseTime; |
|
177 | unsigned int transitionCoarseTime; | |
178 | unsigned char * bytePosPtr; |
|
178 | unsigned char * bytePosPtr; | |
179 |
|
179 | |||
180 | bytePosPtr = (unsigned char *) &TC->packetID; |
|
180 | bytePosPtr = (unsigned char *) &TC->packetID; | |
181 | requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ]; |
|
181 | requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ]; | |
182 | copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] ); |
|
182 | copyInt32ByChar( (char*) &transitionCoarseTime, &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] ); | |
183 | transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK; |
|
183 | transitionCoarseTime = transitionCoarseTime & COARSE_TIME_MASK; | |
184 | status = check_mode_value( requestedMode ); |
|
184 | status = check_mode_value( requestedMode ); | |
185 |
|
185 | |||
186 | if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent |
|
186 | if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent | |
187 | { |
|
187 | { | |
188 | send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode ); |
|
188 | send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode ); | |
189 | } |
|
189 | } | |
190 |
|
190 | |||
191 | else // the mode value is valid, check the transition |
|
191 | else // the mode value is valid, check the transition | |
192 | { |
|
192 | { | |
193 | status = check_mode_transition(requestedMode); |
|
193 | status = check_mode_transition(requestedMode); | |
194 | if (status != LFR_SUCCESSFUL) |
|
194 | if (status != LFR_SUCCESSFUL) | |
195 | { |
|
195 | { | |
196 | PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n") |
|
196 | PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n") | |
197 | send_tm_lfr_tc_exe_not_executable( TC, queue_id ); |
|
197 | send_tm_lfr_tc_exe_not_executable( TC, queue_id ); | |
198 | } |
|
198 | } | |
199 | } |
|
199 | } | |
200 |
|
200 | |||
201 | if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date |
|
201 | if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date | |
202 | { |
|
202 | { | |
203 | status = check_transition_date( transitionCoarseTime ); |
|
203 | status = check_transition_date( transitionCoarseTime ); | |
204 | if (status != LFR_SUCCESSFUL) |
|
204 | if (status != LFR_SUCCESSFUL) | |
205 | { |
|
205 | { | |
206 | PRINTF("ERR *** in action_enter_mode *** check_transition_date\n"); |
|
206 | PRINTF("ERR *** in action_enter_mode *** check_transition_date\n"); | |
207 | send_tm_lfr_tc_exe_not_executable(TC, queue_id ); |
|
207 | send_tm_lfr_tc_exe_not_executable(TC, queue_id ); | |
208 | } |
|
208 | } | |
209 | } |
|
209 | } | |
210 |
|
210 | |||
211 | if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode |
|
211 | if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode | |
212 | { |
|
212 | { | |
213 | PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode); |
|
213 | PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode); | |
214 |
|
214 | |||
215 | switch(requestedMode) |
|
215 | switch(requestedMode) | |
216 | { |
|
216 | { | |
217 | case LFR_MODE_STANDBY: |
|
217 | case LFR_MODE_STANDBY: | |
218 | status = enter_mode_standby(); |
|
218 | status = enter_mode_standby(); | |
219 | break; |
|
219 | break; | |
220 | case LFR_MODE_NORMAL: |
|
220 | case LFR_MODE_NORMAL: | |
221 | status = enter_mode_normal( transitionCoarseTime ); |
|
221 | status = enter_mode_normal( transitionCoarseTime ); | |
222 | break; |
|
222 | break; | |
223 | case LFR_MODE_BURST: |
|
223 | case LFR_MODE_BURST: | |
224 | status = enter_mode_burst( transitionCoarseTime ); |
|
224 | status = enter_mode_burst( transitionCoarseTime ); | |
225 | break; |
|
225 | break; | |
226 | case LFR_MODE_SBM1: |
|
226 | case LFR_MODE_SBM1: | |
227 | status = enter_mode_sbm1( transitionCoarseTime ); |
|
227 | status = enter_mode_sbm1( transitionCoarseTime ); | |
228 | break; |
|
228 | break; | |
229 | case LFR_MODE_SBM2: |
|
229 | case LFR_MODE_SBM2: | |
230 | status = enter_mode_sbm2( transitionCoarseTime ); |
|
230 | status = enter_mode_sbm2( transitionCoarseTime ); | |
231 | break; |
|
231 | break; | |
232 | default: |
|
232 | default: | |
233 | break; |
|
233 | break; | |
234 | } |
|
234 | } | |
235 |
|
235 | |||
236 | if (status != RTEMS_SUCCESSFUL) |
|
236 | if (status != RTEMS_SUCCESSFUL) | |
237 | { |
|
237 | { | |
238 | status = LFR_EXE_ERROR; |
|
238 | status = LFR_EXE_ERROR; | |
239 | } |
|
239 | } | |
240 | } |
|
240 | } | |
241 |
|
241 | |||
242 | return status; |
|
242 | return status; | |
243 | } |
|
243 | } | |
244 |
|
244 | |||
245 | int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id) |
|
245 | int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id) | |
246 | { |
|
246 | { | |
247 | /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received. |
|
247 | /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received. | |
248 | * |
|
248 | * | |
249 | * @param TC points to the TeleCommand packet that is being processed |
|
249 | * @param TC points to the TeleCommand packet that is being processed | |
250 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver |
|
250 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver | |
251 | * |
|
251 | * | |
252 | * @return LFR directive status code: |
|
252 | * @return LFR directive status code: | |
253 | * - LFR_DEFAULT |
|
253 | * - LFR_DEFAULT | |
254 | * - LFR_SUCCESSFUL |
|
254 | * - LFR_SUCCESSFUL | |
255 | * |
|
255 | * | |
256 | */ |
|
256 | */ | |
257 |
|
257 | |||
258 | unsigned int val; |
|
258 | unsigned int val; | |
259 | int result; |
|
259 | int result; | |
260 | unsigned int status; |
|
260 | unsigned int status; | |
261 | unsigned char mode; |
|
261 | unsigned char mode; | |
262 | unsigned char * bytePosPtr; |
|
262 | unsigned char * bytePosPtr; | |
263 |
|
263 | |||
264 | bytePosPtr = (unsigned char *) &TC->packetID; |
|
264 | bytePosPtr = (unsigned char *) &TC->packetID; | |
265 |
|
265 | |||
266 | // check LFR mode |
|
266 | // check LFR mode | |
267 | mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE; |
|
267 | mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & BITS_LFR_MODE) >> SHIFT_LFR_MODE; | |
268 | status = check_update_info_hk_lfr_mode( mode ); |
|
268 | status = check_update_info_hk_lfr_mode( mode ); | |
269 | if (status == LFR_SUCCESSFUL) // check TDS mode |
|
269 | if (status == LFR_SUCCESSFUL) // check TDS mode | |
270 | { |
|
270 | { | |
271 | mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE; |
|
271 | mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_TDS_MODE) >> SHIFT_TDS_MODE; | |
272 | status = check_update_info_hk_tds_mode( mode ); |
|
272 | status = check_update_info_hk_tds_mode( mode ); | |
273 | } |
|
273 | } | |
274 | if (status == LFR_SUCCESSFUL) // check THR mode |
|
274 | if (status == LFR_SUCCESSFUL) // check THR mode | |
275 | { |
|
275 | { | |
276 | mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE); |
|
276 | mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & BITS_THR_MODE); | |
277 | status = check_update_info_hk_thr_mode( mode ); |
|
277 | status = check_update_info_hk_thr_mode( mode ); | |
278 | } |
|
278 | } | |
279 | if (status == LFR_SUCCESSFUL) // if the parameter check is successful |
|
279 | if (status == LFR_SUCCESSFUL) // if the parameter check is successful | |
280 | { |
|
280 | { | |
281 | val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256) |
|
281 | val = (housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * CONST_256) | |
282 | + housekeeping_packet.hk_lfr_update_info_tc_cnt[1]; |
|
282 | + housekeeping_packet.hk_lfr_update_info_tc_cnt[1]; | |
283 | val++; |
|
283 | val++; | |
284 | housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); |
|
284 | housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); | |
285 | housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val); |
|
285 | housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val); | |
286 | } |
|
286 | } | |
287 |
|
287 | |||
288 | // pa_bia_status_info |
|
288 | // pa_bia_status_info | |
289 | // => pa_bia_mode_mux_set 3 bits |
|
289 | // => pa_bia_mode_mux_set 3 bits | |
290 | // => pa_bia_mode_hv_enabled 1 bit |
|
290 | // => pa_bia_mode_hv_enabled 1 bit | |
291 | // => pa_bia_mode_bias1_enabled 1 bit |
|
291 | // => pa_bia_mode_bias1_enabled 1 bit | |
292 | // => pa_bia_mode_bias2_enabled 1 bit |
|
292 | // => pa_bia_mode_bias2_enabled 1 bit | |
293 | // => pa_bia_mode_bias3_enabled 1 bit |
|
293 | // => pa_bia_mode_bias3_enabled 1 bit | |
294 | // => pa_bia_on_off (cp_dpu_bias_on_off) |
|
294 | // => pa_bia_on_off (cp_dpu_bias_on_off) | |
295 | pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110] |
|
295 | pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & BITS_BIA; // [1111 1110] | |
296 | pa_bia_status_info = pa_bia_status_info |
|
296 | pa_bia_status_info = pa_bia_status_info | |
297 | | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1); |
|
297 | | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 1); | |
298 |
|
298 | |||
299 | // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets) |
|
299 | // REACTION_WHEELS_FREQUENCY, copy the incoming parameters in the local variable (to be copied in HK packets) | |
300 |
|
||||
301 | //cp_rpw_sc_rw_f_flags = bytePosPtr[ BYTE_POS_UPDATE_INFO_CP_RPW_SC_RW_F_FLAGS ]; |
|
|||
302 | getReactionWheelsFrequencies( TC ); |
|
300 | getReactionWheelsFrequencies( TC ); | |
303 | set_hk_lfr_sc_rw_f_flags(); |
|
301 | set_hk_lfr_sc_rw_f_flags(); | |
304 | build_sy_lfr_rw_masks(); |
|
302 | build_sy_lfr_rw_masks(); | |
305 |
|
303 | |||
306 | // once the masks are built, they have to be merged with the fbins_mask |
|
304 | // once the masks are built, they have to be merged with the fbins_mask | |
307 | merge_fbins_masks(); |
|
305 | merge_fbins_masks(); | |
308 |
|
306 | |||
309 | result = status; |
|
307 | result = status; | |
310 |
|
308 | |||
311 | return result; |
|
309 | return result; | |
312 | } |
|
310 | } | |
313 |
|
311 | |||
314 | int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) |
|
312 | int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) | |
315 | { |
|
313 | { | |
316 | /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received. |
|
314 | /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received. | |
317 | * |
|
315 | * | |
318 | * @param TC points to the TeleCommand packet that is being processed |
|
316 | * @param TC points to the TeleCommand packet that is being processed | |
319 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver |
|
317 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver | |
320 | * |
|
318 | * | |
321 | */ |
|
319 | */ | |
322 |
|
320 | |||
323 | int result; |
|
321 | int result; | |
324 |
|
322 | |||
325 | result = LFR_DEFAULT; |
|
323 | result = LFR_DEFAULT; | |
326 |
|
324 | |||
327 | setCalibration( true ); |
|
325 | setCalibration( true ); | |
328 |
|
326 | |||
329 | result = LFR_SUCCESSFUL; |
|
327 | result = LFR_SUCCESSFUL; | |
330 |
|
328 | |||
331 | return result; |
|
329 | return result; | |
332 | } |
|
330 | } | |
333 |
|
331 | |||
334 | int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) |
|
332 | int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time) | |
335 | { |
|
333 | { | |
336 | /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received. |
|
334 | /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received. | |
337 | * |
|
335 | * | |
338 | * @param TC points to the TeleCommand packet that is being processed |
|
336 | * @param TC points to the TeleCommand packet that is being processed | |
339 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver |
|
337 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver | |
340 | * |
|
338 | * | |
341 | */ |
|
339 | */ | |
342 |
|
340 | |||
343 | int result; |
|
341 | int result; | |
344 |
|
342 | |||
345 | result = LFR_DEFAULT; |
|
343 | result = LFR_DEFAULT; | |
346 |
|
344 | |||
347 | setCalibration( false ); |
|
345 | setCalibration( false ); | |
348 |
|
346 | |||
349 | result = LFR_SUCCESSFUL; |
|
347 | result = LFR_SUCCESSFUL; | |
350 |
|
348 | |||
351 | return result; |
|
349 | return result; | |
352 | } |
|
350 | } | |
353 |
|
351 | |||
354 | int action_update_time(ccsdsTelecommandPacket_t *TC) |
|
352 | int action_update_time(ccsdsTelecommandPacket_t *TC) | |
355 | { |
|
353 | { | |
356 | /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received. |
|
354 | /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received. | |
357 | * |
|
355 | * | |
358 | * @param TC points to the TeleCommand packet that is being processed |
|
356 | * @param TC points to the TeleCommand packet that is being processed | |
359 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver |
|
357 | * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver | |
360 | * |
|
358 | * | |
361 | * @return LFR_SUCCESSFUL |
