##// END OF EJS Templates
sync
paul -
r113:693baae2bc2c VHDLib206
parent child
Show More
@@ -1,253 +1,253
1 1 #############################################################################
2 2 # Makefile for building: bin/fsw
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Fri Mar 28 13:24:20 2014
3 # Generated by qmake (2.01a) (Qt 4.8.5) on: Tue Apr 1 12:03:12 2014
4 4 # Project: fsw-qt.pro
5 5 # Template: app
6 6 # Command: /usr/bin/qmake-qt4 -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
7 7 #############################################################################
8 8
9 9 ####### Compiler, tools and options
10 10
11 11 CC = sparc-rtems-gcc
12 12 CXX = sparc-rtems-g++
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=5 -DVHDL_DEV -DPRINT_MESSAGES_ON_CONSOLE
13 DEFINES = -DSW_VERSION_N1=1 -DSW_VERSION_N2=0 -DSW_VERSION_N3=0 -DSW_VERSION_N4=5 -DPRINT_MESSAGES_ON_CONSOLE -DPRINT_TASK_STATISTICS
14 14 CFLAGS = -pipe -O3 -Wall $(DEFINES)
15 15 CXXFLAGS = -pipe -O3 -Wall $(DEFINES)
16 16 INCPATH = -I/usr/lib64/qt4/mkspecs/linux-g++ -I. -I../src -I../header -I../../LFR_basic-parameters
17 17 LINK = sparc-rtems-g++
18 18 LFLAGS =
19 19 LIBS = $(SUBLIBS)
20 20 AR = sparc-rtems-ar rcs
21 21 RANLIB =
22 22 QMAKE = /usr/bin/qmake-qt4
23 23 TAR = tar -cf
24 24 COMPRESS = gzip -9f
25 25 COPY = cp -f
26 26 SED = sed
27 27 COPY_FILE = $(COPY)
28 28 COPY_DIR = $(COPY) -r
29 29 STRIP = sparc-rtems-strip
30 30 INSTALL_FILE = install -m 644 -p
31 31 INSTALL_DIR = $(COPY_DIR)
32 32 INSTALL_PROGRAM = install -m 755 -p
33 33 DEL_FILE = rm -f
34 34 SYMLINK = ln -f -s
35 35 DEL_DIR = rmdir
36 36 MOVE = mv -f
37 37 CHK_DIR_EXISTS= test -d
38 38 MKDIR = mkdir -p
39 39
40 40 ####### Output directory
41 41
42 42 OBJECTS_DIR = obj/
43 43
44 44 ####### Files
45 45
46 46 SOURCES = ../src/wf_handler.c \
47 47 ../src/tc_handler.c \
48 48 ../src/fsw_processing.c \
49 49 ../src/fsw_misc.c \
50 50 ../src/fsw_init.c \
51 51 ../src/fsw_globals.c \
52 52 ../src/fsw_spacewire.c \
53 53 ../src/tc_load_dump_parameters.c \
54 54 ../src/tm_lfr_tc_exe.c \
55 55 ../src/tc_acceptance.c \
56 56 ../../LFR_basic-parameters/basic_parameters.c
57 57 OBJECTS = obj/wf_handler.o \
58 58 obj/tc_handler.o \
59 59 obj/fsw_processing.o \
60 60 obj/fsw_misc.o \
61 61 obj/fsw_init.o \
62 62 obj/fsw_globals.o \
63 63 obj/fsw_spacewire.o \
64 64 obj/tc_load_dump_parameters.o \
65 65 obj/tm_lfr_tc_exe.o \
66 66 obj/tc_acceptance.o \
67 67 obj/basic_parameters.o
68 68 DIST = /usr/lib64/qt4/mkspecs/common/unix.conf \
69 69 /usr/lib64/qt4/mkspecs/common/linux.conf \
70 70 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
71 71 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
72 72 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
73 73 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
74 74 /usr/lib64/qt4/mkspecs/qconfig.pri \
75 75 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
76 76 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
77 77 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
78 78 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
79 79 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
80 80 sparc.pri \
81 81 /usr/lib64/qt4/mkspecs/features/release.prf \
82 82 /usr/lib64/qt4/mkspecs/features/default_post.prf \
83 83 /usr/lib64/qt4/mkspecs/features/shared.prf \
84 84 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
85 85 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
86 86 /usr/lib64/qt4/mkspecs/features/resources.prf \
87 87 /usr/lib64/qt4/mkspecs/features/uic.prf \
88 88 /usr/lib64/qt4/mkspecs/features/yacc.prf \
89 89 /usr/lib64/qt4/mkspecs/features/lex.prf \
90 90 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf \
91 91 fsw-qt.pro
92 92 QMAKE_TARGET = fsw
93 93 DESTDIR = bin/
94 94 TARGET = bin/fsw
95 95
96 96 first: all
97 97 ####### Implicit rules
98 98
99 99 .SUFFIXES: .o .c .cpp .cc .cxx .C
100 100
101 101 .cpp.o:
102 102 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
103 103
104 104 .cc.o:
105 105 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
106 106
107 107 .cxx.o:
108 108 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
109 109
110 110 .C.o:
111 111 $(CXX) -c $(CXXFLAGS) $(INCPATH) -o "$@" "$<"
112 112
113 113 .c.o:
114 114 $(CC) -c $(CFLAGS) $(INCPATH) -o "$@" "$<"
115 115
116 116 ####### Build rules
117 117
118 118 all: Makefile $(TARGET)
119 119
120 120 $(TARGET): $(OBJECTS)
121 121 @$(CHK_DIR_EXISTS) bin/ || $(MKDIR) bin/
122 122 $(LINK) $(LFLAGS) -o $(TARGET) $(OBJECTS) $(OBJCOMP) $(LIBS)
123 123
124 124 Makefile: fsw-qt.pro /usr/lib64/qt4/mkspecs/linux-g++/qmake.conf /usr/lib64/qt4/mkspecs/common/unix.conf \
125 125 /usr/lib64/qt4/mkspecs/common/linux.conf \
126 126 /usr/lib64/qt4/mkspecs/common/gcc-base.conf \
127 127 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf \
128 128 /usr/lib64/qt4/mkspecs/common/g++-base.conf \
129 129 /usr/lib64/qt4/mkspecs/common/g++-unix.conf \
130 130 /usr/lib64/qt4/mkspecs/qconfig.pri \
131 131 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri \
132 132 /usr/lib64/qt4/mkspecs/features/qt_functions.prf \
133 133 /usr/lib64/qt4/mkspecs/features/qt_config.prf \
134 134 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf \
135 135 /usr/lib64/qt4/mkspecs/features/default_pre.prf \
136 136 sparc.pri \
137 137 /usr/lib64/qt4/mkspecs/features/release.prf \
138 138 /usr/lib64/qt4/mkspecs/features/default_post.prf \
139 139 /usr/lib64/qt4/mkspecs/features/shared.prf \
140 140 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf \
141 141 /usr/lib64/qt4/mkspecs/features/warn_on.prf \
142 142 /usr/lib64/qt4/mkspecs/features/resources.prf \
143 143 /usr/lib64/qt4/mkspecs/features/uic.prf \
144 144 /usr/lib64/qt4/mkspecs/features/yacc.prf \
145 145 /usr/lib64/qt4/mkspecs/features/lex.prf \
146 146 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf
147 147 $(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
148 148 /usr/lib64/qt4/mkspecs/common/unix.conf:
149 149 /usr/lib64/qt4/mkspecs/common/linux.conf:
150 150 /usr/lib64/qt4/mkspecs/common/gcc-base.conf:
151 151 /usr/lib64/qt4/mkspecs/common/gcc-base-unix.conf:
152 152 /usr/lib64/qt4/mkspecs/common/g++-base.conf:
153 153 /usr/lib64/qt4/mkspecs/common/g++-unix.conf:
154 154 /usr/lib64/qt4/mkspecs/qconfig.pri:
155 155 /usr/lib64/qt4/mkspecs/modules/qt_webkit.pri:
156 156 /usr/lib64/qt4/mkspecs/features/qt_functions.prf:
157 157 /usr/lib64/qt4/mkspecs/features/qt_config.prf:
158 158 /usr/lib64/qt4/mkspecs/features/exclusive_builds.prf:
159 159 /usr/lib64/qt4/mkspecs/features/default_pre.prf:
160 160 sparc.pri:
161 161 /usr/lib64/qt4/mkspecs/features/release.prf:
162 162 /usr/lib64/qt4/mkspecs/features/default_post.prf:
163 163 /usr/lib64/qt4/mkspecs/features/shared.prf:
164 164 /usr/lib64/qt4/mkspecs/features/unix/gdb_dwarf_index.prf:
165 165 /usr/lib64/qt4/mkspecs/features/warn_on.prf:
166 166 /usr/lib64/qt4/mkspecs/features/resources.prf:
167 167 /usr/lib64/qt4/mkspecs/features/uic.prf:
168 168 /usr/lib64/qt4/mkspecs/features/yacc.prf:
169 169 /usr/lib64/qt4/mkspecs/features/lex.prf:
170 170 /usr/lib64/qt4/mkspecs/features/include_source_dir.prf:
171 171 qmake: FORCE
172 172 @$(QMAKE) -spec /usr/lib64/qt4/mkspecs/linux-g++ -o Makefile fsw-qt.pro
173 173
174 174 dist:
175 175 @$(CHK_DIR_EXISTS) obj/fsw1.0.0 || $(MKDIR) obj/fsw1.0.0
176 176 $(COPY_FILE) --parents $(SOURCES) $(DIST) obj/fsw1.0.0/ && (cd `dirname obj/fsw1.0.0` && $(TAR) fsw1.0.0.tar fsw1.0.0 && $(COMPRESS) fsw1.0.0.tar) && $(MOVE) `dirname obj/fsw1.0.0`/fsw1.0.0.tar.gz . && $(DEL_FILE) -r obj/fsw1.0.0
177 177
178 178
179 179 clean:compiler_clean
180 180 -$(DEL_FILE) $(OBJECTS)
181 181 -$(DEL_FILE) *~ core *.core
182 182
183 183
184 184 ####### Sub-libraries
185 185
186 186 distclean: clean
187 187 -$(DEL_FILE) $(TARGET)
188 188 -$(DEL_FILE) Makefile
189 189
190 190
191 191 grmon:
192 192 cd bin && C:/opt/grmon-eval-2.0.29b/win32/bin/grmon.exe -uart COM4 -u
193 193
194 194 check: first
195 195
196 196 compiler_rcc_make_all:
197 197 compiler_rcc_clean:
198 198 compiler_uic_make_all:
199 199 compiler_uic_clean:
200 200 compiler_image_collection_make_all: qmake_image_collection.cpp
201 201 compiler_image_collection_clean:
202 202 -$(DEL_FILE) qmake_image_collection.cpp
203 203 compiler_yacc_decl_make_all:
204 204 compiler_yacc_decl_clean:
205 205 compiler_yacc_impl_make_all:
206 206 compiler_yacc_impl_clean:
207 207 compiler_lex_make_all:
208 208 compiler_lex_clean:
209 209 compiler_clean:
210 210
211 211 ####### Compile
212 212
213 213 obj/wf_handler.o: ../src/wf_handler.c
214 214 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/wf_handler.o ../src/wf_handler.c
215 215
216 216 obj/tc_handler.o: ../src/tc_handler.c
217 217 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_handler.o ../src/tc_handler.c
218 218
219 219 obj/fsw_processing.o: ../src/fsw_processing.c ../src/fsw_processing_globals.c
220 220 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_processing.o ../src/fsw_processing.c
221 221
222 222 obj/fsw_misc.o: ../src/fsw_misc.c
223 223 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_misc.o ../src/fsw_misc.c
224 224
225 225 obj/fsw_init.o: ../src/fsw_init.c ../src/fsw_config.c
226 226 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_init.o ../src/fsw_init.c
227 227
228 228 obj/fsw_globals.o: ../src/fsw_globals.c
229 229 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_globals.o ../src/fsw_globals.c
230 230
231 231 obj/fsw_spacewire.o: ../src/fsw_spacewire.c
232 232 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/fsw_spacewire.o ../src/fsw_spacewire.c
233 233
234 234 obj/tc_load_dump_parameters.o: ../src/tc_load_dump_parameters.c
235 235 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_load_dump_parameters.o ../src/tc_load_dump_parameters.c
236 236
237 237 obj/tm_lfr_tc_exe.o: ../src/tm_lfr_tc_exe.c
238 238 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tm_lfr_tc_exe.o ../src/tm_lfr_tc_exe.c
239 239
240 240 obj/tc_acceptance.o: ../src/tc_acceptance.c
241 241 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/tc_acceptance.o ../src/tc_acceptance.c
242 242
243 243 obj/basic_parameters.o: ../../LFR_basic-parameters/basic_parameters.c ../../LFR_basic-parameters/basic_parameters.h
244 244 $(CC) -c $(CFLAGS) $(INCPATH) -o obj/basic_parameters.o ../../LFR_basic-parameters/basic_parameters.c
245 245
246 246 ####### Install
247 247
248 248 install: FORCE
249 249
250 250 uninstall: FORCE
251 251
252 252 FORCE:
253 253
@@ -1,85 +1,85
1 1 TEMPLATE = app
2 2 # CONFIG += console v8 sim
3 3 # CONFIG options = verbose *** boot_messages *** debug_messages *** cpu_usage_report *** stack_report *** vhdl_dev *** debug_tch
4 CONFIG += console verbose vhdl_dev
4 CONFIG += console verbose cpu_usage_report
5 5 CONFIG -= qt
6 6
7 7 include(./sparc.pri)
8 8
9 9 # flight software version
10 10 SWVERSION=-1-0
11 11 DEFINES += SW_VERSION_N1=1 # major
12 12 DEFINES += SW_VERSION_N2=0 # minor
13 13 DEFINES += SW_VERSION_N3=0 # patch
14 14 DEFINES += SW_VERSION_N4=5 # internal
15 15
16 16 contains( CONFIG, debug_tch ) {
17 17 DEFINES += DEBUG_TCH
18 18 }
19 19
20 20 contains( CONFIG, vhdl_dev ) {
21 21 DEFINES += VHDL_DEV
22 22 }
23 23
24 24 contains( CONFIG, verbose ) {
25 25 DEFINES += PRINT_MESSAGES_ON_CONSOLE
26 26 }
27 27
28 28 contains( CONFIG, debug_messages ) {
29 29 DEFINES += DEBUG_MESSAGES
30 30 }
31 31
32 32 contains( CONFIG, cpu_usage_report ) {
33 33 DEFINES += PRINT_TASK_STATISTICS
34 34 }
35 35
36 36 contains( CONFIG, stack_report ) {
37 37 DEFINES += PRINT_STACK_REPORT
38 38 }
39 39
40 40 contains( CONFIG, boot_messages ) {
41 41 DEFINES += BOOT_MESSAGES
42 42 }
43 43
44 44 #doxygen.target = doxygen
45 45 #doxygen.commands = doxygen ../doc/Doxyfile
46 46 #QMAKE_EXTRA_TARGETS += doxygen
47 47
48 48 TARGET = fsw
49 49
50 50 INCLUDEPATH += \
51 51 ../src \
52 52 ../header \
53 53 ../../LFR_basic-parameters
54 54
55 55 SOURCES += \
56 56 ../src/wf_handler.c \
57 57 ../src/tc_handler.c \
58 58 ../src/fsw_processing.c \
59 59 ../src/fsw_misc.c \
60 60 ../src/fsw_init.c \
61 61 ../src/fsw_globals.c \
62 62 ../src/fsw_spacewire.c \
63 63 ../src/tc_load_dump_parameters.c \
64 64 ../src/tm_lfr_tc_exe.c \
65 65 ../src/tc_acceptance.c \
66 66 ../../LFR_basic-parameters/basic_parameters.c
67 67
68 68
69 69 HEADERS += \
70 70 ../header/wf_handler.h \
71 71 ../header/tc_handler.h \
72 72 ../header/grlib_regs.h \
73 73 ../header/fsw_processing.h \
74 74 ../header/fsw_params.h \
75 75 ../header/fsw_misc.h \
76 76 ../header/fsw_init.h \
77 77 ../header/ccsds_types.h \
78 78 ../header/fsw_params_processing.h \
79 79 ../header/fsw_spacewire.h \
80 80 ../header/tc_load_dump_parameters.h \
81 81 ../header/tm_lfr_tc_exe.h \
82 82 ../header/tc_acceptance.h \
83 83 ../header/fsw_params_nb_bytes.h \
84 84 ../../LFR_basic-parameters/basic_parameters.h
85 85
@@ -1,339 +1,339
1 1 <?xml version="1.0" encoding="UTF-8"?>
2 2 <!DOCTYPE QtCreatorProject>
3 <!-- Written by QtCreator 3.0.1, 2014-03-31T06:56:28. -->
3 <!-- Written by QtCreator 3.0.1, 2014-04-01T07:09:49. -->
4 4 <qtcreator>
5 5 <data>
6 6 <variable>ProjectExplorer.Project.ActiveTarget</variable>
7 7 <value type="int">1</value>
8 8 </data>
9 9 <data>
10 10 <variable>ProjectExplorer.Project.EditorSettings</variable>
11 11 <valuemap type="QVariantMap">
12 12 <value type="bool" key="EditorConfiguration.AutoIndent">true</value>
13 13 <value type="bool" key="EditorConfiguration.AutoSpacesForTabs">false</value>
14 14 <value type="bool" key="EditorConfiguration.CamelCaseNavigation">true</value>
15 15 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.0">
16 16 <value type="QString" key="language">Cpp</value>
17 17 <valuemap type="QVariantMap" key="value">
18 18 <value type="QByteArray" key="CurrentPreferences">CppGlobal</value>
19 19 </valuemap>
20 20 </valuemap>
21 21 <valuemap type="QVariantMap" key="EditorConfiguration.CodeStyle.1">
22 22 <value type="QString" key="language">QmlJS</value>
23 23 <valuemap type="QVariantMap" key="value">
24 24 <value type="QByteArray" key="CurrentPreferences">QmlJSGlobal</value>
25 25 </valuemap>
26 26 </valuemap>
27 27 <value type="int" key="EditorConfiguration.CodeStyle.Count">2</value>
28 28 <value type="QByteArray" key="EditorConfiguration.Codec">UTF-8</value>
29 29 <value type="bool" key="EditorConfiguration.ConstrainTooltips">false</value>
30 30 <value type="int" key="EditorConfiguration.IndentSize">4</value>
31 31 <value type="bool" key="EditorConfiguration.KeyboardTooltips">false</value>
32 32 <value type="bool" key="EditorConfiguration.MouseNavigation">true</value>
33 33 <value type="int" key="EditorConfiguration.PaddingMode">1</value>
34 34 <value type="bool" key="EditorConfiguration.ScrollWheelZooming">true</value>
35 35 <value type="int" key="EditorConfiguration.SmartBackspaceBehavior">0</value>
36 36 <value type="bool" key="EditorConfiguration.SpacesForTabs">true</value>
37 37 <value type="int" key="EditorConfiguration.TabKeyBehavior">0</value>
38 38 <value type="int" key="EditorConfiguration.TabSize">8</value>
39 39 <value type="bool" key="EditorConfiguration.UseGlobal">true</value>
40 40 <value type="int" key="EditorConfiguration.Utf8BomBehavior">1</value>
41 41 <value type="bool" key="EditorConfiguration.addFinalNewLine">true</value>
42 42 <value type="bool" key="EditorConfiguration.cleanIndentation">true</value>
43 43 <value type="bool" key="EditorConfiguration.cleanWhitespace">true</value>
44 44 <value type="bool" key="EditorConfiguration.inEntireDocument">false</value>
45 45 </valuemap>
46 46 </data>
47 47 <data>
48 48 <variable>ProjectExplorer.Project.PluginSettings</variable>
49 49 <valuemap type="QVariantMap"/>
50 50 </data>
51 51 <data>
52 52 <variable>ProjectExplorer.Project.Target.0</variable>
53 53 <valuemap type="QVariantMap">
54 54 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop</value>
55 55 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop</value>
56 56 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{e04e3924-0bd8-4708-be18-f1474e45608e}</value>
57 57 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
58 58 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
59 59 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
60 60 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
61 61 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
62 62 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
63 63 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
64 64 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
65 65 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
66 66 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
67 67 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
68 68 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
69 69 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
70 70 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
71 71 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
72 72 </valuemap>
73 73 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
74 74 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
75 75 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
76 76 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
77 77 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
78 78 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
79 79 <value type="QString">-w</value>
80 80 <value type="QString">-r</value>
81 81 </valuelist>
82 82 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
83 83 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
84 84 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
85 85 </valuemap>
86 86 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
87 87 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
88 88 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
89 89 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
90 90 </valuemap>
91 91 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
92 92 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
93 93 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
94 94 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
95 95 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
96 96 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
97 97 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
98 98 <value type="QString">-w</value>
99 99 <value type="QString">-r</value>
100 100 </valuelist>
101 101 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
102 102 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
103 103 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
104 104 </valuemap>
105 105 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
106 106 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
107 107 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
108 108 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
109 109 </valuemap>
110 110 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
111 111 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
112 112 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
113 113 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
114 114 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
115 115 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
116 116 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
117 117 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
118 118 </valuemap>
119 119 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
120 120 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
121 121 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
122 122 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
123 123 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
124 124 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
125 125 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
126 126 </valuemap>
127 127 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
128 128 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
129 129 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
130 130 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
131 131 </valuemap>
132 132 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
133 133 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
134 134 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
135 135 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
136 136 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
137 137 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
138 138 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
139 139 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
140 140 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
141 141 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
142 142 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
143 143 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
144 144 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
145 145 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
146 146 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
147 147 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
148 148 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
149 149 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
150 150 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
151 151 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
152 152 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
153 153 <value type="int">0</value>
154 154 <value type="int">1</value>
155 155 <value type="int">2</value>
156 156 <value type="int">3</value>
157 157 <value type="int">4</value>
158 158 <value type="int">5</value>
159 159 <value type="int">6</value>
160 160 <value type="int">7</value>
161 161 <value type="int">8</value>
162 162 <value type="int">9</value>
163 163 <value type="int">10</value>
164 164 <value type="int">11</value>
165 165 <value type="int">12</value>
166 166 <value type="int">13</value>
167 167 <value type="int">14</value>
168 168 </valuelist>
169 169 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
170 170 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
171 171 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
172 172 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
173 173 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
174 174 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
175 175 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
176 176 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
177 177 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
178 178 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
179 179 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
180 180 <value type="bool" key="RunConfiguration.UseCppDebugger">false</value>
181 181 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">true</value>
182 182 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
183 183 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
184 184 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
185 185 </valuemap>
186 186 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
187 187 </valuemap>
188 188 </data>
189 189 <data>
190 190 <variable>ProjectExplorer.Project.Target.1</variable>
191 191 <valuemap type="QVariantMap">
192 192 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
193 193 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName">Desktop-Qt 4.8.2 in PATH (System)</value>
194 194 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">{5289e843-9ef2-45ce-88c6-ad27d8e08def}</value>
195 195 <value type="int" key="ProjectExplorer.Target.ActiveBuildConfiguration">0</value>
196 196 <value type="int" key="ProjectExplorer.Target.ActiveDeployConfiguration">0</value>
197 197 <value type="int" key="ProjectExplorer.Target.ActiveRunConfiguration">0</value>
198 198 <valuemap type="QVariantMap" key="ProjectExplorer.Target.BuildConfiguration.0">
199 199 <value type="QString" key="ProjectExplorer.BuildConfiguration.BuildDirectory"></value>
200 200 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
201 201 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
202 202 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
203 203 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">qmake</value>
204 204 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
205 205 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">QtProjectManager.QMakeBuildStep</value>
206 206 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibrary">false</value>
207 207 <value type="bool" key="QtProjectManager.QMakeBuildStep.LinkQmlDebuggingLibraryAuto">false</value>
208 208 <value type="QString" key="QtProjectManager.QMakeBuildStep.QMakeArguments"></value>
209 209 <value type="bool" key="QtProjectManager.QMakeBuildStep.QMakeForced">false</value>
210 210 </valuemap>
211 211 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.1">
212 212 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
213 213 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
214 214 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
215 215 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
216 216 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
217 217 <value type="QString">-w</value>
218 218 <value type="QString">-r</value>
219 219 </valuelist>
220 220 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">false</value>
221 221 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments"></value>
222 222 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
223 223 </valuemap>
224 224 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">2</value>
225 225 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Build</value>
226 226 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
227 227 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Build</value>
228 228 </valuemap>
229 229 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.1">
230 230 <valuemap type="QVariantMap" key="ProjectExplorer.BuildStepList.Step.0">
231 231 <value type="bool" key="ProjectExplorer.BuildStep.Enabled">true</value>
232 232 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Make</value>
233 233 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
234 234 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.MakeStep</value>
235 235 <valuelist type="QVariantList" key="Qt4ProjectManager.MakeStep.AutomaticallyAddedMakeArguments">
236 236 <value type="QString">-w</value>
237 237 <value type="QString">-r</value>
238 238 </valuelist>
239 239 <value type="bool" key="Qt4ProjectManager.MakeStep.Clean">true</value>
240 240 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeArguments">clean</value>
241 241 <value type="QString" key="Qt4ProjectManager.MakeStep.MakeCommand"></value>
242 242 </valuemap>
243 243 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">1</value>
244 244 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Clean</value>
245 245 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
246 246 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Clean</value>
247 247 </valuemap>
248 248 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">2</value>
249 249 <value type="bool" key="ProjectExplorer.BuildConfiguration.ClearSystemEnvironment">false</value>
250 250 <valuelist type="QVariantList" key="ProjectExplorer.BuildConfiguration.UserEnvironmentChanges"/>
251 251 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Release</value>
252 252 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
253 253 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4BuildConfiguration</value>
254 254 <value type="int" key="Qt4ProjectManager.Qt4BuildConfiguration.BuildConfiguration">0</value>
255 255 <value type="bool" key="Qt4ProjectManager.Qt4BuildConfiguration.UseShadowBuild">true</value>
256 256 </valuemap>
257 257 <value type="int" key="ProjectExplorer.Target.BuildConfigurationCount">1</value>
258 258 <valuemap type="QVariantMap" key="ProjectExplorer.Target.DeployConfiguration.0">
259 259 <valuemap type="QVariantMap" key="ProjectExplorer.BuildConfiguration.BuildStepList.0">
260 260 <value type="int" key="ProjectExplorer.BuildStepList.StepsCount">0</value>
261 261 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy</value>
262 262 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
263 263 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.BuildSteps.Deploy</value>
264 264 </valuemap>
265 265 <value type="int" key="ProjectExplorer.BuildConfiguration.BuildStepListCount">1</value>
266 266 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">Deploy locally</value>
267 267 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
268 268 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">ProjectExplorer.DefaultDeployConfiguration</value>
269 269 </valuemap>
270 270 <value type="int" key="ProjectExplorer.Target.DeployConfigurationCount">1</value>
271 271 <valuemap type="QVariantMap" key="ProjectExplorer.Target.PluginSettings"/>
272 272 <valuemap type="QVariantMap" key="ProjectExplorer.Target.RunConfiguration.0">
273 273 <valuelist type="QVariantList" key="Analyzer.Valgrind.AddedSuppressionFiles"/>
274 274 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectBusEvents">false</value>
275 275 <value type="bool" key="Analyzer.Valgrind.Callgrind.CollectSystime">false</value>
276 276 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableBranchSim">false</value>
277 277 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableCacheSim">false</value>
278 278 <value type="bool" key="Analyzer.Valgrind.Callgrind.EnableEventToolTips">true</value>
279 279 <value type="double" key="Analyzer.Valgrind.Callgrind.MinimumCostRatio">0.01</value>
280 280 <value type="double" key="Analyzer.Valgrind.Callgrind.VisualisationMinimumCostRatio">10</value>
281 281 <value type="bool" key="Analyzer.Valgrind.FilterExternalIssues">true</value>
282 282 <value type="int" key="Analyzer.Valgrind.LeakCheckOnFinish">1</value>
283 283 <value type="int" key="Analyzer.Valgrind.NumCallers">25</value>
284 284 <valuelist type="QVariantList" key="Analyzer.Valgrind.RemovedSuppressionFiles"/>
285 285 <value type="int" key="Analyzer.Valgrind.SelfModifyingCodeDetection">1</value>
286 286 <value type="bool" key="Analyzer.Valgrind.Settings.UseGlobalSettings">true</value>
287 287 <value type="bool" key="Analyzer.Valgrind.ShowReachable">false</value>
288 288 <value type="bool" key="Analyzer.Valgrind.TrackOrigins">true</value>
289 289 <value type="QString" key="Analyzer.Valgrind.ValgrindExecutable">valgrind</value>
290 290 <valuelist type="QVariantList" key="Analyzer.Valgrind.VisibleErrorKinds">
291 291 <value type="int">0</value>
292 292 <value type="int">1</value>
293 293 <value type="int">2</value>
294 294 <value type="int">3</value>
295 295 <value type="int">4</value>
296 296 <value type="int">5</value>
297 297 <value type="int">6</value>
298 298 <value type="int">7</value>
299 299 <value type="int">8</value>
300 300 <value type="int">9</value>
301 301 <value type="int">10</value>
302 302 <value type="int">11</value>
303 303 <value type="int">12</value>
304 304 <value type="int">13</value>
305 305 <value type="int">14</value>
306 306 </valuelist>
307 307 <value type="int" key="PE.EnvironmentAspect.Base">2</value>
308 308 <valuelist type="QVariantList" key="PE.EnvironmentAspect.Changes"/>