|
359 | * @return LFR_SUCCESSFUL | |
362 | * |
|
360 | * | |
363 | */ |
|
361 | */ | |
364 |
|
362 | |||
365 | unsigned int val; |
|
363 | unsigned int val; | |
366 |
|
364 | |||
367 | time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES) |
|
365 | time_management_regs->coarse_time_load = (TC->dataAndCRC[BYTE_0] << SHIFT_3_BYTES) | |
368 | + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES) |
|
366 | + (TC->dataAndCRC[BYTE_1] << SHIFT_2_BYTES) | |
369 | + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE) |
|
367 | + (TC->dataAndCRC[BYTE_2] << SHIFT_1_BYTE) | |
370 | + TC->dataAndCRC[BYTE_3]; |
|
368 | + TC->dataAndCRC[BYTE_3]; | |
371 |
|
369 | |||
372 | val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256) |
|
370 | val = (housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * CONST_256) | |
373 | + housekeeping_packet.hk_lfr_update_time_tc_cnt[1]; |
|
371 | + housekeeping_packet.hk_lfr_update_time_tc_cnt[1]; | |
374 | val++; |
|
372 | val++; | |
375 | housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); |
|
373 | housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); | |
376 | housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val); |
|
374 | housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val); | |
377 |
|
375 | |||
378 | oneTcLfrUpdateTimeReceived = 1; |
|
376 | oneTcLfrUpdateTimeReceived = 1; | |
379 |
|
377 | |||
380 | return LFR_SUCCESSFUL; |
|
378 | return LFR_SUCCESSFUL; | |
381 | } |
|
379 | } | |
382 |
|
380 | |||
383 | //******************* |
|
381 | //******************* | |
384 | // ENTERING THE MODES |
|
382 | // ENTERING THE MODES | |
385 | int check_mode_value( unsigned char requestedMode ) |
|
383 | int check_mode_value( unsigned char requestedMode ) | |
386 | { |
|
384 | { | |
387 | int status; |
|
385 | int status; | |
388 |
|
386 | |||
389 | status = LFR_DEFAULT; |
|
387 | status = LFR_DEFAULT; | |
390 |
|
388 | |||
391 | if ( (requestedMode != LFR_MODE_STANDBY) |
|
389 | if ( (requestedMode != LFR_MODE_STANDBY) | |
392 | && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST) |
|
390 | && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST) | |
393 | && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) ) |
|
391 | && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) ) | |
394 | { |
|
392 | { | |
395 | status = LFR_DEFAULT; |
|
393 | status = LFR_DEFAULT; | |
396 | } |
|
394 | } | |
397 | else |
|
395 | else | |
398 | { |
|
396 | { | |
399 | status = LFR_SUCCESSFUL; |
|
397 | status = LFR_SUCCESSFUL; | |
400 | } |
|
398 | } | |
401 |
|
399 | |||
402 | return status; |
|
400 | return status; | |
403 | } |
|
401 | } | |
404 |
|
402 | |||
405 | int check_mode_transition( unsigned char requestedMode ) |
|
403 | int check_mode_transition( unsigned char requestedMode ) | |
406 | { |
|
404 | { | |
407 | /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE. |
|
405 | /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE. | |
408 | * |
|
406 | * | |
409 | * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE |
|
407 | * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE | |
410 | * |
|
408 | * | |
411 | * @return LFR directive status codes: |
|
409 | * @return LFR directive status codes: | |
412 | * - LFR_SUCCESSFUL - the transition is authorized |
|
410 | * - LFR_SUCCESSFUL - the transition is authorized | |
413 | * - LFR_DEFAULT - the transition is not authorized |
|
411 | * - LFR_DEFAULT - the transition is not authorized | |
414 | * |
|
412 | * | |
415 | */ |
|
413 | */ | |
416 |
|
414 | |||
417 | int status; |
|
415 | int status; | |
418 |
|
416 | |||
419 | switch (requestedMode) |
|
417 | switch (requestedMode) | |
420 | { |
|
418 | { | |
421 | case LFR_MODE_STANDBY: |
|
419 | case LFR_MODE_STANDBY: | |
422 | if ( lfrCurrentMode == LFR_MODE_STANDBY ) { |
|
420 | if ( lfrCurrentMode == LFR_MODE_STANDBY ) { | |
423 | status = LFR_DEFAULT; |
|
421 | status = LFR_DEFAULT; | |
424 | } |
|
422 | } | |
425 | else |
|
423 | else | |
426 | { |
|
424 | { | |
427 | status = LFR_SUCCESSFUL; |
|
425 | status = LFR_SUCCESSFUL; | |
428 | } |
|
426 | } | |
429 | break; |
|
427 | break; | |
430 | case LFR_MODE_NORMAL: |
|
428 | case LFR_MODE_NORMAL: | |
431 | if ( lfrCurrentMode == LFR_MODE_NORMAL ) { |
|
429 | if ( lfrCurrentMode == LFR_MODE_NORMAL ) { | |
432 | status = LFR_DEFAULT; |
|
430 | status = LFR_DEFAULT; | |
433 | } |
|
431 | } | |
434 | else { |
|
432 | else { | |
435 | status = LFR_SUCCESSFUL; |
|
433 | status = LFR_SUCCESSFUL; | |
436 | } |
|
434 | } | |
437 | break; |
|
435 | break; | |
438 | case LFR_MODE_BURST: |
|
436 | case LFR_MODE_BURST: | |
439 | if ( lfrCurrentMode == LFR_MODE_BURST ) { |
|
437 | if ( lfrCurrentMode == LFR_MODE_BURST ) { | |
440 | status = LFR_DEFAULT; |
|
438 | status = LFR_DEFAULT; | |
441 | } |
|
439 | } | |
442 | else { |
|
440 | else { | |
443 | status = LFR_SUCCESSFUL; |
|
441 | status = LFR_SUCCESSFUL; | |
444 | } |
|
442 | } | |
445 | break; |
|
443 | break; | |
446 | case LFR_MODE_SBM1: |
|
444 | case LFR_MODE_SBM1: | |
447 | if ( lfrCurrentMode == LFR_MODE_SBM1 ) { |
|
445 | if ( lfrCurrentMode == LFR_MODE_SBM1 ) { | |
448 | status = LFR_DEFAULT; |
|
446 | status = LFR_DEFAULT; | |
449 | } |
|
447 | } | |
450 | else { |
|
448 | else { | |
451 | status = LFR_SUCCESSFUL; |
|
449 | status = LFR_SUCCESSFUL; | |
452 | } |
|
450 | } | |
453 | break; |
|
451 | break; | |
454 | case LFR_MODE_SBM2: |
|
452 | case LFR_MODE_SBM2: | |
455 | if ( lfrCurrentMode == LFR_MODE_SBM2 ) { |
|
453 | if ( lfrCurrentMode == LFR_MODE_SBM2 ) { | |
456 | status = LFR_DEFAULT; |
|
454 | status = LFR_DEFAULT; | |
457 | } |
|
455 | } | |
458 | else { |
|
456 | else { | |
459 | status = LFR_SUCCESSFUL; |
|
457 | status = LFR_SUCCESSFUL; | |
460 | } |
|
458 | } | |
461 | break; |
|
459 | break; | |
462 | default: |
|
460 | default: | |
463 | status = LFR_DEFAULT; |
|
461 | status = LFR_DEFAULT; | |
464 | break; |
|
462 | break; | |
465 | } |
|
463 | } | |
466 |
|
464 | |||
467 | return status; |
|
465 | return status; | |
468 | } |
|
466 | } | |
469 |
|
467 | |||
470 | void update_last_valid_transition_date( unsigned int transitionCoarseTime ) |
|
468 | void update_last_valid_transition_date( unsigned int transitionCoarseTime ) | |
471 | { |
|
469 | { | |
472 | if (transitionCoarseTime == 0) |
|
470 | if (transitionCoarseTime == 0) | |
473 | { |
|
471 | { | |
474 | lastValidEnterModeTime = time_management_regs->coarse_time + 1; |
|
472 | lastValidEnterModeTime = time_management_regs->coarse_time + 1; | |
475 | PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime); |
|
473 | PRINTF1("lastValidEnterModeTime = 0x%x (transitionCoarseTime = 0 => coarse_time+1)\n", lastValidEnterModeTime); | |
476 | } |
|
474 | } | |
477 | else |
|
475 | else | |
478 | { |
|
476 | { | |
479 | lastValidEnterModeTime = transitionCoarseTime; |
|
477 | lastValidEnterModeTime = transitionCoarseTime; | |
480 | PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime); |
|
478 | PRINTF1("lastValidEnterModeTime = 0x%x\n", transitionCoarseTime); | |
481 | } |
|
479 | } | |
482 | } |
|
480 | } | |
483 |
|
481 | |||
484 | int check_transition_date( unsigned int transitionCoarseTime ) |
|
482 | int check_transition_date( unsigned int transitionCoarseTime ) | |
485 | { |
|
483 | { | |
486 | int status; |
|
484 | int status; | |
487 | unsigned int localCoarseTime; |
|
485 | unsigned int localCoarseTime; | |
488 | unsigned int deltaCoarseTime; |
|
486 | unsigned int deltaCoarseTime; | |
489 |
|
487 | |||
490 | status = LFR_SUCCESSFUL; |
|
488 | status = LFR_SUCCESSFUL; | |
491 |
|
489 | |||
492 | if (transitionCoarseTime == 0) // transition time = 0 means an instant transition |
|
490 | if (transitionCoarseTime == 0) // transition time = 0 means an instant transition | |
493 | { |
|
491 | { | |
494 | status = LFR_SUCCESSFUL; |
|
492 | status = LFR_SUCCESSFUL; | |
495 | } |
|
493 | } | |
496 | else |
|
494 | else | |
497 | { |
|
495 | { | |
498 | localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK; |
|
496 | localCoarseTime = time_management_regs->coarse_time & COARSE_TIME_MASK; | |
499 |
|
497 | |||
500 | PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime); |
|
498 | PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime); | |
501 |
|
499 | |||
502 | if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322 |
|
500 | if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322 | |
503 | { |
|
501 | { | |
504 | status = LFR_DEFAULT; |
|
502 | status = LFR_DEFAULT; | |
505 | PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n"); |
|
503 | PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n"); | |
506 | } |
|
504 | } | |
507 |
|
505 | |||
508 | if (status == LFR_SUCCESSFUL) |
|
506 | if (status == LFR_SUCCESSFUL) | |
509 | { |
|
507 | { | |
510 | deltaCoarseTime = transitionCoarseTime - localCoarseTime; |
|
508 | deltaCoarseTime = transitionCoarseTime - localCoarseTime; | |
511 | if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323 |
|
509 | if ( deltaCoarseTime > MAX_DELTA_COARSE_TIME ) // SSS-CP-EQS-323 | |
512 | { |
|
510 | { | |
513 | status = LFR_DEFAULT; |
|
511 | status = LFR_DEFAULT; | |
514 | PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime) |
|
512 | PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime) | |
515 | } |
|
513 | } | |
516 | } |
|
514 | } | |
517 | } |
|
515 | } | |
518 |
|
516 | |||
519 | return status; |
|
517 | return status; | |
520 | } |
|
518 | } | |
521 |
|
519 | |||
522 | int restart_asm_activities( unsigned char lfrRequestedMode ) |
|
520 | int restart_asm_activities( unsigned char lfrRequestedMode ) | |
523 | { |
|
521 | { | |
524 | rtems_status_code status; |
|
522 | rtems_status_code status; | |
525 |
|
523 | |||
526 | status = stop_spectral_matrices(); |
|
524 | status = stop_spectral_matrices(); | |
527 |
|
525 | |||
528 | thisIsAnASMRestart = 1; |
|
526 | thisIsAnASMRestart = 1; | |
529 |
|
527 | |||
530 | status = restart_asm_tasks( lfrRequestedMode ); |
|
528 | status = restart_asm_tasks( lfrRequestedMode ); | |
531 |
|
529 | |||
532 | launch_spectral_matrix(); |
|
530 | launch_spectral_matrix(); | |
533 |
|
531 | |||
534 | return status; |
|
532 | return status; | |
535 | } |
|
533 | } | |
536 |
|
534 | |||
537 | int stop_spectral_matrices( void ) |
|
535 | int stop_spectral_matrices( void ) | |
538 | { |
|
536 | { | |
539 | /** This function stops and restarts the current mode average spectral matrices activities. |
|
537 | /** This function stops and restarts the current mode average spectral matrices activities. | |
540 | * |
|
538 | * | |
541 | * @return RTEMS directive status codes: |
|
539 | * @return RTEMS directive status codes: | |
542 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
540 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
543 | * - RTEMS_INVALID_ID - task id invalid |
|
541 | * - RTEMS_INVALID_ID - task id invalid | |
544 | * - RTEMS_ALREADY_SUSPENDED - task already suspended |
|
542 | * - RTEMS_ALREADY_SUSPENDED - task already suspended | |
545 | * |
|
543 | * | |
546 | */ |
|
544 | */ | |
547 |
|
545 | |||
548 | rtems_status_code status; |
|
546 | rtems_status_code status; | |
549 |
|
547 | |||
550 | status = RTEMS_SUCCESSFUL; |
|
548 | status = RTEMS_SUCCESSFUL; | |
551 |
|
549 | |||
552 | // (1) mask interruptions |
|
550 | // (1) mask interruptions | |
553 | LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt |
|
551 | LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // mask spectral matrix interrupt | |
554 |
|
552 | |||
555 | // (2) reset spectral matrices registers |
|
553 | // (2) reset spectral matrices registers | |
556 | set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices |
|
554 | set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices | |
557 | reset_sm_status(); |
|
555 | reset_sm_status(); | |
558 |
|
556 | |||
559 | // (3) clear interruptions |
|
557 | // (3) clear interruptions | |
560 | LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt |
|
558 | LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt | |
561 |
|
559 | |||
562 | // suspend several tasks |
|
560 | // suspend several tasks | |
563 | if (lfrCurrentMode != LFR_MODE_STANDBY) { |
|
561 | if (lfrCurrentMode != LFR_MODE_STANDBY) { | |
564 | status = suspend_asm_tasks(); |
|
562 | status = suspend_asm_tasks(); | |
565 | } |
|
563 | } | |
566 |
|
564 | |||
567 | if (status != RTEMS_SUCCESSFUL) |
|
565 | if (status != RTEMS_SUCCESSFUL) | |
568 | { |
|
566 | { | |
569 | PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status) |
|
567 | PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status) | |
570 | } |
|
568 | } | |
571 |
|
569 | |||
572 | return status; |
|
570 | return status; | |
573 | } |
|
571 | } | |
574 |
|
572 | |||
575 | int stop_current_mode( void ) |
|
573 | int stop_current_mode( void ) | |
576 | { |
|
574 | { | |
577 | /** This function stops the current mode by masking interrupt lines and suspending science tasks. |
|
575 | /** This function stops the current mode by masking interrupt lines and suspending science tasks. | |
578 | * |
|
576 | * | |
579 | * @return RTEMS directive status codes: |
|
577 | * @return RTEMS directive status codes: | |
580 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
578 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
581 | * - RTEMS_INVALID_ID - task id invalid |
|
579 | * - RTEMS_INVALID_ID - task id invalid | |
582 | * - RTEMS_ALREADY_SUSPENDED - task already suspended |
|
580 | * - RTEMS_ALREADY_SUSPENDED - task already suspended | |
583 | * |
|
581 | * | |
584 | */ |
|
582 | */ | |
585 |
|
583 | |||
586 | rtems_status_code status; |
|
584 | rtems_status_code status; | |
587 |
|
585 | |||
588 | status = RTEMS_SUCCESSFUL; |
|
586 | status = RTEMS_SUCCESSFUL; | |
589 |
|
587 | |||
590 | // (1) mask interruptions |
|
588 | // (1) mask interruptions | |
591 | LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt |
|
589 | LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt | |
592 | LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt |
|
590 | LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt | |
593 |
|
591 | |||
594 | // (2) reset waveform picker registers |
|
592 | // (2) reset waveform picker registers | |
595 | reset_wfp_burst_enable(); // reset burst and enable bits |
|
593 | reset_wfp_burst_enable(); // reset burst and enable bits | |
596 | reset_wfp_status(); // reset all the status bits |
|
594 | reset_wfp_status(); // reset all the status bits | |
597 |
|
595 | |||
598 | // (3) reset spectral matrices registers |
|
596 | // (3) reset spectral matrices registers | |
599 | set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices |
|
597 | set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices | |
600 | reset_sm_status(); |
|
598 | reset_sm_status(); | |
601 |
|
599 | |||
602 | // reset lfr VHDL module |
|
600 | // reset lfr VHDL module | |
603 | reset_lfr(); |
|
601 | reset_lfr(); | |
604 |
|
602 | |||
605 | reset_extractSWF(); // reset the extractSWF flag to false |
|
603 | reset_extractSWF(); // reset the extractSWF flag to false | |
606 |
|
604 | |||
607 | // (4) clear interruptions |
|
605 | // (4) clear interruptions | |
608 | LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt |
|
606 | LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt | |
609 | LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt |
|
607 | LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt | |
610 |
|
608 | |||
611 | // suspend several tasks |
|
609 | // suspend several tasks | |
612 | if (lfrCurrentMode != LFR_MODE_STANDBY) { |
|
610 | if (lfrCurrentMode != LFR_MODE_STANDBY) { | |
613 | status = suspend_science_tasks(); |
|
611 | status = suspend_science_tasks(); | |
614 | } |
|
612 | } | |
615 |
|
613 | |||
616 | if (status != RTEMS_SUCCESSFUL) |
|
614 | if (status != RTEMS_SUCCESSFUL) | |
617 | { |
|
615 | { | |
618 | PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status) |
|
616 | PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status) | |
619 | } |
|
617 | } | |
620 |
|
618 | |||
621 | return status; |
|
619 | return status; | |
622 | } |
|
620 | } | |
623 |
|
621 | |||
624 | int enter_mode_standby( void ) |
|
622 | int enter_mode_standby( void ) | |
625 | { |
|
623 | { | |
626 | /** This function is used to put LFR in the STANDBY mode. |
|
624 | /** This function is used to put LFR in the STANDBY mode. | |
627 | * |
|
625 | * | |
628 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE |
|
626 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE | |
629 | * |
|
627 | * | |
630 | * @return RTEMS directive status codes: |
|
628 | * @return RTEMS directive status codes: | |
631 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
629 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
632 | * - RTEMS_INVALID_ID - task id invalid |
|
630 | * - RTEMS_INVALID_ID - task id invalid | |
633 | * - RTEMS_INCORRECT_STATE - task never started |
|
631 | * - RTEMS_INCORRECT_STATE - task never started | |
634 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task |
|
632 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task | |
635 | * |
|
633 | * | |
636 | * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE |
|
634 | * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE | |
637 | * is immediate. |
|
635 | * is immediate. | |
638 | * |
|
636 | * | |
639 | */ |
|
637 | */ | |
640 |
|
638 | |||
641 | int status; |
|
639 | int status; | |
642 |
|
640 | |||
643 | status = stop_current_mode(); // STOP THE CURRENT MODE |
|
641 | status = stop_current_mode(); // STOP THE CURRENT MODE | |
644 |
|
642 | |||
645 | #ifdef PRINT_TASK_STATISTICS |
|
643 | #ifdef PRINT_TASK_STATISTICS | |
646 | rtems_cpu_usage_report(); |
|
644 | rtems_cpu_usage_report(); | |
647 | #endif |
|
645 | #endif | |
648 |
|
646 | |||
649 | #ifdef PRINT_STACK_REPORT |
|
647 | #ifdef PRINT_STACK_REPORT | |
650 | PRINTF("stack report selected\n") |
|
648 | PRINTF("stack report selected\n") | |
651 | rtems_stack_checker_report_usage(); |
|
649 | rtems_stack_checker_report_usage(); | |
652 | #endif |
|
650 | #endif | |
653 |
|
651 | |||
654 | return status; |
|
652 | return status; | |
655 | } |
|
653 | } | |
656 |
|
654 | |||
657 | int enter_mode_normal( unsigned int transitionCoarseTime ) |
|
655 | int enter_mode_normal( unsigned int transitionCoarseTime ) | |
658 | { |
|
656 | { | |
659 | /** This function is used to start the NORMAL mode. |
|
657 | /** This function is used to start the NORMAL mode. | |
660 | * |
|
658 | * | |
661 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE |
|
659 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE | |
662 | * |
|
660 | * | |
663 | * @return RTEMS directive status codes: |
|
661 | * @return RTEMS directive status codes: | |
664 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
662 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
665 | * - RTEMS_INVALID_ID - task id invalid |
|
663 | * - RTEMS_INVALID_ID - task id invalid | |
666 | * - RTEMS_INCORRECT_STATE - task never started |
|
664 | * - RTEMS_INCORRECT_STATE - task never started | |
667 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task |
|
665 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task | |
668 | * |
|
666 | * | |
669 | * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2, |
|
667 | * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2, | |
670 | * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. |
|
668 | * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. | |
671 | * |
|
669 | * | |
672 | */ |
|
670 | */ | |
673 |
|
671 | |||
674 | int status; |
|
672 | int status; | |
675 |
|
673 | |||
676 | #ifdef PRINT_TASK_STATISTICS |
|
674 | #ifdef PRINT_TASK_STATISTICS | |
677 | rtems_cpu_usage_reset(); |
|
675 | rtems_cpu_usage_reset(); | |
678 | #endif |
|
676 | #endif | |
679 |
|
677 | |||
680 | status = RTEMS_UNSATISFIED; |
|
678 | status = RTEMS_UNSATISFIED; | |
681 |
|
679 | |||
682 | switch( lfrCurrentMode ) |
|
680 | switch( lfrCurrentMode ) | |
683 | { |
|
681 | { | |
684 | case LFR_MODE_STANDBY: |
|
682 | case LFR_MODE_STANDBY: | |
685 | status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks |
|
683 | status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks | |
686 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules |
|
684 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules | |
687 | { |
|
685 | { | |
688 | launch_spectral_matrix( ); |
|
686 | launch_spectral_matrix( ); | |
689 | launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime ); |
|
687 | launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime ); | |
690 | } |
|
688 | } | |
691 | break; |
|
689 | break; | |
692 | case LFR_MODE_BURST: |
|
690 | case LFR_MODE_BURST: | |
693 | status = stop_current_mode(); // stop the current mode |
|
691 | status = stop_current_mode(); // stop the current mode | |
694 | status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks |
|
692 | status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks | |
695 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules |
|
693 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules | |
696 | { |
|
694 | { | |
697 | launch_spectral_matrix( ); |
|
695 | launch_spectral_matrix( ); | |
698 | launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime ); |
|
696 | launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime ); | |
699 | } |
|
697 | } | |
700 | break; |
|
698 | break; | |
701 | case LFR_MODE_SBM1: |
|
699 | case LFR_MODE_SBM1: | |
702 | status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters |
|
700 | status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters | |
703 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action |
|
701 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action | |
704 | update_last_valid_transition_date( transitionCoarseTime ); |
|
702 | update_last_valid_transition_date( transitionCoarseTime ); | |
705 | break; |
|
703 | break; | |
706 | case LFR_MODE_SBM2: |
|
704 | case LFR_MODE_SBM2: | |
707 | status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters |
|
705 | status = restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters | |
708 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action |
|
706 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action | |
709 | update_last_valid_transition_date( transitionCoarseTime ); |
|
707 | update_last_valid_transition_date( transitionCoarseTime ); | |
710 | break; |
|
708 | break; | |
711 | default: |
|
709 | default: | |
712 | break; |
|
710 | break; | |
713 | } |
|
711 | } | |
714 |
|
712 | |||
715 | if (status != RTEMS_SUCCESSFUL) |
|
713 | if (status != RTEMS_SUCCESSFUL) | |
716 | { |
|
714 | { | |
717 | PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status) |
|
715 | PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status) | |
718 | status = RTEMS_UNSATISFIED; |
|
716 | status = RTEMS_UNSATISFIED; | |
719 | } |
|
717 | } | |
720 |
|
718 | |||
721 | return status; |
|
719 | return status; | |
722 | } |
|
720 | } | |
723 |
|
721 | |||
724 | int enter_mode_burst( unsigned int transitionCoarseTime ) |
|
722 | int enter_mode_burst( unsigned int transitionCoarseTime ) | |
725 | { |
|
723 | { | |
726 | /** This function is used to start the BURST mode. |
|
724 | /** This function is used to start the BURST mode. | |
727 | * |
|
725 | * | |
728 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE |
|
726 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE | |
729 | * |
|
727 | * | |
730 | * @return RTEMS directive status codes: |
|
728 | * @return RTEMS directive status codes: | |
731 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
729 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
732 | * - RTEMS_INVALID_ID - task id invalid |
|
730 | * - RTEMS_INVALID_ID - task id invalid | |
733 | * - RTEMS_INCORRECT_STATE - task never started |
|
731 | * - RTEMS_INCORRECT_STATE - task never started | |
734 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task |
|
732 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task | |
735 | * |
|
733 | * | |
736 | * The way the BURST mode is started does not depend on the LFR current mode. |
|
734 | * The way the BURST mode is started does not depend on the LFR current mode. | |
737 | * |
|
735 | * | |
738 | */ |
|
736 | */ | |
739 |
|
737 | |||
740 |
|
738 | |||
741 | int status; |
|
739 | int status; | |
742 |
|
740 | |||
743 | #ifdef PRINT_TASK_STATISTICS |
|
741 | #ifdef PRINT_TASK_STATISTICS | |
744 | rtems_cpu_usage_reset(); |
|
742 | rtems_cpu_usage_reset(); | |
745 | #endif |
|
743 | #endif | |
746 |
|
744 | |||
747 | status = stop_current_mode(); // stop the current mode |
|
745 | status = stop_current_mode(); // stop the current mode | |
748 | status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks |
|
746 | status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks | |
749 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules |
|
747 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules | |
750 | { |
|
748 | { | |
751 | launch_spectral_matrix( ); |
|
749 | launch_spectral_matrix( ); | |
752 | launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime ); |
|
750 | launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime ); | |
753 | } |
|
751 | } | |
754 |
|
752 | |||
755 | if (status != RTEMS_SUCCESSFUL) |
|
753 | if (status != RTEMS_SUCCESSFUL) | |
756 | { |
|
754 | { | |
757 | PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status) |
|
755 | PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status) | |
758 | status = RTEMS_UNSATISFIED; |
|
756 | status = RTEMS_UNSATISFIED; | |