309 309 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DefaultDisplayName">fsw-qt</value>
310 310 <value type="QString" key="ProjectExplorer.ProjectConfiguration.DisplayName"></value>
311 311 <value type="QString" key="ProjectExplorer.ProjectConfiguration.Id">Qt4ProjectManager.Qt4RunConfiguration:/opt/DEV_PLE/FSW-qt/fsw-qt.pro</value>
312 312 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.CommandLineArguments"></value>
313 313 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.ProFile">fsw-qt.pro</value>
314 314 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseDyldImageSuffix">false</value>
315 315 <value type="bool" key="Qt4ProjectManager.Qt4RunConfiguration.UseTerminal">true</value>
316 316 <value type="QString" key="Qt4ProjectManager.Qt4RunConfiguration.UserWorkingDirectory"></value>
317 317 <value type="uint" key="RunConfiguration.QmlDebugServerPort">3768</value>
318 318 <value type="bool" key="RunConfiguration.UseCppDebugger">true</value>
319 319 <value type="bool" key="RunConfiguration.UseCppDebuggerAuto">false</value>
320 320 <value type="bool" key="RunConfiguration.UseMultiProcess">false</value>
321 321 <value type="bool" key="RunConfiguration.UseQmlDebugger">false</value>
322 322 <value type="bool" key="RunConfiguration.UseQmlDebuggerAuto">true</value>
323 323 </valuemap>
324 324 <value type="int" key="ProjectExplorer.Target.RunConfigurationCount">1</value>
325 325 </valuemap>
326 326 </data>
327 327 <data>
328 328 <variable>ProjectExplorer.Project.TargetCount</variable>
329 329 <value type="int">2</value>
330 330 </data>
331 331 <data>
332 332 <variable>ProjectExplorer.Project.Updater.EnvironmentId</variable>
333 333 <value type="QByteArray">{2e58a81f-9962-4bba-ae6b-760177f0656c}</value>
334 334 </data>
335 335 <data>
336 336 <variable>ProjectExplorer.Project.Updater.FileVersion</variable>
337 337 <value type="int">15</value>
338 338 </data>
339 339 </qtcreator>
@@ -1,610 +1,632
1 1 #ifndef CCSDS_TYPES_H_INCLUDED
2 2 #define CCSDS_TYPES_H_INCLUDED
3 3
4 4 #include "fsw_params_processing.h"
5 5
6 6 #define CCSDS_PROTOCOLE_EXTRA_BYTES 4
7 7 #define CCSDS_TELEMETRY_HEADER_LENGTH 16+4
8 8 #define CCSDS_TM_PKT_MAX_SIZE 4412
9 9 #define CCSDS_TELECOMMAND_HEADER_LENGTH 10+4
10 10 #define CCSDS_TC_PKT_MAX_SIZE 256
11 11 #define CCSDS_TC_PKT_MIN_SIZE 16
12 12 #define CCSDS_TC_TM_PACKET_OFFSET 7
13 13 #define CCSDS_PROCESS_ID 76
14 14 #define CCSDS_PACKET_CATEGORY 12
15 15 #define CCSDS_NODE_ADDRESS 0xfe
16 16 #define CCSDS_USER_APP 0x00
17 17
18 18 #define DEFAULT_SPARE1_PUSVERSION_SPARE2 0x10
19 19 #define DEFAULT_RESERVED 0x00
20 20 #define DEFAULT_HKBIA 0x1e // 0001 1110
21 21
22 22 // PACKET ID
23 23 #define TM_PACKET_ID_TC_EXE 0x0cc1 // PID 76 CAT 1
24 24 #define TM_PACKET_ID_HK 0x0cc4 // PID 76 CAT 4
25 25 #define TM_PACKET_ID_PARAMETER_DUMP 0x0cc9 // PID 76 CAT 9
26 26 #define TM_PACKET_ID_SCIENCE_NORMAL_BURST 0x0ccc // PID 76 CAT 12
27 27 #define TM_PACKET_ID_SCIENCE_SBM1_SBM2 0x0cfc // PID 79 CAT 12
28 28 #define TM_PACKET_PID_DEFAULT 76
29 29 #define TM_PACKET_PID_BURST_SBM1_SBM2 79
30 30 #define TM_PACKET_CAT_TC_EXE 1
31 31 #define TM_PACKET_CAT_HK 4
32 32 #define TM_PACKET_CAT_PARAMETER_DUMP 9
33 33 #define TM_PACKET_CAT_SCIENCE 12
34 34 #define TC_PACKET_CAT 12
35 35
36 36 // PACKET SEQUENCE CONTROL
37 37 #define TM_PACKET_SEQ_CTRL_CONTINUATION 0x00 // [0000 0000]
38 38 #define TM_PACKET_SEQ_CTRL_FIRST 0x40 // [0100 0000]
39 39 #define TM_PACKET_SEQ_CTRL_LAST 0x80 // [1000 0000]
40 40 #define TM_PACKET_SEQ_CTRL_STANDALONE 0xc0 // [1100 0000]
41 41 #define TM_PACKET_SEQ_CNT_DEFAULT 0x00 // [0000 0000]
42 42
43 43 // DESTINATION ID
44 44 #define TM_DESTINATION_ID_GROUND 0
45 45 #define TM_DESTINATION_ID_MISSION_TIMELINE 110
46 46 #define TM_DESTINATION_ID_TC_SEQUENCES 111
47 47 #define TM_DESTINATION_ID_RECOVERY_ACTION_COMMAND 112
48 48 #define TM_DESTINATION_ID_BACKUP_MISSION_TIMELINE 113
49 49 #define TM_DESTINATION_ID_DIRECT_CMD 120
50 50 #define TM_DESTINATION_ID_SPARE_GRD_SRC1 121
51 51 #define TM_DESTINATION_ID_SPARE_GRD_SRC2 122
52 52 #define TM_DESTINATION_ID_OBCP 15
53 53 #define TM_DESTINATION_ID_SYSTEM_CONTROL 14
54 54 #define TM_DESTINATION_ID_AOCS 11
55 55
56 56 #define CCSDS_DESTINATION_ID 0x01
57 57 #define CCSDS_PROTOCOLE_ID 0x02
58 58 #define CCSDS_RESERVED 0x00
59 59 #define CCSDS_USER_APP 0x00
60 60
61 61 #define SIZE_TM_LFR_TC_EXE_NOT_IMPLEMENTED 24
62 62 #define SIZE_TM_LFR_TC_EXE_CORRUPTED 32
63 63 #define SIZE_HK_PARAMETERS 112
64 64
65 65 // TC TYPES
66 66 #define TC_TYPE_GEN 181
67 67 #define TC_TYPE_TIME 9
68 68
69 69 // TC SUBTYPES
70 70 #define TC_SUBTYPE_RESET 1
71 71 #define TC_SUBTYPE_LOAD_COMM 11
72 72 #define TC_SUBTYPE_LOAD_NORM 13
73 73 #define TC_SUBTYPE_LOAD_BURST 19
74 74 #define TC_SUBTYPE_LOAD_SBM1 25
75 75 #define TC_SUBTYPE_LOAD_SBM2 27
76 76 #define TC_SUBTYPE_DUMP 31
77 77 #define TC_SUBTYPE_ENTER 41
78 78 #define TC_SUBTYPE_UPDT_INFO 51
79 79 #define TC_SUBTYPE_EN_CAL 61
80 80 #define TC_SUBTYPE_DIS_CAL 63
81 81 #define TC_SUBTYPE_UPDT_TIME 129
82 82
83 83 // TC LEN
84 84 #define TC_LEN_RESET 12
85 85 #define TC_LEN_LOAD_COMM 14
86 86 #define TC_LEN_LOAD_NORM 22
87 87 #define TC_LEN_LOAD_BURST 14
88 88 #define TC_LEN_LOAD_SBM1 14
89 89 #define TC_LEN_LOAD_SBM2 14
90 90 #define TC_LEN_DUMP 12
91 91 #define TC_LEN_ENTER 20
92 92 #define TC_LEN_UPDT_INFO 46
93 93 #define TC_LEN_EN_CAL 12
94 94 #define TC_LEN_DIS_CAL 12
95 95 #define TC_LEN_UPDT_TIME 18
96 96
97 97 // TM TYPES
98 98 #define TM_TYPE_TC_EXE 1
99 99 #define TM_TYPE_HK 3
100 100 #define TM_TYPE_PARAMETER_DUMP 3
101 101 #define TM_TYPE_LFR_SCIENCE 21
102 102
103 103 // TM SUBTYPES
104 104 #define TM_SUBTYPE_EXE_OK 7
105 105 #define TM_SUBTYPE_EXE_NOK 8
106 106 #define TM_SUBTYPE_HK 25
107 107 #define TM_SUBTYPE_PARAMETER_DUMP 25
108 108 #define TM_SUBTYPE_SCIENCE 3
109 109 #define TM_SUBTYPE_LFR_SCIENCE 3
110 110
111 111 // FAILURE CODES
112 112 #define ILLEGAL_APID 0
113 113 #define WRONG_LEN_PKT 1
114 114 #define INCOR_CHECKSUM 2
115 115 #define ILL_TYPE 3
116 116 #define ILL_SUBTYPE 4
117 117 #define WRONG_APP_DATA 5 // 0x00 0x05
118 118 #define TC_NOT_EXE 42000 // 0xa4 0x10
119 119 #define WRONG_SRC_ID 42001 // 0xa4 0x11
120 120 #define FUNCT_NOT_IMPL 42002 // 0xa4 0x12
121 121 #define FAIL_DETECTED 42003 // 0xa4 0x13
122 122 #define NOT_ALLOWED 42004 // 0xa4 0x14
123 123 #define CORRUPTED 42005 // 0xa4 0x15
124 124 #define CCSDS_TM_VALID 7
125 125
126 126 // TC SID
127 127 #define SID_TC_GROUND 0
128 128 #define SID_TC_MISSION_TIMELINE 110
129 129 #define SID_TC_TC_SEQUENCES 111
130 130 #define SID_TC_RECOVERY_ACTION_CMD 112
131 131 #define SID_TC_BACKUP_MISSION_TIMELINE 113
132 132 #define SID_TC_DIRECT_CMD 120
133 133 #define SID_TC_SPARE_GRD_SRC1 121
134 134 #define SID_TC_SPARE_GRD_SRC2 122
135 135 #define SID_TC_OBCP 15
136 136 #define SID_TC_SYSTEM_CONTROL 14
137 137 #define SID_TC_AOCS 11
138 138 #define SID_TC_RPW_INTERNAL 254
139 139
140 140 enum apid_destid{
141 141 GROUND,
142 142 MISSION_TIMELINE,
143 143 TC_SEQUENCES,
144 144 RECOVERY_ACTION_CMD,
145 145 BACKUP_MISSION_TIMELINE,
146 146 DIRECT_CMD,
147 147 SPARE_GRD_SRC1,
148 148 SPARE_GRD_SRC2,
149 149 OBCP,
150 150 SYSTEM_CONTROL,
151 151 AOCS,
152 152 RPW_INTERNAL
153 153 };
154 154 // SEQUENCE COUNTERS
155 155 #define SEQ_CNT_MAX 16383
156 156 #define SEQ_CNT_NB_DEST_ID 12
157 157
158 158 // TM SID
159 159 #define SID_HK 1
160 160 #define SID_PARAMETER_DUMP 10
161 161
162 162 #define SID_NORM_SWF_F0 3
163 163 #define SID_NORM_SWF_F1 4
164 164 #define SID_NORM_SWF_F2 5
165 165 #define SID_NORM_CWF_F3 1
166 166 #define SID_BURST_CWF_F2 2
167 167 #define SID_SBM1_CWF_F1 24
168 168 #define SID_SBM2_CWF_F2 25
169 169 #define SID_NORM_ASM_F0 11
170 170 #define SID_NORM_ASM_F1 12
171 171 #define SID_NORM_ASM_F2 13
172 172 #define SID_NORM_BP1_F0 14
173 173 #define SID_NORM_BP1_F1 15
174 174 #define SID_NORM_BP1_F2 16
175 175 #define SID_NORM_BP2_F0 19
176 176 #define SID_NORM_BP2_F1 20
177 177 #define SID_NORM_BP2_F2 21
178 178 #define SID_BURST_BP1_F0 17
179 179 #define SID_BURST_BP2_F0 22
180 180 #define SID_BURST_BP1_F1 18
181 181 #define SID_BURST_BP2_F1 23
182 182 #define SID_SBM1_BP1_F0 28
183 183 #define SID_SBM1_BP2_F0 31
184 184 #define SID_SBM2_BP1_F0 29
185 185 #define SID_SBM2_BP2_F0 32
186 186 #define SID_SBM2_BP1_F1 30
187 187 #define SID_SBM2_BP2_F1 33
188 188 #define SID_NORM_CWF_LONG_F3 34
189 189
190 190 // LENGTH (BYTES)
191 191 #define LENGTH_TM_LFR_TC_EXE_MAX 32
192 192 #define LENGTH_TM_LFR_HK 126
193 193
194 194 // HEADER_LENGTH
195 195 #define TM_HEADER_LEN 16
196 196 #define HEADER_LENGTH_TM_LFR_SCIENCE_ASM 28
197 197 // PACKET_LENGTH
198 198 #define PACKET_LENGTH_TC_EXE_SUCCESS (20 - CCSDS_TC_TM_PACKET_OFFSET)
199 199 #define PACKET_LENGTH_TC_EXE_INCONSISTENT (26 - CCSDS_TC_TM_PACKET_OFFSET)
200 200 #define PACKET_LENGTH_TC_EXE_NOT_EXECUTABLE (26 - CCSDS_TC_TM_PACKET_OFFSET)
201 201 #define PACKET_LENGTH_TC_EXE_NOT_IMPLEMENTED (24 - CCSDS_TC_TM_PACKET_OFFSET)
202 202 #define PACKET_LENGTH_TC_EXE_ERROR (24 - CCSDS_TC_TM_PACKET_OFFSET)
203 203 #define PACKET_LENGTH_TC_EXE_CORRUPTED (32 - CCSDS_TC_TM_PACKET_OFFSET)
204 204 #define PACKET_LENGTH_HK (124 - CCSDS_TC_TM_PACKET_OFFSET)
205 205 #define PACKET_LENGTH_PARAMETER_DUMP (36 - CCSDS_TC_TM_PACKET_OFFSET)
206 206 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0 2221 // 44 * 25 * 2 + 28 - 7
207 207 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1 2621 // 52 * 25 * 2 + 28 - 7
208 208 #define PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2 2421 // 48 * 25 * 2 + 28 - 7
209 209
210 210 #define SPARE1_PUSVERSION_SPARE2 0x10
211 211
212 212 // R1
213 213 #define TM_LEN_SCI_SWF_340 4101 // 340 * 12 + 10 + 12 - 1
214 214 #define TM_LEN_SCI_SWF_8 117 // 8 * 12 + 10 + 12 - 1
215 215 #define TM_LEN_SCI_CWF_340 4099 // 340 * 12 + 10 + 10 - 1
216 216 #define TM_LEN_SCI_CWF_8 115 // 8 * 12 + 10 + 10 - 1
217 217 #define TM_LEN_SCI_CWF3_LIGHT_340 2059 // 340 * 6 + 10 + 10 - 1
218 218 #define TM_LEN_SCI_CWF3_LIGHT_8 67 // 8 * 6 + 10 + 10 - 1
219 219 // R2
220 220 #define TM_LEN_SCI_SWF_304 3669 // 304 * 12 + 10 + 12 - 1
221 221 #define TM_LEN_SCI_SWF_224 2709 // 224 * 12 + 10 + 12 - 1
222 222 #define TM_LEN_SCI_CWF_336 4051 // 336 * 12 + 10 + 10 - 1
223 223 #define TM_LEN_SCI_CWF_672 4051 // 672 * 6 + 10 + 10 - 1
224 224 //
225 225 #define DEFAULT_PKTCNT 0x07
226 226 #define BLK_NR_304 0x0130
227 227 #define BLK_NR_224 0x00e0
228 228 #define BLK_NR_CWF 0x0150 // 336
229 229 #define BLK_NR_CWF_SHORT_F3 0x02a0 // 672
230 230
231 231 enum TM_TYPE{
232 232 TM_LFR_TC_EXE_OK,
233 233 TM_LFR_TC_EXE_ERR,
234 234 TM_LFR_HK,
235 235 TM_LFR_SCI,
236 236 TM_LFR_SCI_SBM,
237 237 TM_LFR_PAR_DUMP
238 238 };
239 239
240 240 typedef struct {
241 241 unsigned char targetLogicalAddress;
242 242 unsigned char protocolIdentifier;
243 243 unsigned char reserved;
244 244 unsigned char userApplication;
245 245 // PACKET HEADER
246 246 unsigned char packetID[2];
247 247 unsigned char packetSequenceControl[2];
248 248 unsigned char packetLength[2];
249 249 // DATA FIELD HEADER
250 250 unsigned char spare1_pusVersion_spare2;
251 251 unsigned char serviceType;
252 252 unsigned char serviceSubType;
253 253 unsigned char destinationID;
254 254 unsigned char time[6];
255 255 //
256 256 unsigned char telecommand_pkt_id[2];
257 257 unsigned char pkt_seq_control[2];
258 258 } Packet_TM_LFR_TC_EXE_SUCCESS_t;
259 259
260 260 typedef struct {
261 261 unsigned char targetLogicalAddress;
262 262 unsigned char protocolIdentifier;
263 263 unsigned char reserved;
264 264 unsigned char userApplication;
265 265 // PACKET HEADER
266 266 unsigned char packetID[2];
267 267 unsigned char packetSequenceControl[2];
268 268 unsigned char packetLength[2];
269 269 // DATA FIELD HEADER
270 270 unsigned char spare1_pusVersion_spare2;
271 271 unsigned char serviceType;
272 272 unsigned char serviceSubType;
273 273 unsigned char destinationID;
274 274 unsigned char time[6];
275 275 //
276 276 unsigned char tc_failure_code[2];
277 277 unsigned char telecommand_pkt_id[2];
278 278 unsigned char pkt_seq_control[2];
279 279 unsigned char tc_service;
280 280 unsigned char tc_subtype;
281 281 unsigned char byte_position;
282 282 unsigned char rcv_value;
283 283 } Packet_TM_LFR_TC_EXE_INCONSISTENT_t;
284 284
285 285 typedef struct {
286 286 unsigned char targetLogicalAddress;
287 287 unsigned char protocolIdentifier;
288 288 unsigned char reserved;
289 289 unsigned char userApplication;
290 290 // PACKET HEADER
291 291 unsigned char packetID[2];
292 292 unsigned char packetSequenceControl[2];
293 293 unsigned char packetLength[2];
294 294 // DATA FIELD HEADER
295 295 unsigned char spare1_pusVersion_spare2;
296 296 unsigned char serviceType;
297 297 unsigned char serviceSubType;
298 298 unsigned char destinationID;
299 299 unsigned char time[6];
300 300 //
301 301 unsigned char tc_failure_code[2];
302 302 unsigned char telecommand_pkt_id[2];
303 303 unsigned char pkt_seq_control[2];
304 304 unsigned char tc_service;
305 305 unsigned char tc_subtype;
306 306 unsigned char lfr_status_word[2];
307 307 } Packet_TM_LFR_TC_EXE_NOT_EXECUTABLE_t;
308 308
309 309 typedef struct {
310 310 unsigned char targetLogicalAddress;
311 311 unsigned char protocolIdentifier;
312 312 unsigned char reserved;
313 313 unsigned char userApplication;
314 314 // PACKET HEADER
315 315 unsigned char packetID[2];
316 316 unsigned char packetSequenceControl[2];
317 317 unsigned char packetLength[2];
318 318 // DATA FIELD HEADER
319 319 unsigned char spare1_pusVersion_spare2;
320 320 unsigned char serviceType;
321 321 unsigned char serviceSubType;
322 322 unsigned char destinationID;
323 323 unsigned char time[6];
324 324 //
325 325 unsigned char tc_failure_code[2];
326 326 unsigned char telecommand_pkt_id[2];
327 327 unsigned char pkt_seq_control[2];
328 328 unsigned char tc_service;
329 329 unsigned char tc_subtype;
330 330 } Packet_TM_LFR_TC_EXE_NOT_IMPLEMENTED_t;
331 331
332 332 typedef struct {
333 333 unsigned char targetLogicalAddress;
334 334 unsigned char protocolIdentifier;
335 335 unsigned char reserved;
336 336 unsigned char userApplication;
337 337 // PACKET HEADER
338 338 unsigned char packetID[2];
339 339 unsigned char packetSequenceControl[2];
340 340 unsigned char packetLength[2];
341 341 // DATA FIELD HEADER
342 342 unsigned char spare1_pusVersion_spare2;
343 343 unsigned char serviceType;
344 344 unsigned char serviceSubType;
345 345 unsigned char destinationID;
346 346 unsigned char time[6];
347 347 //
348 348 unsigned char tc_failure_code[2];
349 349 unsigned char telecommand_pkt_id[2];
350 350 unsigned char pkt_seq_control[2];
351 351 unsigned char tc_service;
352 352 unsigned char tc_subtype;
353 353 } Packet_TM_LFR_TC_EXE_ERROR_t;
354 354
355 355 typedef struct {
356 356 unsigned char targetLogicalAddress;
357 357 unsigned char protocolIdentifier;
358 358 unsigned char reserved;
359 359 unsigned char userApplication;
360 360 // PACKET HEADER
361 361 unsigned char packetID[2];
362 362 unsigned char packetSequenceControl[2];
363 363 unsigned char packetLength[2];
364 364 // DATA FIELD HEADER
365 365 unsigned char spare1_pusVersion_spare2;
366 366 unsigned char serviceType;
367 367 unsigned char serviceSubType;
368 368 unsigned char destinationID;
369 369 unsigned char time[6];
370 370 //
371 371 unsigned char tc_failure_code[2];
372 372 unsigned char telecommand_pkt_id[2];
373 373 unsigned char pkt_seq_control[2];
374 374 unsigned char tc_service;
375 375 unsigned char tc_subtype;
376 376 unsigned char pkt_len_rcv_value[2];
377 377 unsigned char pkt_datafieldsize_cnt[2];
378 378 unsigned char rcv_crc[2];
379 379 unsigned char computed_crc[2];
380 380 } Packet_TM_LFR_TC_EXE_CORRUPTED_t;
381 381
382 382 typedef struct {
383 383 unsigned char targetLogicalAddress;
384 384 unsigned char protocolIdentifier;
385 385 unsigned char reserved;
386 386 unsigned char userApplication;
387 387 unsigned char packetID[2];
388 388 unsigned char packetSequenceControl[2];
389 389 unsigned char packetLength[2];
390 390 // DATA FIELD HEADER
391 391 unsigned char spare1_pusVersion_spare2;
392 392 unsigned char serviceType;
393 393 unsigned char serviceSubType;
394 394 unsigned char destinationID;
395 395 unsigned char time[6];
396 396 // AUXILIARY HEADER
397 397 unsigned char sid;
398 398 unsigned char hkBIA;
399 399 unsigned char pktCnt;
400 400 unsigned char pktNr;
401 401 unsigned char acquisitionTime[6];
402 402 unsigned char blkNr[2];
403 403 } Header_TM_LFR_SCIENCE_SWF_t;
404 404
405 405 typedef struct {
406 406 unsigned char targetLogicalAddress;
407 407 unsigned char protocolIdentifier;
408 408 unsigned char reserved;
409 409 unsigned char userApplication;
410 410 unsigned char packetID[2];
411 411 unsigned char packetSequenceControl[2];
412 412 unsigned char packetLength[2];
413 413 // DATA FIELD HEADER
414 414 unsigned char spare1_pusVersion_spare2;
415 415 unsigned char serviceType;
416 416 unsigned char serviceSubType;
417 417 unsigned char destinationID;
418 418 unsigned char time[6];
419 419 // AUXILIARY DATA HEADER
420 420 unsigned char sid;
421 421 unsigned char hkBIA;
422 422 unsigned char acquisitionTime[6];
423 423 unsigned char blkNr[2];
424 424 } Header_TM_LFR_SCIENCE_CWF_t;
425 425
426 426 typedef struct {
427 427 unsigned char targetLogicalAddress;
428 428 unsigned char protocolIdentifier;
429 429 unsigned char reserved;
430 430 unsigned char userApplication;
431 431 unsigned char packetID[2];
432 432 unsigned char packetSequenceControl[2];
433 433 unsigned char packetLength[2];
434 434 // DATA FIELD HEADER
435 435 unsigned char spare1_pusVersion_spare2;
436 436 unsigned char serviceType;
437 437 unsigned char serviceSubType;
438 438 unsigned char destinationID;
439 439 unsigned char time[6];
440 440 // AUXILIARY HEADER
441 441 unsigned char sid;
442 442 unsigned char biaStatusInfo;
443 443 unsigned char pa_lfr_pkt_cnt_asm;
444 444 unsigned char pa_lfr_pkt_nr_asm;
445 445 unsigned char acquisitionTime[6];
446 446 unsigned char pa_lfr_asm_blk_nr[2];
447 447 } Header_TM_LFR_SCIENCE_ASM_t;
448 448
449 449 typedef struct {
450 unsigned char targetLogicalAddress;
451 unsigned char protocolIdentifier;
452 unsigned char reserved;
453 unsigned char userApplication;
454 unsigned char packetID[2];
455 unsigned char packetSequenceControl[2];
456 unsigned char packetLength[2];
457 // DATA FIELD HEADER
458 unsigned char spare1_pusVersion_spare2;
459 unsigned char serviceType;
460 unsigned char serviceSubType;
461 unsigned char destinationID;
462 unsigned char time[6];
463 // AUXILIARY HEADER
464 unsigned char sid;
465 unsigned char biaStatusInfo;
466 unsigned char acquisitionTime[6];
467 unsigned char spare_source_data;
468 unsigned char pa_lfr_bp_blk_nr[2];
469 } Header_TM_LFR_SCIENCE_BP_t;
470
471 typedef struct {
450 472 //targetLogicalAddress is removed by the grspw module
451 473 unsigned char protocolIdentifier;
452 474 unsigned char reserved;
453 475 unsigned char userApplication;
454 476 unsigned char packetID[2];
455 477 unsigned char packetSequenceControl[2];
456 478 unsigned char packetLength[2];
457 479 // DATA FIELD HEADER
458 480 unsigned char headerFlag_pusVersion_Ack;
459 481 unsigned char serviceType;
460 482 unsigned char serviceSubType;
461 483 unsigned char sourceID;
462 484 unsigned char dataAndCRC[CCSDS_TC_PKT_MAX_SIZE-10];
463 485 } ccsdsTelecommandPacket_t;
464 486
465 487 typedef struct {
466 488 unsigned char targetLogicalAddress;
467 489 unsigned char protocolIdentifier;
468 490 unsigned char reserved;
469 491 unsigned char userApplication;
470 492 unsigned char packetID[2];
471 493 unsigned char packetSequenceControl[2];
472 494 unsigned char packetLength[2];
473 495 unsigned char spare1_pusVersion_spare2;
474 496 unsigned char serviceType;
475 497 unsigned char serviceSubType;
476 498 unsigned char destinationID;
477 499 unsigned char time[6];
478 500 unsigned char sid;
479 501
480 502 //**************
481 503 // HK PARAMETERS
482 504 unsigned char lfr_status_word[2];
483 505 unsigned char lfr_sw_version[4];
484 506 unsigned char lfr_fpga_version[3];
485 507 // ressource statistics
486 508 unsigned char hk_lfr_cpu_load;
487 509 unsigned char hk_lfr_load_max;
488 510 unsigned char hk_lfr_load_aver;
489 511 // tc statistics
490 512 unsigned char hk_lfr_update_info_tc_cnt[2];
491 513 unsigned char hk_lfr_update_time_tc_cnt[2];
492 514 unsigned char hk_lfr_exe_tc_cnt[2];
493 515 unsigned char hk_lfr_rej_tc_cnt[2];
494 516 unsigned char hk_lfr_last_exe_tc_id[2];
495 517 unsigned char hk_lfr_last_exe_tc_type[2];
496 518 unsigned char hk_lfr_last_exe_tc_subtype[2];
497 519 unsigned char hk_lfr_last_exe_tc_time[6];
498 520 unsigned char hk_lfr_last_rej_tc_id[2];
499 521 unsigned char hk_lfr_last_rej_tc_type[2];
500 522 unsigned char hk_lfr_last_rej_tc_subtype[2];
501 523 unsigned char hk_lfr_last_rej_tc_time[6];
502 524 // anomaly statistics
503 525 unsigned char hk_lfr_le_cnt[2];
504 526 unsigned char hk_lfr_me_cnt[2];
505 527 unsigned char hk_lfr_he_cnt[2];
506 528 unsigned char hk_lfr_last_er_rid[2];
507 529 unsigned char hk_lfr_last_er_code;
508 530 unsigned char hk_lfr_last_er_time[6];
509 531 // vhdl_blk_status
510 532 unsigned char hk_lfr_vhdl_aa_sm;
511 533 unsigned char hk_lfr_vhdl_fft_sr;
512 534 unsigned char hk_lfr_vhdl_cic_hk;
513 535 unsigned char hk_lfr_vhdl_iir_cal;
514 536 // spacewire_if_statistics
515 537 unsigned char hk_lfr_dpu_spw_pkt_rcv_cnt[2];
516 538 unsigned char hk_lfr_dpu_spw_pkt_sent_cnt[2];
517 539 unsigned char hk_lfr_dpu_spw_tick_out_cnt;
518 540 unsigned char hk_lfr_dpu_spw_last_timc;
519 541 // ahb error statistics
520 542 unsigned int hk_lfr_last_fail_addr;
521 543 // temperatures
522 544 unsigned char hk_lfr_temp_scm[2];
523 545 unsigned char hk_lfr_temp_pcb[2];
524 546 unsigned char hk_lfr_temp_fpga[2];
525 547 // spacecraft potential
526 548 unsigned char hk_lfr_sc_v_f3[2];
527 549 unsigned char hk_lfr_sc_e1_f3[2];
528 550 unsigned char hk_lfr_sc_e2_f3[2];
529 551 // error counters
530 552 unsigned char hk_lfr_dpu_spw_parity;
531 553 unsigned char hk_lfr_dpu_spw_disconnect;
532 554 unsigned char hk_lfr_dpu_spw_escape;
533 555 unsigned char hk_lfr_dpu_spw_credit;
534 556 unsigned char hk_lfr_dpu_spw_write_sync;
535 557 unsigned char hk_lfr_dpu_spw_rx_ahb;
536 558 unsigned char hk_lfr_dpu_spw_tx_ahb;
537 559 unsigned char hk_lfr_dpu_spw_early_eop;
538 560 unsigned char hk_lfr_dpu_spw_invalid_addr;
539 561 unsigned char hk_lfr_dpu_spw_eep;
540 562 unsigned char hk_lfr_dpu_spw_rx_too_big;
541 563 // timecode
542 564 unsigned char hk_lfr_timecode_erroneous;
543 565 unsigned char hk_lfr_timecode_missing;
544 566 unsigned char hk_lfr_timecode_invalid;
545 567 // time
546 568 unsigned char hk_lfr_time_timecode_it;
547 569 unsigned char hk_lfr_time_not_synchro;
548 570 unsigned char hk_lfr_time_timecode_ctr;
549 571 // hk_lfr_buffer_dpu_
550 572 unsigned char hk_lfr_buffer_dpu_tc_fifo;
551 573 unsigned char hk_lfr_buffer_dpu_tm_fifo;
552 574 // hk_lfr_ahb_
553 575 unsigned char hk_lfr_ahb_correctable;
554 576 unsigned char hk_lfr_ahb_uncorrectable;
555 577 // spare
556 578 unsigned char parameters_spare;
557 579 } Packet_TM_LFR_HK_t;
558 580
559 581 typedef struct {
560 582 unsigned char targetLogicalAddress;
561 583 unsigned char protocolIdentifier;
562 584 unsigned char reserved;
563 585 unsigned char userApplication;
564 586 unsigned char packetID[2];
565 587 unsigned char packetSequenceControl[2];
566 588 unsigned char packetLength[2];
567 589 // DATA FIELD HEADER
568 590 unsigned char spare1_pusVersion_spare2;
569 591 unsigned char serviceType;
570 592 unsigned char serviceSubType;
571 593 unsigned char destinationID;
572 594 unsigned char time[6];
573 595 unsigned char sid;
574 596
575 597 //******************
576 598 // COMMON PARAMETERS
577 599 unsigned char unused0;
578 600 unsigned char bw_sp0_sp1_r0_r1;
579 601
580 602 //******************
581 603 // NORMAL PARAMETERS
582 604 unsigned char sy_lfr_n_swf_l[2];
583 605 unsigned char sy_lfr_n_swf_p[2];
584 606 unsigned char sy_lfr_n_asm_p[2];
585 607 unsigned char sy_lfr_n_bp_p0;
586 608 unsigned char sy_lfr_n_bp_p1;
587 609 unsigned char sy_lfr_n_cwf_long_f3;
588 610 unsigned char lfr_normal_parameters_spare;
589 611
590 612 //*****************
591 613 // BURST PARAMETERS
592 614 unsigned char sy_lfr_b_bp_p0;
593 615 unsigned char sy_lfr_b_bp_p1;
594 616
595 617 //****************
596 618 // SBM1 PARAMETERS
597 619 unsigned char sy_lfr_s1_bp_p0;
598 620 unsigned char sy_lfr_s1_bp_p1;
599 621
600 622 //****************
601 623 // SBM2 PARAMETERS
602 624 unsigned char sy_lfr_s2_bp_p0;
603 625 unsigned char sy_lfr_s2_bp_p1;
604 626
605 627 // SPARE
606 628 unsigned char source_data_spare;
607 629 } Packet_TM_LFR_PARAMETER_DUMP_t;
608 630
609 631
610 632 #endif // CCSDS_TYPES_H_INCLUDED
@@ -1,225 +1,235
1 1 #ifndef FSW_PARAMS_H_INCLUDED
2 2 #define FSW_PARAMS_H_INCLUDED
3 3
4 4 #include "grlib_regs.h"
5 5 #include "fsw_params_processing.h"
6 6 #include "fsw_params_nb_bytes.h"
7 7 #include "tm_byte_positions.h"
8 8 #include "ccsds_types.h"
9 9
10 10 #define GRSPW_DEVICE_NAME "/dev/grspw0"
11 11 #define UART_DEVICE_NAME "/dev/console"
12 12
13 13 typedef struct ring_node
14 14 {
15 15 struct ring_node *previous;
16 16 int buffer_address;
17 17 struct ring_node *next;
18 18 unsigned int status;
19 19 } ring_node;
20 20
21 typedef struct ring_node_sm
22 {
23 struct ring_node_sm *previous;
24 int buffer_address;
25 struct ring_node_sm *next;
26 unsigned int status;
27 unsigned int coarseTime;
28 unsigned int fineTime;
29 } ring_node_sm;
30
21 31 //************************
22 32 // flight software version
23 33 // this parameters is handled by the Qt project options
24 34
25 35 #define NB_PACKETS_PER_GROUP_OF_CWF 8 // 8 packets containing 336 blk
26 36 #define NB_PACKETS_PER_GROUP_OF_CWF_LIGHT 4 // 4 packets containing 672 blk
27 37 #define NB_SAMPLES_PER_SNAPSHOT 2688 // 336 * 8 = 672 * 4 = 2688
28 38 #define TIME_OFFSET 2
29 39 #define TIME_OFFSET_IN_BYTES 8
30 40 #define WAVEFORM_EXTENDED_HEADER_OFFSET 22
31 41 #define NB_BYTES_SWF_BLK (2 * 6)
32 42 #define NB_WORDS_SWF_BLK 3
33 43 #define NB_BYTES_CWF3_LIGHT_BLK 6
34 44 #define WFRM_INDEX_OF_LAST_PACKET 6 // waveforms are transmitted in groups of 2048 blocks, 6 packets of 340 and 1 of 8
35 45 #define NB_RING_NODES_F0 3 // AT LEAST 3
36 46 #define NB_RING_NODES_F1 5 // AT LEAST 3
37 47 #define NB_RING_NODES_F2 5 // AT LEAST 3
38 48
39 49 //**********
40 50 // LFR MODES
41 51 #define LFR_MODE_STANDBY 0
42 52 #define LFR_MODE_NORMAL 1
43 53 #define LFR_MODE_BURST 2
44 54 #define LFR_MODE_SBM1 3
45 55 #define LFR_MODE_SBM2 4
46 56
47 57 #define TDS_MODE_LFM 5
48 58 #define TDS_MODE_STANDBY 0
49 59 #define TDS_MODE_NORMAL 1
50 60 #define TDS_MODE_BURST 2
51 61 #define TDS_MODE_SBM1 3
52 62 #define TDS_MODE_SBM2 4
53 63
54 64 #define THR_MODE_STANDBY 0
55 65 #define THR_MODE_NORMAL 1
56 66 #define THR_MODE_BURST 2
57 67
58 68 #define RTEMS_EVENT_MODE_STANDBY RTEMS_EVENT_0
59 69 #define RTEMS_EVENT_MODE_NORMAL RTEMS_EVENT_1
60 70 #define RTEMS_EVENT_MODE_BURST RTEMS_EVENT_2
61 71 #define RTEMS_EVENT_MODE_SBM1 RTEMS_EVENT_3
62 72 #define RTEMS_EVENT_MODE_SBM2 RTEMS_EVENT_4
63 73 #define RTEMS_EVENT_MODE_SBM2_WFRM RTEMS_EVENT_5
64 74 #define RTEMS_EVENT_MODE_NORMAL_SWF_F0 RTEMS_EVENT_6
65 75 #define RTEMS_EVENT_MODE_NORMAL_SWF_F1 RTEMS_EVENT_7
66 76 #define RTEMS_EVENT_MODE_NORMAL_SWF_F2 RTEMS_EVENT_8
67 77
68 78 //****************************
69 79 // LFR DEFAULT MODE PARAMETERS
70 80 // COMMON
71 81 #define DEFAULT_SY_LFR_COMMON0 0x00
72 82 #define DEFAULT_SY_LFR_COMMON1 0x10 // default value 0 0 0 1 0 0 0 0
73 83 // NORM
74 84 #define SY_LFR_N_SWF_L 2048 // nb sample
75 85 #define SY_LFR_N_SWF_P 300 // sec
76 86 #define SY_LFR_N_ASM_P 3600 // sec
77 87 #define SY_LFR_N_BP_P0 4 // sec
78 88 #define SY_LFR_N_BP_P1 20 // sec
79 89 #define SY_LFR_N_CWF_LONG_F3 0 // 0 => production of light continuous waveforms at f3
80 90 #define MIN_DELTA_SNAPSHOT 16 // sec
81 91 // BURST
82 92 #define DEFAULT_SY_LFR_B_BP_P0 1 // sec
83 93 #define DEFAULT_SY_LFR_B_BP_P1 5 // sec
84 94 // SBM1
85 95 #define DEFAULT_SY_LFR_S1_BP_P0 1 // sec
86 96 #define DEFAULT_SY_LFR_S1_BP_P1 1 // sec
87 97 // SBM2
88 98 #define DEFAULT_SY_LFR_S2_BP_P0 1 // sec
89 99 #define DEFAULT_SY_LFR_S2_BP_P1 5 // sec
90 100 // ADDITIONAL PARAMETERS
91 101 #define TIME_BETWEEN_TWO_SWF_PACKETS 30 // nb x 10 ms => 300 ms
92 102 #define TIME_BETWEEN_TWO_CWF3_PACKETS 1000 // nb x 10 ms => 10 s
93 103 // STATUS WORD
94 104 #define DEFAULT_STATUS_WORD_BYTE0 0x0d // [0000] [1] [101] mode 4 bits / SPW enabled 1 bit / state is run 3 bits
95 105 #define DEFAULT_STATUS_WORD_BYTE1 0x00
96 106 //
97 107 #define SY_LFR_DPU_CONNECT_TIMEOUT 100 // 100 * 10 ms = 1 s
98 108 #define SY_LFR_DPU_CONNECT_ATTEMPT 3
99 109 //****************************
100 110
101 111 //*****************************
102 112 // APB REGISTERS BASE ADDRESSES
103 113 #define REGS_ADDR_APBUART 0x80000100
104 114 #define REGS_ADDR_GPTIMER 0x80000300
105 115 #define REGS_ADDR_GRSPW 0x80000500
106 116 #define REGS_ADDR_TIME_MANAGEMENT 0x80000600
107 117 #define REGS_ADDR_GRGPIO 0x80000b00
108 118
109 119 #define REGS_ADDR_SPECTRAL_MATRIX 0x80000f00
110 120 #define REGS_ADDR_WAVEFORM_PICKER 0x80000f40
111 121
112 122 #define APBUART_CTRL_REG_MASK_DB 0xfffff7ff
113 123 #define APBUART_CTRL_REG_MASK_TE 0x00000002
114 124 #define APBUART_SCALER_RELOAD_VALUE 0x00000050 // 25 MHz => about 38400 (0x50)
115 125
116 126 //**********
117 127 // IRQ LINES
118 128 #define IRQ_SM_SIMULATOR 9
119 129 #define IRQ_SPARC_SM_SIMULATOR 0x19 // see sparcv8.pdf p.76 for interrupt levels
120 130 #define IRQ_WAVEFORM_PICKER 14
121 131 #define IRQ_SPARC_WAVEFORM_PICKER 0x1e // see sparcv8.pdf p.76 for interrupt levels
122 132 #define IRQ_SPECTRAL_MATRIX 6
123 133 #define IRQ_SPARC_SPECTRAL_MATRIX 0x16 // see sparcv8.pdf p.76 for interrupt levels
124 134
125 135 //*****
126 136 // TIME
127 137 #define CLKDIV_SM_SIMULATOR (10000 - 1) // 10 ms
128 138 #define TIMER_SM_SIMULATOR 1
129 139 #define HK_PERIOD 100 // 100 * 10ms => 1s
130 140 #define SY_LFR_TIME_SYN_TIMEOUT_in_ms 2000
131 141 #define SY_LFR_TIME_SYN_TIMEOUT_in_ticks 200 // 200 * 10 ms = 2 s
132 142
133 143 //**********
134 144 // LPP CODES
135 145 #define LFR_SUCCESSFUL 0
136 146 #define LFR_DEFAULT 1
137 147
138 148 //******
139 149 // RTEMS
140 150 #define TASKID_RECV 1
141 151 #define TASKID_ACTN 2
142 152 #define TASKID_SPIQ 3
143 153 #define TASKID_SMIQ 4
144 154 #define TASKID_STAT 5
145 155 #define TASKID_AVF0 6
146 156 #define TASKID_SWBD 7
147 157 #define TASKID_WFRM 8
148 158 #define TASKID_DUMB 9
149 159 #define TASKID_HOUS 10
150 160 #define TASKID_MATR 11
151 161 #define TASKID_CWF3 12
152 162 #define TASKID_CWF2 13
153 163 #define TASKID_CWF1 14
154 164 #define TASKID_SEND 15
155 165 #define TASKID_WTDG 16
156 166
157 167 #define TASK_PRIORITY_SPIQ 5
158 168 #define TASK_PRIORITY_SMIQ 10
159 169 #define TASK_PRIORITY_WTDG 20
160 170 #define TASK_PRIORITY_HOUS 30
161 171 #define TASK_PRIORITY_CWF1 35 // CWF1 and CWF2 are never running together
162 172 #define TASK_PRIORITY_CWF2 35 //
163 173 #define TASK_PRIORITY_SWBD 37 // SWBD has a lower priority than WFRM, this is to extract the snapshot before sending it
164 174 #define TASK_PRIORITY_WFRM 40
165 175 #define TASK_PRIORITY_CWF3 40 // there is a printf in this function, be careful with its priority wrt CWF1