759 | } |
|
757 | } | |
760 |
|
758 | |||
761 | return status; |
|
759 | return status; | |
762 | } |
|
760 | } | |
763 |
|
761 | |||
764 | int enter_mode_sbm1( unsigned int transitionCoarseTime ) |
|
762 | int enter_mode_sbm1( unsigned int transitionCoarseTime ) | |
765 | { |
|
763 | { | |
766 | /** This function is used to start the SBM1 mode. |
|
764 | /** This function is used to start the SBM1 mode. | |
767 | * |
|
765 | * | |
768 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE |
|
766 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE | |
769 | * |
|
767 | * | |
770 | * @return RTEMS directive status codes: |
|
768 | * @return RTEMS directive status codes: | |
771 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
769 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
772 | * - RTEMS_INVALID_ID - task id invalid |
|
770 | * - RTEMS_INVALID_ID - task id invalid | |
773 | * - RTEMS_INCORRECT_STATE - task never started |
|
771 | * - RTEMS_INCORRECT_STATE - task never started | |
774 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task |
|
772 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task | |
775 | * |
|
773 | * | |
776 | * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2, |
|
774 | * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2, | |
777 | * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other |
|
775 | * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other | |
778 | * cases, the acquisition is completely restarted. |
|
776 | * cases, the acquisition is completely restarted. | |
779 | * |
|
777 | * | |
780 | */ |
|
778 | */ | |
781 |
|
779 | |||
782 | int status; |
|
780 | int status; | |
783 |
|
781 | |||
784 | #ifdef PRINT_TASK_STATISTICS |
|
782 | #ifdef PRINT_TASK_STATISTICS | |
785 | rtems_cpu_usage_reset(); |
|
783 | rtems_cpu_usage_reset(); | |
786 | #endif |
|
784 | #endif | |
787 |
|
785 | |||
788 | status = RTEMS_UNSATISFIED; |
|
786 | status = RTEMS_UNSATISFIED; | |
789 |
|
787 | |||
790 | switch( lfrCurrentMode ) |
|
788 | switch( lfrCurrentMode ) | |
791 | { |
|
789 | { | |
792 | case LFR_MODE_STANDBY: |
|
790 | case LFR_MODE_STANDBY: | |
793 | status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks |
|
791 | status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks | |
794 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules |
|
792 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules | |
795 | { |
|
793 | { | |
796 | launch_spectral_matrix( ); |
|
794 | launch_spectral_matrix( ); | |
797 | launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime ); |
|
795 | launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime ); | |
798 | } |
|
796 | } | |
799 | break; |
|
797 | break; | |
800 | case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action |
|
798 | case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action | |
801 | status = restart_asm_activities( LFR_MODE_SBM1 ); |
|
799 | status = restart_asm_activities( LFR_MODE_SBM1 ); | |
802 | status = LFR_SUCCESSFUL; |
|
800 | status = LFR_SUCCESSFUL; | |
803 | update_last_valid_transition_date( transitionCoarseTime ); |
|
801 | update_last_valid_transition_date( transitionCoarseTime ); | |
804 | break; |
|
802 | break; | |
805 | case LFR_MODE_BURST: |
|
803 | case LFR_MODE_BURST: | |
806 | status = stop_current_mode(); // stop the current mode |
|
804 | status = stop_current_mode(); // stop the current mode | |
807 | status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks |
|
805 | status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks | |
808 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules |
|
806 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules | |
809 | { |
|
807 | { | |
810 | launch_spectral_matrix( ); |
|
808 | launch_spectral_matrix( ); | |
811 | launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime ); |
|
809 | launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime ); | |
812 | } |
|
810 | } | |
813 | break; |
|
811 | break; | |
814 | case LFR_MODE_SBM2: |
|
812 | case LFR_MODE_SBM2: | |
815 | status = restart_asm_activities( LFR_MODE_SBM1 ); |
|
813 | status = restart_asm_activities( LFR_MODE_SBM1 ); | |
816 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action |
|
814 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action | |
817 | update_last_valid_transition_date( transitionCoarseTime ); |
|
815 | update_last_valid_transition_date( transitionCoarseTime ); | |
818 | break; |
|
816 | break; | |
819 | default: |
|
817 | default: | |
820 | break; |
|
818 | break; | |
821 | } |
|
819 | } | |
822 |
|
820 | |||
823 | if (status != RTEMS_SUCCESSFUL) |
|
821 | if (status != RTEMS_SUCCESSFUL) | |
824 | { |
|
822 | { | |
825 | PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status); |
|
823 | PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status); | |
826 | status = RTEMS_UNSATISFIED; |
|
824 | status = RTEMS_UNSATISFIED; | |
827 | } |
|
825 | } | |
828 |
|
826 | |||
829 | return status; |
|
827 | return status; | |
830 | } |
|
828 | } | |
831 |
|
829 | |||
832 | int enter_mode_sbm2( unsigned int transitionCoarseTime ) |
|
830 | int enter_mode_sbm2( unsigned int transitionCoarseTime ) | |
833 | { |
|
831 | { | |
834 | /** This function is used to start the SBM2 mode. |
|
832 | /** This function is used to start the SBM2 mode. | |
835 | * |
|
833 | * | |
836 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE |
|
834 | * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE | |
837 | * |
|
835 | * | |
838 | * @return RTEMS directive status codes: |
|
836 | * @return RTEMS directive status codes: | |
839 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
837 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
840 | * - RTEMS_INVALID_ID - task id invalid |
|
838 | * - RTEMS_INVALID_ID - task id invalid | |
841 | * - RTEMS_INCORRECT_STATE - task never started |
|
839 | * - RTEMS_INCORRECT_STATE - task never started | |
842 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task |
|
840 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task | |
843 | * |
|
841 | * | |
844 | * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1, |
|
842 | * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1, | |
845 | * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other |
|
843 | * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other | |
846 | * cases, the acquisition is completely restarted. |
|
844 | * cases, the acquisition is completely restarted. | |
847 | * |
|
845 | * | |
848 | */ |
|
846 | */ | |
849 |
|
847 | |||
850 | int status; |
|
848 | int status; | |
851 |
|
849 | |||
852 | #ifdef PRINT_TASK_STATISTICS |
|
850 | #ifdef PRINT_TASK_STATISTICS | |
853 | rtems_cpu_usage_reset(); |
|
851 | rtems_cpu_usage_reset(); | |
854 | #endif |
|
852 | #endif | |
855 |
|
853 | |||
856 | status = RTEMS_UNSATISFIED; |
|
854 | status = RTEMS_UNSATISFIED; | |
857 |
|
855 | |||
858 | switch( lfrCurrentMode ) |
|
856 | switch( lfrCurrentMode ) | |
859 | { |
|
857 | { | |
860 | case LFR_MODE_STANDBY: |
|
858 | case LFR_MODE_STANDBY: | |
861 | status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks |
|
859 | status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks | |
862 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules |
|
860 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules | |
863 | { |
|
861 | { | |
864 | launch_spectral_matrix( ); |
|
862 | launch_spectral_matrix( ); | |
865 | launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime ); |
|
863 | launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime ); | |
866 | } |
|
864 | } | |
867 | break; |
|
865 | break; | |
868 | case LFR_MODE_NORMAL: |
|
866 | case LFR_MODE_NORMAL: | |
869 | status = restart_asm_activities( LFR_MODE_SBM2 ); |
|
867 | status = restart_asm_activities( LFR_MODE_SBM2 ); | |
870 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action |
|
868 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action | |
871 | update_last_valid_transition_date( transitionCoarseTime ); |
|
869 | update_last_valid_transition_date( transitionCoarseTime ); | |
872 | break; |
|
870 | break; | |
873 | case LFR_MODE_BURST: |
|
871 | case LFR_MODE_BURST: | |
874 | status = stop_current_mode(); // stop the current mode |
|
872 | status = stop_current_mode(); // stop the current mode | |
875 | status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks |
|
873 | status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks | |
876 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules |
|
874 | if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules | |
877 | { |
|
875 | { | |
878 | launch_spectral_matrix( ); |
|
876 | launch_spectral_matrix( ); | |
879 | launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime ); |
|
877 | launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime ); | |
880 | } |
|
878 | } | |
881 | break; |
|
879 | break; | |
882 | case LFR_MODE_SBM1: |
|
880 | case LFR_MODE_SBM1: | |
883 | status = restart_asm_activities( LFR_MODE_SBM2 ); |
|
881 | status = restart_asm_activities( LFR_MODE_SBM2 ); | |
884 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action |
|
882 | status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action | |
885 | update_last_valid_transition_date( transitionCoarseTime ); |
|
883 | update_last_valid_transition_date( transitionCoarseTime ); | |
886 | break; |
|
884 | break; | |
887 | default: |
|
885 | default: | |
888 | break; |
|
886 | break; | |
889 | } |
|
887 | } | |
890 |
|
888 | |||
891 | if (status != RTEMS_SUCCESSFUL) |
|
889 | if (status != RTEMS_SUCCESSFUL) | |
892 | { |
|
890 | { | |
893 | PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status) |
|
891 | PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status) | |
894 | status = RTEMS_UNSATISFIED; |
|
892 | status = RTEMS_UNSATISFIED; | |
895 | } |
|
893 | } | |
896 |
|
894 | |||
897 | return status; |
|
895 | return status; | |
898 | } |
|
896 | } | |
899 |
|
897 | |||
900 | int restart_science_tasks( unsigned char lfrRequestedMode ) |
|
898 | int restart_science_tasks( unsigned char lfrRequestedMode ) | |
901 | { |
|
899 | { | |
902 | /** This function is used to restart all science tasks. |
|
900 | /** This function is used to restart all science tasks. | |
903 | * |
|
901 | * | |
904 | * @return RTEMS directive status codes: |
|
902 | * @return RTEMS directive status codes: | |
905 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
903 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
906 | * - RTEMS_INVALID_ID - task id invalid |
|
904 | * - RTEMS_INVALID_ID - task id invalid | |
907 | * - RTEMS_INCORRECT_STATE - task never started |
|
905 | * - RTEMS_INCORRECT_STATE - task never started | |
908 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task |
|
906 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task | |
909 | * |
|
907 | * | |
910 | * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1 |
|
908 | * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1 | |
911 | * |
|
909 | * | |
912 | */ |
|
910 | */ | |
913 |
|
911 | |||
914 | rtems_status_code status[NB_SCIENCE_TASKS]; |
|
912 | rtems_status_code status[NB_SCIENCE_TASKS]; | |
915 | rtems_status_code ret; |
|
913 | rtems_status_code ret; | |
916 |
|
914 | |||
917 | ret = RTEMS_SUCCESSFUL; |
|
915 | ret = RTEMS_SUCCESSFUL; | |
918 |
|
916 | |||
919 | status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode ); |
|
917 | status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode ); | |
920 | if (status[STATUS_0] != RTEMS_SUCCESSFUL) |
|
918 | if (status[STATUS_0] != RTEMS_SUCCESSFUL) | |
921 | { |
|
919 | { | |
922 | PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0]) |
|
920 | PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0]) | |
923 | } |
|
921 | } | |
924 |
|
922 | |||
925 | status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode ); |
|
923 | status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode ); | |
926 | if (status[STATUS_1] != RTEMS_SUCCESSFUL) |
|
924 | if (status[STATUS_1] != RTEMS_SUCCESSFUL) | |
927 | { |
|
925 | { | |
928 | PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1]) |
|
926 | PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1]) | |
929 | } |
|
927 | } | |
930 |
|
928 | |||
931 | status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 ); |
|
929 | status[STATUS_2] = rtems_task_restart( Task_id[TASKID_WFRM],1 ); | |
932 | if (status[STATUS_2] != RTEMS_SUCCESSFUL) |
|
930 | if (status[STATUS_2] != RTEMS_SUCCESSFUL) | |
933 | { |
|
931 | { | |
934 | PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2]) |
|
932 | PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[STATUS_2]) | |
935 | } |
|
933 | } | |
936 |
|
934 | |||
937 | status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 ); |