166 176 #define TASK_PRIORITY_SEND 45
167 177 #define TASK_PRIORITY_RECV 50
168 178 #define TASK_PRIORITY_ACTN 50
169 179 #define TASK_PRIORITY_AVF0 60
170 180 #define TASK_PRIORITY_BPF0 60
171 181 #define TASK_PRIORITY_MATR 100
172 182 #define TASK_PRIORITY_STAT 200
173 183 #define TASK_PRIORITY_DUMB 200
174 184
175 185 #define ACTION_MSG_QUEUE_COUNT 10
176 186 #define ACTION_MSG_PKTS_COUNT 50
177 187 #define ACTION_MSG_PKTS_MAX_SIZE (PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES)
178 188 #define ACTION_MSG_SPW_IOCTL_SEND_SIZE 24 // hlen *hdr dlen *data sent options
179 189
180 190 #define QUEUE_RECV 0
181 191 #define QUEUE_SEND 1
182 192
183 193 //*******
184 194 // MACROS
185 195 #ifdef PRINT_MESSAGES_ON_CONSOLE
186 196 #define PRINTF(x) printf(x);
187 197 #define PRINTF1(x,y) printf(x,y);
188 198 #define PRINTF2(x,y,z) printf(x,y,z);
189 199 #else
190 200 #define PRINTF(x) ;
191 201 #define PRINTF1(x,y) ;
192 202 #define PRINTF2(x,y,z) ;
193 203 #endif
194 204
195 205 #ifdef BOOT_MESSAGES
196 206 #define BOOT_PRINTF(x) printf(x);
197 207 #define BOOT_PRINTF1(x,y) printf(x,y);
198 208 #define BOOT_PRINTF2(x,y,z) printf(x,y,z);
199 209 #else
200 210 #define BOOT_PRINTF(x) ;
201 211 #define BOOT_PRINTF1(x,y) ;
202 212 #define BOOT_PRINTF2(x,y,z) ;
203 213 #endif
204 214
205 215 #ifdef DEBUG_MESSAGES
206 216 #define DEBUG_PRINTF(x) printf(x);
207 217 #define DEBUG_PRINTF1(x,y) printf(x,y);
208 218 #define DEBUG_PRINTF2(x,y,z) printf(x,y,z);
209 219 #else
210 220 #define DEBUG_PRINTF(x) ;
211 221 #define DEBUG_PRINTF1(x,y) ;
212 222 #define DEBUG_PRINTF2(x,y,z) ;
213 223 #endif
214 224
215 225 #define CPU_USAGE_REPORT_PERIOD 6 // * 10 s = period
216 226
217 227 struct param_local_str{
218 228 unsigned int local_sbm1_nb_cwf_sent;
219 229 unsigned int local_sbm1_nb_cwf_max;
220 230 unsigned int local_sbm2_nb_cwf_sent;
221 231 unsigned int local_sbm2_nb_cwf_max;
222 232 unsigned int local_nb_interrupt_f0_MAX;
223 233 };
224 234
225 235 #endif // FSW_PARAMS_H_INCLUDED
@@ -1,28 +1,28
1 1 #ifndef TM_BYTE_POSITIONS_H
2 2 #define TM_BYTE_POSITIONS_H
3 3
4 4 // TC_LFR_LOAD_COMMON_PAR
5 5
6 6 // TC_LFR_LOAD_NORMAL_PAR
7 #define BYTE_POS_SY_LFR_N_SWF_L 0
8 #define BYTE_POS_SY_LFR_N_SWF_P 2
9 #define BYTE_POS_SY_LFR_N_ASM_P 4
10 #define BYTE_POS_SY_LFR_N_BP_P0 6
11 #define BYTE_POS_SY_LFR_N_BP_P1 7
12 #define BYTE_POS_SY_LFR_N_CWF_LONG_F3 8
7 #define DATAFIELD_POS_SY_LFR_N_SWF_L 0
8 #define DATAFIELD_POS_SY_LFR_N_SWF_P 2
9 #define DATAFIELD_POS_SY_LFR_N_ASM_P 4
10 #define DATAFIELD_POS_SY_LFR_N_BP_P0 6
11 #define DATAFIELD_POS_SY_LFR_N_BP_P1 7
12 #define DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 8
13 13
14 14 // TC_LFR_LOAD_BURST_PAR
15 15
16 16 // TC_LFR_LOAD_SBM1_PAR
17 17
18 18 // TC_LFR_LOAD_SBM2_PAR
19 19
20 20 // TC_LFR_UPDATE_INFO
21 21 #define BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 34
22 22 #define BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 35
23 23
24 24 // TC_LFR_ENTER_MODE
25 25 #define BYTE_POS_CP_MODE_LFR_SET 11
26 26 #define BYTE_POS_CP_LFR_ENTER_MODE_TIME 12
27 27
28 28 #endif // TM_BYTE_POSITIONS_H
@@ -1,57 +1,59
1 1 #ifndef FSW_PARAMS_PROCESSING_H
2 2 #define FSW_PARAMS_PROCESSING_H
3 3
4 4 #define NB_BINS_PER_SM 128
5 5 #define NB_VALUES_PER_SM 25
6 6 #define TOTAL_SIZE_SM 3200 // 25 * 128
7 7 #define TOTAL_SIZE_BP1_F0 99 // 11 * 9 = 99
8 8 #define TOTAL_SIZE_BP1_F1 117 // 13 * 9 = 117
9 9 #define TOTAL_SIZE_BP1_F2 108 // 12 * 9 = 108
10 10 //
11 11 #define NB_RING_NODES_ASM_F0 12 // AT LEAST 3
12 12 #define NB_RING_NODES_ASM_F1 2 // AT LEAST 3
13 13 #define NB_RING_NODES_ASM_F2 2 // AT LEAST 3
14 14 //
15 15 #define NB_BINS_PER_ASM_F0 88
16 16 #define NB_BINS_PER_PKT_ASM_F0 44
17 17 #define TOTAL_SIZE_ASM_F0_IN_BYTES 4400 // 25 * 88 * 2
18 18 #define ASM_F0_INDICE_START 17 // 88 bins
19 19 #define ASM_F0_INDICE_STOP 104 // 2 packets of 44 bins
20 20 //
21 21 #define NB_BINS_PER_ASM_F1 104
22 22 #define NB_BINS_PER_PKT_ASM_F1 52
23 23 #define TOTAL_SIZE_ASM_F1 2600 // 25 * 104
24 24 #define ASM_F1_INDICE_START 6 // 104 bins
25 25 #define ASM_F1_INDICE_STOP 109 // 2 packets of 52 bins
26 26 //
27 27 #define NB_BINS_PER_ASM_F2 96
28 28 #define NB_BINS_PER_PKT_ASM_F2 48
29 29 #define TOTAL_SIZE_ASM_F2 2400 // 25 * 96
30 30 #define ASM_F2_INDICE_START 7 // 96 bins
31 31 #define ASM_F2_INDICE_STOP 102 // 2 packets of 48 bins
32 32 //
33 33 #define NB_BINS_COMPRESSED_SM_F0 11
34 34 #define NB_BINS_COMPRESSED_SM_F1 13
35 35 #define NB_BINS_COMPRESSED_SM_F2 12
36 36 //
37 37 #define NB_BINS_TO_AVERAGE_ASM_F0 8
38 38 #define NB_BINS_TO_AVERAGE_ASM_F1 8
39 39 #define NB_BINS_TO_AVERAGE_ASM_F2 8
40 40 //
41 #define TOTAL_SIZE_COMPRESSED_ASM_F0 275 // 11 * 25
42 #define TOTAL_SIZE_COMPRESSED_ASM_F1 325 // 13 * 25
43 #define TOTAL_SIZE_COMPRESSED_ASM_F2 300 // 12 * 25
44 #define NB_AVERAGE_NORMAL_f0 96*4
41 #define TOTAL_SIZE_COMPRESSED_ASM_F0 275 // 11 * 25 WORDS
42 #define TOTAL_SIZE_COMPRESSED_ASM_F1 325 // 13 * 25 WORDS
43 #define TOTAL_SIZE_COMPRESSED_ASM_F2 300 // 12 * 25 WORDS
44 #define TOTAL_SIZE_COMPRESSED_ASM_SBM1 550 // 22 * 25 WORDS
45 #define NB_AVERAGE_NORMAL_f0 384 // 96 * 4
46 #define NB_AVERAGE_SBM1_f0 24 // 24 matrices at f0 = 0.25 second
45 47 #define NB_SM_TO_RECEIVE_BEFORE_AVF0 8
46 48
47 49 typedef struct {
48 50 volatile unsigned char PE[2];
49 51 volatile unsigned char PB[2];
50 52 volatile unsigned char V0;
51 53 volatile unsigned char V1;
52 54 volatile unsigned char V2_ELLIP_DOP;
53 55 volatile unsigned char SZ;
54 56 volatile unsigned char VPHI;
55 57 } BP1_t;
56 58
57 59 #endif // FSW_PARAMS_PROCESSING_H
@@ -1,54 +1,57
1 1 #ifndef FSW_PROCESSING_H_INCLUDED
2 2 #define FSW_PROCESSING_H_INCLUDED
3 3
4 4 #include <rtems.h>
5 5 #include <grspw.h>
6 6 #include <math.h>
7 7 #include <stdlib.h> // abs() is in the stdlib
8 8 #include <stdio.h> // printf()
9 9 #include <math.h>
10 10
11 11 #include "fsw_params.h"
12 12 #include "fsw_spacewire.h"
13 13
14 14 extern volatile int sm_f0[ ];
15 15 extern volatile int sm_f1[ ];
16 16 extern volatile int sm_f2[ ];
17 17
18 18 // parameters
19 19 extern struct param_local_str param_local;
20 20
21 21 // registers
22 22 extern time_management_regs_t *time_management_regs;
23 23 extern spectral_matrix_regs_t *spectral_matrix_regs;
24 24
25 25 extern rtems_name misc_name[5];
26 26 extern rtems_id Task_id[20]; /* array of task ids */
27 27
28 28 void init_sm_rings( void );
29 29 void reset_current_sm_ring_nodes( void );
30 30
31 31 // ISR
32 32 void reset_nb_sm_f0( void );
33 33 rtems_isr spectral_matrices_isr( rtems_vector_number vector );
34 34 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector );
35 35
36 36 // RTEMS TASKS
37 37 rtems_task avf0_task(rtems_task_argument argument);
38 38 rtems_task smiq_task(rtems_task_argument argument); // added to test the spectral matrix simulator
39 39 rtems_task matr_task(rtems_task_argument argument);
40 40
41 void matrix_reset(volatile float *averaged_spec_mat);
42 41 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1);
43 42 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat);
44 43 //
45 44 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header);
45 void matrix_reset(volatile float *averaged_spec_mat);
46 void ASM_average(float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
47 ring_node_sm *ring_node_tab[],
48 unsigned int firstTimeF0, unsigned int firstTimeF1 );
46 49 void ASM_reorganize( float *averaged_spec_mat, float *averaged_spec_mat_reorganized );
47 50 void ASM_compress( float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat );
48 51 void ASM_convert(volatile float *input_matrix, char *output_matrix);
49 52 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
50 53 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id);
51 54 void fill_averaged_spectral_matrix( void );
52 55 void reset_spectral_matrix_regs();
53 56
54 57 #endif // FSW_PROCESSING_H_INCLUDED
@@ -1,644 +1,644
1 1 /** This is the RTEMS initialization module.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * This module contains two very different information:
7 7 * - specific instructions to configure the compilation of the RTEMS executive
8 8 * - functions related to the fligth softwre initialization, especially the INIT RTEMS task
9 9 *
10 10 */
11 11
12 12 //*************************
13 13 // GPL reminder to be added
14 14 //*************************
15 15
16 16 #include <rtems.h>
17 17
18 18 /* configuration information */
19 19
20 20 #define CONFIGURE_INIT
21 21
22 22 #include <bsp.h> /* for device driver prototypes */
23 23
24 24 /* configuration information */
25 25
26 26 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
27 27 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
28 28
29 29 #define CONFIGURE_MAXIMUM_TASKS 20
30 30 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
31 31 #define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)
32 32 #define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 32
33 33 #define CONFIGURE_INIT_TASK_PRIORITY 1 // instead of 100
34 34 #define CONFIGURE_INIT_TASK_MODE (RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT)
35 35 #define CONFIGURE_MAXIMUM_DRIVERS 16
36 36 #define CONFIGURE_MAXIMUM_PERIODS 5
37 37 #define CONFIGURE_MAXIMUM_TIMERS 5 // STAT (1s), send SWF (0.3s), send CWF3 (1s)
38 38 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 2
39 39 #ifdef PRINT_STACK_REPORT
40 40 #define CONFIGURE_STACK_CHECKER_ENABLED
41 41 #endif
42 42
43 43 #include <rtems/confdefs.h>
44 44
45 45 /* If --drvmgr was enabled during the configuration of the RTEMS kernel */
46 46 #ifdef RTEMS_DRVMGR_STARTUP
47 47 #ifdef LEON3
48 48 /* Add Timer and UART Driver */
49 49 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
50 50 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
51 51 #endif
52 52 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
53 53 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
54 54 #endif
55 55 #endif
56 56 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW /* GRSPW Driver */
57 57 #include <drvmgr/drvmgr_confdefs.h>
58 58 #endif
59 59
60 60 #include "fsw_init.h"
61 61 #include "fsw_config.c"
62 62
63 63 rtems_task Init( rtems_task_argument ignored )
64 64 {
65 65 /** This is the RTEMS INIT taks, it the first task launched by the system.
66 66 *
67 67 * @param unused is the starting argument of the RTEMS task
68 68 *
69 69 * The INIT task create and run all other RTEMS tasks.
70 70 *
71 71 */
72 72
73 73 reset_local_time();
74 74
75 75 rtems_status_code status;
76 76 rtems_status_code status_spw;
77 77 rtems_isr_entry old_isr_handler;
78 78
79 79 // UART settings
80 80 send_console_outputs_on_apbuart_port();
81 81 set_apbuart_scaler_reload_register(REGS_ADDR_APBUART, APBUART_SCALER_RELOAD_VALUE);
82 82 enable_apbuart_transmitter();
83 83 DEBUG_PRINTF("\n\n\n\n\nIn INIT *** Now the console is on port COM1\n")
84 84
85 85 PRINTF("\n\n\n\n\n")
86 86 PRINTF("*************************\n")
87 87 PRINTF("** LFR Flight Software **\n")
88 88 PRINTF1("** %d.", SW_VERSION_N1)
89 89 PRINTF1("%d.", SW_VERSION_N2)
90 90 PRINTF1("%d.", SW_VERSION_N3)
91 91 PRINTF1("%d **\n", SW_VERSION_N4)
92 92 PRINTF("*************************\n")
93 93 PRINTF("\n\n")
94 94
95 95 init_parameter_dump();
96 96 init_local_mode_parameters();
97 97 init_housekeeping_parameters();
98 98
99 99 init_waveform_rings(); // initialize the waveform rings
100 100 init_sm_rings(); // initialize spectral matrices rings
101 101
102 102 reset_wfp_burst_enable();
103 103 reset_wfp_status();
104 104 set_wfp_data_shaping();
105 105
106 106 updateLFRCurrentMode();
107 107
108 108 BOOT_PRINTF1("in INIT *** lfrCurrentMode is %d\n", lfrCurrentMode)
109 109
110 110 create_names(); // create all names
111 111
112 112 status = create_message_queues(); // create message queues
113 113 if (status != RTEMS_SUCCESSFUL)
114 114 {
115 115 PRINTF1("in INIT *** ERR in create_message_queues, code %d", status)
116 116 }
117 117
118 118 status = create_all_tasks(); // create all tasks
119 119 if (status != RTEMS_SUCCESSFUL)
120 120 {
121 121 PRINTF1("in INIT *** ERR in create_all_tasks, code %d", status)
122 122 }
123 123
124 124 // **************************
125 125 // <SPACEWIRE INITIALIZATION>
126 126 grspw_timecode_callback = &timecode_irq_handler;
127 127
128 128 status_spw = spacewire_open_link(); // (1) open the link
129 129 if ( status_spw != RTEMS_SUCCESSFUL )
130 130 {
131 131 PRINTF1("in INIT *** ERR spacewire_open_link code %d\n", status_spw )
132 132 }
133 133
134 134 if ( status_spw == RTEMS_SUCCESSFUL ) // (2) configure the link
135 135 {
136 136 status_spw = spacewire_configure_link( fdSPW );
137 137 if ( status_spw != RTEMS_SUCCESSFUL )
138 138 {
139 139 PRINTF1("in INIT *** ERR spacewire_configure_link code %d\n", status_spw )
140 140 }
141 141 }
142 142
143 143 if ( status_spw == RTEMS_SUCCESSFUL) // (3) start the link
144 144 {
145 145 status_spw = spacewire_start_link( fdSPW );
146 146 if ( status_spw != RTEMS_SUCCESSFUL )
147 147 {
148 148 PRINTF1("in INIT *** ERR spacewire_start_link code %d\n", status_spw )
149 149 }
150 150 }
151 151 // </SPACEWIRE INITIALIZATION>
152 152 // ***************************
153 153
154 154 status = start_all_tasks(); // start all tasks
155 155 if (status != RTEMS_SUCCESSFUL)
156 156 {
157 157 PRINTF1("in INIT *** ERR in start_all_tasks, code %d", status)
158 158 }
159 159
160 160 // start RECV and SEND *AFTER* SpaceWire Initialization, due to the timeout of the start call during the initialization
161 161 status = start_recv_send_tasks();
162 162 if ( status != RTEMS_SUCCESSFUL )
163 163 {
164 164 PRINTF1("in INIT *** ERR start_recv_send_tasks code %d\n", status )
165 165 }
166 166
167 167 // suspend science tasks, they will be restarted later depending on the mode
168 168 status = suspend_science_tasks(); // suspend science tasks (not done in stop_current_mode if current mode = STANDBY)
169 169 if (status != RTEMS_SUCCESSFUL)
170 170 {
171 171 PRINTF1("in INIT *** in suspend_science_tasks *** ERR code: %d\n", status)
172 172 }
173 173
174 174 //******************************
175 175 // <SPECTRAL MATRICES SIMULATOR>
176 176 LEON_Mask_interrupt( IRQ_SM_SIMULATOR );
177 177 configure_timer((gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR, CLKDIV_SM_SIMULATOR,
178 178 IRQ_SPARC_SM_SIMULATOR, spectral_matrices_isr_simu );
179 179 // </SPECTRAL MATRICES SIMULATOR>
180 180 //*******************************
181 181
182 182 // configure IRQ handling for the waveform picker unit
183 183 status = rtems_interrupt_catch( waveforms_isr,
184 184 IRQ_SPARC_WAVEFORM_PICKER,
185 185 &old_isr_handler) ;
186 186 // configure IRQ handling for the spectral matrices unit
187 187 status = rtems_interrupt_catch( spectral_matrices_isr,
188 188 IRQ_SPARC_SPECTRAL_MATRIX,
189 189 &old_isr_handler) ;
190 190
191 191 // if the spacewire link is not up then send an event to the SPIQ task for link recovery
192 192 if ( status_spw != RTEMS_SUCCESSFUL )
193 193 {
194 194 status = rtems_event_send( Task_id[TASKID_SPIQ], SPW_LINKERR_EVENT );
195 195 if ( status != RTEMS_SUCCESSFUL ) {
196 196 PRINTF1("in INIT *** ERR rtems_event_send to SPIQ code %d\n", status )
197 197 }
198 198 }
199 199
200 200 BOOT_PRINTF("delete INIT\n")
201 201
202 202 send_dumb_hk();
203 203
204 204 status = rtems_task_delete(RTEMS_SELF);
205 205
206 206 }
207 207
208 208 void init_local_mode_parameters( void )
209 209 {
210 210 /** This function initialize the param_local global variable with default values.
211 211 *
212 212 */
213 213
214 214 unsigned int i;
215 215
216 216 // LOCAL PARAMETERS
217 217 set_local_nb_interrupt_f0_MAX();
218 218
219 219 BOOT_PRINTF1("local_sbm1_nb_cwf_max %d \n", param_local.local_sbm1_nb_cwf_max)
220 220 BOOT_PRINTF1("local_sbm2_nb_cwf_max %d \n", param_local.local_sbm2_nb_cwf_max)
221 221 BOOT_PRINTF1("nb_interrupt_f0_MAX = %d\n", param_local.local_nb_interrupt_f0_MAX)
222 222
223 223 // init sequence counters
224 224
225 225 for(i = 0; i<SEQ_CNT_NB_DEST_ID; i++)
226 226 {
227 227 sequenceCounters_TC_EXE[i] = 0x00;
228 228 }
229 229 sequenceCounters_SCIENCE_NORMAL_BURST = 0x00;
230 230 sequenceCounters_SCIENCE_SBM1_SBM2 = 0x00;
231 231 }
232 232
233 233 void reset_local_time( void )
234 234 {
235 time_management_regs->coarse_time_load = 0x80000000;
235 time_management_regs->ctrl = 0x02; // software reset, coarse time = 0x80000000
236 236 }
237 237
238 238 void create_names( void ) // create all names for tasks and queues
239 239 {
240 240 /** This function creates all RTEMS names used in the software for tasks and queues.
241 241 *
242 242 * @return RTEMS directive status codes:
243 243 * - RTEMS_SUCCESSFUL - successful completion
244 244 *
245 245 */
246 246
247 247 // task names
248 248 Task_name[TASKID_RECV] = rtems_build_name( 'R', 'E', 'C', 'V' );
249 249 Task_name[TASKID_ACTN] = rtems_build_name( 'A', 'C', 'T', 'N' );
250 250 Task_name[TASKID_SPIQ] = rtems_build_name( 'S', 'P', 'I', 'Q' );
251 251 Task_name[TASKID_SMIQ] = rtems_build_name( 'S', 'M', 'I', 'Q' );
252 252 Task_name[TASKID_STAT] = rtems_build_name( 'S', 'T', 'A', 'T' );
253 253 Task_name[TASKID_AVF0] = rtems_build_name( 'A', 'V', 'F', '0' );
254 254 Task_name[TASKID_SWBD] = rtems_build_name( 'S', 'W', 'B', 'D' );
255 255 Task_name[TASKID_WFRM] = rtems_build_name( 'W', 'F', 'R', 'M' );
256 256 Task_name[TASKID_DUMB] = rtems_build_name( 'D', 'U', 'M', 'B' );
257 257 Task_name[TASKID_HOUS] = rtems_build_name( 'H', 'O', 'U', 'S' );
258 258 Task_name[TASKID_MATR] = rtems_build_name( 'M', 'A', 'T', 'R' );
259 259 Task_name[TASKID_CWF3] = rtems_build_name( 'C', 'W', 'F', '3' );
260 260 Task_name[TASKID_CWF2] = rtems_build_name( 'C', 'W', 'F', '2' );
261 261 Task_name[TASKID_CWF1] = rtems_build_name( 'C', 'W', 'F', '1' );
262 262 Task_name[TASKID_SEND] = rtems_build_name( 'S', 'E', 'N', 'D' );
263 263 Task_name[TASKID_WTDG] = rtems_build_name( 'W', 'T', 'D', 'G' );
264 264
265 265 // rate monotonic period names
266 266 name_hk_rate_monotonic = rtems_build_name( 'H', 'O', 'U', 'S' );
267 267
268 268 misc_name[QUEUE_RECV] = rtems_build_name( 'Q', '_', 'R', 'V' );
269 269 misc_name[QUEUE_SEND] = rtems_build_name( 'Q', '_', 'S', 'D' );
270 270 }
271 271
272 272 int create_all_tasks( void ) // create all tasks which run in the software
273 273 {
274 274 /** This function creates all RTEMS tasks used in the software.
275 275 *
276 276 * @return RTEMS directive status codes:
277 277 * - RTEMS_SUCCESSFUL - task created successfully
278 278 * - RTEMS_INVALID_ADDRESS - id is NULL
279 279 * - RTEMS_INVALID_NAME - invalid task name
280 280 * - RTEMS_INVALID_PRIORITY - invalid task priority
281 281 * - RTEMS_MP_NOT_CONFIGURED - multiprocessing not configured
282 282 * - RTEMS_TOO_MANY - too many tasks created
283 283 * - RTEMS_UNSATISFIED - not enough memory for stack/FP context
284 284 * - RTEMS_TOO_MANY - too many global objects
285 285 *
286 286 */
287 287
288 288 rtems_status_code status;
289 289
290 290 //**********
291 291 // SPACEWIRE
292 292 // RECV
293 293 status = rtems_task_create(
294 294 Task_name[TASKID_RECV], TASK_PRIORITY_RECV, RTEMS_MINIMUM_STACK_SIZE,
295 295 RTEMS_DEFAULT_MODES,
296 296 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_RECV]
297 297 );
298 298 if (status == RTEMS_SUCCESSFUL) // SEND
299 299 {
300 300 status = rtems_task_create(
301 301 Task_name[TASKID_SEND], TASK_PRIORITY_SEND, RTEMS_MINIMUM_STACK_SIZE,
302 302 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
303 303 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SEND]
304 304 );
305 305 }
306 306 if (status == RTEMS_SUCCESSFUL) // WTDG
307 307 {
308 308 status = rtems_task_create(
309 309 Task_name[TASKID_WTDG], TASK_PRIORITY_WTDG, RTEMS_MINIMUM_STACK_SIZE,
310 310 RTEMS_DEFAULT_MODES,
311 311 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_WTDG]
312 312 );
313 313 }
314 314 if (status == RTEMS_SUCCESSFUL) // ACTN
315 315 {
316 316 status = rtems_task_create(
317 317 Task_name[TASKID_ACTN], TASK_PRIORITY_ACTN, RTEMS_MINIMUM_STACK_SIZE,
318 318 RTEMS_DEFAULT_MODES,
319 319 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_ACTN]
320 320 );
321 321 }
322 322 if (status == RTEMS_SUCCESSFUL) // SPIQ
323 323 {
324 324 status = rtems_task_create(
325 325 Task_name[TASKID_SPIQ], TASK_PRIORITY_SPIQ, RTEMS_MINIMUM_STACK_SIZE,
326 326 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
327 327 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SPIQ]
328 328 );
329 329 }
330 330
331 331 //******************
332 332 // SPECTRAL MATRICES
333 333 if (status == RTEMS_SUCCESSFUL) // SMIQ
334 334 {
335 335 status = rtems_task_create(
336 336 Task_name[TASKID_SMIQ], TASK_PRIORITY_SMIQ, RTEMS_MINIMUM_STACK_SIZE,
337 337 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
338 338 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_SMIQ]
339 339 );
340 340 }
341 341 if (status == RTEMS_SUCCESSFUL) // AVF0
342 342 {
343 343 status = rtems_task_create(
344 344 Task_name[TASKID_AVF0], TASK_PRIORITY_AVF0, RTEMS_MINIMUM_STACK_SIZE,
345 345 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
346 346 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_AVF0]
347 347 );
348 348 }
349 349 if (status == RTEMS_SUCCESSFUL) // MATR
350 350 {
351 351 status = rtems_task_create(
352 352 Task_name[TASKID_MATR], TASK_PRIORITY_MATR, RTEMS_MINIMUM_STACK_SIZE,
353 353 RTEMS_DEFAULT_MODES,
354 354 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_MATR]
355 355 );
356 356 }
357 357
358 358 //****************
359 359 // WAVEFORM PICKER
360 360 if (status == RTEMS_SUCCESSFUL) // WFRM
361 361 {
362 362 status = rtems_task_create(
363 363 Task_name[TASKID_WFRM], TASK_PRIORITY_WFRM, RTEMS_MINIMUM_STACK_SIZE,
364 364 RTEMS_DEFAULT_MODES,
365 365 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_WFRM]
366 366 );
367 367 }
368 368 if (status == RTEMS_SUCCESSFUL) // CWF3
369 369 {
370 370 status = rtems_task_create(
371 371 Task_name[TASKID_CWF3], TASK_PRIORITY_CWF3, RTEMS_MINIMUM_STACK_SIZE,
372 372 RTEMS_DEFAULT_MODES,
373 373 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF3]
374 374 );
375 375 }
376 376 if (status == RTEMS_SUCCESSFUL) // CWF2
377 377 {
378 378 status = rtems_task_create(
379 379 Task_name[TASKID_CWF2], TASK_PRIORITY_CWF2, RTEMS_MINIMUM_STACK_SIZE,
380 380 RTEMS_DEFAULT_MODES,
381 381 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF2]
382 382 );
383 383 }
384 384 if (status == RTEMS_SUCCESSFUL) // CWF1
385 385 {
386 386 status = rtems_task_create(
387 387 Task_name[TASKID_CWF1], TASK_PRIORITY_CWF1, RTEMS_MINIMUM_STACK_SIZE,
388 388 RTEMS_DEFAULT_MODES,
389 389 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_CWF1]
390 390 );
391 391 }
392 392 if (status == RTEMS_SUCCESSFUL) // SWBD
393 393 {
394 394 status = rtems_task_create(
395 395 Task_name[TASKID_SWBD], TASK_PRIORITY_SWBD, RTEMS_MINIMUM_STACK_SIZE,
396 396 RTEMS_DEFAULT_MODES,
397 397 RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &Task_id[TASKID_SWBD]
398 398 );
399 399 }
400 400
401 401 //*****
402 402 // MISC
403 403 if (status == RTEMS_SUCCESSFUL) // STAT
404 404 {
405 405 status = rtems_task_create(
406 406 Task_name[TASKID_STAT], TASK_PRIORITY_STAT, RTEMS_MINIMUM_STACK_SIZE,
407 407 RTEMS_DEFAULT_MODES,
408 408 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_STAT]
409 409 );
410 410 }
411 411 if (status == RTEMS_SUCCESSFUL) // DUMB
412 412 {
413 413 status = rtems_task_create(
414 414 Task_name[TASKID_DUMB], TASK_PRIORITY_DUMB, RTEMS_MINIMUM_STACK_SIZE,
415 415 RTEMS_DEFAULT_MODES,
416 416 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_DUMB]
417 417 );
418 418 }
419 419 if (status == RTEMS_SUCCESSFUL) // HOUS
420 420 {
421 421 status = rtems_task_create(
422 422 Task_name[TASKID_HOUS], TASK_PRIORITY_HOUS, RTEMS_MINIMUM_STACK_SIZE,
423 423 RTEMS_DEFAULT_MODES | RTEMS_NO_PREEMPT,
424 424 RTEMS_DEFAULT_ATTRIBUTES, &Task_id[TASKID_HOUS]
425 425 );
426 426 }
427 427
428 428 return status;
429 429 }
430 430
431 431 int start_recv_send_tasks( void )
432 432 {
433 433 rtems_status_code status;
434 434
435 435 status = rtems_task_start( Task_id[TASKID_RECV], recv_task, 1 );
436 436 if (status!=RTEMS_SUCCESSFUL) {
437 437 BOOT_PRINTF("in INIT *** Error starting TASK_RECV\n")
438 438 }
439 439
440 440 if (status == RTEMS_SUCCESSFUL) // SEND
441 441 {
442 442 status = rtems_task_start( Task_id[TASKID_SEND], send_task, 1 );
443 443 if (status!=RTEMS_SUCCESSFUL) {
444 444 BOOT_PRINTF("in INIT *** Error starting TASK_SEND\n")
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int start_all_tasks( void ) // start all tasks except SEND RECV and HOUS
452 452 {
453 453 /** This function starts all RTEMS tasks used in the software.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - ask started successfully
457 457 * - RTEMS_INVALID_ADDRESS - invalid task entry point
458 458 * - RTEMS_INVALID_ID - invalid task id
459 459 * - RTEMS_INCORRECT_STATE - task not in the dormant state
460 460 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot start remote task
461 461 *
462 462 */
463 463 // starts all the tasks fot eh flight software
464 464
465 465 rtems_status_code status;
466 466
467 467 //**********
468 468 // SPACEWIRE
469 469 status = rtems_task_start( Task_id[TASKID_SPIQ], spiq_task, 1 );
470 470 if (status!=RTEMS_SUCCESSFUL) {
471 471 BOOT_PRINTF("in INIT *** Error starting TASK_SPIQ\n")
472 472 }
473 473
474 474 if (status == RTEMS_SUCCESSFUL) // WTDG
475 475 {
476 476 status = rtems_task_start( Task_id[TASKID_WTDG], wtdg_task, 1 );
477 477 if (status!=RTEMS_SUCCESSFUL) {
478 478 BOOT_PRINTF("in INIT *** Error starting TASK_WTDG\n")
479 479 }
480 480 }
481 481
482 482 if (status == RTEMS_SUCCESSFUL) // ACTN
483 483 {
484 484 status = rtems_task_start( Task_id[TASKID_ACTN], actn_task, 1 );
485 485 if (status!=RTEMS_SUCCESSFUL) {
486 486 BOOT_PRINTF("in INIT *** Error starting TASK_ACTN\n")
487 487 }
488 488 }
489 489
490 490 //******************
491 491 // SPECTRAL MATRICES
492 492 if (status == RTEMS_SUCCESSFUL) // SMIQ
493 493 {
494 494 status = rtems_task_start( Task_id[TASKID_SMIQ], smiq_task, 1 );
495 495 if (status!=RTEMS_SUCCESSFUL) {
496 496 BOOT_PRINTF("in INIT *** Error starting TASK_BPPR\n")
497 497 }
498 498 }
499 499
500 500 if (status == RTEMS_SUCCESSFUL) // AVF0
501 501 {
502 502 status = rtems_task_start( Task_id[TASKID_AVF0], avf0_task, 1 );
503 503 if (status!=RTEMS_SUCCESSFUL) {
504 504 BOOT_PRINTF("in INIT *** Error starting TASK_AVF0\n")
505 505 }
506 506 }
507 507
508 508 if (status == RTEMS_SUCCESSFUL) // MATR
509 509 {
510 510 status = rtems_task_start( Task_id[TASKID_MATR], matr_task, 1 );
511 511 if (status!=RTEMS_SUCCESSFUL) {
512 512 BOOT_PRINTF("in INIT *** Error starting TASK_MATR\n")
513 513 }
514 514 }
515 515
516 516 //****************
517 517 // WAVEFORM PICKER
518 518 if (status == RTEMS_SUCCESSFUL) // WFRM
519 519 {
520 520 status = rtems_task_start( Task_id[TASKID_WFRM], wfrm_task, 1 );
521 521 if (status!=RTEMS_SUCCESSFUL) {
522 522 BOOT_PRINTF("in INIT *** Error starting TASK_WFRM\n")
523 523 }
524 524 }
525 525
526 526 if (status == RTEMS_SUCCESSFUL) // CWF3
527 527 {
528 528 status = rtems_task_start( Task_id[TASKID_CWF3], cwf3_task, 1 );
529 529 if (status!=RTEMS_SUCCESSFUL) {
530 530 BOOT_PRINTF("in INIT *** Error starting TASK_CWF3\n")
531 531 }
532 532 }
533 533
534 534 if (status == RTEMS_SUCCESSFUL) // CWF2
535 535 {
536 536 status = rtems_task_start( Task_id[TASKID_CWF2], cwf2_task, 1 );
537 537 if (status!=RTEMS_SUCCESSFUL) {
538 538 BOOT_PRINTF("in INIT *** Error starting TASK_CWF2\n")
539 539 }
540 540 }
541 541
542 542 if (status == RTEMS_SUCCESSFUL) // CWF1
543 543 {
544 544 status = rtems_task_start( Task_id[TASKID_CWF1], cwf1_task, 1 );
545 545 if (status!=RTEMS_SUCCESSFUL) {
546 546 BOOT_PRINTF("in INIT *** Error starting TASK_CWF1\n")
547 547 }
548 548 }
549 549
550 550 if (status == RTEMS_SUCCESSFUL) // SWBD
551 551 {
552 552 status = rtems_task_start( Task_id[TASKID_SWBD], swbd_task, 1 );
553 553 if (status!=RTEMS_SUCCESSFUL) {
554 554 BOOT_PRINTF("in INIT *** Error starting TASK_SWBD\n")
555 555 }
556 556 }
557 557
558 558 //*****
559 559 // MISC
560 560 if (status == RTEMS_SUCCESSFUL) // HOUS
561 561 {
562 562 status = rtems_task_start( Task_id[TASKID_HOUS], hous_task, 1 );
563 563 if (status!=RTEMS_SUCCESSFUL) {
564 564 BOOT_PRINTF("in INIT *** Error starting TASK_HOUS\n")
565 565 }
566 566 }
567 567
568 568 if (status == RTEMS_SUCCESSFUL) // DUMB
569 569 {
570 570 status = rtems_task_start( Task_id[TASKID_DUMB], dumb_task, 1 );
571 571 if (status!=RTEMS_SUCCESSFUL) {
572 572 BOOT_PRINTF("in INIT *** Error starting TASK_DUMB\n")
573 573 }
574 574 }
575 575
576 576 if (status == RTEMS_SUCCESSFUL) // STAT
577 577 {
578 578 status = rtems_task_start( Task_id[TASKID_STAT], stat_task, 1 );
579 579 if (status!=RTEMS_SUCCESSFUL) {
580 580 BOOT_PRINTF("in INIT *** Error starting TASK_STAT\n")
581 581 }
582 582 }
583 583
584 584 return status;
585 585 }
586 586
587 587 rtems_status_code create_message_queues( void ) // create the two message queues used in the software
588 588 {
589 589 rtems_status_code status_recv;
590 590 rtems_status_code status_send;
591 591 rtems_status_code ret;
592 592 rtems_id queue_id;
593 593
594 594 // create the queue for handling valid TCs
595 595 status_recv = rtems_message_queue_create( misc_name[QUEUE_RECV],
596 596 ACTION_MSG_QUEUE_COUNT, CCSDS_TC_PKT_MAX_SIZE,
597 597 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
598 598 if ( status_recv != RTEMS_SUCCESSFUL ) {
599 599 PRINTF1("in create_message_queues *** ERR creating QUEU queue, %d\n", status_recv)
600 600 }
601 601
602 602 // create the queue for handling TM packet sending
603 603 status_send = rtems_message_queue_create( misc_name[QUEUE_SEND],
604 604 ACTION_MSG_PKTS_COUNT, ACTION_MSG_PKTS_MAX_SIZE,
605 605 RTEMS_FIFO | RTEMS_LOCAL, &queue_id );
606 606 if ( status_send != RTEMS_SUCCESSFUL ) {
607 607 PRINTF1("in create_message_queues *** ERR creating PKTS queue, %d\n", status_send)
608 608 }
609 609
610 610 if ( status_recv != RTEMS_SUCCESSFUL )
611 611 {
612 612 ret = status_recv;
613 613 }
614 614 else
615 615 {
616 616 ret = status_send;
617 617 }
618 618
619 619 return ret;
620 620 }
621 621
622 622 rtems_status_code get_message_queue_id_send( rtems_id *queue_id )
623 623 {
624 624 rtems_status_code status;
625 625 rtems_name queue_name;
626 626
627 627 queue_name = rtems_build_name( 'Q', '_', 'S', 'D' );
628 628
629 629 status = rtems_message_queue_ident( queue_name, 0, queue_id );
630 630
631 631 return status;
632 632 }
633 633
634 634 rtems_status_code get_message_queue_id_recv( rtems_id *queue_id )
635 635 {
636 636 rtems_status_code status;
637 637 rtems_name queue_name;
638 638
639 639 queue_name = rtems_build_name( 'Q', '_', 'R', 'V' );
640 640
641 641 status = rtems_message_queue_ident( queue_name, 0, queue_id );
642 642
643 643 return status;
644 644 }
@@ -1,414 +1,420
1 1 /** General usage functions and RTEMS tasks.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 */
7 7
8 8 #include "fsw_misc.h"
9 9
10 10 void configure_timer(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider,
11 11 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
12 12 {
13 13 /** This function configures a GPTIMER timer instantiated in the VHDL design.