|
935 | status[STATUS_3] = rtems_task_restart( Task_id[TASKID_CWF3],1 ); | |
938 | if (status[STATUS_3] != RTEMS_SUCCESSFUL) |
|
936 | if (status[STATUS_3] != RTEMS_SUCCESSFUL) | |
939 | { |
|
937 | { | |
940 | PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3]) |
|
938 | PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[STATUS_3]) | |
941 | } |
|
939 | } | |
942 |
|
940 | |||
943 | status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 ); |
|
941 | status[STATUS_4] = rtems_task_restart( Task_id[TASKID_CWF2],1 ); | |
944 | if (status[STATUS_4] != RTEMS_SUCCESSFUL) |
|
942 | if (status[STATUS_4] != RTEMS_SUCCESSFUL) | |
945 | { |
|
943 | { | |
946 | PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4]) |
|
944 | PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[STATUS_4]) | |
947 | } |
|
945 | } | |
948 |
|
946 | |||
949 | status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 ); |
|
947 | status[STATUS_5] = rtems_task_restart( Task_id[TASKID_CWF1],1 ); | |
950 | if (status[STATUS_5] != RTEMS_SUCCESSFUL) |
|
948 | if (status[STATUS_5] != RTEMS_SUCCESSFUL) | |
951 | { |
|
949 | { | |
952 | PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5]) |
|
950 | PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[STATUS_5]) | |
953 | } |
|
951 | } | |
954 |
|
952 | |||
955 | status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode ); |
|
953 | status[STATUS_6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode ); | |
956 | if (status[STATUS_6] != RTEMS_SUCCESSFUL) |
|
954 | if (status[STATUS_6] != RTEMS_SUCCESSFUL) | |
957 | { |
|
955 | { | |
958 | PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6]) |
|
956 | PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_6]) | |
959 | } |
|
957 | } | |
960 |
|
958 | |||
961 | status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode ); |
|
959 | status[STATUS_7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode ); | |
962 | if (status[STATUS_7] != RTEMS_SUCCESSFUL) |
|
960 | if (status[STATUS_7] != RTEMS_SUCCESSFUL) | |
963 | { |
|
961 | { | |
964 | PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7]) |
|
962 | PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_7]) | |
965 | } |
|
963 | } | |
966 |
|
964 | |||
967 | status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 ); |
|
965 | status[STATUS_8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 ); | |
968 | if (status[STATUS_8] != RTEMS_SUCCESSFUL) |
|
966 | if (status[STATUS_8] != RTEMS_SUCCESSFUL) | |
969 | { |
|
967 | { | |
970 | PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8]) |
|
968 | PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_8]) | |
971 | } |
|
969 | } | |
972 |
|
970 | |||
973 | status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 ); |
|
971 | status[STATUS_9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 ); | |
974 | if (status[STATUS_9] != RTEMS_SUCCESSFUL) |
|
972 | if (status[STATUS_9] != RTEMS_SUCCESSFUL) | |
975 | { |
|
973 | { | |
976 | PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9]) |
|
974 | PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_9]) | |
977 | } |
|
975 | } | |
978 |
|
976 | |||
979 | if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) || |
|
977 | if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) || | |
980 | (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) || |
|
978 | (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) || | |
981 | (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) || |
|
979 | (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) || | |
982 | (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) || |
|
980 | (status[STATUS_6] != RTEMS_SUCCESSFUL) || (status[STATUS_7] != RTEMS_SUCCESSFUL) || | |
983 | (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) ) |
|
981 | (status[STATUS_8] != RTEMS_SUCCESSFUL) || (status[STATUS_9] != RTEMS_SUCCESSFUL) ) | |
984 | { |
|
982 | { | |
985 | ret = RTEMS_UNSATISFIED; |
|
983 | ret = RTEMS_UNSATISFIED; | |
986 | } |
|
984 | } | |
987 |
|
985 | |||
988 | return ret; |
|
986 | return ret; | |
989 | } |
|
987 | } | |
990 |
|
988 | |||
991 | int restart_asm_tasks( unsigned char lfrRequestedMode ) |
|
989 | int restart_asm_tasks( unsigned char lfrRequestedMode ) | |
992 | { |
|
990 | { | |
993 | /** This function is used to restart average spectral matrices tasks. |
|
991 | /** This function is used to restart average spectral matrices tasks. | |
994 | * |
|
992 | * | |
995 | * @return RTEMS directive status codes: |
|
993 | * @return RTEMS directive status codes: | |
996 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
994 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
997 | * - RTEMS_INVALID_ID - task id invalid |
|
995 | * - RTEMS_INVALID_ID - task id invalid | |
998 | * - RTEMS_INCORRECT_STATE - task never started |
|
996 | * - RTEMS_INCORRECT_STATE - task never started | |
999 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task |
|
997 | * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task | |
1000 | * |
|
998 | * | |
1001 | * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2 |
|
999 | * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2 | |
1002 | * |
|
1000 | * | |
1003 | */ |
|
1001 | */ | |
1004 |
|
1002 | |||
1005 | rtems_status_code status[NB_ASM_TASKS]; |
|
1003 | rtems_status_code status[NB_ASM_TASKS]; | |
1006 | rtems_status_code ret; |
|
1004 | rtems_status_code ret; | |
1007 |
|
1005 | |||
1008 | ret = RTEMS_SUCCESSFUL; |
|
1006 | ret = RTEMS_SUCCESSFUL; | |
1009 |
|
1007 | |||
1010 | status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode ); |
|
1008 | status[STATUS_0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode ); | |
1011 | if (status[STATUS_0] != RTEMS_SUCCESSFUL) |
|
1009 | if (status[STATUS_0] != RTEMS_SUCCESSFUL) | |
1012 | { |
|
1010 | { | |
1013 | PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0]) |
|
1011 | PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[STATUS_0]) | |
1014 | } |
|
1012 | } | |
1015 |
|
1013 | |||
1016 | status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode ); |
|
1014 | status[STATUS_1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode ); | |
1017 | if (status[STATUS_1] != RTEMS_SUCCESSFUL) |
|
1015 | if (status[STATUS_1] != RTEMS_SUCCESSFUL) | |
1018 | { |
|
1016 | { | |
1019 | PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1]) |
|
1017 | PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[STATUS_1]) | |
1020 | } |
|
1018 | } | |
1021 |
|
1019 | |||
1022 | status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode ); |
|
1020 | status[STATUS_2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode ); | |
1023 | if (status[STATUS_2] != RTEMS_SUCCESSFUL) |
|
1021 | if (status[STATUS_2] != RTEMS_SUCCESSFUL) | |
1024 | { |
|
1022 | { | |
1025 | PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2]) |
|
1023 | PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[STATUS_2]) | |
1026 | } |
|
1024 | } | |
1027 |
|
1025 | |||
1028 | status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode ); |
|
1026 | status[STATUS_3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode ); | |
1029 | if (status[STATUS_3] != RTEMS_SUCCESSFUL) |
|
1027 | if (status[STATUS_3] != RTEMS_SUCCESSFUL) | |
1030 | { |
|
1028 | { | |
1031 | PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3]) |
|
1029 | PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[STATUS_3]) | |
1032 | } |
|
1030 | } | |
1033 |
|
1031 | |||
1034 | status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 ); |
|
1032 | status[STATUS_4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 ); | |
1035 | if (status[STATUS_4] != RTEMS_SUCCESSFUL) |
|
1033 | if (status[STATUS_4] != RTEMS_SUCCESSFUL) | |
1036 | { |
|
1034 | { | |
1037 | PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4]) |
|
1035 | PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[STATUS_4]) | |
1038 | } |
|
1036 | } | |
1039 |
|
1037 | |||
1040 | status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 ); |
|
1038 | status[STATUS_5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 ); | |
1041 | if (status[STATUS_5] != RTEMS_SUCCESSFUL) |
|
1039 | if (status[STATUS_5] != RTEMS_SUCCESSFUL) | |
1042 | { |
|
1040 | { | |
1043 | PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5]) |
|
1041 | PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[STATUS_5]) | |
1044 | } |
|
1042 | } | |
1045 |
|
1043 | |||
1046 | if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) || |
|
1044 | if ( (status[STATUS_0] != RTEMS_SUCCESSFUL) || (status[STATUS_1] != RTEMS_SUCCESSFUL) || | |
1047 | (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) || |
|
1045 | (status[STATUS_2] != RTEMS_SUCCESSFUL) || (status[STATUS_3] != RTEMS_SUCCESSFUL) || | |
1048 | (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ) |
|
1046 | (status[STATUS_4] != RTEMS_SUCCESSFUL) || (status[STATUS_5] != RTEMS_SUCCESSFUL) ) | |
1049 | { |
|
1047 | { | |
1050 | ret = RTEMS_UNSATISFIED; |
|
1048 | ret = RTEMS_UNSATISFIED; | |
1051 | } |
|
1049 | } | |
1052 |
|
1050 | |||
1053 | return ret; |
|
1051 | return ret; | |
1054 | } |
|
1052 | } | |
1055 |
|
1053 | |||
1056 | int suspend_science_tasks( void ) |
|
1054 | int suspend_science_tasks( void ) | |
1057 | { |
|
1055 | { | |
1058 | /** This function suspends the science tasks. |
|
1056 | /** This function suspends the science tasks. | |
1059 | * |
|
1057 | * | |
1060 | * @return RTEMS directive status codes: |
|
1058 | * @return RTEMS directive status codes: | |
1061 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
1059 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
1062 | * - RTEMS_INVALID_ID - task id invalid |
|
1060 | * - RTEMS_INVALID_ID - task id invalid | |
1063 | * - RTEMS_ALREADY_SUSPENDED - task already suspended |
|
1061 | * - RTEMS_ALREADY_SUSPENDED - task already suspended | |
1064 | * |
|
1062 | * | |
1065 | */ |
|
1063 | */ | |
1066 |
|
1064 | |||
1067 | rtems_status_code status; |
|
1065 | rtems_status_code status; | |
1068 |
|
1066 | |||
1069 | PRINTF("in suspend_science_tasks\n") |
|
1067 | PRINTF("in suspend_science_tasks\n") | |
1070 |
|
1068 | |||
1071 | status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0 |
|
1069 | status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0 | |
1072 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1070 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1073 | { |
|
1071 | { | |
1074 | PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status) |
|
1072 | PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status) | |
1075 | } |
|
1073 | } | |
1076 | else |
|
1074 | else | |
1077 | { |
|
1075 | { | |
1078 | status = RTEMS_SUCCESSFUL; |
|
1076 | status = RTEMS_SUCCESSFUL; | |
1079 | } |
|
1077 | } | |
1080 | if (status == RTEMS_SUCCESSFUL) // suspend PRC0 |
|
1078 | if (status == RTEMS_SUCCESSFUL) // suspend PRC0 | |
1081 | { |
|
1079 | { | |
1082 | status = rtems_task_suspend( Task_id[TASKID_PRC0] ); |
|
1080 | status = rtems_task_suspend( Task_id[TASKID_PRC0] ); | |
1083 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1081 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1084 | { |
|
1082 | { | |
1085 | PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status) |
|
1083 | PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status) | |
1086 | } |
|
1084 | } | |
1087 | else |
|
1085 | else | |
1088 | { |
|
1086 | { | |
1089 | status = RTEMS_SUCCESSFUL; |
|
1087 | status = RTEMS_SUCCESSFUL; | |
1090 | } |
|
1088 | } | |
1091 | } |
|
1089 | } | |
1092 | if (status == RTEMS_SUCCESSFUL) // suspend AVF1 |
|
1090 | if (status == RTEMS_SUCCESSFUL) // suspend AVF1 | |
1093 | { |
|
1091 | { | |
1094 | status = rtems_task_suspend( Task_id[TASKID_AVF1] ); |
|
1092 | status = rtems_task_suspend( Task_id[TASKID_AVF1] ); | |
1095 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1093 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1096 | { |
|
1094 | { | |
1097 | PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status) |
|
1095 | PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status) | |
1098 | } |
|
1096 | } | |
1099 | else |
|
1097 | else | |
1100 | { |
|
1098 | { | |
1101 | status = RTEMS_SUCCESSFUL; |
|
1099 | status = RTEMS_SUCCESSFUL; | |
1102 | } |
|
1100 | } | |
1103 | } |
|
1101 | } | |
1104 | if (status == RTEMS_SUCCESSFUL) // suspend PRC1 |
|
1102 | if (status == RTEMS_SUCCESSFUL) // suspend PRC1 | |
1105 | { |
|
1103 | { | |
1106 | status = rtems_task_suspend( Task_id[TASKID_PRC1] ); |
|
1104 | status = rtems_task_suspend( Task_id[TASKID_PRC1] ); | |
1107 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1105 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1108 | { |
|
1106 | { | |
1109 | PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status) |
|