14 14 *
15 15 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
16 16 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
17 17 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
18 18 * @param interrupt_level is the interrupt level that the timer drives.
19 19 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
20 20 *
21 21 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
22 22 *
23 23 */
24 24
25 25 rtems_status_code status;
26 26 rtems_isr_entry old_isr_handler;
27 27
28 28 gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
29 29
30 30 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
31 31 if (status!=RTEMS_SUCCESSFUL)
32 32 {
33 33 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
34 34 }
35 35
36 36 timer_set_clock_divider( gptimer_regs, timer, clock_divider);
37 37 }
38 38
39 39 void timer_start(gptimer_regs_t *gptimer_regs, unsigned char timer)
40 40 {
41 41 /** This function starts a GPTIMER timer.
42 42 *
43 43 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
44 44 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
45 45 *
46 46 */
47 47
48 48 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
49 49 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
50 50 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
51 51 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
52 52 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
53 53 }
54 54
55 55 void timer_stop(gptimer_regs_t *gptimer_regs, unsigned char timer)
56 56 {
57 57 /** This function stops a GPTIMER timer.
58 58 *
59 59 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
60 60 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
61 61 *
62 62 */
63 63
64 64 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
65 65 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
66 66 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
67 67 }
68 68
69 69 void timer_set_clock_divider(gptimer_regs_t *gptimer_regs, unsigned char timer, unsigned int clock_divider)
70 70 {
71 71 /** This function sets the clock divider of a GPTIMER timer.
72 72 *
73 73 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
74 74 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
75 75 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
76 76 *
77 77 */
78 78
79 79 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
80 80 }
81 81
82 82 int send_console_outputs_on_apbuart_port( void ) // Send the console outputs on the apbuart port
83 83 {
84 84 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
85 85
86 86 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
87 87
88 88 return 0;
89 89 }
90 90
91 91 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
92 92 {
93 93 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
94 94
95 95 apbuart_regs->ctrl = apbuart_regs->ctrl | APBUART_CTRL_REG_MASK_TE;
96 96
97 97 return 0;
98 98 }
99 99
100 100 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
101 101 {
102 102 /** This function sets the scaler reload register of the apbuart module
103 103 *
104 104 * @param regs is the address of the apbuart registers in memory
105 105 * @param value is the value that will be stored in the scaler register
106 106 *
107 107 * The value shall be set by the software to get data on the serial interface.
108 108 *
109 109 */
110 110
111 111 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
112 112
113 113 apbuart_regs->scaler = value;
114 114 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
115 115 }
116 116
117 117 //************
118 118 // RTEMS TASKS
119 119
120 120 rtems_task stat_task(rtems_task_argument argument)
121 121 {
122 122 int i;
123 123 int j;
124 124 i = 0;
125 125 j = 0;
126 126 BOOT_PRINTF("in STAT *** \n")
127 127 while(1){
128 128 rtems_task_wake_after(1000);
129 129 PRINTF1("%d\n", j)
130 130 if (i == CPU_USAGE_REPORT_PERIOD) {
131 131 // #ifdef PRINT_TASK_STATISTICS
132 132 // rtems_cpu_usage_report();
133 133 // rtems_cpu_usage_reset();
134 134 // #endif
135 135 i = 0;
136 136 }
137 137 else i++;
138 138 j++;
139 139 }
140 140 }
141 141
142 142 rtems_task hous_task(rtems_task_argument argument)
143 143 {
144 144 rtems_status_code status;
145 145 rtems_id queue_id;
146 146 rtems_rate_monotonic_period_status period_status;
147 147
148 148 status = get_message_queue_id_send( &queue_id );
149 149 if (status != RTEMS_SUCCESSFUL)
150 150 {
151 151 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
152 152 }
153 153
154 154 BOOT_PRINTF("in HOUS ***\n")
155 155
156 156 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
157 157 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
158 158 if( status != RTEMS_SUCCESSFUL ) {
159 159 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status )
160 160 }
161 161 }
162 162
163 163 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
164 164 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
165 165 housekeeping_packet.reserved = DEFAULT_RESERVED;
166 166 housekeeping_packet.userApplication = CCSDS_USER_APP;
167 167 housekeeping_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8);
168 168 housekeeping_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK);
169 169 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
170 170 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
171 171 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
172 172 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
173 173 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
174 174 housekeeping_packet.serviceType = TM_TYPE_HK;
175 175 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
176 176 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
177 177 housekeeping_packet.sid = SID_HK;
178 178
179 179 status = rtems_rate_monotonic_cancel(HK_id);
180 180 if( status != RTEMS_SUCCESSFUL ) {
181 181 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status )
182 182 }
183 183 else {
184 184 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n")
185 185 }
186 186
187 187 // startup phase
188 188 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
189 189 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
190 190 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
191 191 while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
192 192 {
193 193 if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
194 194 {
195 195 break; // break if LFR is synchronized
196 196 }
197 197 else
198 198 {
199 199 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
200 200 sched_yield();
201 201 }
202 202 }
203 203 status = rtems_rate_monotonic_cancel(HK_id);
204 204 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
205 205
206 206 while(1){ // launch the rate monotonic task
207 207 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
208 208 if ( status != RTEMS_SUCCESSFUL ) {
209 209 PRINTF1( "in HOUS *** ERR period: %d\n", status);
210 210 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
211 211 }
212 212 else {
213 213 increment_seq_counter( housekeeping_packet.packetSequenceControl );
214 214 housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
215 215 housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
216 216 housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
217 217 housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
218 218 housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
219 219 housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
220 220
221 221 spacewire_update_statistics();
222 222
223 223 // SEND PACKET
224 224 status = rtems_message_queue_urgent( queue_id, &housekeeping_packet,
225 225 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
226 226 if (status != RTEMS_SUCCESSFUL) {
227 227 PRINTF1("in HOUS *** ERR send: %d\n", status)
228 228 }
229 229 }
230 230 }
231 231
232 232 PRINTF("in HOUS *** deleting task\n")
233 233
234 234 status = rtems_task_delete( RTEMS_SELF ); // should not return
235 235 printf( "rtems_task_delete returned with status of %d.\n", status );
236 236 return;
237 237 }
238 238
239 239 rtems_task dumb_task( rtems_task_argument unused )
240 240 {
241 241 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
242 242 *
243 243 * @param unused is the starting argument of the RTEMS task
244 244 *
245 245 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
246 246 *
247 247 */
248 248
249 249 unsigned int i;
250 250 unsigned int intEventOut;
251 251 unsigned int coarse_time = 0;
252 252 unsigned int fine_time = 0;
253 253 rtems_event_set event_out;
254 254
255 255 char *DumbMessages[10] = {"in DUMB *** default", // RTEMS_EVENT_0
256 256 "in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
257 257 "in DUMB *** waveforms_isr", // RTEMS_EVENT_2
258 258 "in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
259 259 "in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
260 260 "in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
261 261 "ERR HK", // RTEMS_EVENT_6
262 262 "ready for dump", // RTEMS_EVENT_7
263 263 "in DUMB *** spectral_matrices_isr", // RTEMS_EVENT_8
264 264 "tick" // RTEMS_EVENT_9
265 265 };
266 266
267 267 BOOT_PRINTF("in DUMB *** \n")
268 268
269 269 while(1){
270 270 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
271 271 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
272 272 | RTEMS_EVENT_8 | RTEMS_EVENT_9,
273 273 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
274 274 intEventOut = (unsigned int) event_out;
275 275 for ( i=0; i<32; i++)
276 276 {
277 277 if ( ((intEventOut >> i) & 0x0001) != 0)
278 278 {
279 279 coarse_time = time_management_regs->coarse_time;
280 280 fine_time = time_management_regs->fine_time;
281 281 printf("in DUMB *** coarse: %x, fine: %x, %s\n", coarse_time, fine_time, DumbMessages[i]);
282 282 }
283 283 }
284 284 }
285 285 }
286 286
287 287 //*****************************
288 288 // init housekeeping parameters
289 289
290 290 void init_housekeeping_parameters( void )
291 291 {
292 292 /** This function initialize the housekeeping_packet global variable with default values.
293 293 *
294 294 */
295 295
296 296 unsigned int i = 0;
297 297 unsigned char *parameters;
298 298
299 299 parameters = (unsigned char*) &housekeeping_packet.lfr_status_word;
300 300 for(i = 0; i< SIZE_HK_PARAMETERS; i++)
301 301 {
302 302 parameters[i] = 0x00;
303 303 }
304 304 // init status word
305 305 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
306 306 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
307 307 // init software version
308 308 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
309 309 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
310 310 housekeeping_packet.lfr_sw_version[2] = SW_VERSION_N3;
311 311 housekeeping_packet.lfr_sw_version[3] = SW_VERSION_N4;
312 312 // init fpga version
313 313 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
314 314 housekeeping_packet.lfr_fpga_version[0] = parameters[1]; // n1
315 315 housekeeping_packet.lfr_fpga_version[1] = parameters[2]; // n2
316 316 housekeeping_packet.lfr_fpga_version[2] = parameters[3]; // n3
317 317 }
318 318
319 319 void increment_seq_counter( unsigned char *packet_sequence_control)
320 320 {
321 321 /** This function increment the sequence counter psased in argument.
322 322 *
323 323 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
324 324 *
325 325 */
326 326
327 327 unsigned short sequence_cnt;
328 328 unsigned short segmentation_grouping_flag;
329 329 unsigned short new_packet_sequence_control;
330 330
331 331 segmentation_grouping_flag = (unsigned short) ( (packet_sequence_control[0] & 0xc0) << 8 ); // keep bits 7 downto 6
332 332 sequence_cnt = (unsigned short) (
333 333 ( (packet_sequence_control[0] & 0x3f) << 8 ) // keep bits 5 downto 0
334 334 + packet_sequence_control[1]
335 335 );
336 336
337 337 if ( sequence_cnt < SEQ_CNT_MAX)
338 338 {
339 339 sequence_cnt = sequence_cnt + 1;
340 340 }
341 341 else
342 342 {
343 343 sequence_cnt = 0;
344 344 }
345 345
346 346 new_packet_sequence_control = segmentation_grouping_flag | sequence_cnt ;
347 347
348 348 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
349 349 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
350 350 }
351 351
352 352 void getTime( unsigned char *time)
353 353 {
354 354 /** This function write the current local time in the time buffer passed in argument.
355 355 *
356 356 */
357 357
358 358 time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
359 359 time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
360 360 time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
361 361 time[3] = (unsigned char) (time_management_regs->coarse_time);
362 362 time[4] = (unsigned char) (time_management_regs->fine_time>>8);
363 363 time[5] = (unsigned char) (time_management_regs->fine_time);
364 364 }
365 365
366 366 void send_dumb_hk( void )
367 367 {
368 368 Packet_TM_LFR_HK_t dummy_hk_packet;
369 369 unsigned char *parameters;
370 370 unsigned int i;
371 371 rtems_id queue_id;
372 372
373 373 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
374 374 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
375 375 dummy_hk_packet.reserved = DEFAULT_RESERVED;
376 376 dummy_hk_packet.userApplication = CCSDS_USER_APP;
377 377 dummy_hk_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_HK >> 8);
378 378 dummy_hk_packet.packetID[1] = (unsigned char) (TM_PACKET_ID_HK);
379 379 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
380 380 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
381 381 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> 8);
382 382 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
383 383 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
384 384 dummy_hk_packet.serviceType = TM_TYPE_HK;
385 385 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
386 386 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
387 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
388 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
389 dummy_hk_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
390 dummy_hk_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
391 dummy_hk_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
392 dummy_hk_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
387 393 dummy_hk_packet.sid = SID_HK;
388 394
389 395 // init status word
390 396 dummy_hk_packet.lfr_status_word[0] = 0xff;
391 397 dummy_hk_packet.lfr_status_word[1] = 0xff;
392 398 // init software version
393 399 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
394 400 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
395 401 dummy_hk_packet.lfr_sw_version[2] = SW_VERSION_N3;
396 402 dummy_hk_packet.lfr_sw_version[3] = SW_VERSION_N4;
397 403 // init fpga version
398 404 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + 0xb0);
399 405 dummy_hk_packet.lfr_fpga_version[0] = parameters[1]; // n1
400 406 dummy_hk_packet.lfr_fpga_version[1] = parameters[2]; // n2
401 407 dummy_hk_packet.lfr_fpga_version[2] = parameters[3]; // n3
402 408
403 409 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
404 410
405 411 for (i=0; i<100; i++)
406 412 {
407 413 parameters[i] = 0xff;
408 414 }
409 415
410 416 get_message_queue_id_send( &queue_id );
411 417
412 418 rtems_message_queue_urgent( queue_id, &dummy_hk_packet,
413 419 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
414 420 }
@@ -1,766 +1,885
1 1 /** Functions related to data processing.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * These function are related to data processing, i.e. spectral matrices averaging and basic parameters computation.
7 7 *
8 8 */
9 9
10 10 #include <fsw_processing.h>
11 11
12 12 #include "fsw_processing_globals.c"
13 13
14 14 //************************
15 15 // spectral matrices rings
16 ring_node sm_ring_f0[NB_RING_NODES_ASM_F0];
17 ring_node sm_ring_f1[NB_RING_NODES_ASM_F1];
18 ring_node sm_ring_f2[NB_RING_NODES_ASM_F2];
19 ring_node *current_ring_node_sm_f0;
20 ring_node *ring_node_for_averaging_sm_f0;
21 ring_node *current_ring_node_sm_f1;
22 ring_node *current_ring_node_sm_f2;
16 ring_node_sm sm_ring_f0[NB_RING_NODES_ASM_F0];
17 ring_node_sm sm_ring_f1[NB_RING_NODES_ASM_F1];
18 ring_node_sm sm_ring_f2[NB_RING_NODES_ASM_F2];
19 ring_node_sm *current_ring_node_sm_f0;
20 ring_node_sm *ring_node_for_averaging_sm_f0;
21 ring_node_sm *current_ring_node_sm_f1;
22 ring_node_sm *current_ring_node_sm_f2;
23 23
24 24 BP1_t data_BP1[ NB_BINS_COMPRESSED_SM_F0 ];
25
26 //*****
27 // NORM
28 // F0
25 29 float averaged_sm_f0 [ TIME_OFFSET + TOTAL_SIZE_SM ];
26 30 float averaged_sm_f0_reorganized[ TIME_OFFSET + TOTAL_SIZE_SM ];
27 char averaged_sm_f0_char [ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_SM ];
31 char averaged_sm_f0_char [ TIME_OFFSET_IN_BYTES + (TOTAL_SIZE_SM * 2) ];
28 32 float compressed_sm_f0 [ TOTAL_SIZE_COMPRESSED_ASM_F0 ];
29 33
34 //*****
35 // SBM1
36 float averaged_sm_sbm1 [ TIME_OFFSET + TOTAL_SIZE_SM ];
37 float compressed_sm_sbm1 [ TOTAL_SIZE_COMPRESSED_ASM_SBM1 ];
38
30 39 unsigned char LFR_BP1_F0[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_BP1_F0 * 2 ];
31 40 unsigned char LFR_BP1_F1[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_BP1_F1 ];
32 41 unsigned char LFR_BP1_F2[ TIME_OFFSET_IN_BYTES + TOTAL_SIZE_BP1_F2 ];
33 42
34 43 unsigned int nb_sm_f0;
35 44
36 45 void init_sm_rings( void )
37 46 {
38 47 unsigned char i;
39 48
40 49 // F0 RING
41 sm_ring_f0[0].next = (ring_node*) &sm_ring_f0[1];
42 sm_ring_f0[0].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1];
50 sm_ring_f0[0].next = (ring_node_sm*) &sm_ring_f0[1];
51 sm_ring_f0[0].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_ASM_F0-1];
43 52 sm_ring_f0[0].buffer_address =
44 53 (int) &sm_f0[ 0 ];
45 54
46 sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node*) &sm_ring_f0[0];
47 sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2];
55 sm_ring_f0[NB_RING_NODES_ASM_F0-1].next = (ring_node_sm*) &sm_ring_f0[0];
56 sm_ring_f0[NB_RING_NODES_ASM_F0-1].previous = (ring_node_sm*) &sm_ring_f0[NB_RING_NODES_ASM_F0-2];
48 57 sm_ring_f0[NB_RING_NODES_ASM_F0-1].buffer_address =
49 58 (int) &sm_f0[ (NB_RING_NODES_ASM_F0-1) * TOTAL_SIZE_SM ];
50 59
51 60 for(i=1; i<NB_RING_NODES_ASM_F0-1; i++)
52 61 {
53 sm_ring_f0[i].next = (ring_node*) &sm_ring_f0[i+1];
54 sm_ring_f0[i].previous = (ring_node*) &sm_ring_f0[i-1];
62 sm_ring_f0[i].next = (ring_node_sm*) &sm_ring_f0[i+1];
63 sm_ring_f0[i].previous = (ring_node_sm*) &sm_ring_f0[i-1];
55 64 sm_ring_f0[i].buffer_address =
56 65 (int) &sm_f0[ i * TOTAL_SIZE_SM ];
57 66 }
58 67
59 68 // F1 RING
60 sm_ring_f1[0].next = (ring_node*) &sm_ring_f1[1];
61 sm_ring_f1[0].previous = (ring_node*) &sm_ring_f1[NB_RING_NODES_ASM_F1-1];
69 sm_ring_f1[0].next = (ring_node_sm*) &sm_ring_f1[1];
70 sm_ring_f1[0].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_ASM_F1-1];
62 71 sm_ring_f1[0].buffer_address =
63 72 (int) &sm_f1[ 0 ];
64 73
65 sm_ring_f1[NB_RING_NODES_ASM_F1-1].next = (ring_node*) &sm_ring_f1[0];
66 sm_ring_f1[NB_RING_NODES_ASM_F1-1].previous = (ring_node*) &sm_ring_f1[NB_RING_NODES_ASM_F1-2];
74 sm_ring_f1[NB_RING_NODES_ASM_F1-1].next = (ring_node_sm*) &sm_ring_f1[0];
75 sm_ring_f1[NB_RING_NODES_ASM_F1-1].previous = (ring_node_sm*) &sm_ring_f1[NB_RING_NODES_ASM_F1-2];
67 76 sm_ring_f1[NB_RING_NODES_ASM_F1-1].buffer_address =
68 77 (int) &sm_f1[ (NB_RING_NODES_ASM_F1-1) * TOTAL_SIZE_SM ];
69 78
70 79 for(i=1; i<NB_RING_NODES_ASM_F1-1; i++)
71 80 {
72 sm_ring_f1[i].next = (ring_node*) &sm_ring_f1[i+1];
73 sm_ring_f1[i].previous = (ring_node*) &sm_ring_f1[i-1];
81 sm_ring_f1[i].next = (ring_node_sm*) &sm_ring_f1[i+1];
82 sm_ring_f1[i].previous = (ring_node_sm*) &sm_ring_f1[i-1];
74 83 sm_ring_f1[i].buffer_address =
75 84 (int) &sm_f1[ i * TOTAL_SIZE_SM ];
76 85 }
77 86
78 87 // F2 RING
79 sm_ring_f2[0].next = (ring_node*) &sm_ring_f2[1];
80 sm_ring_f2[0].previous = (ring_node*) &sm_ring_f2[NB_RING_NODES_ASM_F2-1];
88 sm_ring_f2[0].next = (ring_node_sm*) &sm_ring_f2[1];
89 sm_ring_f2[0].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_ASM_F2-1];
81 90 sm_ring_f2[0].buffer_address =
82 91 (int) &sm_f2[ 0 ];
83 92
84 sm_ring_f2[NB_RING_NODES_ASM_F2-1].next = (ring_node*) &sm_ring_f2[0];
85 sm_ring_f2[NB_RING_NODES_ASM_F2-1].previous = (ring_node*) &sm_ring_f2[NB_RING_NODES_ASM_F2-2];
93 sm_ring_f2[NB_RING_NODES_ASM_F2-1].next = (ring_node_sm*) &sm_ring_f2[0];
94 sm_ring_f2[NB_RING_NODES_ASM_F2-1].previous = (ring_node_sm*) &sm_ring_f2[NB_RING_NODES_ASM_F2-2];
86 95 sm_ring_f2[NB_RING_NODES_ASM_F2-1].buffer_address =
87 96 (int) &sm_f2[ (NB_RING_NODES_ASM_F2-1) * TOTAL_SIZE_SM ];
88 97
89 98 for(i=1; i<NB_RING_NODES_ASM_F2-1; i++)
90 99 {
91 sm_ring_f2[i].next = (ring_node*) &sm_ring_f2[i+1];
92 sm_ring_f2[i].previous = (ring_node*) &sm_ring_f2[i-1];
100 sm_ring_f2[i].next = (ring_node_sm*) &sm_ring_f2[i+1];
101 sm_ring_f2[i].previous = (ring_node_sm*) &sm_ring_f2[i-1];
93 102 sm_ring_f2[i].buffer_address =
94 103 (int) &sm_f2[ i * TOTAL_SIZE_SM ];
95 104 }
96 105
97 106 DEBUG_PRINTF1("asm_ring_f0 @%x\n", (unsigned int) sm_ring_f0)
98 107 DEBUG_PRINTF1("asm_ring_f1 @%x\n", (unsigned int) sm_ring_f1)
99 108 DEBUG_PRINTF1("asm_ring_f2 @%x\n", (unsigned int) sm_ring_f2)
100 109
101 110 spectral_matrix_regs->matrixF0_Address0 = sm_ring_f0[0].buffer_address;
102 111 DEBUG_PRINTF1("spectral_matrix_regs->matrixF0_Address0 @%x\n", spectral_matrix_regs->matrixF0_Address0)
103 112 }
104 113
105 114 void reset_current_sm_ring_nodes( void )
106 115 {
107 116 current_ring_node_sm_f0 = sm_ring_f0;
108 117 current_ring_node_sm_f1 = sm_ring_f1;
109 118 current_ring_node_sm_f2 = sm_ring_f2;
110 119
111 120 ring_node_for_averaging_sm_f0 = sm_ring_f0;
112 121 }
113 122
114 123 //***********************************************************
115 124 // Interrupt Service Routine for spectral matrices processing
116 125 void reset_nb_sm_f0( void )
117 126 {
118 127 nb_sm_f0 = 0;
119 128 }
120 129
121 130 rtems_isr spectral_matrices_isr( rtems_vector_number vector )
122 131 {
123 132 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
124 133
125 134 if ( (spectral_matrix_regs->status & 0x1) == 0x01)
126 135 {
127 136 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
128 137 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
129 138 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffe; // 1110
130 139 nb_sm_f0 = nb_sm_f0 + 1;
131 140 }
132 141 else if ( (spectral_matrix_regs->status & 0x2) == 0x02)
133 142 {
134 143 current_ring_node_sm_f0 = current_ring_node_sm_f0->next;
135 144 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
136 145 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffffd; // 1101
137 146 nb_sm_f0 = nb_sm_f0 + 1;
138 147 }
139 148
140 149 if ( (spectral_matrix_regs->status & 0x30) != 0x00)
141 150 {
142 151 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_8 );
143 152 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xffffffcf; // 1100 1111
144 153 }
145 154
146 155 spectral_matrix_regs->status = spectral_matrix_regs->status & 0xfffffff3; // 0011
147 156
148 157 if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
149 158 {
150 159 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
151 160 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
152 161 {
153 162 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
154 163 }
155 164 nb_sm_f0 = 0;
156 165 }
157 166 else
158 167 {
159 168 nb_sm_f0 = nb_sm_f0 + 1;
160 169 }
161 170 }
162 171
163 172 rtems_isr spectral_matrices_isr_simu( rtems_vector_number vector )
164 173 {
165 174 if (nb_sm_f0 == (NB_SM_TO_RECEIVE_BEFORE_AVF0-1) )
166 175 {
167 176 ring_node_for_averaging_sm_f0 = current_ring_node_sm_f0;
168 177 if (rtems_event_send( Task_id[TASKID_AVF0], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL)
169 178 {
170 179 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_3 );
171 180 }
172 181 nb_sm_f0 = 0;
173 182 }
174 183 else
175 184 {
176 185 nb_sm_f0 = nb_sm_f0 + 1;
177 186 }
178 187 }
179 188
180 189 //************
181 190 // RTEMS TASKS
182 191
183 192 rtems_task smiq_task(rtems_task_argument argument) // process the Spectral Matrices IRQ
184 193 {
185 194 rtems_event_set event_out;
186 195
187 196 BOOT_PRINTF("in SMIQ *** \n")
188 197
189 198 while(1){
190 199 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
191 200 }
192 201 }
193 202
194 203 rtems_task avf0_task(rtems_task_argument argument)
195 204 {
196 205 int i;
197 static int nb_average;
206 static unsigned int nb_average_norm;
207 static unsigned int nb_average_sbm1;
198 208 rtems_event_set event_out;
199 209 rtems_status_code status;
200 ring_node *ring_node_tab[8];
210 ring_node_sm *ring_node_tab[8];
201 211
202 nb_average = 0;
212 nb_average_norm = 0;
213 nb_average_sbm1 = 0;
203 214
204 215 BOOT_PRINTF("in AVFO *** \n")
205 216
206 217 while(1){
207 218 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
208 219 ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-1] = ring_node_for_averaging_sm_f0;
209 for (i=2; i<NB_SM_TO_RECEIVE_BEFORE_AVF0+1; i++)
220 for ( i = 2; i < (NB_SM_TO_RECEIVE_BEFORE_AVF0+1); i++ )
210 221 {
211 222 ring_node_for_averaging_sm_f0 = ring_node_for_averaging_sm_f0->previous;
212 223 ring_node_tab[NB_SM_TO_RECEIVE_BEFORE_AVF0-i] = ring_node_for_averaging_sm_f0;
213 224 }
214 225
215 averaged_sm_f0[0] = ( (int *) (ring_node_tab[7]->buffer_address) ) [0];
216 averaged_sm_f0[1] = ( (int *) (ring_node_tab[7]->buffer_address) ) [1];
217 for(i=0; i<TOTAL_SIZE_SM; i++)
226 // copy time information in the averaged_sm_f0 buffer
227 averaged_sm_f0[0] = ring_node_tab[7]->coarseTime;
228 averaged_sm_f0[1] = ring_node_tab[7]->fineTime;
229 averaged_sm_f1[0] = ring_node_tab[7]->coarseTime;
230 averaged_sm_f1[1] = ring_node_tab[7]->fineTime;
231
232 // compute the average and store it in the averaged_sm_f1 buffer
233 ASM_average( averaged_sm_f0, averaged_sm_f1,
234 ring_node_tab,
235 nb_average_norm, nb_average_sbm1 );
236
237
238 // update nb_average
239 nb_average_norm = nb_average_norm + NB_SM_TO_RECEIVE_BEFORE_AVF0;
240 nb_average_sbm1 = nb_average_sbm1 + NB_SM_TO_RECEIVE_BEFORE_AVF0;
241
242 // launch actions depending on the current mode
243 if (lfrCurrentMode == LFR_MODE_SBM1)
218 244 {
219 averaged_sm_f0[i] = ( (int *) (ring_node_tab[0]->buffer_address) ) [i + TIME_OFFSET]
220 + ( (int *) (ring_node_tab[1]->buffer_address) ) [i + TIME_OFFSET]
221 + ( (int *) (ring_node_tab[2]->buffer_address) ) [i + TIME_OFFSET]
222 + ( (int *) (ring_node_tab[3]->buffer_address) ) [i + TIME_OFFSET]
223 + ( (int *) (ring_node_tab[4]->buffer_address) ) [i + TIME_OFFSET]
224 + ( (int *) (ring_node_tab[5]->buffer_address) ) [i + TIME_OFFSET]
225 + ( (int *) (ring_node_tab[6]->buffer_address) ) [i + TIME_OFFSET]
226 + ( (int *) (ring_node_tab[7]->buffer_address) ) [i + TIME_OFFSET];
245 if (nb_average_sbm1 == NB_AVERAGE_SBM1_f0) {
246 nb_average_sbm1 = 0;
247 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_MODE_SBM1 ); // sending an event to the task 7, BPF0
248 if (status != RTEMS_SUCCESSFUL) {
249 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
250 }
251 }
227 252 }
228
229 nb_average = nb_average + NB_SM_TO_RECEIVE_BEFORE_AVF0;
230 if (nb_average == NB_AVERAGE_NORMAL_f0) {
231 nb_average = 0;
232 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_0 ); // sending an event to the task 7, BPF0
233 if (status != RTEMS_SUCCESSFUL) {
234 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
253 if (lfrCurrentMode == LFR_MODE_NORMAL)
254 {
255 if (nb_average_norm == NB_AVERAGE_NORMAL_f0) {
256 nb_average_norm = 0;
257 status = rtems_event_send( Task_id[TASKID_MATR], RTEMS_EVENT_MODE_NORMAL ); // sending an event to the task 7, BPF0
258 if (status != RTEMS_SUCCESSFUL) {
259 printf("in AVF0 *** Error sending RTEMS_EVENT_0, code %d\n", status);
260 }
235 261 }
236 262 }
237 263 }
238 264 }
239 265
240 266 rtems_task matr_task(rtems_task_argument argument)
241 267 {
242 268 spw_ioctl_pkt_send spw_ioctl_send_ASM;
243 269 rtems_event_set event_out;
244 270 rtems_status_code status;
245 271 rtems_id queue_id;
246 272 Header_TM_LFR_SCIENCE_ASM_t headerASM;
247 273
248 274 init_header_asm( &headerASM );
249 275
250 276 status = get_message_queue_id_send( &queue_id );
251 277 if (status != RTEMS_SUCCESSFUL)
252 278 {
253 279 PRINTF1("in MATR *** ERR get_message_queue_id_send %d\n", status)
254 280 }
255 281
256 282 BOOT_PRINTF("in MATR *** \n")
257 283
258 284 fill_averaged_spectral_matrix( );
259 285
260 286 while(1){
261 rtems_event_receive(RTEMS_EVENT_0, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT0
262 // 1) compress the matrix for Basic Parameters calculation
263 ASM_compress( averaged_sm_f0, 0, compressed_sm_f0 );
264 // 2)
265 // BP1_set( (float *) &compressed_sm_f0[TIME_OFFSET], NB_BINS_COMPRESSED_SM_F0, (unsigned char *) &LFR_BP1_F0[TIME_OFFSET_IN_BYTES] );
266 // 3) convert the float array in a char array
267 ASM_reorganize( averaged_sm_f0, averaged_sm_f0_reorganized );
268 ASM_convert( averaged_sm_f0_reorganized, averaged_sm_f0_char);
269 // 4) send the spectral matrix packets
270 ASM_send( &headerASM, averaged_sm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
287 rtems_event_receive( RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1,
288 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
289 if (event_out==RTEMS_EVENT_MODE_NORMAL)
290 {
291 // 1) compress the matrix for Basic Parameters calculation
292 ASM_compress( averaged_sm_f0, 0, compressed_sm_f0 );
293 // 2) compute the BP1 set
294
295 // 3) convert the float array in a char array
296 ASM_reorganize( averaged_sm_f0, averaged_sm_f0_reorganized );
297 ASM_convert( averaged_sm_f0_reorganized, averaged_sm_f0_char);
298 // 4) send the spectral matrix packets
299 ASM_send( &headerASM, averaged_sm_f0_char, SID_NORM_ASM_F0, &spw_ioctl_send_ASM, queue_id);
300 }
301 else if (event_out==RTEMS_EVENT_MODE_SBM1)
302 {
303 // 1) compress the matrix for Basic Parameters calculation
304 ASM_compress( averaged_sm_f1, 0, compressed_sm_f1 );
305 // 2) compute the BP1 set
306
307 // 4) send the basic parameters set 1 packet
308 BP1_send( );
309 }
310 else
311 {
312 PRINTF1("ERR *** in MATR *** unexect event = %x\n", (unsigned int) event_out)
313 }
271 314 }
272 315 }
273 316
274 317 //*****************************
275 318 // Spectral matrices processing
276 319
277 320 void matrix_reset(volatile float *averaged_spec_mat)
278 321 {
279 322 int i;
280 323 for(i=0; i<TOTAL_SIZE_SM; i++){
281 324 averaged_spec_mat[i] = 0;
282 325 }
283 326 }
284 327
328 void ASM_average( float *averaged_spec_mat_f0, float *averaged_spec_mat_f1,
329 ring_node_sm *ring_node_tab[],
330 unsigned int firstTimeF0, unsigned int firstTimeF1 )
331 {
332 float sum;
333 unsigned int i;
334
335 for(i=0; i<TOTAL_SIZE_SM; i++)
336 {
337 sum = ( (int *) (ring_node_tab[0]->buffer_address) ) [ i ]
338 + ( (int *) (ring_node_tab[1]->buffer_address) ) [ i ]
339 + ( (int *) (ring_node_tab[2]->buffer_address) ) [ i ]
340 + ( (int *) (ring_node_tab[3]->buffer_address) ) [ i ]
341 + ( (int *) (ring_node_tab[4]->buffer_address) ) [ i ]
342 + ( (int *) (ring_node_tab[5]->buffer_address) ) [ i ]
343 + ( (int *) (ring_node_tab[6]->buffer_address) ) [ i ]
344 + ( (int *) (ring_node_tab[7]->buffer_address) ) [ i ];
345
346 if ( (firstTimeF0 == 0) && (firstTimeF1 == 0) )
347 {
348 averaged_spec_mat_f0[ i ] = averaged_spec_mat_f0[ i ] + sum;
349 averaged_spec_mat_f1[ i ] = averaged_spec_mat_f1[ i ] + sum;
350 }
351 else if ( (firstTimeF0 == 0) && (firstTimeF1 != 0) )
352 {
353 averaged_spec_mat_f0[ i ] = averaged_spec_mat_f0[ i ] + sum;
354 averaged_spec_mat_f1[ i ] = sum;
355 }
356 else if ( (firstTimeF0 != 0) && (firstTimeF1 == 0) )
357 {
358 averaged_spec_mat_f0[ i ] = sum;
359 averaged_spec_mat_f1[ i ] = averaged_spec_mat_f1[ i ] + sum;
360 }
361 else
362 {
363 averaged_spec_mat_f0[ i ] = sum;
364 averaged_spec_mat_f1[ i ] = sum;
365 }
366 }
367 }
368
285 369 void ASM_reorganize( float *averaged_spec_mat, float *averaged_spec_mat_reorganized )
286 370 {
287 371 int frequencyBin;
288 372 int asmComponent;
289 373
290 374 // copy the time information
291 375 averaged_spec_mat_reorganized[ 0 ] = averaged_spec_mat[ 0 ];
292 376 averaged_spec_mat_reorganized[ 1 ] = averaged_spec_mat[ 1 ];
293 377
294 378 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
295 379 {
296 380 for( frequencyBin = 0; frequencyBin < NB_BINS_PER_SM; frequencyBin++ )
297 381 {
298 382 averaged_spec_mat_reorganized[ frequencyBin * NB_VALUES_PER_SM + asmComponent + TIME_OFFSET ] =
299 383 averaged_spec_mat[ asmComponent * NB_BINS_PER_SM + frequencyBin + TIME_OFFSET];
300 384 }
301 385 }
302 386 }
303 387
304 388 void ASM_compress( float *averaged_spec_mat, unsigned char fChannel, float *compressed_spec_mat )
305 389 {
306 390 int frequencyBin;
307 391 int asmComponent;
308 392 int offsetASM;
309 393 int offsetCompressed;
310 394 int k;
311 395
312 396 switch (fChannel){
313 397 case 0:
314 398 for (asmComponent = 0; asmComponent < NB_VALUES_PER_SM; asmComponent++)
315 399 {
316 400 for( frequencyBin = 0; frequencyBin < NB_BINS_COMPRESSED_SM_F0; frequencyBin++ )
317 401 {
318 402 offsetCompressed = TIME_OFFSET
319 403 + frequencyBin * NB_VALUES_PER_SM
320 404 + asmComponent;
321 405 offsetASM = TIME_OFFSET
322 406 + asmComponent * NB_BINS_PER_SM
323 407 + ASM_F0_INDICE_START
324 408 + frequencyBin * NB_BINS_TO_AVERAGE_ASM_F0;
325 409 compressed_spec_mat[ offsetCompressed ] = 0;
326 410 for ( k = 0; k < NB_BINS_TO_AVERAGE_ASM_F0; k++ )
327 411 {
328 412 compressed_spec_mat[offsetCompressed ] =
329 413 compressed_spec_mat[ offsetCompressed ]
330 414 + averaged_spec_mat[ offsetASM + k ];
331 415 }
332 416 }
333 417 }
334 418 break;
335 419
336 420 case 1:
337 421 // case fChannel = f1 to be completed later
338 422 break;
339 423
340 424 case 2:
341 425 // case fChannel = f1 to be completed later
342 426 break;
343 427
344 428 default:
345 429 break;
346 430 }
347 431 }
348 432
349 433 void ASM_convert( volatile float *input_matrix, char *output_matrix)
350 434 {
351 435 unsigned int i;
352 436 unsigned int frequencyBin;
353 437 unsigned int asmComponent;
354 438 char * pt_char_input;
355 439 char * pt_char_output;
356 440
357 441 pt_char_input = (char*) &input_matrix;
358 442 pt_char_output = (char*) &output_matrix;
359 443
360 444 // copy the time information
361 445 for (i=0; i<TIME_OFFSET_IN_BYTES; i++)
362 446 {
363 447 pt_char_output[ i ] = pt_char_output[ i ];
364 448 }
365 449
366 450 // convert all other data
367 451 for( frequencyBin=0; frequencyBin<NB_BINS_PER_SM; frequencyBin++)
368 452 {
369 453 for ( asmComponent=0; asmComponent<NB_VALUES_PER_SM; asmComponent++)
370 454 {
371 455 pt_char_input = (char*) &input_matrix [ (frequencyBin*NB_VALUES_PER_SM) + asmComponent + TIME_OFFSET ];
372 456 pt_char_output = (char*) &output_matrix[ 2 * ( (frequencyBin*NB_VALUES_PER_SM) + asmComponent ) + TIME_OFFSET_IN_BYTES ];
373 457 pt_char_output[0] = pt_char_input[0]; // bits 31 downto 24 of the float
374 458 pt_char_output[1] = pt_char_input[1]; // bits 23 downto 16 of the float
375 459 }
376 460 }
377 461 }
378 462
379 463 void ASM_send(Header_TM_LFR_SCIENCE_ASM_t *header, char *spectral_matrix,
380 464 unsigned int sid, spw_ioctl_pkt_send *spw_ioctl_send, rtems_id queue_id)
381 465 {
382 466 unsigned int i;
383 467 unsigned int length = 0;
384 468 rtems_status_code status;
385 469
386 470 for (i=0; i<2; i++)
387 471 {
388 472 // (1) BUILD THE DATA
389 473 switch(sid)
390 474 {
391 475 case SID_NORM_ASM_F0:
392 476 spw_ioctl_send->dlen = TOTAL_SIZE_ASM_F0_IN_BYTES / 2;
393 477 spw_ioctl_send->data = &spectral_matrix[
394 478 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0) ) * NB_VALUES_PER_SM ) * 2
395 479 + TIME_OFFSET_IN_BYTES
396 480 ];
397 481 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0;
398 482 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0) >> 8 ); // BLK_NR MSB
399 483 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0); // BLK_NR LSB
400 484 break;
401 485 case SID_NORM_ASM_F1:
402 486 break;
403 487 case SID_NORM_ASM_F2:
404 488 break;
405 489 default:
406 490 PRINTF1("ERR *** in ASM_send *** unexpected sid %d\n", sid)
407 491 break;
408 492 }
409 493 spw_ioctl_send->hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM + CCSDS_PROTOCOLE_EXTRA_BYTES;
410 494 spw_ioctl_send->hdr = (char *) header;
411 495 spw_ioctl_send->options = 0;
412 496
413 497 // (2) BUILD THE HEADER
414 498 header->packetLength[0] = (unsigned char) (length>>8);
415 499 header->packetLength[1] = (unsigned char) (length);
416 500 header->sid = (unsigned char) sid; // SID
417 501 header->pa_lfr_pkt_cnt_asm = 2;
418 502 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
419 503
420 504 // (3) SET PACKET TIME
421 505 header->time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
422 506 header->time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
423 507 header->time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
424 508 header->time[3] = (unsigned char) (time_management_regs->coarse_time);
425 509 header->time[4] = (unsigned char) (time_management_regs->fine_time>>8);
426 510 header->time[5] = (unsigned char) (time_management_regs->fine_time);
427 511 //
428 512 header->acquisitionTime[0] = (unsigned char) (time_management_regs->coarse_time>>24);
429 513 header->acquisitionTime[1] = (unsigned char) (time_management_regs->coarse_time>>16);
430 514 header->acquisitionTime[2] = (unsigned char) (time_management_regs->coarse_time>>8);
431 515 header->acquisitionTime[3] = (unsigned char) (time_management_regs->coarse_time);
432 516 header->acquisitionTime[4] = (unsigned char) (time_management_regs->fine_time>>8);
433 517 header->acquisitionTime[5] = (unsigned char) (time_management_regs->fine_time);
434 518
435 519 // (4) SEND PACKET
436 520 status = rtems_message_queue_send( queue_id, spw_ioctl_send, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
437 521 if (status != RTEMS_SUCCESSFUL) {
438 522 printf("in ASM_send *** ERR %d\n", (int) status);
439 523 }
440 524 }
441 525 }
442 526
527 void BP1_send()
528 {
529
530 }
531
443 532 void BP1_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat, unsigned char * LFR_BP1){
444 533 int i;
445 534 int j;
446 535 unsigned char tmp_u_char;
447 536 unsigned char * pt_char = NULL;
448 537 float PSDB, PSDE;
449 538 float NVEC_V0;
450 539 float NVEC_V1;
451 540 float NVEC_V2;
452 541 //float significand;
453 542 //int exponent;
454 543 float aux;
455 544 float tr_SB_SB;
456 545 float tmp;
457 546 float sx_re;
458 547 float sx_im;
459 548 float nebx_re = 0;
460 549 float nebx_im = 0;
461 550 float ny = 0;
462 551 float nz = 0;
463 552 float bx_bx_star = 0;
464 553 for(i=0; i<nb_bins_compressed_spec_mat; i++){
465 554 //==============================================
466 555 // BP1 PSD == B PAR_LFR_SC_BP1_PE_FL0 == 16 bits
467 556 PSDB = compressed_spec_mat[i*30] // S11
468 557 + compressed_spec_mat[(i*30) + 10] // S22
469 558 + compressed_spec_mat[(i*30) + 18]; // S33
470 559 //significand = frexp(PSDB, &exponent);
471 560 pt_char = (unsigned char*) &PSDB;
472 561 LFR_BP1[(i*9) + 2] = pt_char[0]; // bits 31 downto 24 of the float
473 562 LFR_BP1[(i*9) + 3] = pt_char[1]; // bits 23 downto 16 of the float
474 563 //==============================================
475 564 // BP1 PSD == E PAR_LFR_SC_BP1_PB_FL0 == 16 bits
476 565 PSDE = compressed_spec_mat[(i*30) + 24] * K44_pe // S44
477 566 + compressed_spec_mat[(i*30) + 28] * K55_pe // S55
478 567 + compressed_spec_mat[(i*30) + 26] * K45_pe_re // S45
479 568 - compressed_spec_mat[(i*30) + 27] * K45_pe_im; // S45
480 569 pt_char = (unsigned char*) &PSDE;
481 570 LFR_BP1[(i*9) + 0] = pt_char[0]; // bits 31 downto 24 of the float
482 571 LFR_BP1[(i*9) + 1] = pt_char[1]; // bits 23 downto 16 of the float
483 572 //==============================================================================
484 573 // BP1 normal wave vector == PAR_LFR_SC_BP1_NVEC_V0_F0 == 8 bits
485 574 // == PAR_LFR_SC_BP1_NVEC_V1_F0 == 8 bits
486 575 // == PAR_LFR_SC_BP1_NVEC_V2_F0 == 1 bits
487 576 tmp = sqrt(
488 577 compressed_spec_mat[(i*30) + 3]*compressed_spec_mat[(i*30) + 3] //Im S12
489 578 +compressed_spec_mat[(i*30) + 5]*compressed_spec_mat[(i*30) + 5] //Im S13
490 579 +compressed_spec_mat[(i*30) + 13]*compressed_spec_mat[(i*30) + 13] //Im S23
491 580 );
492 581 NVEC_V0 = compressed_spec_mat[(i*30) + 13] / tmp; // Im S23
493 582 NVEC_V1 = -compressed_spec_mat[(i*30) + 5] / tmp; // Im S13
494 583 NVEC_V2 = compressed_spec_mat[(i*30) + 3] / tmp; // Im S12
495 584 LFR_BP1[(i*9) + 4] = (char) (NVEC_V0*127);
496 585 LFR_BP1[(i*9) + 5] = (char) (NVEC_V1*127);
497 586 pt_char = (unsigned char*) &NVEC_V2;
498 587 LFR_BP1[(i*9) + 6] = pt_char[0] & 0x80; // extract the sign of NVEC_V2
499 588 //=======================================================
500 589 // BP1 ellipticity == PAR_LFR_SC_BP1_ELLIP_F0 == 4 bits
501 590 aux = 2*tmp / PSDB; // compute the ellipticity
502 591 tmp_u_char = (unsigned char) (aux*(16-1)); // convert the ellipticity
503 592 LFR_BP1[i*9+6] = LFR_BP1[i*9+6] | ((tmp_u_char&0x0f)<<3); // keeps 4 bits of the resulting unsigned char
504 593 //==============================================================
505 594 // BP1 degree of polarization == PAR_LFR_SC_BP1_DOP_F0 == 3 bits
506 595 for(j = 0; j<NB_VALUES_PER_SM;j++){
507 596 tr_SB_SB = compressed_spec_mat[i*30] * compressed_spec_mat[i*30]
508 597 + compressed_spec_mat[(i*30) + 10] * compressed_spec_mat[(i*30) + 10]
509 598 + compressed_spec_mat[(i*30) + 18] * compressed_spec_mat[(i*30) + 18]
510 599 + 2 * compressed_spec_mat[(i*30) + 2] * compressed_spec_mat[(i*30) + 2]
511 600 + 2 * compressed_spec_mat[(i*30) + 3] * compressed_spec_mat[(i*30) + 3]
512 601 + 2 * compressed_spec_mat[(i*30) + 4] * compressed_spec_mat[(i*30) + 4]
513 602 + 2 * compressed_spec_mat[(i*30) + 5] * compressed_spec_mat[(i*30) + 5]
514 603 + 2 * compressed_spec_mat[(i*30) + 12] * compressed_spec_mat[(i*30) + 12]
515 604 + 2 * compressed_spec_mat[(i*30) + 13] * compressed_spec_mat[(i*30) + 13];
516 605 }
517 606 aux = PSDB*PSDB;
518 607 tmp = sqrt( abs( ( 3*tr_SB_SB - aux ) / ( 2 * aux ) ) );
519 608 tmp_u_char = (unsigned char) (NVEC_V0*(8-1));
520 609 LFR_BP1[(i*9) + 6] = LFR_BP1[(i*9) + 6] | (tmp_u_char & 0x07); // keeps 3 bits of the resulting unsigned char
521 610 //=======================================================================================
522 611 // BP1 x-component of the normalized Poynting flux == PAR_LFR_SC_BP1_SZ_F0 == 8 bits (7+1)
523 612 sx_re = compressed_spec_mat[(i*30) + 20] * K34_sx_re
524 613 + compressed_spec_mat[(i*30) + 6] * K14_sx_re
525 614 + compressed_spec_mat[(i*30) + 8] * K15_sx_re
526 615 + compressed_spec_mat[(i*30) + 14] * K24_sx_re
527 616 + compressed_spec_mat[(i*30) + 16] * K25_sx_re
528 617 + compressed_spec_mat[(i*30) + 22] * K35_sx_re;
529 618 sx_im = compressed_spec_mat[(i*30) + 21] * K34_sx_im
530 619 + compressed_spec_mat[(i*30) + 7] * K14_sx_im
531 620 + compressed_spec_mat[(i*30) + 9] * K15_sx_im
532 621 + compressed_spec_mat[(i*30) + 15] * K24_sx_im
533 622 + compressed_spec_mat[(i*30) + 17] * K25_sx_im
534 623 + compressed_spec_mat[(i*30) + 23] * K35_sx_im;
535 624 LFR_BP1[(i*9) + 7] = ((unsigned char) (sx_re * 128)) & 0x7f; // cf DOC for the compression
536 625 if ( abs(sx_re) > abs(sx_im) ) {
537 626 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] | (0x80); // extract the sector of sx
538 627 }
539 628 else {
540 629 LFR_BP1[(i*9) + 7] = LFR_BP1[(i*9) + 1] & (0x7f); // extract the sector of sx
541 630 }
542 631 //======================================================================
543 632 // BP1 phase velocity estimator == PAR_LFR_SC_BP1_VPHI_F0 == 8 bits (7+1)
544 633 ny = sin(Alpha_M)*NVEC_V1 + cos(Alpha_M)*NVEC_V2;
545 634 nz = NVEC_V0;
546 635 bx_bx_star = cos(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+10] // re S22
547 636 + sin(Alpha_M) * sin(Alpha_M) * compressed_spec_mat[i*30+18] // re S33
548 637 - 2 * sin(Alpha_M) * cos(Alpha_M) * compressed_spec_mat[i*30+12]; // re S23
549 638 nebx_re = ny * (compressed_spec_mat[(i*30) + 14] * K24_ny_re
550 639 +compressed_spec_mat[(i*30) + 16] * K25_ny_re
551 640 +compressed_spec_mat[(i*30) + 20] * K34_ny_re
552 641 +compressed_spec_mat[(i*30) + 22] * K35_ny_re)
553 642 + nz * (compressed_spec_mat[(i*30) + 14] * K24_nz_re
554 643 +compressed_spec_mat[(i*30) + 16] * K25_nz_re
555 644 +compressed_spec_mat[(i*30) + 20] * K34_nz_re
556 645 +compressed_spec_mat[(i*30) + 22] * K35_nz_re);
557 646 nebx_im = ny * (compressed_spec_mat[(i*30) + 15]*K24_ny_re
558 647 +compressed_spec_mat[(i*30) + 17] * K25_ny_re
559 648 +compressed_spec_mat[(i*30) + 21] * K34_ny_re
560 649 +compressed_spec_mat[(i*30) + 23] * K35_ny_re)
561 650 + nz * (compressed_spec_mat[(i*30) + 15] * K24_nz_im
562 651 +compressed_spec_mat[(i*30) + 17] * K25_nz_im
563 652 +compressed_spec_mat[(i*30) + 21] * K34_nz_im
564 653 +compressed_spec_mat[(i*30) + 23] * K35_nz_im);
565 654 tmp = nebx_re / bx_bx_star;
566 655 LFR_BP1[(i*9) + 8] = ((unsigned char) (tmp * 128)) & 0x7f; // cf DOC for the compression
567 656 if ( abs(nebx_re) > abs(nebx_im) ) {
568 657 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] | (0x80); // extract the sector of nebx
569 658 }
570 659 else {
571 660 LFR_BP1[(i*9) + 8] = LFR_BP1[(i*9) + 8] & (0x7f); // extract the sector of nebx
572 661 }
573 662 }
574 663
575 664 }
576 665
577 666 void BP2_set_old(float * compressed_spec_mat, unsigned char nb_bins_compressed_spec_mat){
578 667 // BP2 autocorrelation
579 668 int i;
580 669 int aux = 0;
581 670
582 671 for(i = 0; i<nb_bins_compressed_spec_mat; i++){
583 672 // S12
584 673 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 10]);
585 674 compressed_spec_mat[(i*30) + 2] = compressed_spec_mat[(i*30) + 2] / aux;
586 675 compressed_spec_mat[(i*30) + 3] = compressed_spec_mat[(i*30) + 3] / aux;
587 676 // S13
588 677 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 18]);
589 678 compressed_spec_mat[(i*30) + 4] = compressed_spec_mat[(i*30) + 4] / aux;
590 679 compressed_spec_mat[(i*30) + 5] = compressed_spec_mat[(i*30) + 5] / aux;
591 680 // S23
592 681 aux = sqrt(compressed_spec_mat[i*30+12]*compressed_spec_mat[(i*30) + 18]);
593 682 compressed_spec_mat[(i*30) + 12] = compressed_spec_mat[(i*30) + 12] / aux;
594 683 compressed_spec_mat[(i*30) + 13] = compressed_spec_mat[(i*30) + 13] / aux;
595 684 // S45
596 685 aux = sqrt(compressed_spec_mat[i*30+24]*compressed_spec_mat[(i*30) + 28]);
597 686 compressed_spec_mat[(i*30) + 26] = compressed_spec_mat[(i*30) + 26] / aux;
598 687 compressed_spec_mat[(i*30) + 27] = compressed_spec_mat[(i*30) + 27] / aux;
599 688 // S14
600 689 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) +24]);
601 690 compressed_spec_mat[(i*30) + 6] = compressed_spec_mat[(i*30) + 6] / aux;
602 691 compressed_spec_mat[(i*30) + 7] = compressed_spec_mat[(i*30) + 7] / aux;
603 692 // S15
604 693 aux = sqrt(compressed_spec_mat[i*30]*compressed_spec_mat[(i*30) + 28]);
605 694 compressed_spec_mat[(i*30) + 8] = compressed_spec_mat[(i*30) + 8] / aux;
606 695 compressed_spec_mat[(i*30) + 9] = compressed_spec_mat[(i*30) + 9] / aux;
607 696 // S24
608 697 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 24]);
609 698 compressed_spec_mat[(i*30) + 14] = compressed_spec_mat[(i*30) + 14] / aux;
610 699 compressed_spec_mat[(i*30) + 15] = compressed_spec_mat[(i*30) + 15] / aux;
611 700 // S25
612 701 aux = sqrt(compressed_spec_mat[i*10]*compressed_spec_mat[(i*30) + 28]);
613 702 compressed_spec_mat[(i*30) + 16] = compressed_spec_mat[(i*30) + 16] / aux;
614 703 compressed_spec_mat[(i*30) + 17] = compressed_spec_mat[(i*30) + 17] / aux;
615 704 // S34
616 705 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 24]);
617 706 compressed_spec_mat[(i*30) + 20] = compressed_spec_mat[(i*30) + 20] / aux;
618 707 compressed_spec_mat[(i*30) + 21] = compressed_spec_mat[(i*30) + 21] / aux;
619 708 // S35
620 709 aux = sqrt(compressed_spec_mat[i*18]*compressed_spec_mat[(i*30) + 28]);
621 710 compressed_spec_mat[(i*30) + 22] = compressed_spec_mat[(i*30) + 22] / aux;
622 711 compressed_spec_mat[(i*30) + 23] = compressed_spec_mat[(i*30) + 23] / aux;
623 712 }
624 713 }
625 714
626 715 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header)
627 716 {
628 717 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
629 718 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
630 719 header->reserved = 0x00;
631 720 header->userApplication = CCSDS_USER_APP;
632 721 header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
633 722 header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
634 723 header->packetSequenceControl[0] = 0xc0;
635 724 header->packetSequenceControl[1] = 0x00;
636 725 header->packetLength[0] = 0x00;
637 726 header->packetLength[1] = 0x00;
638 727 // DATA FIELD HEADER
639 728 header->spare1_pusVersion_spare2 = 0x10;
640 729 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
641 730 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
642 731 header->destinationID = TM_DESTINATION_ID_GROUND;
643 732 // AUXILIARY DATA HEADER
644 733 header->sid = 0x00;
645 734 header->biaStatusInfo = 0x00;
646 735 header->pa_lfr_pkt_cnt_asm = 0x00;
647 736 header->pa_lfr_pkt_nr_asm = 0x00;
648 737 header->time[0] = 0x00;
649 738 header->time[0] = 0x00;
650 739 header->time[0] = 0x00;
651 740 header->time[0] = 0x00;
652 741 header->time[0] = 0x00;
653 742 header->time[0] = 0x00;
654 743 header->pa_lfr_asm_blk_nr[0] = 0x00; // BLK_NR MSB
655 744 header->pa_lfr_asm_blk_nr[1] = 0x00; // BLK_NR LSB
656 745 }
657 746
747 void init_header_bp( Header_TM_LFR_SCIENCE_BP_t *header)
748 {
749 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
750 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
751 header->reserved = 0x00;
752 header->userApplication = CCSDS_USER_APP;
753 // header->packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
754 // header->packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
755 header->packetSequenceControl[0] = 0xc0;
756 header->packetSequenceControl[1] = 0x00;
757 header->packetLength[0] = 0x00;
758 header->packetLength[1] = 0x00;
759 // DATA FIELD HEADER
760 header->spare1_pusVersion_spare2 = 0x10;
761 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
762 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
763 header->destinationID = TM_DESTINATION_ID_GROUND;
764 // AUXILIARY DATA HEADER
765 header->sid = 0x00;
766 header->biaStatusInfo = 0x00;
767 header->time[0] = 0x00;
768 header->time[0] = 0x00;
769 header->time[0] = 0x00;
770 header->time[0] = 0x00;
771 header->time[0] = 0x00;
772 header->time[0] = 0x00;
773 header->pa_lfr_bp_blk_nr[0] = 0x00; // BLK_NR MSB
774 header->pa_lfr_bp_blk_nr[1] = 0x00; // BLK_NR LSB
775 }
776
658 777 void fill_averaged_spectral_matrix(void)
659 778 {
660 779 /** This function fills spectral matrices related buffers with arbitrary data.
661 780 *
662 781 * This function is for testing purpose only.
663 782 *
664 783 */
665 784
666 785 float offset;
667 786 float coeff;
668 787
669 788 offset = 10.;
670 789 coeff = 100000.;
671 790 averaged_sm_f0[ 0 + 25 * 0 ] = 0. + offset;
672 791 averaged_sm_f0[ 0 + 25 * 1 ] = 1. + offset;
673 792 averaged_sm_f0[ 0 + 25 * 2 ] = 2. + offset;
674 793 averaged_sm_f0[ 0 + 25 * 3 ] = 3. + offset;
675 794 averaged_sm_f0[ 0 + 25 * 4 ] = 4. + offset;
676 795 averaged_sm_f0[ 0 + 25 * 5 ] = 5. + offset;
677 796 averaged_sm_f0[ 0 + 25 * 6 ] = 6. + offset;
678 797 averaged_sm_f0[ 0 + 25 * 7 ] = 7. + offset;
679 798 averaged_sm_f0[ 0 + 25 * 8 ] = 8. + offset;
680 799 averaged_sm_f0[ 0 + 25 * 9 ] = 9. + offset;
681 800 averaged_sm_f0[ 0 + 25 * 10 ] = 10. + offset;
682 801 averaged_sm_f0[ 0 + 25 * 11 ] = 11. + offset;
683 802 averaged_sm_f0[ 0 + 25 * 12 ] = 12. + offset;
684 803 averaged_sm_f0[ 0 + 25 * 13 ] = 13. + offset;
685 804 averaged_sm_f0[ 0 + 25 * 14 ] = 14. + offset;
686 805 averaged_sm_f0[ 9 + 25 * 0 ] = -(0. + offset)* coeff;
687 806 averaged_sm_f0[ 9 + 25 * 1 ] = -(1. + offset)* coeff;
688 807 averaged_sm_f0[ 9 + 25 * 2 ] = -(2. + offset)* coeff;
689 808 averaged_sm_f0[ 9 + 25 * 3 ] = -(3. + offset)* coeff;
690 809 averaged_sm_f0[ 9 + 25 * 4 ] = -(4. + offset)* coeff;
691 810 averaged_sm_f0[ 9 + 25 * 5 ] = -(5. + offset)* coeff;
692 811 averaged_sm_f0[ 9 + 25 * 6 ] = -(6. + offset)* coeff;
693 812 averaged_sm_f0[ 9 + 25 * 7 ] = -(7. + offset)* coeff;
694 813 averaged_sm_f0[ 9 + 25 * 8 ] = -(8. + offset)* coeff;
695 814 averaged_sm_f0[ 9 + 25 * 9 ] = -(9. + offset)* coeff;
696 815 averaged_sm_f0[ 9 + 25 * 10 ] = -(10. + offset)* coeff;
697 816 averaged_sm_f0[ 9 + 25 * 11 ] = -(11. + offset)* coeff;
698 817 averaged_sm_f0[ 9 + 25 * 12 ] = -(12. + offset)* coeff;
699 818 averaged_sm_f0[ 9 + 25 * 13 ] = -(13. + offset)* coeff;
700 819 averaged_sm_f0[ 9 + 25 * 14 ] = -(14. + offset)* coeff;
701 820
702 821 offset = 10000000;
703 822 averaged_sm_f0[ 16 + 25 * 0 ] = (0. + offset)* coeff;
704 823 averaged_sm_f0[ 16 + 25 * 1 ] = (1. + offset)* coeff;
705 824 averaged_sm_f0[ 16 + 25 * 2 ] = (2. + offset)* coeff;
706 825 averaged_sm_f0[ 16 + 25 * 3 ] = (3. + offset)* coeff;
707 826 averaged_sm_f0[ 16 + 25 * 4 ] = (4. + offset)* coeff;
708 827 averaged_sm_f0[ 16 + 25 * 5 ] = (5. + offset)* coeff;
709 828 averaged_sm_f0[ 16 + 25 * 6 ] = (6. + offset)* coeff;
710 829 averaged_sm_f0[ 16 + 25 * 7 ] = (7. + offset)* coeff;
711 830 averaged_sm_f0[ 16 + 25 * 8 ] = (8. + offset)* coeff;
712 831 averaged_sm_f0[ 16 + 25 * 9 ] = (9. + offset)* coeff;
713 832 averaged_sm_f0[ 16 + 25 * 10 ] = (10. + offset)* coeff;
714 833 averaged_sm_f0[ 16 + 25 * 11 ] = (11. + offset)* coeff;
715 834 averaged_sm_f0[ 16 + 25 * 12 ] = (12. + offset)* coeff;
716 835 averaged_sm_f0[ 16 + 25 * 13 ] = (13. + offset)* coeff;
717 836 averaged_sm_f0[ 16 + 25 * 14 ] = (14. + offset)* coeff;
718 837
719 838 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 0 ] = averaged_sm_f0[ 0 ];
720 839 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 1 ] = averaged_sm_f0[ 1 ];
721 840 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 2 ] = averaged_sm_f0[ 2 ];
722 841 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 3 ] = averaged_sm_f0[ 3 ];
723 842 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 4 ] = averaged_sm_f0[ 4 ];
724 843 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 5 ] = averaged_sm_f0[ 5 ];
725 844 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 6 ] = averaged_sm_f0[ 6 ];
726 845 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 7 ] = averaged_sm_f0[ 7 ];
727 846 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 8 ] = averaged_sm_f0[ 8 ];
728 847 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 9 ] = averaged_sm_f0[ 9 ];
729 848 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 10 ] = averaged_sm_f0[ 10 ];
730 849 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 11 ] = averaged_sm_f0[ 11 ];
731 850 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 12 ] = averaged_sm_f0[ 12 ];
732 851 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 13 ] = averaged_sm_f0[ 13 ];
733 852 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 14 ] = averaged_sm_f0[ 14 ];
734 853 averaged_sm_f0[ (TOTAL_SIZE_SM/2) + 15 ] = averaged_sm_f0[ 15 ];
735 854 }
736 855
737 856 void reset_spectral_matrix_regs()
738 857 {
739 858 /** This function resets the spectral matrices module registers.
740 859 *
741 860 * The registers affected by this function are located at the following offset addresses:
742 861 *
743 862 * - 0x00 config
744 863 * - 0x04 status
745 864 * - 0x08 matrixF0_Address0
746 865 * - 0x10 matrixFO_Address1
747 866 * - 0x14 matrixF1_Address
748 867 * - 0x18 matrixF2_Address
749 868 *
750 869 */
751 870
752 871 spectral_matrix_regs->config = 0x00;
753 872 spectral_matrix_regs->status = 0x00;
754 873
755 874 spectral_matrix_regs->matrixF0_Address0 = current_ring_node_sm_f0->buffer_address;
756 875 spectral_matrix_regs->matrixFO_Address1 = current_ring_node_sm_f0->buffer_address;
757 876 spectral_matrix_regs->matrixF1_Address = current_ring_node_sm_f1->buffer_address;
758 877 spectral_matrix_regs->matrixF2_Address = current_ring_node_sm_f2->buffer_address;
759 878 }
760 879
761 880 //******************
762 881 // general functions
763 882
764 883
765 884
766 885
@@ -1,885 +1,879
1 1 /** Functions and tasks related to TeleCommand handling.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TeleCommands:\n
7 7 * action launching\n
8 8 * TC parsing\n
9 9 * ...