1107 | PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status) | |
1110 | } |
|
1108 | } | |
1111 | else |
|
1109 | else | |
1112 | { |
|
1110 | { | |
1113 | status = RTEMS_SUCCESSFUL; |
|
1111 | status = RTEMS_SUCCESSFUL; | |
1114 | } |
|
1112 | } | |
1115 | } |
|
1113 | } | |
1116 | if (status == RTEMS_SUCCESSFUL) // suspend AVF2 |
|
1114 | if (status == RTEMS_SUCCESSFUL) // suspend AVF2 | |
1117 | { |
|
1115 | { | |
1118 | status = rtems_task_suspend( Task_id[TASKID_AVF2] ); |
|
1116 | status = rtems_task_suspend( Task_id[TASKID_AVF2] ); | |
1119 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1117 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1120 | { |
|
1118 | { | |
1121 | PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status) |
|
1119 | PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status) | |
1122 | } |
|
1120 | } | |
1123 | else |
|
1121 | else | |
1124 | { |
|
1122 | { | |
1125 | status = RTEMS_SUCCESSFUL; |
|
1123 | status = RTEMS_SUCCESSFUL; | |
1126 | } |
|
1124 | } | |
1127 | } |
|
1125 | } | |
1128 | if (status == RTEMS_SUCCESSFUL) // suspend PRC2 |
|
1126 | if (status == RTEMS_SUCCESSFUL) // suspend PRC2 | |
1129 | { |
|
1127 | { | |
1130 | status = rtems_task_suspend( Task_id[TASKID_PRC2] ); |
|
1128 | status = rtems_task_suspend( Task_id[TASKID_PRC2] ); | |
1131 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1129 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1132 | { |
|
1130 | { | |
1133 | PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status) |
|
1131 | PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status) | |
1134 | } |
|
1132 | } | |
1135 | else |
|
1133 | else | |
1136 | { |
|
1134 | { | |
1137 | status = RTEMS_SUCCESSFUL; |
|
1135 | status = RTEMS_SUCCESSFUL; | |
1138 | } |
|
1136 | } | |
1139 | } |
|
1137 | } | |
1140 | if (status == RTEMS_SUCCESSFUL) // suspend WFRM |
|
1138 | if (status == RTEMS_SUCCESSFUL) // suspend WFRM | |
1141 | { |
|
1139 | { | |
1142 | status = rtems_task_suspend( Task_id[TASKID_WFRM] ); |
|
1140 | status = rtems_task_suspend( Task_id[TASKID_WFRM] ); | |
1143 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1141 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1144 | { |
|
1142 | { | |
1145 | PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status) |
|
1143 | PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status) | |
1146 | } |
|
1144 | } | |
1147 | else |
|
1145 | else | |
1148 | { |
|
1146 | { | |
1149 | status = RTEMS_SUCCESSFUL; |
|
1147 | status = RTEMS_SUCCESSFUL; | |
1150 | } |
|
1148 | } | |
1151 | } |
|
1149 | } | |
1152 | if (status == RTEMS_SUCCESSFUL) // suspend CWF3 |
|
1150 | if (status == RTEMS_SUCCESSFUL) // suspend CWF3 | |
1153 | { |
|
1151 | { | |
1154 | status = rtems_task_suspend( Task_id[TASKID_CWF3] ); |
|
1152 | status = rtems_task_suspend( Task_id[TASKID_CWF3] ); | |
1155 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1153 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1156 | { |
|
1154 | { | |
1157 | PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status) |
|
1155 | PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status) | |
1158 | } |
|
1156 | } | |
1159 | else |
|
1157 | else | |
1160 | { |
|
1158 | { | |
1161 | status = RTEMS_SUCCESSFUL; |
|
1159 | status = RTEMS_SUCCESSFUL; | |
1162 | } |
|
1160 | } | |
1163 | } |
|
1161 | } | |
1164 | if (status == RTEMS_SUCCESSFUL) // suspend CWF2 |
|
1162 | if (status == RTEMS_SUCCESSFUL) // suspend CWF2 | |
1165 | { |
|
1163 | { | |
1166 | status = rtems_task_suspend( Task_id[TASKID_CWF2] ); |
|
1164 | status = rtems_task_suspend( Task_id[TASKID_CWF2] ); | |
1167 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1165 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1168 | { |
|
1166 | { | |
1169 | PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status) |
|
1167 | PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status) | |
1170 | } |
|
1168 | } | |
1171 | else |
|
1169 | else | |
1172 | { |
|
1170 | { | |
1173 | status = RTEMS_SUCCESSFUL; |
|
1171 | status = RTEMS_SUCCESSFUL; | |
1174 | } |
|
1172 | } | |
1175 | } |
|
1173 | } | |
1176 | if (status == RTEMS_SUCCESSFUL) // suspend CWF1 |
|
1174 | if (status == RTEMS_SUCCESSFUL) // suspend CWF1 | |
1177 | { |
|
1175 | { | |
1178 | status = rtems_task_suspend( Task_id[TASKID_CWF1] ); |
|
1176 | status = rtems_task_suspend( Task_id[TASKID_CWF1] ); | |
1179 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1177 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1180 | { |
|
1178 | { | |
1181 | PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status) |
|
1179 | PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status) | |
1182 | } |
|
1180 | } | |
1183 | else |
|
1181 | else | |
1184 | { |
|
1182 | { | |
1185 | status = RTEMS_SUCCESSFUL; |
|
1183 | status = RTEMS_SUCCESSFUL; | |
1186 | } |
|
1184 | } | |
1187 | } |
|
1185 | } | |
1188 |
|
1186 | |||
1189 | return status; |
|
1187 | return status; | |
1190 | } |
|
1188 | } | |
1191 |
|
1189 | |||
1192 | int suspend_asm_tasks( void ) |
|
1190 | int suspend_asm_tasks( void ) | |
1193 | { |
|
1191 | { | |
1194 | /** This function suspends the science tasks. |
|
1192 | /** This function suspends the science tasks. | |
1195 | * |
|
1193 | * | |
1196 | * @return RTEMS directive status codes: |
|
1194 | * @return RTEMS directive status codes: | |
1197 | * - RTEMS_SUCCESSFUL - task restarted successfully |
|
1195 | * - RTEMS_SUCCESSFUL - task restarted successfully | |
1198 | * - RTEMS_INVALID_ID - task id invalid |
|
1196 | * - RTEMS_INVALID_ID - task id invalid | |
1199 | * - RTEMS_ALREADY_SUSPENDED - task already suspended |
|
1197 | * - RTEMS_ALREADY_SUSPENDED - task already suspended | |
1200 | * |
|
1198 | * | |
1201 | */ |
|
1199 | */ | |
1202 |
|
1200 | |||
1203 | rtems_status_code status; |
|
1201 | rtems_status_code status; | |
1204 |
|
1202 | |||
1205 | PRINTF("in suspend_science_tasks\n") |
|
1203 | PRINTF("in suspend_science_tasks\n") | |
1206 |
|
1204 | |||
1207 | status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0 |
|
1205 | status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0 | |
1208 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1206 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1209 | { |
|
1207 | { | |
1210 | PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status) |
|
1208 | PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status) | |
1211 | } |
|
1209 | } | |
1212 | else |
|
1210 | else | |
1213 | { |
|
1211 | { | |
1214 | status = RTEMS_SUCCESSFUL; |
|
1212 | status = RTEMS_SUCCESSFUL; | |
1215 | } |
|
1213 | } | |
1216 |
|
1214 | |||
1217 | if (status == RTEMS_SUCCESSFUL) // suspend PRC0 |
|
1215 | if (status == RTEMS_SUCCESSFUL) // suspend PRC0 | |
1218 | { |
|
1216 | { | |
1219 | status = rtems_task_suspend( Task_id[TASKID_PRC0] ); |
|
1217 | status = rtems_task_suspend( Task_id[TASKID_PRC0] ); | |
1220 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1218 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1221 | { |
|
1219 | { | |
1222 | PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status) |
|
1220 | PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status) | |
1223 | } |
|
1221 | } | |
1224 | else |
|
1222 | else | |
1225 | { |
|
1223 | { | |
1226 | status = RTEMS_SUCCESSFUL; |
|
1224 | status = RTEMS_SUCCESSFUL; | |
1227 | } |
|
1225 | } | |
1228 | } |
|
1226 | } | |
1229 |
|
1227 | |||
1230 | if (status == RTEMS_SUCCESSFUL) // suspend AVF1 |
|
1228 | if (status == RTEMS_SUCCESSFUL) // suspend AVF1 | |
1231 | { |
|
1229 | { | |
1232 | status = rtems_task_suspend( Task_id[TASKID_AVF1] ); |
|
1230 | status = rtems_task_suspend( Task_id[TASKID_AVF1] ); | |
1233 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1231 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1234 | { |
|
1232 | { | |
1235 | PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status) |
|
1233 | PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status) | |
1236 | } |
|
1234 | } | |
1237 | else |
|
1235 | else | |
1238 | { |
|
1236 | { | |
1239 | status = RTEMS_SUCCESSFUL; |
|
1237 | status = RTEMS_SUCCESSFUL; | |
1240 | } |
|
1238 | } | |
1241 | } |
|
1239 | } | |
1242 |
|
1240 | |||
1243 | if (status == RTEMS_SUCCESSFUL) // suspend PRC1 |
|
1241 | if (status == RTEMS_SUCCESSFUL) // suspend PRC1 | |
1244 | { |
|
1242 | { | |
1245 | status = rtems_task_suspend( Task_id[TASKID_PRC1] ); |
|
1243 | status = rtems_task_suspend( Task_id[TASKID_PRC1] ); | |
1246 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1244 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1247 | { |
|
1245 | { | |
1248 | PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status) |
|
1246 | PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status) | |
1249 | } |
|
1247 | } | |
1250 | else |
|
1248 | else | |
1251 | { |
|
1249 | { | |
1252 | status = RTEMS_SUCCESSFUL; |
|
1250 | status = RTEMS_SUCCESSFUL; | |
1253 | } |
|
1251 | } | |
1254 | } |
|
1252 | } | |
1255 |
|
1253 | |||
1256 | if (status == RTEMS_SUCCESSFUL) // suspend AVF2 |
|
1254 | if (status == RTEMS_SUCCESSFUL) // suspend AVF2 | |
1257 | { |
|
1255 | { | |
1258 | status = rtems_task_suspend( Task_id[TASKID_AVF2] ); |
|
1256 | status = rtems_task_suspend( Task_id[TASKID_AVF2] ); | |
1259 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1257 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1260 | { |
|
1258 | { | |
1261 | PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status) |
|
1259 | PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status) | |
1262 | } |
|
1260 | } | |
1263 | else |
|
1261 | else | |
1264 | { |
|
1262 | { | |
1265 | status = RTEMS_SUCCESSFUL; |
|
1263 | status = RTEMS_SUCCESSFUL; | |
1266 | } |
|
1264 | } | |
1267 | } |
|
1265 | } | |
1268 |
|
1266 | |||
1269 | if (status == RTEMS_SUCCESSFUL) // suspend PRC2 |
|
1267 | if (status == RTEMS_SUCCESSFUL) // suspend PRC2 | |
1270 | { |
|
1268 | { | |
1271 | status = rtems_task_suspend( Task_id[TASKID_PRC2] ); |
|
1269 | status = rtems_task_suspend( Task_id[TASKID_PRC2] ); | |
1272 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) |
|
1270 | if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED)) | |
1273 | { |
|
1271 | { | |
1274 | PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status) |
|
1272 | PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status) | |
1275 | } |
|
1273 | } | |
1276 | else |
|
1274 | else | |
1277 | { |
|
1275 | { | |
1278 | status = RTEMS_SUCCESSFUL; |
|
1276 | status = RTEMS_SUCCESSFUL; | |
1279 | } |
|
1277 | } | |
1280 | } |
|
1278 | } | |
1281 |
|
1279 | |||
1282 | return status; |
|
1280 | return status; | |
1283 | } |
|
1281 | } | |
1284 |
|
1282 | |||
1285 | void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime ) |
|
1283 | void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime ) | |
1286 | { |
|
1284 | { | |
1287 |
|
1285 | |||
1288 | WFP_reset_current_ring_nodes(); |
|
1286 | WFP_reset_current_ring_nodes(); | |
1289 |
|
1287 | |||
1290 | reset_waveform_picker_regs(); |
|
1288 | reset_waveform_picker_regs(); | |
1291 |
|
1289 | |||
1292 | set_wfp_burst_enable_register( mode ); |
|
1290 | set_wfp_burst_enable_register( mode ); | |
1293 |
|
1291 | |||
1294 | LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); |
|
1292 | LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); | |
1295 | LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER ); |
|
1293 | LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER ); | |
1296 |
|
1294 | |||
1297 | if (transitionCoarseTime == 0) |
|
1295 | if (transitionCoarseTime == 0) | |
1298 | { |
|
1296 | { | |
1299 | // instant transition means transition on the next valid date |
|
1297 | // instant transition means transition on the next valid date | |
1300 | // this is mandatory to have a good snapshot period and a good correction of the snapshot period |
|
1298 | // this is mandatory to have a good snapshot period and a good correction of the snapshot period | |
1301 | waveform_picker_regs->start_date = time_management_regs->coarse_time + 1; |
|
1299 | waveform_picker_regs->start_date = time_management_regs->coarse_time + 1; | |
1302 | } |
|
1300 | } | |
1303 | else |
|
1301 | else | |
1304 | { |
|
1302 | { | |
1305 | waveform_picker_regs->start_date = transitionCoarseTime; |
|
1303 | waveform_picker_regs->start_date = transitionCoarseTime; | |
1306 | } |
|
1304 | } | |
1307 |
|
1305 | |||
1308 | update_last_valid_transition_date(waveform_picker_regs->start_date); |
|
1306 | update_last_valid_transition_date(waveform_picker_regs->start_date); | |
1309 |
|
1307 | |||
1310 | } |
|
1308 | } | |
1311 |
|
1309 | |||
1312 | void launch_spectral_matrix( void ) |
|
1310 | void launch_spectral_matrix( void ) | |
1313 | { |
|
1311 | { | |
1314 | SM_reset_current_ring_nodes(); |
|
1312 | SM_reset_current_ring_nodes(); | |
1315 |
|
1313 | |||
1316 | reset_spectral_matrix_regs(); |
|
1314 | reset_spectral_matrix_regs(); | |
1317 |
|
1315 | |||
1318 | reset_nb_sm(); |
|
1316 | reset_nb_sm(); | |
1319 |
|
1317 | |||
1320 | set_sm_irq_onNewMatrix( 1 ); |
|
1318 | set_sm_irq_onNewMatrix( 1 ); | |
1321 |
|
1319 | |||
1322 | LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); |
|
1320 | LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); | |
1323 | LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX ); |
|
1321 | LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX ); | |
1324 |
|
1322 | |||
1325 | } |
|
1323 | } | |
1326 |
|
1324 | |||
1327 | void set_sm_irq_onNewMatrix( unsigned char value ) |
|
1325 | void set_sm_irq_onNewMatrix( unsigned char value ) | |
1328 | { |
|
1326 | { | |
1329 | if (value == 1) |
|
1327 | if (value == 1) | |
1330 | { |
|
1328 | { | |
1331 | spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX; |
|
1329 | spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_NEW_MATRIX; | |
1332 | } |
|
1330 | } | |
1333 | else |
|
1331 | else | |
1334 | { |
|
1332 | { | |
1335 | spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110 |
|
1333 | spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_NEW_MATRIX; // 1110 | |
1336 | } |
|
1334 | } | |
1337 | } |
|
1335 | } | |
1338 |
|
1336 | |||
1339 | void set_sm_irq_onError( unsigned char value ) |
|
1337 | void set_sm_irq_onError( unsigned char value ) | |
1340 | { |
|
1338 | { | |
1341 | if (value == 1) |
|
1339 | if (value == 1) | |
1342 | { |
|
1340 | { | |
1343 | spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR; |
|
1341 | spectral_matrix_regs->config = spectral_matrix_regs->config | BIT_IRQ_ON_ERROR; | |
1344 | } |
|
1342 | } | |
1345 | else |
|
1343 | else | |
1346 | { |
|
1344 | { | |
1347 | spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101 |
|
1345 | spectral_matrix_regs->config = spectral_matrix_regs->config & MASK_IRQ_ON_ERROR; // 1101 | |
1348 | } |
|
1346 | } | |
1349 | } |
|
1347 | } | |
1350 |
|
1348 | |||
1351 | //***************************** |
|
1349 | //***************************** | |
1352 | // CONFIGURE CALIBRATION SIGNAL |
|
1350 | // CONFIGURE CALIBRATION SIGNAL | |
1353 | void setCalibrationPrescaler( unsigned int prescaler ) |
|
1351 | void setCalibrationPrescaler( unsigned int prescaler ) | |
1354 | { |
|
1352 | { | |
1355 | // prescaling of the master clock (25 MHz) |
|
1353 | // prescaling of the master clock (25 MHz) | |
1356 | // master clock is divided by 2^prescaler |
|
1354 | // master clock is divided by 2^prescaler | |
1357 | time_management_regs->calPrescaler = prescaler; |
|
1355 | time_management_regs->calPrescaler = prescaler; | |
1358 | } |
|
1356 | } | |
1359 |
|
1357 | |||
1360 | void setCalibrationDivisor( unsigned int divisionFactor ) |
|
1358 | void setCalibrationDivisor( unsigned int divisionFactor ) | |
1361 | { |
|
1359 | { | |
1362 | // division of the prescaled clock by the division factor |
|
1360 | // division of the prescaled clock by the division factor | |
1363 | time_management_regs->calDivisor = divisionFactor; |
|
1361 | time_management_regs->calDivisor = divisionFactor; | |
1364 | } |
|
1362 | } | |
1365 |
|
1363 | |||
1366 | void setCalibrationData( void ) |
|
1364 | void setCalibrationData( void ) | |
1367 | { |
|
1365 | { | |
1368 | /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal |
|
1366 | /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal | |
1369 | * |
|
1367 | * | |
1370 | * @param void |
|
1368 | * @param void | |
1371 | * |
|
1369 | * | |
1372 | * @return void |
|
1370 | * @return void | |
1373 | * |
|
1371 | * | |
1374 | */ |
|
1372 | */ | |
1375 |
|
1373 | |||
1376 | unsigned int k; |
|
1374 | unsigned int k; | |
1377 | unsigned short data; |
|
1375 | unsigned short data; | |
1378 | float val; |
|
1376 | float val; | |
1379 | float Ts; |
|
1377 | float Ts; | |
1380 |
|
1378 | |||
1381 | time_management_regs->calDataPtr = INIT_CHAR; |
|
1379 | time_management_regs->calDataPtr = INIT_CHAR; | |
1382 |
|
1380 | |||
1383 | Ts = 1 / CAL_FS; |
|
1381 | Ts = 1 / CAL_FS; | |
1384 |
|
1382 | |||
1385 | // build the signal for the SCM calibration |
|
1383 | // build the signal for the SCM calibration | |
1386 | for (k = 0; k < CAL_NB_PTS; k++) |
|
1384 | for (k = 0; k < CAL_NB_PTS; k++) | |
1387 | { |
|
1385 | { | |
1388 | val = CAL_A0 * sin( CAL_W0 * k * Ts ) |
|
1386 | val = CAL_A0 * sin( CAL_W0 * k * Ts ) | |
1389 | + CAL_A1 * sin( CAL_W1 * k * Ts ); |
|
1387 | + CAL_A1 * sin( CAL_W1 * k * Ts ); | |
1390 | data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048); |
|
1388 | data = (unsigned short) ((val * CAL_SCALE_FACTOR) + CONST_2048); | |
1391 | time_management_regs->calData = data & CAL_DATA_MASK; |
|
1389 | time_management_regs->calData = data & CAL_DATA_MASK; | |
1392 | } |
|
1390 | } | |
1393 | } |
|
1391 | } | |
1394 |
|
1392 | |||
1395 | void setCalibrationDataInterleaved( void ) |
|
1393 | void setCalibrationDataInterleaved( void ) | |
1396 | { |
|
1394 | { | |
1397 | /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal |
|
1395 | /** This function is used to store the values used to drive the DAC in order to generate the SCM calibration signal | |
1398 | * |
|
1396 | * | |
1399 | * @param void |
|
1397 | * @param void | |
1400 | * |
|
1398 | * | |
1401 | * @return void |
|
1399 | * @return void | |
1402 | * |
|
1400 | * | |
1403 | * In interleaved mode, one can store more values than in normal mode. |
|
1401 | * In interleaved mode, one can store more values than in normal mode. | |
1404 | * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample. |
|
1402 | * The data are stored in bunch of 18 bits, 12 bits from one sample and 6 bits from another sample. | |
1405 | * T store 3 values, one need two write operations. |
|
1403 | * T store 3 values, one need two write operations. | |
1406 | * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ] |
|
1404 | * s1 [ b11 b10 b9 b8 b7 b6 ] s0 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ] | |
1407 | * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ] |
|
1405 | * s1 [ b5 b4 b3 b2 b1 b0 ] s2 [ b11 b10 b9 b8 b7 b6 b5 b3 b2 b1 b0 ] | |
1408 | * |
|
1406 | * | |
1409 | */ |
|
1407 | */ | |
1410 |
|
1408 | |||
1411 | unsigned int k; |
|
1409 | unsigned int k; | |
1412 | float val; |
|
1410 | float val; | |
1413 | float Ts; |
|
1411 | float Ts; | |
1414 | unsigned short data[CAL_NB_PTS_INTER]; |
|
1412 | unsigned short data[CAL_NB_PTS_INTER]; | |
1415 | unsigned char *dataPtr; |
|
1413 | unsigned char *dataPtr; | |
1416 |
|
1414 | |||
1417 | Ts = 1 / CAL_FS_INTER; |
|
1415 | Ts = 1 / CAL_FS_INTER; | |
1418 |
|
1416 | |||
1419 | time_management_regs->calDataPtr = INIT_CHAR; |
|
1417 | time_management_regs->calDataPtr = INIT_CHAR; | |
1420 |
|
1418 | |||
1421 | // build the signal for the SCM calibration |
|
1419 | // build the signal for the SCM calibration | |
1422 | for (k=0; k<CAL_NB_PTS_INTER; k++) |
|
1420 | for (k=0; k<CAL_NB_PTS_INTER; k++) | |
1423 | { |
|
1421 | { | |
1424 | val = sin( 2 * pi * CAL_F0 * k * Ts ) |
|
1422 | val = sin( 2 * pi * CAL_F0 * k * Ts ) | |
1425 | + sin( 2 * pi * CAL_F1 * k * Ts ); |
|
1423 | + sin( 2 * pi * CAL_F1 * k * Ts ); | |
1426 | data[k] = (unsigned short) ((val * CONST_512) + CONST_2048); |
|
1424 | data[k] = (unsigned short) ((val * CONST_512) + CONST_2048); | |
1427 | } |
|
1425 | } | |
1428 |
|
1426 | |||
1429 | // write the signal in interleaved mode |
|
1427 | // write the signal in interleaved mode | |
1430 | for (k=0; k < STEPS_FOR_STORAGE_INTER; k++) |
|
1428 | for (k=0; k < STEPS_FOR_STORAGE_INTER; k++) | |
1431 | { |
|
1429 | { | |
1432 | dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ]; |
|
1430 | dataPtr = (unsigned char*) &data[ (k * BYTES_FOR_2_SAMPLES) + 2 ]; | |
1433 | time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK ) |
|
1431 | time_management_regs->calData = ( data[ k * BYTES_FOR_2_SAMPLES ] & CAL_DATA_MASK ) | |
1434 | + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER); |
|
1432 | + ( (dataPtr[0] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER); | |
1435 | time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK ) |
|
1433 | time_management_regs->calData = ( data[(k * BYTES_FOR_2_SAMPLES) + 1] & CAL_DATA_MASK ) | |
1436 | + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER); |
|
1434 | + ( (dataPtr[1] & CAL_DATA_MASK_INTER) << CAL_DATA_SHIFT_INTER); | |
1437 | } |
|
1435 | } | |
1438 | } |
|
1436 | } | |
1439 |
|
1437 | |||
1440 | void setCalibrationReload( bool state) |
|
1438 | void setCalibrationReload( bool state) | |
1441 | { |
|
1439 | { | |
1442 | if (state == true) |
|
1440 | if (state == true) | |
1443 | { |
|
1441 | { | |
1444 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000] |
|
1442 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_RELOAD; // [0001 0000] | |
1445 | } |
|
1443 | } | |
1446 | else |
|
1444 | else | |
1447 | { |
|
1445 | { | |
1448 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111] |
|
1446 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_RELOAD; // [1110 1111] | |
1449 | } |
|
1447 | } | |
1450 | } |
|
1448 | } | |
1451 |
|
1449 | |||
1452 | void setCalibrationEnable( bool state ) |
|
1450 | void setCalibrationEnable( bool state ) | |
1453 | { |
|
1451 | { | |
1454 | // this bit drives the multiplexer |
|
1452 | // this bit drives the multiplexer | |
1455 | if (state == true) |
|
1453 | if (state == true) | |
1456 | { |
|
1454 | { | |
1457 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000] |
|
1455 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_CAL_ENABLE; // [0100 0000] | |
1458 | } |
|
1456 | } | |
1459 | else |
|
1457 | else | |
1460 | { |
|
1458 | { | |
1461 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111] |
|
1459 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_CAL_ENABLE; // [1011 1111] | |
1462 | } |
|
1460 | } | |
1463 | } |
|
1461 | } | |
1464 |
|
1462 | |||
1465 | void setCalibrationInterleaved( bool state ) |
|
1463 | void setCalibrationInterleaved( bool state ) | |
1466 | { |
|
1464 | { | |
1467 | // this bit drives the multiplexer |
|
1465 | // this bit drives the multiplexer | |
1468 | if (state == true) |
|
1466 | if (state == true) | |
1469 | { |
|
1467 | { | |
1470 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000] |
|
1468 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | BIT_SET_INTERLEAVED; // [0010 0000] | |
1471 | } |
|
1469 | } | |
1472 | else |
|
1470 | else | |
1473 | { |
|
1471 | { | |
1474 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111] |
|
1472 | time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & MASK_SET_INTERLEAVED; // [1101 1111] | |
1475 | } |
|
1473 | } | |
1476 | } |
|
1474 | } | |
1477 |
|
1475 | |||
1478 | void setCalibration( bool state ) |
|
1476 | void setCalibration( bool state ) | |
1479 | { |
|
1477 | { | |
1480 | if (state == true) |
|
1478 | if (state == true) | |
1481 | { |
|
1479 | { | |
1482 | setCalibrationEnable( true ); |
|
1480 | setCalibrationEnable( true ); | |
1483 | setCalibrationReload( false ); |
|
1481 | setCalibrationReload( false ); | |
1484 | set_hk_lfr_calib_enable( true ); |
|
1482 | set_hk_lfr_calib_enable( true ); | |
1485 | } |
|
1483 | } | |
1486 | else |
|
1484 | else | |
1487 | { |
|
1485 | { | |
1488 | setCalibrationEnable( false ); |
|
1486 | setCalibrationEnable( false ); | |
1489 | setCalibrationReload( true ); |
|
1487 | setCalibrationReload( true ); | |
1490 | set_hk_lfr_calib_enable( false ); |
|
1488 | set_hk_lfr_calib_enable( false ); | |
1491 | } |
|
1489 | } | |
1492 | } |
|
1490 | } | |
1493 |
|
1491 | |||
1494 | void configureCalibration( bool interleaved ) |
|
1492 | void configureCalibration( bool interleaved ) | |
1495 | { |
|
1493 | { | |
1496 | setCalibration( false ); |
|
1494 | setCalibration( false ); | |
1497 | if ( interleaved == true ) |
|
1495 | if ( interleaved == true ) | |
1498 | { |
|
1496 | { | |
1499 | setCalibrationInterleaved( true ); |
|
1497 | setCalibrationInterleaved( true ); | |
1500 | setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000 |
|
1498 | setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000 | |
1501 | setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384 |
|
1499 | setCalibrationDivisor( CAL_F_DIVISOR_INTER ); // => 240 384 | |
1502 | setCalibrationDataInterleaved(); |
|
1500 | setCalibrationDataInterleaved(); | |
1503 | } |
|
1501 | } | |
1504 | else |
|
1502 | else | |
1505 | { |
|
1503 | { | |
1506 | setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000 |
|
1504 | setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000 | |
1507 | setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1) |
|
1505 | setCalibrationDivisor( CAL_F_DIVISOR ); // => 160 256 (39 - 1) | |