10 10 *
11 11 */
12 12
13 13 #include "tc_handler.h"
14 14
15 15 //***********
16 16 // RTEMS TASK
17 17
18 18 rtems_task actn_task( rtems_task_argument unused )
19 19 {
20 20 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 21 *
22 22 * @param unused is the starting argument of the RTEMS task
23 23 *
24 24 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 25 * on the incoming TeleCommand.
26 26 *
27 27 */
28 28
29 29 int result;
30 30 rtems_status_code status; // RTEMS status code
31 31 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 32 size_t size; // size of the incoming TC packet
33 33 unsigned char subtype; // subtype of the current TC packet
34 34 unsigned char time[6];
35 35 rtems_id queue_rcv_id;
36 36 rtems_id queue_snd_id;
37 37
38 38 status = get_message_queue_id_recv( &queue_rcv_id );
39 39 if (status != RTEMS_SUCCESSFUL)
40 40 {
41 41 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 42 }
43 43
44 44 status = get_message_queue_id_send( &queue_snd_id );
45 45 if (status != RTEMS_SUCCESSFUL)
46 46 {
47 47 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 48 }
49 49
50 50 result = LFR_SUCCESSFUL;
51 51 subtype = 0; // subtype of the current TC packet
52 52
53 53 BOOT_PRINTF("in ACTN *** \n")
54 54
55 55 while(1)
56 56 {
57 57 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 58 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 59 getTime( time ); // set time to the current time
60 60 if (status!=RTEMS_SUCCESSFUL)
61 61 {
62 62 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 63 }
64 64 else
65 65 {
66 66 subtype = TC.serviceSubType;
67 67 switch(subtype)
68 68 {
69 69 case TC_SUBTYPE_RESET:
70 70 result = action_reset( &TC, queue_snd_id, time );
71 71 close_action( &TC, result, queue_snd_id );
72 72 break;
73 73 //
74 74 case TC_SUBTYPE_LOAD_COMM:
75 75 result = action_load_common_par( &TC );
76 76 close_action( &TC, result, queue_snd_id );
77 77 break;
78 78 //
79 79 case TC_SUBTYPE_LOAD_NORM:
80 80 result = action_load_normal_par( &TC, queue_snd_id, time );
81 81 close_action( &TC, result, queue_snd_id );
82 82 break;
83 83 //
84 84 case TC_SUBTYPE_LOAD_BURST:
85 85 result = action_load_burst_par( &TC, queue_snd_id, time );
86 86 close_action( &TC, result, queue_snd_id );
87 87 break;
88 88 //
89 89 case TC_SUBTYPE_LOAD_SBM1:
90 90 result = action_load_sbm1_par( &TC, queue_snd_id, time );
91 91 close_action( &TC, result, queue_snd_id );
92 92 break;
93 93 //
94 94 case TC_SUBTYPE_LOAD_SBM2:
95 95 result = action_load_sbm2_par( &TC, queue_snd_id, time );
96 96 close_action( &TC, result, queue_snd_id );
97 97 break;
98 98 //
99 99 case TC_SUBTYPE_DUMP:
100 100 result = action_dump_par( queue_snd_id );
101 101 close_action( &TC, result, queue_snd_id );
102 102 break;
103 103 //
104 104 case TC_SUBTYPE_ENTER:
105 105 result = action_enter_mode( &TC, queue_snd_id );
106 106 close_action( &TC, result, queue_snd_id );
107 107 break;
108 108 //
109 109 case TC_SUBTYPE_UPDT_INFO:
110 110 result = action_update_info( &TC, queue_snd_id );
111 111 close_action( &TC, result, queue_snd_id );
112 112 break;
113 113 //
114 114 case TC_SUBTYPE_EN_CAL:
115 115 result = action_enable_calibration( &TC, queue_snd_id, time );
116 116 close_action( &TC, result, queue_snd_id );
117 117 break;
118 118 //
119 119 case TC_SUBTYPE_DIS_CAL:
120 120 result = action_disable_calibration( &TC, queue_snd_id, time );
121 121 close_action( &TC, result, queue_snd_id );
122 122 break;
123 123 //
124 124 case TC_SUBTYPE_UPDT_TIME:
125 125 result = action_update_time( &TC );
126 126 close_action( &TC, result, queue_snd_id );
127 127 break;
128 128 //
129 129 default:
130 130 break;
131 131 }
132 132 }
133 133 }
134 134 }
135 135
136 136 //***********
137 137 // TC ACTIONS
138 138
139 139 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 140 {
141 141 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 142 *
143 143 * @param TC points to the TeleCommand packet that is being processed
144 144 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 145 *
146 146 */
147 147
148 148 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
149 149 return LFR_DEFAULT;
150 150 }
151 151
152 152 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
153 153 {
154 154 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
158 158 *
159 159 */
160 160
161 161 rtems_status_code status;
162 162 unsigned char requestedMode;
163 163 unsigned int *transitionCoarseTime_ptr;
164 164 unsigned int transitionCoarseTime;
165 165 unsigned char * bytePosPtr;
166 166
167 167 bytePosPtr = (unsigned char *) &TC->packetID;
168 168
169 169 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
170 170 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
171 171 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
172 172
173 173 status = check_mode_value( requestedMode );
174 174
175 175 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
176 176 {
177 177 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
178 178 }
179 179 else // the mode value is consistent, check the transition
180 180 {
181 181 status = check_mode_transition(requestedMode);
182 182 if (status != LFR_SUCCESSFUL)
183 183 {
184 184 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
185 185 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
186 186 }
187 187 }
188 188
189 189 if ( status == LFR_SUCCESSFUL ) // the transition is valid, enter the mode
190 190 {
191 191 status = check_transition_date( transitionCoarseTime );
192 192 if (status != LFR_SUCCESSFUL)
193 193 {
194 194 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
195 195 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
196 196 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
197 197 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
198 198 }
199 199 }
200 200
201 201 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
202 202 {
203 203 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
204 204 status = enter_mode( requestedMode, transitionCoarseTime );
205 205 }
206 206
207 207 return status;
208 208 }
209 209
210 210 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
211 211 {
212 212 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
213 213 *
214 214 * @param TC points to the TeleCommand packet that is being processed
215 215 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
216 216 *
217 217 * @return LFR directive status code:
218 218 * - LFR_DEFAULT
219 219 * - LFR_SUCCESSFUL
220 220 *
221 221 */
222 222
223 223 unsigned int val;
224 224 int result;
225 225 unsigned int status;
226 226 unsigned char mode;
227 227 unsigned char * bytePosPtr;
228 228
229 229 bytePosPtr = (unsigned char *) &TC->packetID;
230 230
231 231 // check LFR mode
232 232 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
233 233 status = check_update_info_hk_lfr_mode( mode );
234 234 if (status == LFR_SUCCESSFUL) // check TDS mode
235 235 {
236 236 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
237 237 status = check_update_info_hk_tds_mode( mode );
238 238 }
239 239 if (status == LFR_SUCCESSFUL) // check THR mode
240 240 {
241 241 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
242 242 status = check_update_info_hk_thr_mode( mode );
243 243 }
244 244 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
245 245 {
246 246 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
247 247 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
248 248 val++;
249 249 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
250 250 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
251 251 }
252 252
253 253 result = status;
254 254
255 255 return result;
256 256 }
257 257
258 258 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
259 259 {
260 260 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
261 261 *
262 262 * @param TC points to the TeleCommand packet that is being processed
263 263 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
264 264 *
265 265 */
266 266
267 267 int result;
268 268 unsigned char lfrMode;
269 269
270 270 result = LFR_DEFAULT;
271 271 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
272 272
273 273 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
274 274 result = LFR_DEFAULT;
275 275
276 276 return result;
277 277 }
278 278
279 279 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
280 280 {
281 281 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
282 282 *
283 283 * @param TC points to the TeleCommand packet that is being processed
284 284 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
285 285 *
286 286 */
287 287
288 288 int result;
289 289 unsigned char lfrMode;
290 290
291 291 result = LFR_DEFAULT;
292 292 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
293 293
294 294 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
295 295 result = LFR_DEFAULT;
296 296
297 297 return result;
298 298 }
299 299
300 300 int action_update_time(ccsdsTelecommandPacket_t *TC)
301 301 {
302 302 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
303 303 *
304 304 * @param TC points to the TeleCommand packet that is being processed
305 305 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
306 306 *
307 307 * @return LFR_SUCCESSFUL
308 308 *
309 309 */
310 310
311 311 unsigned int val;
312 312
313 313 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
314 314 + (TC->dataAndCRC[1] << 16)
315 315 + (TC->dataAndCRC[2] << 8)
316 316 + TC->dataAndCRC[3];
317 317
318 318 PRINTF1("time received: %x\n", time_management_regs->coarse_time_load)
319 319
320 320 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
321 321 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
322 322 val++;
323 323 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
324 324 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
325 325 // time_management_regs->ctrl = time_management_regs->ctrl | 1; // force tick
326 326
327 327 return LFR_SUCCESSFUL;
328 328 }
329 329
330 330 //*******************
331 331 // ENTERING THE MODES
332 332 int check_mode_value( unsigned char requestedMode )
333 333 {
334 334 int status;
335 335
336 336 if ( (requestedMode != LFR_MODE_STANDBY)
337 337 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
338 338 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
339 339 {
340 340 status = LFR_DEFAULT;
341 341 }
342 342 else
343 343 {
344 344 status = LFR_SUCCESSFUL;
345 345 }
346 346
347 347 return status;
348 348 }
349 349
350 350 int check_mode_transition( unsigned char requestedMode )
351 351 {
352 352 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
353 353 *
354 354 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
355 355 *
356 356 * @return LFR directive status codes:
357 357 * - LFR_SUCCESSFUL - the transition is authorized
358 358 * - LFR_DEFAULT - the transition is not authorized
359 359 *
360 360 */
361 361
362 362 int status;
363 363
364 364 switch (requestedMode)
365 365 {
366 366 case LFR_MODE_STANDBY:
367 367 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
368 368 status = LFR_DEFAULT;
369 369 }
370 370 else
371 371 {
372 372 status = LFR_SUCCESSFUL;
373 373 }
374 374 break;
375 375 case LFR_MODE_NORMAL:
376 376 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
377 377 status = LFR_DEFAULT;
378 378 }
379 379 else {
380 380 status = LFR_SUCCESSFUL;
381 381 }
382 382 break;
383 383 case LFR_MODE_BURST:
384 384 if ( lfrCurrentMode == LFR_MODE_BURST ) {
385 385 status = LFR_DEFAULT;
386 386 }
387 387 else {
388 388 status = LFR_SUCCESSFUL;
389 389 }
390 390 break;
391 391 case LFR_MODE_SBM1:
392 392 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
393 393 status = LFR_DEFAULT;
394 394 }
395 395 else {
396 396 status = LFR_SUCCESSFUL;
397 397 }
398 398 break;
399 399 case LFR_MODE_SBM2:
400 400 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
401 401 status = LFR_DEFAULT;
402 402 }
403 403 else {
404 404 status = LFR_SUCCESSFUL;
405 405 }
406 406 break;
407 407 default:
408 408 status = LFR_DEFAULT;
409 409 break;
410 410 }
411 411
412 412 return status;
413 413 }
414 414
415 415 int check_transition_date( unsigned int transitionCoarseTime )
416 416 {
417 417 int status;
418 418 unsigned int localCoarseTime;
419 419 unsigned int deltaCoarseTime;
420 420
421 421 status = LFR_SUCCESSFUL;
422 422
423 423 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
424 424 {
425 425 status = LFR_SUCCESSFUL;
426 426 }
427 427 else
428 428 {
429 429 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
430 430
431 431 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
432 432 {
433 433 status = LFR_DEFAULT;
434 434 PRINTF2("ERR *** in check_transition_date *** transition = %x, local = %x\n", transitionCoarseTime, localCoarseTime)
435 435 }
436 436
437 437 if (status == LFR_SUCCESSFUL)
438 438 {
439 439 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
440 440 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
441 441 {
442 442 status = LFR_DEFAULT;
443 443 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
444 444 }
445 445 }
446 446 }
447 447
448 448 return status;
449 449 }
450 450
451 451 int stop_current_mode( void )
452 452 {
453 453 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
454 454 *
455 455 * @return RTEMS directive status codes:
456 456 * - RTEMS_SUCCESSFUL - task restarted successfully
457 457 * - RTEMS_INVALID_ID - task id invalid
458 458 * - RTEMS_ALREADY_SUSPENDED - task already suspended
459 459 *
460 460 */
461 461
462 462 rtems_status_code status;
463 463
464 464 status = RTEMS_SUCCESSFUL;
465 465
466 466 // (1) mask interruptions
467 467 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
468 468 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
469 469
470 470 // (2) clear interruptions
471 471 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
472 472 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
473 473
474 474 // (3) reset waveform picker registers
475 475 reset_wfp_burst_enable(); // reset burst and enable bits
476 476 reset_wfp_status(); // reset all the status bits
477 477
478 478 // (4) reset spectral matrices registers
479 479 set_irq_on_new_ready_matrix( 0 ); // stop the spectral matrices
480 480 set_run_matrix_spectral( 0 ); // run_matrix_spectral is set to 0
481 481 reset_extractSWF(); // reset the extractSWF flag to false
482 482
483 483 // <Spectral Matrices simulator>
484 484 LEON_Mask_interrupt( IRQ_SM_SIMULATOR ); // mask spectral matrix interrupt simulator
485 485 timer_stop( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
486 486 LEON_Clear_interrupt( IRQ_SM_SIMULATOR ); // clear spectral matrix interrupt simulator
487 487 // </Spectral Matrices simulator>
488 488
489 489 // suspend several tasks
490 490 if (lfrCurrentMode != LFR_MODE_STANDBY) {
491 491 status = suspend_science_tasks();
492 492 }
493 493
494 494 if (status != RTEMS_SUCCESSFUL)
495 495 {
496 496 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
497 497 }
498 498
499 499 return status;
500 500 }
501 501
502 502 int enter_mode( unsigned char mode, unsigned int transitionCoarseTime )
503 503 {
504 504 /** This function is launched after a mode transition validation.
505 505 *
506 506 * @param mode is the mode in which LFR will be put.
507 507 *
508 508 * @return RTEMS directive status codes:
509 509 * - RTEMS_SUCCESSFUL - the mode has been entered successfully
510 510 * - RTEMS_NOT_SATISFIED - the mode has not been entered successfully
511 511 *
512 512 */
513 513
514 514 rtems_status_code status;
515 515
516 516 //**********************
517 517 // STOP THE CURRENT MODE
518 518 status = stop_current_mode();
519 519 if (status != RTEMS_SUCCESSFUL)
520 520 {
521 521 PRINTF1("ERR *** in enter_mode *** stop_current_mode with mode = %d\n", mode)
522 522 }
523 523
524 524 //*************************
525 525 // ENTER THE REQUESTED MODE
526 526 if ( (mode == LFR_MODE_NORMAL) || (mode == LFR_MODE_BURST)
527 527 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2) )
528 528 {
529 529 #ifdef PRINT_TASK_STATISTICS
530 530 rtems_cpu_usage_reset();
531 531 maxCount = 0;
532 532 #endif
533 533 status = restart_science_tasks();
534 534 launch_waveform_picker( mode, transitionCoarseTime );
535 // launch_spectral_matrix( mode );
535 launch_spectral_matrix_simu( mode );
536 536 }
537 537 else if ( mode == LFR_MODE_STANDBY )
538 538 {
539 539 #ifdef PRINT_TASK_STATISTICS
540 540 rtems_cpu_usage_report();
541 541 #endif
542 542
543 543 #ifdef PRINT_STACK_REPORT
544 544 rtems_stack_checker_report_usage();
545 545 #endif
546 546 PRINTF1("maxCount = %d\n", maxCount)
547 547 }
548 548 else
549 549 {
550 550 status = RTEMS_UNSATISFIED;
551 551 }
552 552
553 553 if (status != RTEMS_SUCCESSFUL)
554 554 {
555 555 PRINTF1("ERR *** in enter_mode *** status = %d\n", status)
556 556 status = RTEMS_UNSATISFIED;
557 557 }
558 558
559 559 return status;
560 560 }
561 561
562 562 int restart_science_tasks()
563 563 {
564 564 /** This function is used to restart all science tasks.
565 565 *
566 566 * @return RTEMS directive status codes:
567 567 * - RTEMS_SUCCESSFUL - task restarted successfully
568 568 * - RTEMS_INVALID_ID - task id invalid
569 569 * - RTEMS_INCORRECT_STATE - task never started
570 570 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
571 571 *
572 572 * Science tasks are AVF0, BPF0, WFRM, CWF3, CW2, CWF1
573 573 *
574 574 */
575 575
576 576 rtems_status_code status[6];
577 577 rtems_status_code ret;
578 578
579 579 ret = RTEMS_SUCCESSFUL;
580 580
581 581 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], 1 );
582 582 if (status[0] != RTEMS_SUCCESSFUL)
583 583 {
584 584 PRINTF1("in restart_science_task *** 0 ERR %d\n", status[0])
585 585 }
586 586
587 587 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
588 588 if (status[2] != RTEMS_SUCCESSFUL)
589 589 {
590 590 PRINTF1("in restart_science_task *** 2 ERR %d\n", status[2])
591 591 }
592 592
593 593 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
594 594 if (status[3] != RTEMS_SUCCESSFUL)
595 595 {
596 596 PRINTF1("in restart_science_task *** 3 ERR %d\n", status[3])
597 597 }
598 598
599 599 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
600 600 if (status[4] != RTEMS_SUCCESSFUL)
601 601 {
602 602 PRINTF1("in restart_science_task *** 4 ERR %d\n", status[4])
603 603 }
604 604
605 605 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
606 606 if (status[5] != RTEMS_SUCCESSFUL)
607 607 {
608 608 PRINTF1("in restart_science_task *** 5 ERR %d\n", status[5])
609 609 }
610 610
611 611 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[2] != RTEMS_SUCCESSFUL) ||
612 612 (status[3] != RTEMS_SUCCESSFUL) || (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
613 613 {
614 614 ret = RTEMS_UNSATISFIED;
615 615 }
616 616
617 617 return ret;
618 618 }
619 619
620 620 int suspend_science_tasks()
621 621 {
622 622 /** This function suspends the science tasks.
623 623 *
624 624 * @return RTEMS directive status codes:
625 625 * - RTEMS_SUCCESSFUL - task restarted successfully
626 626 * - RTEMS_INVALID_ID - task id invalid
627 627 * - RTEMS_ALREADY_SUSPENDED - task already suspended
628 628 *
629 629 */
630 630
631 631 rtems_status_code status;
632 632
633 633 status = rtems_task_suspend( Task_id[TASKID_AVF0] );
634 634 if (status != RTEMS_SUCCESSFUL)
635 635 {
636 636 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
637 637 }
638 638
639 639 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
640 640 {
641 641 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
642 642 if (status != RTEMS_SUCCESSFUL)
643 643 {
644 644 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
645 645 }
646 646 }
647 647
648 648 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
649 649 {
650 650 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
651 651 if (status != RTEMS_SUCCESSFUL)
652 652 {
653 653 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
654 654 }
655 655 }
656 656
657 657 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
658 658 {
659 659 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
660 660 if (status != RTEMS_SUCCESSFUL)
661 661 {
662 662 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
663 663 }
664 664 }
665 665
666 666 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
667 667 {
668 668 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
669 669 if (status != RTEMS_SUCCESSFUL)
670 670 {
671 671 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
672 672 }
673 673 }
674 674
675 675 return status;
676 676 }
677 677
678 678 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
679 679 {
680 680 reset_current_ring_nodes();
681 681 reset_waveform_picker_regs();
682 682 set_wfp_burst_enable_register( mode );
683 683
684 684 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
685 685 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
686 686
687 687 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x80; // [1000 0000]
688 688 if (transitionCoarseTime == 0)
689 689 {
690 690 waveform_picker_regs->start_date = time_management_regs->coarse_time;
691 691 }
692 692 else
693 693 {
694 694 waveform_picker_regs->start_date = transitionCoarseTime;
695 695 }
696 696 }
697 697
698 698 void launch_spectral_matrix( unsigned char mode )
699 699 {
700 700 reset_nb_sm_f0();
701 701 reset_current_sm_ring_nodes();
702 702 reset_spectral_matrix_regs();
703 703
704 #ifdef VHDL_DEV
705 704 struct grgpio_regs_str *grgpio_regs = (struct grgpio_regs_str *) REGS_ADDR_GRGPIO;
706 705 grgpio_regs->io_port_direction_register =
707 706 grgpio_regs->io_port_direction_register | 0x01; // [0001 1000], 0 = output disabled, 1 = output enabled
708 707 grgpio_regs->io_port_output_register = grgpio_regs->io_port_output_register | 0x00; // set the bit 0 to 1
709 708 set_irq_on_new_ready_matrix( 1 );
710 709 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
711 710 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
712 711 set_run_matrix_spectral( 1 );
713 #else
714 // Spectral Matrices simulator
715 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
716 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
717 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
718 #endif
712
719 713 }
720 714
721 715 void set_irq_on_new_ready_matrix( unsigned char value )
722 716 {
723 717 if (value == 1)
724 718 {
725 719 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
726 720 }
727 721 else
728 722 {
729 723 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
730 724 }
731 725 }
732 726
733 727 void set_run_matrix_spectral( unsigned char value )
734 728 {
735 729 if (value == 1)
736 730 {
737 731 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x4; // [0100] set run_matrix spectral to 1
738 732 }
739 733 else
740 734 {
741 735 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffb; // [1011] set run_matrix spectral to 0
742 736 }
743 737 }
744 738
745 739 void launch_spectral_matrix_simu( unsigned char mode )
746 740 {
747 741 reset_nb_sm_f0();
748 742 reset_current_sm_ring_nodes();
749 743 reset_spectral_matrix_regs();
750 744
751 745 // Spectral Matrices simulator
752 746 timer_start( (gptimer_regs_t*) REGS_ADDR_GPTIMER, TIMER_SM_SIMULATOR );
753 747 LEON_Clear_interrupt( IRQ_SM_SIMULATOR );
754 748 LEON_Unmask_interrupt( IRQ_SM_SIMULATOR );
755 749 set_local_nb_interrupt_f0_MAX();
756 750 }
757 751
758 752 //****************
759 753 // CLOSING ACTIONS
760 754 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
761 755 {
762 756 /** This function is used to update the HK packets statistics after a successful TC execution.
763 757 *
764 758 * @param TC points to the TC being processed
765 759 * @param time is the time used to date the TC execution
766 760 *
767 761 */
768 762
769 763 unsigned int val;
770 764
771 765 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
772 766 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
773 767 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
774 768 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
775 769 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
776 770 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
777 771 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
778 772 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
779 773 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
780 774 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
781 775 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
782 776 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
783 777
784 778 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
785 779 val++;
786 780 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
787 781 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
788 782 }
789 783
790 784 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
791 785 {
792 786 /** This function is used to update the HK packets statistics after a TC rejection.
793 787 *
794 788 * @param TC points to the TC being processed
795 789 * @param time is the time used to date the TC rejection
796 790 *
797 791 */
798 792
799 793 unsigned int val;
800 794
801 795 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
802 796 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
803 797 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
804 798 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
805 799 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
806 800 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
807 801 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
808 802 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
809 803 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
810 804 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
811 805 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
812 806 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
813 807
814 808 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
815 809 val++;
816 810 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
817 811 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
818 812 }
819 813
820 814 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
821 815 {
822 816 /** This function is the last step of the TC execution workflow.
823 817 *
824 818 * @param TC points to the TC being processed
825 819 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
826 820 * @param queue_id is the id of the RTEMS message queue used to send TM packets
827 821 * @param time is the time used to date the TC execution
828 822 *
829 823 */
830 824
831 825 unsigned char requestedMode;
832 826
833 827 if (result == LFR_SUCCESSFUL)
834 828 {
835 829 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
836 830 &
837 831 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
838 832 )
839 833 {
840 834 send_tm_lfr_tc_exe_success( TC, queue_id );
841 835 }
842 836 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
843 837 {
844 838 //**********************************
845 839 // UPDATE THE LFRMODE LOCAL VARIABLE
846 840 requestedMode = TC->dataAndCRC[1];
847 841 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
848 842 updateLFRCurrentMode();
849 843 }
850 844 }
851 845 else
852 846 {
853 847 send_tm_lfr_tc_exe_error( TC, queue_id );
854 848 }
855 849 }
856 850
857 851 //***************************
858 852 // Interrupt Service Routines
859 853 rtems_isr commutation_isr1( rtems_vector_number vector )
860 854 {
861 855 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
862 856 printf("In commutation_isr1 *** Error sending event to DUMB\n");
863 857 }
864 858 }
865 859
866 860 rtems_isr commutation_isr2( rtems_vector_number vector )
867 861 {
868 862 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
869 863 printf("In commutation_isr2 *** Error sending event to DUMB\n");
870 864 }
871 865 }
872 866
873 867 //****************
874 868 // OTHER FUNCTIONS
875 869 void updateLFRCurrentMode()
876 870 {
877 871 /** This function updates the value of the global variable lfrCurrentMode.
878 872 *
879 873 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
880 874 *
881 875 */
882 876 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
883 877 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
884 878 }
885 879
@@ -1,539 +1,539
1 1 /** Functions to load and dump parameters in the LFR registers.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle TC related to parameter loading and dumping.\n
7 7 * TC_LFR_LOAD_COMMON_PAR\n
8 8 * TC_LFR_LOAD_NORMAL_PAR\n
9 9 * TC_LFR_LOAD_BURST_PAR\n
10 10 * TC_LFR_LOAD_SBM1_PAR\n
11 11 * TC_LFR_LOAD_SBM2_PAR\n
12 12 *
13 13 */
14 14
15 15 #include "tc_load_dump_parameters.h"
16 16
17 17 int action_load_common_par(ccsdsTelecommandPacket_t *TC)
18 18 {
19 19 /** This function updates the LFR registers with the incoming common parameters.
20 20 *
21 21 * @param TC points to the TeleCommand packet that is being processed
22 22 *
23 23 *
24 24 */
25 25
26 26 parameter_dump_packet.unused0 = TC->dataAndCRC[0];
27 27 parameter_dump_packet.bw_sp0_sp1_r0_r1 = TC->dataAndCRC[1];
28 28 set_wfp_data_shaping( );
29 29 return LFR_SUCCESSFUL;
30 30 }
31 31
32 32 int action_load_normal_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
33 33 {
34 34 /** This function updates the LFR registers with the incoming normal parameters.
35 35 *
36 36 * @param TC points to the TeleCommand packet that is being processed
37 37 * @param queue_id is the id of the queue which handles TM related to this execution step
38 38 *
39 39 */
40 40
41 41 int result;
42 42 int flag;
43 43 rtems_status_code status;
44 44
45 45 flag = LFR_SUCCESSFUL;
46 46
47 47 if ( (lfrCurrentMode == LFR_MODE_NORMAL) ||
48 48 (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) ) {
49 49 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
50 50 flag = LFR_DEFAULT;
51 51 }
52 52
53 53 //***************
54 54 // sy_lfr_n_swf_l
55 55 if (flag == LFR_SUCCESSFUL)
56 56 {
57 57 result = set_sy_lfr_n_swf_l( TC, queue_id, time );
58 58 if (result != LFR_SUCCESSFUL)
59 59 {
60 60 flag = LFR_DEFAULT;
61 61 }
62 62 }
63 63
64 64 //***************
65 65 // sy_lfr_n_swf_p
66 66 if (flag == LFR_SUCCESSFUL)
67 67 {
68 68 result = set_sy_lfr_n_swf_p( TC, queue_id, time );
69 69 if (result != LFR_SUCCESSFUL)
70 70 {
71 71 flag = LFR_DEFAULT;
72 72 }
73 73 }
74 74
75 75 //***************
76 76 // sy_lfr_n_asm_p
77 77 if (flag == LFR_SUCCESSFUL)
78 78 {
79 79 result = set_sy_lfr_n_asm_p( TC, queue_id );
80 80 if (result != LFR_SUCCESSFUL)
81 81 {
82 82 flag = LFR_DEFAULT;
83 83 }
84 84 }
85 85
86 86 //***************
87 87 // sy_lfr_n_bp_p0
88 88 if (flag == LFR_SUCCESSFUL)
89 89 {
90 90 result = set_sy_lfr_n_bp_p0( TC, queue_id );
91 91 if (result != LFR_SUCCESSFUL)
92 92 {
93 93 flag = LFR_DEFAULT;
94 94 }
95 95 }
96 96
97 97 //***************
98 98 // sy_lfr_n_bp_p1
99 99 if (flag == LFR_SUCCESSFUL)
100 100 {
101 101 result = set_sy_lfr_n_bp_p1( TC, queue_id );
102 102 if (result != LFR_SUCCESSFUL)
103 103 {
104 104 flag = LFR_DEFAULT;
105 105 }
106 106 }
107 107
108 108 //*********************
109 109 // sy_lfr_n_cwf_long_f3
110 110 if (flag == LFR_SUCCESSFUL)
111 111 {
112 112 result = set_sy_lfr_n_cwf_long_f3( TC, queue_id );
113 113 if (result != LFR_SUCCESSFUL)
114 114 {
115 115 flag = LFR_DEFAULT;
116 116 }
117 117 }
118 118
119 119 return flag;
120 120 }
121 121
122 122 int action_load_burst_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
123 123 {
124 124 /** This function updates the LFR registers with the incoming burst parameters.
125 125 *
126 126 * @param TC points to the TeleCommand packet that is being processed
127 127 * @param queue_id is the id of the queue which handles TM related to this execution step
128 128 *
129 129 */
130 130
131 131 int result;
132 132 unsigned char lfrMode;
133 133 rtems_status_code status;
134 134
135 135 result = LFR_DEFAULT;
136 136 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
137 137
138 138 if ( lfrMode == LFR_MODE_BURST ) {
139 139 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
140 140 result = LFR_DEFAULT;
141 141 }
142 142 else {
143 143 parameter_dump_packet.sy_lfr_b_bp_p0 = TC->dataAndCRC[0];
144 144 parameter_dump_packet.sy_lfr_b_bp_p1 = TC->dataAndCRC[1];
145 145
146 146 result = LFR_SUCCESSFUL;
147 147 }
148 148
149 149 return result;
150 150 }
151 151
152 152 int action_load_sbm1_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
153 153 {
154 154 /** This function updates the LFR registers with the incoming sbm1 parameters.
155 155 *
156 156 * @param TC points to the TeleCommand packet that is being processed
157 157 * @param queue_id is the id of the queue which handles TM related to this execution step
158 158 *
159 159 */
160 160 int result;
161 161 unsigned char lfrMode;
162 162 rtems_status_code status;
163 163
164 164 result = LFR_DEFAULT;
165 165 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
166 166
167 167 if ( lfrMode == LFR_MODE_SBM1 ) {
168 168 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
169 169 result = LFR_DEFAULT;
170 170 }
171 171 else {
172 172 parameter_dump_packet.sy_lfr_s1_bp_p0 = TC->dataAndCRC[0];
173 173 parameter_dump_packet.sy_lfr_s1_bp_p1 = TC->dataAndCRC[1];
174 174
175 175 result = LFR_SUCCESSFUL;
176 176 }
177 177
178 178 return result;
179 179 }
180 180
181 181 int action_load_sbm2_par(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
182 182 {
183 183 /** This function updates the LFR registers with the incoming sbm2 parameters.
184 184 *
185 185 * @param TC points to the TeleCommand packet that is being processed
186 186 * @param queue_id is the id of the queue which handles TM related to this execution step
187 187 *
188 188 */
189 189
190 190 int result;
191 191 unsigned char lfrMode;
192 192 rtems_status_code status;
193 193
194 194 result = LFR_DEFAULT;
195 195 lfrMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
196 196
197 197 if ( lfrMode == LFR_MODE_SBM2 ) {
198 198 status = send_tm_lfr_tc_exe_not_executable( TC, queue_id );
199 199 result = LFR_DEFAULT;
200 200 }
201 201 else {
202 202 parameter_dump_packet.sy_lfr_s2_bp_p0 = TC->dataAndCRC[0];
203 203 parameter_dump_packet.sy_lfr_s2_bp_p1 = TC->dataAndCRC[1];
204 204
205 205 result = LFR_SUCCESSFUL;
206 206 }
207 207
208 208 return result;
209 209 }
210 210
211 211 int action_dump_par( rtems_id queue_id )
212 212 {
213 213 /** This function dumps the LFR parameters by sending the appropriate TM packet to the dedicated RTEMS message queue.
214 214 *
215 215 * @param queue_id is the id of the queue which handles TM related to this execution step.
216 216 *
217 217 * @return RTEMS directive status codes:
218 218 * - RTEMS_SUCCESSFUL - message sent successfully
219 219 * - RTEMS_INVALID_ID - invalid queue id
220 220 * - RTEMS_INVALID_SIZE - invalid message size
221 221 * - RTEMS_INVALID_ADDRESS - buffer is NULL
222 222 * - RTEMS_UNSATISFIED - out of message buffers
223 223 * - RTEMS_TOO_MANY - queue s limit has been reached
224 224 *
225 225 */
226 226
227 227 int status;
228 228
229 229 // UPDATE TIME
230 230 increment_seq_counter( parameter_dump_packet.packetSequenceControl );
231 231 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
232 232 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
233 233 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
234 234 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
235 235 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
236 236 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
237 237 // SEND DATA
238 238 status = rtems_message_queue_send( queue_id, &parameter_dump_packet,
239 239 PACKET_LENGTH_PARAMETER_DUMP + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
240 240 if (status != RTEMS_SUCCESSFUL) {
241 241 PRINTF1("in action_dump *** ERR sending packet, code %d", status)
242 242 }
243 243
244 244 return status;
245 245 }
246 246
247 247 //***********************
248 248 // NORMAL MODE PARAMETERS
249 249
250 250 int set_sy_lfr_n_swf_l( ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time )
251 251 {
252 252 /** This function sets the number of points of a snapshot (sy_lfr_n_swf_l).
253 253 *
254 254 * @param TC points to the TeleCommand packet that is being processed
255 255 * @param queue_id is the id of the queue which handles TM related to this execution step
256 256 *
257 257 */
258 258
259 259 unsigned int tmp;
260 260 int result;
261 261 unsigned char msb;
262 262 unsigned char lsb;
263 263 rtems_status_code status;
264 264
265 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L ];
266 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_L+1 ];
265 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L ];
266 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_L+1 ];
267 267
268 268 tmp = ( unsigned int ) floor(
269 269 ( ( msb*256 ) + lsb ) / 16
270 270 ) * 16;
271 271
272 272 if ( (tmp < 16) || (tmp > 2048) ) // the snapshot period is a multiple of 16
273 273 { // 2048 is the maximum limit due to the size of the buffers
274 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_L+10, lsb );
274 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_L+10, lsb );
275 275 result = WRONG_APP_DATA;
276 276 }
277 277 else if (tmp != 2048)
278 278 {
279 279 status = send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
280 280 result = FUNCT_NOT_IMPL;
281 281 }
282 282 else
283 283 {
284 284 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (tmp >> 8);
285 285 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (tmp );
286 286 result = LFR_SUCCESSFUL;
287 287 }
288 288
289 289 return result;
290 290 }
291 291
292 292 int set_sy_lfr_n_swf_p(ccsdsTelecommandPacket_t *TC, rtems_id queue_id , unsigned char *time)
293 293 {
294 294 /** This function sets the time between two snapshots, in s (sy_lfr_n_swf_p).
295 295 *
296 296 * @param TC points to the TeleCommand packet that is being processed
297 297 * @param queue_id is the id of the queue which handles TM related to this execution step
298 298 *
299 299 */
300 300
301 301 unsigned int tmp;
302 302 int result;
303 303 unsigned char msb;
304 304 unsigned char lsb;
305 305 rtems_status_code status;
306 306
307 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P ];
308 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_SWF_P+1 ];
307 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P ];
308 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_SWF_P+1 ];
309 309
310 310 tmp = msb * 256 + lsb;
311 311
312 312 if ( tmp < 16 )
313 313 {
314 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_SY_LFR_N_SWF_P+10, lsb );
314 status = send_tm_lfr_tc_exe_inconsistent( TC, queue_id, DATAFIELD_POS_SY_LFR_N_SWF_P+10, lsb );
315 315 result = WRONG_APP_DATA;
316 316 }
317 317 else
318 318 {
319 319 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (tmp >> 8);
320 320 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (tmp );
321 321 result = LFR_SUCCESSFUL;
322 322 }
323 323
324 324 return result;
325 325 }
326 326
327 327 int set_sy_lfr_n_asm_p( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
328 328 {
329 329 /** This function sets the time between two full spectral matrices transmission, in s (SY_LFR_N_ASM_P).
330 330 *
331 331 * @param TC points to the TeleCommand packet that is being processed
332 332 * @param queue_id is the id of the queue which handles TM related to this execution step
333 333 *
334 334 */
335 335
336 336 int result;
337 337 unsigned char msb;
338 338 unsigned char lsb;
339 339
340 msb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P ];
341 lsb = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_ASM_P+1 ];
340 msb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P ];
341 lsb = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_ASM_P+1 ];
342 342
343 343 parameter_dump_packet.sy_lfr_n_asm_p[0] = msb;
344 344 parameter_dump_packet.sy_lfr_n_asm_p[1] = lsb;
345 345 result = LFR_SUCCESSFUL;
346 346
347 347 return result;
348 348 }
349 349
350 350 int set_sy_lfr_n_bp_p0( ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
351 351 {
352 352 /** This function sets the time between two basic parameter sets, in s (SY_LFR_N_BP_P0).
353 353 *
354 354 * @param TC points to the TeleCommand packet that is being processed
355 355 * @param queue_id is the id of the queue which handles TM related to this execution step
356 356 *
357 357 */
358 358
359 359 int status;
360 360
361 361 status = LFR_SUCCESSFUL;
362 362
363 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P0 ];
363 parameter_dump_packet.sy_lfr_n_bp_p0 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P0 ];
364 364
365 365 return status;
366 366 }
367 367
368 368 int set_sy_lfr_n_bp_p1(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
369 369 {
370 370 /** This function sets the time between two basic parameter sets (autocorrelation + crosscorrelation), in s (sy_lfr_n_bp_p1).
371 371 *
372 372 * @param TC points to the TeleCommand packet that is being processed
373 373 * @param queue_id is the id of the queue which handles TM related to this execution step
374 374 *
375 375 */
376 376
377 377 int status;
378 378
379 379 status = LFR_SUCCESSFUL;
380 380
381 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_BP_P1 ];
381 parameter_dump_packet.sy_lfr_n_bp_p1 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_BP_P1 ];
382 382
383 383 return status;
384 384 }
385 385
386 386 int set_sy_lfr_n_cwf_long_f3(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
387 387 {
388 388 /** This function allows to switch from CWF_F3 packets to CWF_LONG_F3 packets.
389 389 *
390 390 * @param TC points to the TeleCommand packet that is being processed
391 391 * @param queue_id is the id of the queue which handles TM related to this execution step
392 392 *
393 393 */
394 394
395 395 int status;
396 396
397 397 status = LFR_SUCCESSFUL;
398 398
399 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ BYTE_POS_SY_LFR_N_CWF_LONG_F3 ];
399 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = TC->dataAndCRC[ DATAFIELD_POS_SY_LFR_N_CWF_LONG_F3 ];
400 400
401 401 return status;
402 402 }
403 403
404 404 //**********************
405 405 // BURST MODE PARAMETERS
406 406
407 407 //*********************
408 408 // SBM1 MODE PARAMETERS
409 409
410 410 //*********************
411 411 // SBM2 MODE PARAMETERS
412 412
413 413 //*******************
414 414 // TC_LFR_UPDATE_INFO
415 415 unsigned int check_update_info_hk_lfr_mode( unsigned char mode )
416 416 {
417 417 unsigned int status;
418 418
419 419 if ( (mode == LFR_MODE_STANDBY) || (mode == LFR_MODE_NORMAL)
420 420 || (mode == LFR_MODE_BURST)
421 421 || (mode == LFR_MODE_SBM1) || (mode == LFR_MODE_SBM2))
422 422 {
423 423 status = LFR_SUCCESSFUL;
424 424 }
425 425 else
426 426 {
427 427 status = LFR_DEFAULT;
428 428 }
429 429
430 430 return status;
431 431 }
432 432
433 433 unsigned int check_update_info_hk_tds_mode( unsigned char mode )
434 434 {
435 435 unsigned int status;
436 436
437 437 if ( (mode == TDS_MODE_STANDBY) || (mode == TDS_MODE_NORMAL)
438 438 || (mode == TDS_MODE_BURST)
439 439 || (mode == TDS_MODE_SBM1) || (mode == TDS_MODE_SBM2)
440 440 || (mode == TDS_MODE_LFM))
441 441 {
442 442 status = LFR_SUCCESSFUL;
443 443 }
444 444 else
445 445 {
446 446 status = LFR_DEFAULT;
447 447 }
448 448
449 449 return status;
450 450 }
451 451
452 452 unsigned int check_update_info_hk_thr_mode( unsigned char mode )
453 453 {
454 454 unsigned int status;
455 455
456 456 if ( (mode == THR_MODE_STANDBY) || (mode == THR_MODE_NORMAL)
457 457 || (mode == THR_MODE_BURST))
458 458 {
459 459 status = LFR_SUCCESSFUL;
460 460 }
461 461 else
462 462 {
463 463 status = LFR_DEFAULT;
464 464 }
465 465
466 466 return status;
467 467 }
468 468
469 469 //**********
470 470 // init dump
471 471
472 472 void init_parameter_dump( void )
473 473 {
474 474 /** This function initialize the parameter_dump_packet global variable with default values.
475 475 *
476 476 */
477 477
478 478 parameter_dump_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
479 479 parameter_dump_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
480 480 parameter_dump_packet.reserved = CCSDS_RESERVED;
481 481 parameter_dump_packet.userApplication = CCSDS_USER_APP;
482 482 parameter_dump_packet.packetID[0] = (unsigned char) (TM_PACKET_ID_PARAMETER_DUMP >> 8);
483 483 parameter_dump_packet.packetID[1] = (unsigned char) TM_PACKET_ID_PARAMETER_DUMP;
484 484 parameter_dump_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
485 485 parameter_dump_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
486 486 parameter_dump_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_PARAMETER_DUMP >> 8);
487 487 parameter_dump_packet.packetLength[1] = (unsigned char) PACKET_LENGTH_PARAMETER_DUMP;
488 488 // DATA FIELD HEADER
489 489 parameter_dump_packet.spare1_pusVersion_spare2 = SPARE1_PUSVERSION_SPARE2;
490 490 parameter_dump_packet.serviceType = TM_TYPE_PARAMETER_DUMP;
491 491 parameter_dump_packet.serviceSubType = TM_SUBTYPE_PARAMETER_DUMP;
492 492 parameter_dump_packet.destinationID = TM_DESTINATION_ID_GROUND;
493 493 parameter_dump_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
494 494 parameter_dump_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
495 495 parameter_dump_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
496 496 parameter_dump_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
497 497 parameter_dump_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
498 498 parameter_dump_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
499 499 parameter_dump_packet.sid = SID_PARAMETER_DUMP;
500 500
501 501 //******************
502 502 // COMMON PARAMETERS
503 503 parameter_dump_packet.unused0 = DEFAULT_SY_LFR_COMMON0;
504 504 parameter_dump_packet.bw_sp0_sp1_r0_r1 = DEFAULT_SY_LFR_COMMON1;
505 505
506 506 //******************
507 507 // NORMAL PARAMETERS
508 508 parameter_dump_packet.sy_lfr_n_swf_l[0] = (unsigned char) (SY_LFR_N_SWF_L >> 8);
509 509 parameter_dump_packet.sy_lfr_n_swf_l[1] = (unsigned char) (SY_LFR_N_SWF_L );
510 510 parameter_dump_packet.sy_lfr_n_swf_p[0] = (unsigned char) (SY_LFR_N_SWF_P >> 8);
511 511 parameter_dump_packet.sy_lfr_n_swf_p[1] = (unsigned char) (SY_LFR_N_SWF_P );
512 512 parameter_dump_packet.sy_lfr_n_asm_p[0] = (unsigned char) (SY_LFR_N_ASM_P >> 8);
513 513 parameter_dump_packet.sy_lfr_n_asm_p[1] = (unsigned char) (SY_LFR_N_ASM_P );
514 514 parameter_dump_packet.sy_lfr_n_bp_p0 = (unsigned char) SY_LFR_N_BP_P0;
515 515 parameter_dump_packet.sy_lfr_n_bp_p1 = (unsigned char) SY_LFR_N_BP_P1;
516 516 parameter_dump_packet.sy_lfr_n_cwf_long_f3 = (unsigned char) SY_LFR_N_CWF_LONG_F3;
517 517
518 518 //*****************
519 519 // BURST PARAMETERS
520 520 parameter_dump_packet.sy_lfr_b_bp_p0 = (unsigned char) DEFAULT_SY_LFR_B_BP_P0;
521 521 parameter_dump_packet.sy_lfr_b_bp_p1 = (unsigned char) DEFAULT_SY_LFR_B_BP_P1;
522 522
523 523 //****************
524 524 // SBM1 PARAMETERS
525 525 parameter_dump_packet.sy_lfr_s1_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P0; // min value is 0.25 s for the period
526 526 parameter_dump_packet.sy_lfr_s1_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S1_BP_P1;
527 527
528 528 //****************
529 529 // SBM2 PARAMETERS
530 530 parameter_dump_packet.sy_lfr_s2_bp_p0 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P0;
531 531 parameter_dump_packet.sy_lfr_s2_bp_p1 = (unsigned char) DEFAULT_SY_LFR_S2_BP_P1;
532 532 }
533 533
534 534
535 535
536 536
537 537
538 538
539 539
@@ -1,1351 +1,1351
1 1 /** Functions and tasks related to waveform packet generation.
2 2 *
3 3 * @file
4 4 * @author P. LEROY
5 5 *
6 6 * A group of functions to handle waveforms, in snapshot or continuous format.\n
7 7 *
8 8 */
9 9
10 10 #include "wf_handler.h"
11 11
12 12 //*****************
13 13 // waveform headers
14 14 // SWF
15 15 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F0[7];
16 16 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F1[7];
17 17 Header_TM_LFR_SCIENCE_SWF_t headerSWF_F2[7];
18 18 // CWF
19 19 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F1[ NB_PACKETS_PER_GROUP_OF_CWF ];
20 20 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_BURST[ NB_PACKETS_PER_GROUP_OF_CWF ];
21 21 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F2_SBM2[ NB_PACKETS_PER_GROUP_OF_CWF ];
22 22 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3[ NB_PACKETS_PER_GROUP_OF_CWF ];
23 23 Header_TM_LFR_SCIENCE_CWF_t headerCWF_F3_light[ NB_PACKETS_PER_GROUP_OF_CWF_LIGHT ];
24 24
25 25 //**************
26 26 // waveform ring
27 27 ring_node waveform_ring_f0[NB_RING_NODES_F0];
28 28 ring_node waveform_ring_f1[NB_RING_NODES_F1];
29 29 ring_node waveform_ring_f2[NB_RING_NODES_F2];
30 30 ring_node *current_ring_node_f0;
31 31 ring_node *ring_node_to_send_swf_f0;
32 32 ring_node *current_ring_node_f1;
33 33 ring_node *ring_node_to_send_swf_f1;
34 34 ring_node *ring_node_to_send_cwf_f1;
35 35 ring_node *current_ring_node_f2;
36 36 ring_node *ring_node_to_send_swf_f2;
37 37 ring_node *ring_node_to_send_cwf_f2;
38 38
39 39 bool extractSWF = false;
40 40 bool swf_f0_ready = false;
41 41 bool swf_f1_ready = false;
42 42 bool swf_f2_ready = false;
43 43
44 44 int wf_snap_extracted[ (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
45 45
46 46 //*********************
47 47 // Interrupt SubRoutine
48 48
49 49 void reset_extractSWF( void )
50 50 {
51 51 extractSWF = false;
52 52 swf_f0_ready = false;
53 53 swf_f1_ready = false;
54 54 swf_f2_ready = false;
55 55 }
56 56
57 57 rtems_isr waveforms_isr( rtems_vector_number vector )
58 58 {
59 59 /** This is the interrupt sub routine called by the waveform picker core.
60 60 *
61 61 * This ISR launch different actions depending mainly on two pieces of information:
62 62 * 1. the values read in the registers of the waveform picker.
63 63 * 2. the current LFR mode.
64 64 *
65 65 */
66 66
67 67 rtems_status_code status;
68 68 static unsigned char nb_swf = 0;
69 69
70 70 if ( (lfrCurrentMode == LFR_MODE_NORMAL)
71 71 || (lfrCurrentMode == LFR_MODE_SBM1) || (lfrCurrentMode == LFR_MODE_SBM2) )
72 72 { // in modes other than STANDBY and BURST, send the CWF_F3 data
73 73 if ((waveform_picker_regs->status & 0x08) == 0x08){ // [1000] f3 is full
74 74 // (1) change the receiving buffer for the waveform picker
75 75 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
76 76 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_b);
77 77 }
78 78 else {
79 79 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a);
80 80 }
81 81 // (2) send an event for the waveforms transmission
82 82 if (rtems_event_send( Task_id[TASKID_CWF3], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
83 83 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
84 84 }
85 85 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff777; // reset f3 bits to 0, [1111 0111 0111 0111]
86 86 }
87 87 }
88 88
89 89 switch(lfrCurrentMode)
90 90 {
91 91 //********
92 92 // STANDBY
93 93 case(LFR_MODE_STANDBY):
94 94 break;
95 95
96 96 //******
97 97 // NORMAL
98 98 case(LFR_MODE_NORMAL):
99 99 if ( (waveform_picker_regs->status & 0xff8) != 0x00) // [1000] check the error bits
100 100 {
101 101 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
102 102 }
103 103 if ( (waveform_picker_regs->status & 0x07) == 0x07) // [0111] check the f2, f1, f0 full bits
104 104 {
105 105 // change F0 ring node
106 106 ring_node_to_send_swf_f0 = current_ring_node_f0;
107 107 current_ring_node_f0 = current_ring_node_f0->next;
108 108 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address;
109 109 // change F1 ring node
110 110 ring_node_to_send_swf_f1 = current_ring_node_f1;
111 111 current_ring_node_f1 = current_ring_node_f1->next;
112 112 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
113 113 // change F2 ring node
114 114 ring_node_to_send_swf_f2 = current_ring_node_f2;
115 115 current_ring_node_f2 = current_ring_node_f2->next;
116 116 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
117 117 //
118 118 // if (nb_swf < 2)
119 119 if (true)
120 120 {
121 121 if (rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_NORMAL ) != RTEMS_SUCCESSFUL) {
122 122 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
123 123 }
124 124 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffff888; // [1000 1000 1000]
125 125 nb_swf = nb_swf + 1;
126 126 }
127 127 else
128 128 {
129 129 reset_wfp_burst_enable();
130 130 nb_swf = 0;
131 131 }
132 132
133 133 }
134 134
135 135 break;
136 136
137 137 //******
138 138 // BURST
139 139 case(LFR_MODE_BURST):
140 140 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
141 141 // (1) change the receiving buffer for the waveform picker
142 142 ring_node_to_send_cwf_f2 = current_ring_node_f2;
143 143 current_ring_node_f2 = current_ring_node_f2->next;
144 144 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
145 145 // (2) send an event for the waveforms transmission
146 146 if (rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_BURST ) != RTEMS_SUCCESSFUL) {
147 147 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_2 );
148 148 }
149 149 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
150 150 }
151 151 break;
152 152
153 153 //*****
154 154 // SBM1
155 155 case(LFR_MODE_SBM1):
156 156 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
157 157 // (1) change the receiving buffer for the waveform picker
158 158 ring_node_to_send_cwf_f1 = current_ring_node_f1;
159 159 current_ring_node_f1 = current_ring_node_f1->next;
160 160 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address;
161 161 // (2) send an event for the the CWF1 task for transmission (and snapshot extraction if needed)
162 162 status = rtems_event_send( Task_id[TASKID_CWF1], RTEMS_EVENT_MODE_SBM1 );
163 163 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1 bits = 0
164 164 }
165 165 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
166 166 swf_f0_ready = true;
167 167 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
168 168 }
169 169 if ( (waveform_picker_regs->status & 0x04) == 0x04 ) { // [0100] check the f2 full bit
170 170 swf_f2_ready = true;
171 171 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bits = 0
172 172 }
173 173 break;
174 174
175 175 //*****
176 176 // SBM2
177 177 case(LFR_MODE_SBM2):
178 178 if ( (waveform_picker_regs->status & 0x04) == 0x04 ){ // [0100] check the f2 full bit
179 179 // (1) change the receiving buffer for the waveform picker
180 180 ring_node_to_send_cwf_f2 = current_ring_node_f2;
181 181 current_ring_node_f2 = current_ring_node_f2->next;
182 182 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address;
183 183 // (2) send an event for the waveforms transmission
184 184 status = rtems_event_send( Task_id[TASKID_CWF2], RTEMS_EVENT_MODE_SBM2 );
185 185 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffbbb; // [1111 1011 1011 1011] f2 bit = 0
186 186 }
187 187 if ( (waveform_picker_regs->status & 0x01) == 0x01 ) { // [0001] check the f0 full bit
188 188 swf_f0_ready = true;
189 189 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffeee; // [1111 1110 1110 1110] f0 bits = 0
190 190 }
191 191 if ( (waveform_picker_regs->status & 0x02) == 0x02 ) { // [0010] check the f1 full bit
192 192 swf_f1_ready = true;
193 193 waveform_picker_regs->status = waveform_picker_regs->status & 0xfffffddd; // [1111 1101 1101 1101] f1, f0 bits = 0
194 194 }
195 195 break;
196 196
197 197 //********
198 198 // DEFAULT
199 199 default:
200 200 break;
201 201 }
202 202 }
203 203
204 204 //************
205 205 // RTEMS TASKS
206 206
207 207 rtems_task wfrm_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
208 208 {
209 209 /** This RTEMS task is dedicated to the transmission of snapshots of the NORMAL mode.
210 210 *
211 211 * @param unused is the starting argument of the RTEMS task
212 212 *
213 213 * The following data packets are sent by this task:
214 214 * - TM_LFR_SCIENCE_NORMAL_SWF_F0
215 215 * - TM_LFR_SCIENCE_NORMAL_SWF_F1
216 216 * - TM_LFR_SCIENCE_NORMAL_SWF_F2
217 217 *
218 218 */
219 219
220 220 rtems_event_set event_out;
221 221 rtems_id queue_id;
222 222 rtems_status_code status;
223 223
224 224 init_header_snapshot_wf_table( SID_NORM_SWF_F0, headerSWF_F0 );
225 225 init_header_snapshot_wf_table( SID_NORM_SWF_F1, headerSWF_F1 );
226 226 init_header_snapshot_wf_table( SID_NORM_SWF_F2, headerSWF_F2 );
227 227
228 228 init_waveforms();
229 229
230 230 status = get_message_queue_id_send( &queue_id );
231 231 if (status != RTEMS_SUCCESSFUL)
232 232 {
233 233 PRINTF1("in WFRM *** ERR get_message_queue_id_send %d\n", status)
234 234 }
235 235
236 236 BOOT_PRINTF("in WFRM ***\n")
237 237
238 238 while(1){
239 239 // wait for an RTEMS_EVENT
240 240 rtems_event_receive(RTEMS_EVENT_MODE_NORMAL | RTEMS_EVENT_MODE_SBM1
241 241 | RTEMS_EVENT_MODE_SBM2 | RTEMS_EVENT_MODE_SBM2_WFRM,
242 242 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
243 243 if (event_out == RTEMS_EVENT_MODE_NORMAL)
244 244 {
245 245 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_NORMAL\n")
246 246 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
247 247 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
248 248 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
249 249 }
250 250 if (event_out == RTEMS_EVENT_MODE_SBM1)
251 251 {
252 252 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM1\n")
253 253 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
254 254 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F1, headerSWF_F1, queue_id);
255 255 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f2->buffer_address, SID_NORM_SWF_F2, headerSWF_F2, queue_id);
256 256 }
257 257 if (event_out == RTEMS_EVENT_MODE_SBM2)
258 258 {
259 259 DEBUG_PRINTF("WFRM received RTEMS_EVENT_MODE_SBM2\n")
260 260 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f0->buffer_address, SID_NORM_SWF_F0, headerSWF_F0, queue_id);
261 261 send_waveform_SWF((volatile int*) ring_node_to_send_swf_f1->buffer_address, SID_NORM_SWF_F1, headerSWF_F1, queue_id);
262 262 send_waveform_SWF((volatile int*) wf_snap_extracted , SID_NORM_SWF_F2, headerSWF_F2, queue_id);
263 263 }
264 264 }
265 265 }
266 266
267 267 rtems_task cwf3_task(rtems_task_argument argument) //used with the waveform picker VHDL IP
268 268 {
269 269 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f3.
270 270 *
271 271 * @param unused is the starting argument of the RTEMS task
272 272 *
273 273 * The following data packet is sent by this task:
274 274 * - TM_LFR_SCIENCE_NORMAL_CWF_F3
275 275 *
276 276 */
277 277
278 278 rtems_event_set event_out;
279 279 rtems_id queue_id;
280 280 rtems_status_code status;
281 281
282 282 init_header_continuous_wf_table( SID_NORM_CWF_LONG_F3, headerCWF_F3 );
283 283 init_header_continuous_cwf3_light_table( headerCWF_F3_light );
284 284
285 285 status = get_message_queue_id_send( &queue_id );
286 286 if (status != RTEMS_SUCCESSFUL)
287 287 {
288 288 PRINTF1("in CWF3 *** ERR get_message_queue_id_send %d\n", status)
289 289 }
290 290
291 291 BOOT_PRINTF("in CWF3 ***\n")
292 292
293 293 while(1){
294 294 // wait for an RTEMS_EVENT
295 295 rtems_event_receive( RTEMS_EVENT_0,
296 296 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
297 297 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
298 298 {
299 299 PRINTF("send CWF_LONG_F3\n")
300 300 }
301 301 else
302 302 {
303 303 PRINTF("send CWF_F3 (light)\n")
304 304 }
305 305 if (waveform_picker_regs->addr_data_f3 == (int) wf_cont_f3_a) {
306 306 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
307 307 {
308 308 send_waveform_CWF( wf_cont_f3_b, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
309 309 }
310 310 else
311 311 {
312 312 send_waveform_CWF3_light( wf_cont_f3_b, headerCWF_F3_light, queue_id );
313 313 }
314 314 }
315 315 else
316 316 {
317 317 if ( (parameter_dump_packet.sy_lfr_n_cwf_long_f3 & 0x01) == 0x01)
318 318 {
319 319 send_waveform_CWF( wf_cont_f3_a, SID_NORM_CWF_LONG_F3, headerCWF_F3, queue_id );
320 320 }
321 321 else
322 322 {
323 323 send_waveform_CWF3_light( wf_cont_f3_a, headerCWF_F3_light, queue_id );
324 324 }
325 325
326 326 }
327 327 }
328 328 }
329 329
330 330 rtems_task cwf2_task(rtems_task_argument argument) // ONLY USED IN BURST AND SBM2
331 331 {
332 332 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f2.
333 333 *
334 334 * @param unused is the starting argument of the RTEMS task
335 335 *
336 336 * The following data packet is sent by this function:
337 337 * - TM_LFR_SCIENCE_BURST_CWF_F2
338 338 * - TM_LFR_SCIENCE_SBM2_CWF_F2
339 339 *
340 340 */
341 341
342 342 rtems_event_set event_out;
343 343 rtems_id queue_id;
344 344 rtems_status_code status;
345 345
346 346 init_header_continuous_wf_table( SID_BURST_CWF_F2, headerCWF_F2_BURST );
347 347 init_header_continuous_wf_table( SID_SBM2_CWF_F2, headerCWF_F2_SBM2 );
348 348
349 349 status = get_message_queue_id_send( &queue_id );
350 350 if (status != RTEMS_SUCCESSFUL)
351 351 {
352 352 PRINTF1("in CWF2 *** ERR get_message_queue_id_send %d\n", status)
353 353 }
354 354
355 355 BOOT_PRINTF("in CWF2 ***\n")
356 356
357 357 while(1){
358 358 // wait for an RTEMS_EVENT
359 359 rtems_event_receive( RTEMS_EVENT_MODE_BURST | RTEMS_EVENT_MODE_SBM2,
360 360 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
361 361 if (event_out == RTEMS_EVENT_MODE_BURST)
362 362 {
363 363 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_BURST_CWF_F2, headerCWF_F2_BURST, queue_id );
364 364 }
365 365 if (event_out == RTEMS_EVENT_MODE_SBM2)
366 366 {
367 367 send_waveform_CWF( (volatile int *) ring_node_to_send_cwf_f2->buffer_address, SID_SBM2_CWF_F2, headerCWF_F2_SBM2, queue_id );
368 368 // launch snapshot extraction if needed
369 369 if (extractSWF == true)
370 370 {
371 371 ring_node_to_send_swf_f2 = ring_node_to_send_cwf_f2;
372 372 // extract the snapshot
373 373 build_snapshot_from_ring( ring_node_to_send_swf_f2, 2 );
374 374 // send the snapshot when built
375 375 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM2 );
376 376 extractSWF = false;
377 377 }
378 378 if (swf_f0_ready && swf_f1_ready)
379 379 {
380 380 extractSWF = true;
381 381 swf_f0_ready = false;
382 382 swf_f1_ready = false;
383 383 }
384 384 }
385 385 }
386 386 }
387 387
388 388 rtems_task cwf1_task(rtems_task_argument argument) // ONLY USED IN SBM1
389 389 {
390 390 /** This RTEMS task is dedicated to the transmission of continuous waveforms at f1.
391 391 *
392 392 * @param unused is the starting argument of the RTEMS task
393 393 *
394 394 * The following data packet is sent by this function:
395 395 * - TM_LFR_SCIENCE_SBM1_CWF_F1
396 396 *
397 397 */
398 398
399 399 rtems_event_set event_out;
400 400 rtems_id queue_id;
401 401 rtems_status_code status;
402 402
403 403 init_header_continuous_wf_table( SID_SBM1_CWF_F1, headerCWF_F1 );
404 404
405 405 status = get_message_queue_id_send( &queue_id );
406 406 if (status != RTEMS_SUCCESSFUL)
407 407 {
408 408 PRINTF1("in CWF1 *** ERR get_message_queue_id_send %d\n", status)
409 409 }
410 410
411 411 BOOT_PRINTF("in CWF1 ***\n")
412 412
413 413 while(1){
414 414 // wait for an RTEMS_EVENT
415 415 rtems_event_receive( RTEMS_EVENT_MODE_SBM1,
416 416 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
417 417 send_waveform_CWF( (volatile int*) ring_node_to_send_cwf_f1->buffer_address, SID_SBM1_CWF_F1, headerCWF_F1, queue_id );
418 418 // launch snapshot extraction if needed
419 419 if (extractSWF == true)
420 420 {
421 421 ring_node_to_send_swf_f1 = ring_node_to_send_cwf_f1;
422 422 // launch the snapshot extraction
423 423 status = rtems_event_send( Task_id[TASKID_SWBD], RTEMS_EVENT_MODE_SBM1 );
424 424 extractSWF = false;
425 425 }
426 426 if (swf_f0_ready == true)
427 427 {
428 428 extractSWF = true;
429 429 swf_f0_ready = false; // this step shall be executed only one time
430 430 }
431 431 if ((swf_f1_ready == true) && (swf_f2_ready == true)) // swf_f1 is ready after the extraction
432 432 {
433 433 status = rtems_event_send( Task_id[TASKID_WFRM], RTEMS_EVENT_MODE_SBM1 );
434 434 swf_f1_ready = false;
435 435 swf_f2_ready = false;
436 436 }
437 437 }
438 438 }
439 439
440 440 rtems_task swbd_task(rtems_task_argument argument)
441 441 {
442 442 /** This RTEMS task is dedicated to the building of snapshots from different continuous waveforms buffers.
443 443 *
444 444 * @param unused is the starting argument of the RTEMS task
445 445 *
446 446 */
447 447
448 448 rtems_event_set event_out;
449 449
450 450 BOOT_PRINTF("in SWBD ***\n")
451 451
452 452 while(1){
453 453 // wait for an RTEMS_EVENT
454 454 rtems_event_receive( RTEMS_EVENT_MODE_SBM1 | RTEMS_EVENT_MODE_SBM2,
455 455 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
456 456 if (event_out == RTEMS_EVENT_MODE_SBM1)
457 457 {
458 458 build_snapshot_from_ring( ring_node_to_send_swf_f1, 1 );
459 459 swf_f1_ready = true; // the snapshot has been extracted and is ready to be sent
460 460 }
461 461 else
462 462 {
463 463 PRINTF1("in SWBD *** unexpected rtems event received %x\n", (int) event_out)
464 464 }
465 465 }
466 466 }
467 467
468 468 //******************
469 469 // general functions
470 470 void init_waveforms( void )
471 471 {
472 472 int i = 0;
473 473
474 474 for (i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
475 475 {
476 476 //***
477 477 // F0
478 478 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x88887777; //
479 479 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111; //
480 480 // wf_snap_f0[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0x44443333; //
481 481
482 482 //***
483 483 // F1
484 484 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x22221111;
485 485 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x44443333;
486 486 // wf_snap_f1[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
487 487
488 488 //***
489 489 // F2
490 490 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 0 + TIME_OFFSET ] = 0x44443333;
491 491 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 1 + TIME_OFFSET ] = 0x22221111;
492 492 // wf_snap_f2[ (i* NB_WORDS_SWF_BLK) + 2 + TIME_OFFSET ] = 0xaaaa0000;
493 493
494 494 //***
495 495 // F3
496 496 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 0 ] = val1;
497 497 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 1 ] = val2;
498 498 // wf_cont_f3[ (i* NB_WORDS_SWF_BLK) + 2 ] = 0xaaaa0000;
499 499 }
500 500 }
501 501
502 502 void init_waveform_rings( void )
503 503 {
504 504 unsigned char i;
505 505
506 506 // F0 RING
507 507 waveform_ring_f0[0].next = (ring_node*) &waveform_ring_f0[1];
508 508 waveform_ring_f0[0].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-1];
509 509 waveform_ring_f0[0].buffer_address = (int) &wf_snap_f0[0][0];
510 510
511 511 waveform_ring_f0[NB_RING_NODES_F0-1].next = (ring_node*) &waveform_ring_f0[0];
512 512 waveform_ring_f0[NB_RING_NODES_F0-1].previous = (ring_node*) &waveform_ring_f0[NB_RING_NODES_F0-2];
513 513 waveform_ring_f0[NB_RING_NODES_F0-1].buffer_address = (int) &wf_snap_f0[NB_RING_NODES_F0-1][0];
514 514
515 515 for(i=1; i<NB_RING_NODES_F0-1; i++)
516 516 {
517 517 waveform_ring_f0[i].next = (ring_node*) &waveform_ring_f0[i+1];
518 518 waveform_ring_f0[i].previous = (ring_node*) &waveform_ring_f0[i-1];
519 519 waveform_ring_f0[i].buffer_address = (int) &wf_snap_f0[i][0];
520 520 }
521 521
522 522 // F1 RING
523 523 waveform_ring_f1[0].next = (ring_node*) &waveform_ring_f1[1];
524 524 waveform_ring_f1[0].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-1];
525 525 waveform_ring_f1[0].buffer_address = (int) &wf_snap_f1[0][0];
526 526
527 527 waveform_ring_f1[NB_RING_NODES_F1-1].next = (ring_node*) &waveform_ring_f1[0];
528 528 waveform_ring_f1[NB_RING_NODES_F1-1].previous = (ring_node*) &waveform_ring_f1[NB_RING_NODES_F1-2];
529 529 waveform_ring_f1[NB_RING_NODES_F1-1].buffer_address = (int) &wf_snap_f1[NB_RING_NODES_F1-1][0];
530 530
531 531 for(i=1; i<NB_RING_NODES_F1-1; i++)
532 532 {
533 533 waveform_ring_f1[i].next = (ring_node*) &waveform_ring_f1[i+1];
534 534 waveform_ring_f1[i].previous = (ring_node*) &waveform_ring_f1[i-1];
535 535 waveform_ring_f1[i].buffer_address = (int) &wf_snap_f1[i][0];
536 536 }
537 537
538 538 // F2 RING
539 539 waveform_ring_f2[0].next = (ring_node*) &waveform_ring_f2[1];
540 540 waveform_ring_f2[0].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-1];
541 541 waveform_ring_f2[0].buffer_address = (int) &wf_snap_f2[0][0];
542 542
543 543 waveform_ring_f2[NB_RING_NODES_F2-1].next = (ring_node*) &waveform_ring_f2[0];
544 544 waveform_ring_f2[NB_RING_NODES_F2-1].previous = (ring_node*) &waveform_ring_f2[NB_RING_NODES_F2-2];
545 545 waveform_ring_f2[NB_RING_NODES_F2-1].buffer_address = (int) &wf_snap_f2[NB_RING_NODES_F2-1][0];
546 546
547 547 for(i=1; i<NB_RING_NODES_F2-1; i++)
548 548 {
549 549 waveform_ring_f2[i].next = (ring_node*) &waveform_ring_f2[i+1];
550 550 waveform_ring_f2[i].previous = (ring_node*) &waveform_ring_f2[i-1];
551 551 waveform_ring_f2[i].buffer_address = (int) &wf_snap_f2[i][0];
552 552 }
553 553
554 554 DEBUG_PRINTF1("waveform_ring_f0 @%x\n", (unsigned int) waveform_ring_f0)
555 555 DEBUG_PRINTF1("waveform_ring_f1 @%x\n", (unsigned int) waveform_ring_f1)
556 556 DEBUG_PRINTF1("waveform_ring_f2 @%x\n", (unsigned int) waveform_ring_f2)
557 557
558 558 }
559 559
560 560 void reset_current_ring_nodes( void )
561 561 {
562 562 current_ring_node_f0 = waveform_ring_f0;
563 563 ring_node_to_send_swf_f0 = waveform_ring_f0;
564 564
565 565 current_ring_node_f1 = waveform_ring_f1;
566 566 ring_node_to_send_cwf_f1 = waveform_ring_f1;
567 567 ring_node_to_send_swf_f1 = waveform_ring_f1;
568 568
569 569 current_ring_node_f2 = waveform_ring_f2;
570 570 ring_node_to_send_cwf_f2 = waveform_ring_f2;
571 571 ring_node_to_send_swf_f2 = waveform_ring_f2;
572 572 }
573 573
574 574 int init_header_snapshot_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_SWF_t *headerSWF)
575 575 {
576 576 unsigned char i;
577 577
578 578 for (i=0; i<7; i++)
579 579 {
580 580 headerSWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
581 581 headerSWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
582 582 headerSWF[ i ].reserved = DEFAULT_RESERVED;
583 583 headerSWF[ i ].userApplication = CCSDS_USER_APP;
584 584 headerSWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
585 585 headerSWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
586 586 headerSWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
587 587 if (i == 6)
588 588 {
589 589 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
590 590 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
591 591 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
592 592 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_224 );
593 593 }
594 594 else
595 595 {
596 596 headerSWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
597 597 headerSWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
598 598 headerSWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
599 599 headerSWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_304 );
600 600 }
601 601 headerSWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
602 602 headerSWF[ i ].pktCnt = DEFAULT_PKTCNT; // PKT_CNT
603 603 headerSWF[ i ].pktNr = i+1; // PKT_NR
604 604 // DATA FIELD HEADER
605 605 headerSWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
606 606 headerSWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
607 607 headerSWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
608 608 headerSWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
609 609 // AUXILIARY DATA HEADER
610 610 headerSWF[ i ].time[0] = 0x00;
611 611 headerSWF[ i ].time[0] = 0x00;
612 612 headerSWF[ i ].time[0] = 0x00;
613 613 headerSWF[ i ].time[0] = 0x00;
614 614 headerSWF[ i ].time[0] = 0x00;
615 615 headerSWF[ i ].time[0] = 0x00;
616 616 headerSWF[ i ].sid = sid;
617 617 headerSWF[ i ].hkBIA = DEFAULT_HKBIA;
618 618 }
619 619 return LFR_SUCCESSFUL;
620 620 }
621 621
622 622 int init_header_continuous_wf_table( unsigned int sid, Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
623 623 {
624 624 unsigned int i;
625 625
626 626 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++)
627 627 {
628 628 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
629 629 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
630 630 headerCWF[ i ].reserved = DEFAULT_RESERVED;
631 631 headerCWF[ i ].userApplication = CCSDS_USER_APP;
632 632 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
633 633 {
634 634 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2 >> 8);
635 635 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_SBM1_SBM2);
636 636 }
637 637 else
638 638 {
639 639 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
640 640 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
641 641 }
642 642 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
643 643 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
644 644 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
645 645 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
646 646 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF );
647 647 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
648 648 // DATA FIELD HEADER
649 649 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
650 650 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
651 651 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
652 652 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
653 653 // AUXILIARY DATA HEADER
654 654 headerCWF[ i ].sid = sid;
655 655 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
656 656 headerCWF[ i ].time[0] = 0x00;
657 657 headerCWF[ i ].time[0] = 0x00;
658 658 headerCWF[ i ].time[0] = 0x00;
659 659 headerCWF[ i ].time[0] = 0x00;
660 660 headerCWF[ i ].time[0] = 0x00;
661 661 headerCWF[ i ].time[0] = 0x00;
662 662 }
663 663 return LFR_SUCCESSFUL;
664 664 }
665 665
666 666 int init_header_continuous_cwf3_light_table( Header_TM_LFR_SCIENCE_CWF_t *headerCWF )
667 667 {
668 668 unsigned int i;
669 669
670 670 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++)
671 671 {
672 672 headerCWF[ i ].targetLogicalAddress = CCSDS_DESTINATION_ID;
673 673 headerCWF[ i ].protocolIdentifier = CCSDS_PROTOCOLE_ID;
674 674 headerCWF[ i ].reserved = DEFAULT_RESERVED;
675 675 headerCWF[ i ].userApplication = CCSDS_USER_APP;
676 676
677 677 headerCWF[ i ].packetID[0] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST >> 8);
678 678 headerCWF[ i ].packetID[1] = (unsigned char) (TM_PACKET_ID_SCIENCE_NORMAL_BURST);
679 679
680 680 headerCWF[ i ].packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
681 681 headerCWF[ i ].packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
682 682 headerCWF[ i ].packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
683 683 headerCWF[ i ].blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
684 684 headerCWF[ i ].blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
685 685
686 686 headerCWF[ i ].packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
687 687 // DATA FIELD HEADER
688 688 headerCWF[ i ].spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
689 689 headerCWF[ i ].serviceType = TM_TYPE_LFR_SCIENCE; // service type
690 690 headerCWF[ i ].serviceSubType = TM_SUBTYPE_LFR_SCIENCE; // service subtype
691 691 headerCWF[ i ].destinationID = TM_DESTINATION_ID_GROUND;
692 692 // AUXILIARY DATA HEADER
693 693 headerCWF[ i ].sid = SID_NORM_CWF_F3;
694 694 headerCWF[ i ].hkBIA = DEFAULT_HKBIA;
695 695 headerCWF[ i ].time[0] = 0x00;
696 696 headerCWF[ i ].time[0] = 0x00;
697 697 headerCWF[ i ].time[0] = 0x00;
698 698 headerCWF[ i ].time[0] = 0x00;
699 699 headerCWF[ i ].time[0] = 0x00;
700 700 headerCWF[ i ].time[0] = 0x00;
701 701 }
702 702 return LFR_SUCCESSFUL;
703 703 }
704 704
705 705 int send_waveform_SWF( volatile int *waveform, unsigned int sid,
706 706 Header_TM_LFR_SCIENCE_SWF_t *headerSWF, rtems_id queue_id )
707 707 {
708 708 /** This function sends SWF CCSDS packets (F2, F1 or F0).