1508 | setCalibrationData(); |
|
1506 | setCalibrationData(); | |
1509 | } |
|
1507 | } | |
1510 | } |
|
1508 | } | |
1511 |
|
1509 | |||
1512 | //**************** |
|
1510 | //**************** | |
1513 | // CLOSING ACTIONS |
|
1511 | // CLOSING ACTIONS | |
1514 | void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time ) |
|
1512 | void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time ) | |
1515 | { |
|
1513 | { | |
1516 | /** This function is used to update the HK packets statistics after a successful TC execution. |
|
1514 | /** This function is used to update the HK packets statistics after a successful TC execution. | |
1517 | * |
|
1515 | * | |
1518 | * @param TC points to the TC being processed |
|
1516 | * @param TC points to the TC being processed | |
1519 | * @param time is the time used to date the TC execution |
|
1517 | * @param time is the time used to date the TC execution | |
1520 | * |
|
1518 | * | |
1521 | */ |
|
1519 | */ | |
1522 |
|
1520 | |||
1523 | unsigned int val; |
|
1521 | unsigned int val; | |
1524 |
|
1522 | |||
1525 | housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0]; |
|
1523 | housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0]; | |
1526 | housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1]; |
|
1524 | housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1]; | |
1527 | housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR; |
|
1525 | housekeeping_packet.hk_lfr_last_exe_tc_type[0] = INIT_CHAR; | |
1528 | housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType; |
|
1526 | housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType; | |
1529 | housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR; |
|
1527 | housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = INIT_CHAR; | |
1530 | housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType; |
|
1528 | housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType; | |
1531 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0]; |
|
1529 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_0] = time[BYTE_0]; | |
1532 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1]; |
|
1530 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_1] = time[BYTE_1]; | |
1533 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2]; |
|
1531 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_2] = time[BYTE_2]; | |
1534 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3]; |
|
1532 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_3] = time[BYTE_3]; | |
1535 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4]; |
|
1533 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_4] = time[BYTE_4]; | |
1536 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5]; |
|
1534 | housekeeping_packet.hk_lfr_last_exe_tc_time[BYTE_5] = time[BYTE_5]; | |
1537 |
|
1535 | |||
1538 | val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1]; |
|
1536 | val = (housekeeping_packet.hk_lfr_exe_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_exe_tc_cnt[1]; | |
1539 | val++; |
|
1537 | val++; | |
1540 | housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); |
|
1538 | housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); | |
1541 | housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val); |
|
1539 | housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val); | |
1542 | } |
|
1540 | } | |
1543 |
|
1541 | |||
1544 | void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time ) |
|
1542 | void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time ) | |
1545 | { |
|
1543 | { | |
1546 | /** This function is used to update the HK packets statistics after a TC rejection. |
|
1544 | /** This function is used to update the HK packets statistics after a TC rejection. | |
1547 | * |
|
1545 | * | |
1548 | * @param TC points to the TC being processed |
|
1546 | * @param TC points to the TC being processed | |
1549 | * @param time is the time used to date the TC rejection |
|
1547 | * @param time is the time used to date the TC rejection | |
1550 | * |
|
1548 | * | |
1551 | */ |
|
1549 | */ | |
1552 |
|
1550 | |||
1553 | unsigned int val; |
|
1551 | unsigned int val; | |
1554 |
|
1552 | |||
1555 | housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0]; |
|
1553 | housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0]; | |
1556 | housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1]; |
|
1554 | housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1]; | |
1557 | housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR; |
|
1555 | housekeeping_packet.hk_lfr_last_rej_tc_type[0] = INIT_CHAR; | |
1558 | housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType; |
|
1556 | housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType; | |
1559 | housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR; |
|
1557 | housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = INIT_CHAR; | |
1560 | housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType; |
|
1558 | housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType; | |
1561 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0]; |
|
1559 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_0] = time[BYTE_0]; | |
1562 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1]; |
|
1560 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_1] = time[BYTE_1]; | |
1563 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2]; |
|
1561 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_2] = time[BYTE_2]; | |
1564 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3]; |
|
1562 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_3] = time[BYTE_3]; | |
1565 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4]; |
|
1563 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_4] = time[BYTE_4]; | |
1566 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5]; |
|
1564 | housekeeping_packet.hk_lfr_last_rej_tc_time[BYTE_5] = time[BYTE_5]; | |
1567 |
|
1565 | |||
1568 | val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1]; |
|
1566 | val = (housekeeping_packet.hk_lfr_rej_tc_cnt[0] * CONST_256) + housekeeping_packet.hk_lfr_rej_tc_cnt[1]; | |
1569 | val++; |
|
1567 | val++; | |
1570 | housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); |
|
1568 | housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> SHIFT_1_BYTE); | |
1571 | housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val); |
|
1569 | housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val); | |
1572 | } |
|
1570 | } | |
1573 |
|
1571 | |||
1574 | void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id ) |
|
1572 | void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id ) | |
1575 | { |
|
1573 | { | |
1576 | /** This function is the last step of the TC execution workflow. |
|
1574 | /** This function is the last step of the TC execution workflow. | |
1577 | * |
|
1575 | * | |
1578 | * @param TC points to the TC being processed |
|
1576 | * @param TC points to the TC being processed | |
1579 | * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT) |
|
1577 | * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT) | |
1580 | * @param queue_id is the id of the RTEMS message queue used to send TM packets |
|
1578 | * @param queue_id is the id of the RTEMS message queue used to send TM packets | |
1581 | * @param time is the time used to date the TC execution |
|
1579 | * @param time is the time used to date the TC execution | |
1582 | * |
|
1580 | * | |
1583 | */ |
|
1581 | */ | |
1584 |
|
1582 | |||
1585 | unsigned char requestedMode; |
|
1583 | unsigned char requestedMode; | |
1586 |
|
1584 | |||
1587 | if (result == LFR_SUCCESSFUL) |
|
1585 | if (result == LFR_SUCCESSFUL) | |
1588 | { |
|
1586 | { | |
1589 | if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) ) |
|
1587 | if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) ) | |
1590 | & |
|
1588 | & | |
1591 | !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO)) |
|
1589 | !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO)) | |
1592 | ) |
|
1590 | ) | |
1593 | { |
|
1591 | { | |
1594 | send_tm_lfr_tc_exe_success( TC, queue_id ); |
|
1592 | send_tm_lfr_tc_exe_success( TC, queue_id ); | |
1595 | } |
|
1593 | } | |
1596 | if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) ) |
|
1594 | if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) ) | |
1597 | { |
|
1595 | { | |
1598 | //********************************** |
|
1596 | //********************************** | |
1599 | // UPDATE THE LFRMODE LOCAL VARIABLE |
|
1597 | // UPDATE THE LFRMODE LOCAL VARIABLE | |
1600 | requestedMode = TC->dataAndCRC[1]; |
|
1598 | requestedMode = TC->dataAndCRC[1]; | |
1601 | updateLFRCurrentMode( requestedMode ); |
|
1599 | updateLFRCurrentMode( requestedMode ); | |
1602 | } |
|
1600 | } | |
1603 | } |
|
1601 | } | |
1604 | else if (result == LFR_EXE_ERROR) |
|
1602 | else if (result == LFR_EXE_ERROR) | |
1605 | { |
|
1603 | { | |
1606 | send_tm_lfr_tc_exe_error( TC, queue_id ); |
|
1604 | send_tm_lfr_tc_exe_error( TC, queue_id ); | |
1607 | } |
|
1605 | } | |
1608 | } |
|
1606 | } | |
1609 |
|
1607 | |||
1610 | //*************************** |
|
1608 | //*************************** | |
1611 | // Interrupt Service Routines |
|
1609 | // Interrupt Service Routines | |
1612 | rtems_isr commutation_isr1( rtems_vector_number vector ) |
|
1610 | rtems_isr commutation_isr1( rtems_vector_number vector ) | |
1613 | { |
|
1611 | { | |
1614 | if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { |
|
1612 | if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { | |
1615 | PRINTF("In commutation_isr1 *** Error sending event to DUMB\n") |
|
1613 | PRINTF("In commutation_isr1 *** Error sending event to DUMB\n") | |
1616 | } |
|
1614 | } | |
1617 | } |
|
1615 | } | |
1618 |
|
1616 | |||
1619 | rtems_isr commutation_isr2( rtems_vector_number vector ) |
|
1617 | rtems_isr commutation_isr2( rtems_vector_number vector ) | |
1620 | { |
|
1618 | { | |
1621 | if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { |
|
1619 | if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) { | |
1622 | PRINTF("In commutation_isr2 *** Error sending event to DUMB\n") |
|
1620 | PRINTF("In commutation_isr2 *** Error sending event to DUMB\n") | |
1623 | } |
|
1621 | } | |
1624 | } |
|
1622 | } | |
1625 |
|
1623 | |||
1626 | //**************** |
|
1624 | //**************** | |
1627 | // OTHER FUNCTIONS |
|
1625 | // OTHER FUNCTIONS | |
1628 | void updateLFRCurrentMode( unsigned char requestedMode ) |
|
1626 | void updateLFRCurrentMode( unsigned char requestedMode ) | |
1629 | { |
|
1627 | { | |
1630 | /** This function updates the value of the global variable lfrCurrentMode. |
|
1628 | /** This function updates the value of the global variable lfrCurrentMode. | |
1631 | * |
|
1629 | * | |
1632 | * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running. |
|
1630 | * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running. | |
1633 | * |
|
1631 | * | |
1634 | */ |
|
1632 | */ | |
1635 |
|
1633 | |||
1636 | // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure |
|
1634 | // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure | |
1637 | housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK) |
|
1635 | housekeeping_packet.lfr_status_word[0] = (housekeeping_packet.lfr_status_word[0] & STATUS_WORD_LFR_MODE_MASK) | |
1638 | + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT ); |
|
1636 | + (unsigned char) ( requestedMode << STATUS_WORD_LFR_MODE_SHIFT ); | |
1639 | lfrCurrentMode = requestedMode; |
|
1637 | lfrCurrentMode = requestedMode; | |
1640 | } |
|
1638 | } | |
1641 |
|
1639 | |||
1642 | void set_lfr_soft_reset( unsigned char value ) |
|
1640 | void set_lfr_soft_reset( unsigned char value ) | |
1643 | { |
|
1641 | { | |
1644 | if (value == 1) |
|
1642 | if (value == 1) | |
1645 | { |
|
1643 | { | |
1646 | time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100] |
|
1644 | time_management_regs->ctrl = time_management_regs->ctrl | BIT_SOFT_RESET; // [0100] | |
1647 | } |
|
1645 | } | |
1648 | else |
|
1646 | else | |
1649 | { |
|
1647 | { | |
1650 | time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011] |
|
1648 | time_management_regs->ctrl = time_management_regs->ctrl & MASK_SOFT_RESET; // [1011] | |
1651 | } |
|
1649 | } | |
1652 | } |
|
1650 | } | |
1653 |
|
1651 | |||
1654 | void reset_lfr( void ) |
|
1652 | void reset_lfr( void ) | |
1655 | { |
|
1653 | { | |
1656 | set_lfr_soft_reset( 1 ); |
|
1654 | set_lfr_soft_reset( 1 ); | |
1657 |
|
1655 | |||
1658 | set_lfr_soft_reset( 0 ); |
|
1656 | set_lfr_soft_reset( 0 ); | |
1659 |
|
1657 | |||
1660 | set_hk_lfr_sc_potential_flag( true ); |
|
1658 | set_hk_lfr_sc_potential_flag( true ); | |
1661 | } |
|
1659 | } |
General Comments 0
You need to be logged in to leave comments.
Login now