709 709 *
710 710 * @param waveform points to the buffer containing the data that will be send.
711 711 * @param sid is the source identifier of the data that will be sent.
712 712 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
713 713 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
714 714 * contain information to setup the transmission of the data packets.
715 715 *
716 716 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
717 717 *
718 718 */
719 719
720 720 unsigned int i;
721 721 int ret;
722 722 unsigned int coarseTime;
723 723 unsigned int fineTime;
724 724 rtems_status_code status;
725 725 spw_ioctl_pkt_send spw_ioctl_send_SWF;
726 726
727 727 spw_ioctl_send_SWF.hlen = TM_HEADER_LEN + 4 + 12; // + 4 is for the protocole extra header, + 12 is for the auxiliary header
728 728 spw_ioctl_send_SWF.options = 0;
729 729
730 730 ret = LFR_DEFAULT;
731 731
732 732 coarseTime = waveform[0];
733 733 fineTime = waveform[1];
734 734
735 735 for (i=0; i<7; i++) // send waveform
736 736 {
737 737 spw_ioctl_send_SWF.data = (char*) &waveform[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) + TIME_OFFSET];
738 738 spw_ioctl_send_SWF.hdr = (char*) &headerSWF[ i ];
739 739 // BUILD THE DATA
740 740 if (i==6) {
741 741 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
742 742 }
743 743 else {
744 744 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
745 745 }
746 746 // SET PACKET SEQUENCE COUNTER
747 747 increment_seq_counter_source_id( headerSWF[ i ].packetSequenceControl, sid );
748 748 // SET PACKET TIME
749 749 compute_acquisition_time( coarseTime, fineTime, sid, i, headerSWF[ i ].acquisitionTime );
750 750 //
751 headerSWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
752 headerSWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
753 headerSWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
754 headerSWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
755 headerSWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
756 headerSWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
751 headerSWF[ i ].time[0] = headerSWF[ i ].acquisitionTime[0];
752 headerSWF[ i ].time[1] = headerSWF[ i ].acquisitionTime[1];
753 headerSWF[ i ].time[2] = headerSWF[ i ].acquisitionTime[2];
754 headerSWF[ i ].time[3] = headerSWF[ i ].acquisitionTime[3];
755 headerSWF[ i ].time[4] = headerSWF[ i ].acquisitionTime[4];
756 headerSWF[ i ].time[5] = headerSWF[ i ].acquisitionTime[5];
757 757 // SEND PACKET
758 758 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_SWF, ACTION_MSG_SPW_IOCTL_SEND_SIZE);
759 759 if (status != RTEMS_SUCCESSFUL) {
760 760 printf("%d-%d, ERR %d\n", sid, i, (int) status);
761 761 ret = LFR_DEFAULT;
762 762 }
763 763 rtems_task_wake_after(TIME_BETWEEN_TWO_SWF_PACKETS); // 300 ms between each packet => 7 * 3 = 21 packets => 6.3 seconds
764 764 }
765 765
766 766 return ret;
767 767 }
768 768
769 769 int send_waveform_CWF(volatile int *waveform, unsigned int sid,
770 770 Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
771 771 {
772 772 /** This function sends CWF CCSDS packets (F2, F1 or F0).
773 773 *
774 774 * @param waveform points to the buffer containing the data that will be send.
775 775 * @param sid is the source identifier of the data that will be sent.
776 776 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
777 777 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
778 778 * contain information to setup the transmission of the data packets.
779 779 *
780 780 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
781 781 *
782 782 */
783 783
784 784 unsigned int i;
785 785 int ret;
786 786 unsigned int coarseTime;
787 787 unsigned int fineTime;
788 788 rtems_status_code status;
789 789 spw_ioctl_pkt_send spw_ioctl_send_CWF;
790 790
791 791 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
792 792 spw_ioctl_send_CWF.options = 0;
793 793
794 794 ret = LFR_DEFAULT;
795 795
796 796 coarseTime = waveform[0];
797 797 fineTime = waveform[1];
798 798
799 799 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
800 800 {
801 801 spw_ioctl_send_CWF.data = (char*) &waveform[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) + TIME_OFFSET];
802 802 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
803 803 // BUILD THE DATA
804 804 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
805 805 // SET PACKET SEQUENCE COUNTER
806 806 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, sid );
807 807 // SET PACKET TIME
808 808 compute_acquisition_time( coarseTime, fineTime, sid, i, headerCWF[ i ].acquisitionTime);
809 809 //
810 headerCWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
811 headerCWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
812 headerCWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
813 headerCWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
814 headerCWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
815 headerCWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
810 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
811 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
812 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
813 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
814 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
815 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
816 816 // SEND PACKET
817 817 if (sid == SID_NORM_CWF_LONG_F3)
818 818 {
819 819 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
820 820 if (status != RTEMS_SUCCESSFUL) {
821 821 printf("%d-%d, ERR %d\n", sid, i, (int) status);
822 822 ret = LFR_DEFAULT;
823 823 }
824 824 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
825 825 }
826 826 else
827 827 {
828 828 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
829 829 if (status != RTEMS_SUCCESSFUL) {
830 830 printf("%d-%d, ERR %d\n", sid, i, (int) status);
831 831 ret = LFR_DEFAULT;
832 832 }
833 833 }
834 834 }
835 835
836 836 return ret;
837 837 }
838 838
839 839 int send_waveform_CWF3_light(volatile int *waveform, Header_TM_LFR_SCIENCE_CWF_t *headerCWF, rtems_id queue_id)
840 840 {
841 841 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
842 842 *
843 843 * @param waveform points to the buffer containing the data that will be send.
844 844 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
845 845 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
846 846 * contain information to setup the transmission of the data packets.
847 847 *
848 848 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
849 849 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
850 850 *
851 851 */
852 852
853 853 unsigned int i;
854 854 int ret;
855 855 unsigned int coarseTime;
856 856 unsigned int fineTime;
857 857 rtems_status_code status;
858 858 spw_ioctl_pkt_send spw_ioctl_send_CWF;
859 859 char *sample;
860 860
861 861 spw_ioctl_send_CWF.hlen = TM_HEADER_LEN + 4 + 10; // + 4 is for the protocole extra header, + 10 is for the auxiliary header
862 862 spw_ioctl_send_CWF.options = 0;
863 863
864 864 ret = LFR_DEFAULT;
865 865
866 866 //**********************
867 867 // BUILD CWF3_light DATA
868 868 for ( i=0; i< NB_SAMPLES_PER_SNAPSHOT; i++)
869 869 {
870 870 sample = (char*) &waveform[ (i * NB_WORDS_SWF_BLK) + TIME_OFFSET ];
871 871 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES ] = sample[ 0 ];
872 872 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 1 + TIME_OFFSET_IN_BYTES ] = sample[ 1 ];
873 873 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 2 + TIME_OFFSET_IN_BYTES ] = sample[ 2 ];
874 874 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 3 + TIME_OFFSET_IN_BYTES ] = sample[ 3 ];
875 875 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 4 + TIME_OFFSET_IN_BYTES ] = sample[ 4 ];
876 876 wf_cont_f3_light[ (i * NB_BYTES_CWF3_LIGHT_BLK) + 5 + TIME_OFFSET_IN_BYTES ] = sample[ 5 ];
877 877 }
878 878
879 879 coarseTime = waveform[0];
880 880 fineTime = waveform[1];
881 881
882 882 //*********************
883 883 // SEND CWF3_light DATA
884 884 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
885 885 {
886 886 spw_ioctl_send_CWF.data = (char*) &wf_cont_f3_light[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) + TIME_OFFSET_IN_BYTES];
887 887 spw_ioctl_send_CWF.hdr = (char*) &headerCWF[ i ];
888 888 // BUILD THE DATA
889 889 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
890 890 // SET PACKET SEQUENCE COUNTER
891 891 increment_seq_counter_source_id( headerCWF[ i ].packetSequenceControl, SID_NORM_CWF_F3 );
892 892 // SET PACKET TIME
893 893 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, headerCWF[ i ].acquisitionTime );
894 894 //
895 headerCWF[ i ].time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
896 headerCWF[ i ].time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
897 headerCWF[ i ].time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
898 headerCWF[ i ].time[3] = (unsigned char) (time_management_regs->coarse_time);
899 headerCWF[ i ].time[4] = (unsigned char) (time_management_regs->fine_time>>8);
900 headerCWF[ i ].time[5] = (unsigned char) (time_management_regs->fine_time);
895 headerCWF[ i ].time[0] = headerCWF[ i ].acquisitionTime[0];
896 headerCWF[ i ].time[1] = headerCWF[ i ].acquisitionTime[1];
897 headerCWF[ i ].time[2] = headerCWF[ i ].acquisitionTime[2];
898 headerCWF[ i ].time[3] = headerCWF[ i ].acquisitionTime[3];
899 headerCWF[ i ].time[4] = headerCWF[ i ].acquisitionTime[4];
900 headerCWF[ i ].time[5] = headerCWF[ i ].acquisitionTime[5];
901 901 // SEND PACKET
902 902 status = rtems_message_queue_send( queue_id, &spw_ioctl_send_CWF, sizeof(spw_ioctl_send_CWF));
903 903 if (status != RTEMS_SUCCESSFUL) {
904 904 printf("%d-%d, ERR %d\n", SID_NORM_CWF_F3, i, (int) status);
905 905 ret = LFR_DEFAULT;
906 906 }
907 907 rtems_task_wake_after(TIME_BETWEEN_TWO_CWF3_PACKETS);
908 908 }
909 909
910 910 return ret;
911 911 }
912 912
913 913 void compute_acquisition_time( unsigned int coarseTime, unsigned int fineTime,
914 914 unsigned int sid, unsigned char pa_lfr_pkt_nr, unsigned char * acquisitionTime )
915 915 {
916 916 unsigned long long int acquisitionTimeAsLong;
917 917 unsigned char localAcquisitionTime[6];
918 918 double deltaT;
919 919
920 920 deltaT = 0.;
921 921
922 922 localAcquisitionTime[0] = (unsigned char) ( coarseTime >> 8 );
923 923 localAcquisitionTime[1] = (unsigned char) ( coarseTime );
924 924 localAcquisitionTime[2] = (unsigned char) ( coarseTime >> 24 );
925 925 localAcquisitionTime[3] = (unsigned char) ( coarseTime >> 16 );
926 926 localAcquisitionTime[4] = (unsigned char) ( fineTime >> 24 );
927 927 localAcquisitionTime[5] = (unsigned char) ( fineTime >> 16 );
928 928
929 929 acquisitionTimeAsLong = ( (unsigned long long int) localAcquisitionTime[0] << 40 )
930 930 + ( (unsigned long long int) localAcquisitionTime[1] << 32 )
931 931 + ( localAcquisitionTime[2] << 24 )
932 932 + ( localAcquisitionTime[3] << 16 )
933 933 + ( localAcquisitionTime[4] << 8 )
934 934 + ( localAcquisitionTime[5] );
935 935
936 936 switch( sid )
937 937 {
938 938 case SID_NORM_SWF_F0:
939 939 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 24576. ;
940 940 break;
941 941
942 942 case SID_NORM_SWF_F1:
943 943 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 4096. ;
944 944 break;
945 945
946 946 case SID_NORM_SWF_F2:
947 947 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_304 * 65536. / 256. ;
948 948 break;
949 949
950 950 case SID_SBM1_CWF_F1:
951 951 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 4096. ;
952 952 break;
953 953
954 954 case SID_SBM2_CWF_F2:
955 955 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
956 956 break;
957 957
958 958 case SID_BURST_CWF_F2:
959 959 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 256. ;
960 960 break;
961 961
962 962 case SID_NORM_CWF_F3:
963 963 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF_SHORT_F3 * 65536. / 16. ;
964 964 break;
965 965
966 966 case SID_NORM_CWF_LONG_F3:
967 967 deltaT = ( (double ) (pa_lfr_pkt_nr) ) * BLK_NR_CWF * 65536. / 16. ;
968 968 break;
969 969
970 970 default:
971 971 PRINTF1("in compute_acquisition_time *** ERR unexpected sid %d", sid)
972 972 deltaT = 0.;
973 973 break;
974 974 }
975 975
976 976 acquisitionTimeAsLong = acquisitionTimeAsLong + (unsigned long long int) deltaT;
977 977 //
978 978 acquisitionTime[0] = (unsigned char) (acquisitionTimeAsLong >> 40);
979 979 acquisitionTime[1] = (unsigned char) (acquisitionTimeAsLong >> 32);
980 980 acquisitionTime[2] = (unsigned char) (acquisitionTimeAsLong >> 24);
981 981 acquisitionTime[3] = (unsigned char) (acquisitionTimeAsLong >> 16);
982 982 acquisitionTime[4] = (unsigned char) (acquisitionTimeAsLong >> 8 );
983 983 acquisitionTime[5] = (unsigned char) (acquisitionTimeAsLong );
984 984
985 985 }
986 986
987 987 void build_snapshot_from_ring( ring_node *ring_node_to_send, unsigned char frequencyChannel )
988 988 {
989 989 unsigned int i;
990 990 unsigned long long int centerTime_asLong;
991 991 unsigned long long int acquisitionTimeF0_asLong;
992 992 unsigned long long int acquisitionTime_asLong;
993 993 unsigned long long int bufferAcquisitionTime_asLong;
994 994 unsigned char *ptr1;
995 995 unsigned char *ptr2;
996 996 unsigned char nb_ring_nodes;
997 997 unsigned long long int frequency_asLong;
998 998 unsigned long long int nbTicksPerSample_asLong;
999 999 unsigned long long int nbSamplesPart1_asLong;
1000 1000 unsigned long long int sampleOffset_asLong;
1001 1001
1002 1002 unsigned int deltaT_F0;
1003 1003 unsigned int deltaT_F1;
1004 1004 unsigned long long int deltaT_F2;
1005 1005
1006 1006 deltaT_F0 = 2731; // (2048. / 24576. / 2.) * 65536. = 2730.667;
1007 1007 deltaT_F1 = 16384; // (2048. / 4096. / 2.) * 65536. = 16384;
1008 1008 deltaT_F2 = 262144; // (2048. / 256. / 2.) * 65536. = 262144;
1009 1009 sampleOffset_asLong = 0x00;
1010 1010
1011 1011 // (1) get the f0 acquisition time
1012 1012 build_acquisition_time( &acquisitionTimeF0_asLong, current_ring_node_f0 );
1013 1013
1014 1014 // (2) compute the central reference time
1015 1015 centerTime_asLong = acquisitionTimeF0_asLong + deltaT_F0;
1016 1016
1017 1017 // (3) compute the acquisition time of the current snapshot
1018 1018 switch(frequencyChannel)
1019 1019 {
1020 1020 case 1: // 1 is for F1 = 4096 Hz
1021 1021 acquisitionTime_asLong = centerTime_asLong - deltaT_F1;
1022 1022 nb_ring_nodes = NB_RING_NODES_F1;
1023 1023 frequency_asLong = 4096;
1024 1024 nbTicksPerSample_asLong = 16; // 65536 / 4096;
1025 1025 break;
1026 1026 case 2: // 2 is for F2 = 256 Hz
1027 1027 acquisitionTime_asLong = centerTime_asLong - deltaT_F2;
1028 1028 nb_ring_nodes = NB_RING_NODES_F2;
1029 1029 frequency_asLong = 256;
1030 1030 nbTicksPerSample_asLong = 256; // 65536 / 256;
1031 1031 break;
1032 1032 default:
1033 1033 acquisitionTime_asLong = centerTime_asLong;
1034 1034 frequency_asLong = 256;
1035 1035 nbTicksPerSample_asLong = 256;
1036 1036 break;
1037 1037 }
1038 1038
1039 1039 //****************************************************************************
1040 1040 // (4) search the ring_node with the acquisition time <= acquisitionTime_asLong
1041 1041 for (i=0; i<nb_ring_nodes; i++)
1042 1042 {
1043 1043 PRINTF1("%d ... ", i)
1044 1044 build_acquisition_time( &bufferAcquisitionTime_asLong, ring_node_to_send );
1045 1045 if (bufferAcquisitionTime_asLong <= acquisitionTime_asLong)
1046 1046 {
1047 1047 PRINTF1("buffer found with acquisition time = %llx\n", bufferAcquisitionTime_asLong)
1048 1048 break;
1049 1049 }
1050 1050 ring_node_to_send = ring_node_to_send->previous;
1051 1051 }
1052 1052
1053 1053 // (5) compute the number of samples to take in the current buffer
1054 1054 sampleOffset_asLong = ((acquisitionTime_asLong - bufferAcquisitionTime_asLong) * frequency_asLong ) >> 16;
1055 1055 nbSamplesPart1_asLong = NB_SAMPLES_PER_SNAPSHOT - sampleOffset_asLong;
1056 1056 PRINTF2("sampleOffset_asLong = %lld, nbSamplesPart1_asLong = %lld\n", sampleOffset_asLong, nbSamplesPart1_asLong)
1057 1057
1058 1058 // (6) compute the final acquisition time
1059 1059 acquisitionTime_asLong = bufferAcquisitionTime_asLong +
1060 1060 sampleOffset_asLong * nbTicksPerSample_asLong;
1061 1061
1062 1062 // (7) copy the acquisition time at the beginning of the extrated snapshot
1063 1063 ptr1 = (unsigned char*) &acquisitionTime_asLong;
1064 1064 ptr2 = (unsigned char*) wf_snap_extracted;
1065 1065 ptr2[0] = ptr1[ 2 + 2 ];
1066 1066 ptr2[1] = ptr1[ 3 + 2 ];
1067 1067 ptr2[2] = ptr1[ 0 + 2 ];
1068 1068 ptr2[3] = ptr1[ 1 + 2 ];
1069 1069 ptr2[4] = ptr1[ 4 + 2 ];
1070 1070 ptr2[5] = ptr1[ 5 + 2 ];
1071 1071
1072 1072 // re set the synchronization bit
1073 1073
1074 1074
1075 1075 // copy the part 1 of the snapshot in the extracted buffer
1076 1076 for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )
1077 1077 {
1078 1078 wf_snap_extracted[i + TIME_OFFSET] =
1079 1079 ((int*) ring_node_to_send->buffer_address)[i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) + TIME_OFFSET];
1080 1080 }
1081 1081 // copy the part 2 of the snapshot in the extracted buffer
1082 1082 ring_node_to_send = ring_node_to_send->next;
1083 1083 for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )
1084 1084 {
1085 1085 wf_snap_extracted[i + TIME_OFFSET] =
1086 1086 ((int*) ring_node_to_send->buffer_address)[(i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) + TIME_OFFSET];
1087 1087 }
1088 1088 }
1089 1089
1090 1090 void build_acquisition_time( unsigned long long int *acquisitionTimeAslong, ring_node *current_ring_node )
1091 1091 {
1092 1092 unsigned char *acquisitionTimeCharPtr;
1093 1093
1094 1094 acquisitionTimeCharPtr = (unsigned char*) current_ring_node->buffer_address;
1095 1095
1096 1096 *acquisitionTimeAslong = 0x00;
1097 1097 *acquisitionTimeAslong = ( acquisitionTimeCharPtr[0] << 24 )
1098 1098 + ( acquisitionTimeCharPtr[1] << 16 )
1099 1099 + ( (unsigned long long int) (acquisitionTimeCharPtr[2] & 0x7f) << 40 ) // [0111 1111] mask the synchronization bit
1100 1100 + ( (unsigned long long int) acquisitionTimeCharPtr[3] << 32 )
1101 1101 + ( acquisitionTimeCharPtr[4] << 8 )
1102 1102 + ( acquisitionTimeCharPtr[5] );
1103 1103 }
1104 1104
1105 1105 //**************
1106 1106 // wfp registers
1107 1107 void reset_wfp_burst_enable(void)
1108 1108 {
1109 1109 /** This function resets the waveform picker burst_enable register.
1110 1110 *
1111 1111 * The burst bits [f2 f1 f0] and the enable bits [f3 f2 f1 f0] are set to 0.
1112 1112 *
1113 1113 */
1114 1114
1115 1115 waveform_picker_regs->run_burst_enable = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1116 1116 }
1117 1117
1118 1118 void reset_wfp_status( void )
1119 1119 {
1120 1120 /** This function resets the waveform picker status register.
1121 1121 *
1122 1122 * All status bits are set to 0 [new_err full_err full].
1123 1123 *
1124 1124 */
1125 1125
1126 1126 waveform_picker_regs->status = 0x00; // burst f2, f1, f0 enable f3, f2, f1, f0
1127 1127 }
1128 1128
1129 1129 void reset_waveform_picker_regs(void)
1130 1130 {
1131 1131 /** This function resets the waveform picker module registers.
1132 1132 *
1133 1133 * The registers affected by this function are located at the following offset addresses:
1134 1134 * - 0x00 data_shaping
1135 1135 * - 0x04 run_burst_enable
1136 1136 * - 0x08 addr_data_f0
1137 1137 * - 0x0C addr_data_f1
1138 1138 * - 0x10 addr_data_f2
1139 1139 * - 0x14 addr_data_f3
1140 1140 * - 0x18 status
1141 1141 * - 0x1C delta_snapshot
1142 1142 * - 0x20 delta_f0
1143 1143 * - 0x24 delta_f0_2
1144 1144 * - 0x28 delta_f1
1145 1145 * - 0x2c delta_f2
1146 1146 * - 0x30 nb_data_by_buffer
1147 1147 * - 0x34 nb_snapshot_param
1148 1148 * - 0x38 start_date
1149 1149 * - 0x3c nb_word_in_buffer
1150 1150 *
1151 1151 */
1152 1152
1153 1153 set_wfp_data_shaping(); // 0x00 *** R1 R0 SP1 SP0 BW
1154 1154 reset_wfp_burst_enable(); // 0x04 *** [run *** burst f2, f1, f0 *** enable f3, f2, f1, f0 ]
1155 1155 waveform_picker_regs->addr_data_f0 = current_ring_node_f0->buffer_address; // 0x08
1156 1156 waveform_picker_regs->addr_data_f1 = current_ring_node_f1->buffer_address; // 0x0c
1157 1157 waveform_picker_regs->addr_data_f2 = current_ring_node_f2->buffer_address; // 0x10
1158 1158 waveform_picker_regs->addr_data_f3 = (int) (wf_cont_f3_a); // 0x14
1159 1159 reset_wfp_status(); // 0x18
1160 1160 //
1161 1161 set_wfp_delta_snapshot(); // 0x1c
1162 1162 set_wfp_delta_f0_f0_2(); // 0x20, 0x24
1163 1163 set_wfp_delta_f1(); // 0x28
1164 1164 set_wfp_delta_f2(); // 0x2c
1165 1165 DEBUG_PRINTF1("delta_snapshot %x\n", waveform_picker_regs->delta_snapshot)
1166 1166 DEBUG_PRINTF1("delta_f0 %x\n", waveform_picker_regs->delta_f0)
1167 1167 DEBUG_PRINTF1("delta_f0_2 %x\n", waveform_picker_regs->delta_f0_2)
1168 1168 DEBUG_PRINTF1("delta_f1 %x\n", waveform_picker_regs->delta_f1)
1169 1169 DEBUG_PRINTF1("delta_f2 %x\n", waveform_picker_regs->delta_f2)
1170 1170 // 2688 = 8 * 336
1171 1171 waveform_picker_regs->nb_data_by_buffer = 0xa7f; // 0x30 *** 2688 - 1 => nb samples -1
1172 1172 waveform_picker_regs->snapshot_param = 0xa80; // 0x34 *** 2688 => nb samples
1173 1173 waveform_picker_regs->start_date = 0x00; // 0x38
1174 1174 waveform_picker_regs->nb_word_in_buffer = 0x1f82; // 0x3c *** 2688 * 3 + 2 = 8066
1175 1175 }
1176 1176
1177 1177 void set_wfp_data_shaping( void )
1178 1178 {
1179 1179 /** This function sets the data_shaping register of the waveform picker module.
1180 1180 *
1181 1181 * The value is read from one field of the parameter_dump_packet structure:\n
1182 1182 * bw_sp0_sp1_r0_r1
1183 1183 *
1184 1184 */
1185 1185
1186 1186 unsigned char data_shaping;
1187 1187
1188 1188 // get the parameters for the data shaping [BW SP0 SP1 R0 R1] in sy_lfr_common1 and configure the register
1189 1189 // waveform picker : [R1 R0 SP1 SP0 BW]
1190 1190
1191 1191 data_shaping = parameter_dump_packet.bw_sp0_sp1_r0_r1;
1192 1192
1193 1193 waveform_picker_regs->data_shaping =
1194 1194 ( (data_shaping & 0x10) >> 4 ) // BW
1195 1195 + ( (data_shaping & 0x08) >> 2 ) // SP0
1196 1196 + ( (data_shaping & 0x04) ) // SP1
1197 1197 + ( (data_shaping & 0x02) << 2 ) // R0
1198 1198 + ( (data_shaping & 0x01) << 4 ); // R1
1199 1199 }
1200 1200
1201 1201 void set_wfp_burst_enable_register( unsigned char mode )
1202 1202 {
1203 1203 /** This function sets the waveform picker burst_enable register depending on the mode.
1204 1204 *
1205 1205 * @param mode is the LFR mode to launch.
1206 1206 *
1207 1207 * The burst bits shall be before the enable bits.
1208 1208 *
1209 1209 */
1210 1210
1211 1211 // [0000 0000] burst f2, f1, f0 enable f3 f2 f1 f0
1212 1212 // the burst bits shall be set first, before the enable bits
1213 1213 switch(mode) {
1214 1214 case(LFR_MODE_NORMAL):
1215 1215 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enable
1216 1216 waveform_picker_regs->run_burst_enable = 0x0f; // [0000 1111] enable f3 f2 f1 f0
1217 1217 break;
1218 1218 case(LFR_MODE_BURST):
1219 1219 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1220 1220 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x04; // [0100] enable f2
1221 1221 break;
1222 1222 case(LFR_MODE_SBM1):
1223 1223 waveform_picker_regs->run_burst_enable = 0x20; // [0010 0000] f1 burst enabled
1224 1224 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1225 1225 break;
1226 1226 case(LFR_MODE_SBM2):
1227 1227 waveform_picker_regs->run_burst_enable = 0x40; // [0100 0000] f2 burst enabled
1228 1228 waveform_picker_regs->run_burst_enable = waveform_picker_regs->run_burst_enable | 0x0f; // [1111] enable f3 f2 f1 f0
1229 1229 break;
1230 1230 default:
1231 1231 waveform_picker_regs->run_burst_enable = 0x00; // [0000 0000] no burst enabled, no waveform enabled
1232 1232 break;
1233 1233 }
1234 1234 }
1235 1235
1236 1236 void set_wfp_delta_snapshot( void )
1237 1237 {
1238 1238 /** This function sets the delta_snapshot register of the waveform picker module.
1239 1239 *
1240 1240 * The value is read from two (unsigned char) of the parameter_dump_packet structure:
1241 1241 * - sy_lfr_n_swf_p[0]
1242 1242 * - sy_lfr_n_swf_p[1]
1243 1243 *
1244 1244 */
1245 1245
1246 1246 unsigned int delta_snapshot;
1247 1247 unsigned int delta_snapshot_in_T2;
1248 1248
1249 1249 delta_snapshot = parameter_dump_packet.sy_lfr_n_swf_p[0]*256
1250 1250 + parameter_dump_packet.sy_lfr_n_swf_p[1];
1251 1251
1252 1252 delta_snapshot_in_T2 = delta_snapshot * 256;
1253 1253 waveform_picker_regs->delta_snapshot = delta_snapshot_in_T2; // max 4 bytes
1254 1254 }
1255 1255
1256 1256 void set_wfp_delta_f0_f0_2( void )
1257 1257 {
1258 1258 unsigned int delta_snapshot;
1259 1259 unsigned int nb_samples_per_snapshot;
1260 1260 float delta_f0_in_float;
1261 1261
1262 1262 delta_snapshot = waveform_picker_regs->delta_snapshot;
1263 1263 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1264 1264 delta_f0_in_float =nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 24576.) * 256.;
1265 1265
1266 1266 waveform_picker_regs->delta_f0 = delta_snapshot - floor( delta_f0_in_float );
1267 1267 waveform_picker_regs->delta_f0_2 = 0x7; // max 7 bits
1268 1268 }
1269 1269
1270 1270 void set_wfp_delta_f1( void )
1271 1271 {
1272 1272 unsigned int delta_snapshot;
1273 1273 unsigned int nb_samples_per_snapshot;
1274 1274 float delta_f1_in_float;
1275 1275
1276 1276 delta_snapshot = waveform_picker_regs->delta_snapshot;
1277 1277 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1278 1278 delta_f1_in_float = nb_samples_per_snapshot / 2. * ( 1. / 256. - 1. / 4096.) * 256.;
1279 1279
1280 1280 waveform_picker_regs->delta_f1 = delta_snapshot - floor( delta_f1_in_float );
1281 1281 }
1282 1282
1283 1283 void set_wfp_delta_f2()
1284 1284 {
1285 1285 unsigned int delta_snapshot;
1286 1286 unsigned int nb_samples_per_snapshot;
1287 1287
1288 1288 delta_snapshot = waveform_picker_regs->delta_snapshot;
1289 1289 nb_samples_per_snapshot = parameter_dump_packet.sy_lfr_n_swf_l[0] * 256 + parameter_dump_packet.sy_lfr_n_swf_l[1];
1290 1290
1291 1291 waveform_picker_regs->delta_f2 = delta_snapshot - nb_samples_per_snapshot / 2;
1292 1292 }
1293 1293
1294 1294 //*****************
1295 1295 // local parameters
1296 1296 void set_local_nb_interrupt_f0_MAX( void )
1297 1297 {
1298 1298 /** This function sets the value of the nb_interrupt_f0_MAX local parameter.
1299 1299 *
1300 1300 * This parameter is used for the SM validation only.\n
1301 1301 * The software waits param_local.local_nb_interrupt_f0_MAX interruptions from the spectral matrices
1302 1302 * module before launching a basic processing.
1303 1303 *
1304 1304 */
1305 1305
1306 1306 param_local.local_nb_interrupt_f0_MAX = ( (parameter_dump_packet.sy_lfr_n_asm_p[0]) * 256
1307 1307 + parameter_dump_packet.sy_lfr_n_asm_p[1] ) * 100;
1308 1308 }
1309 1309
1310 1310 void increment_seq_counter_source_id( unsigned char *packet_sequence_control, unsigned int sid )
1311 1311 {
1312 1312 unsigned short *sequence_cnt;
1313 1313 unsigned short segmentation_grouping_flag;
1314 1314 unsigned short new_packet_sequence_control;
1315 1315
1316 1316 if ( (sid ==SID_NORM_SWF_F0) || (sid ==SID_NORM_SWF_F1) || (sid ==SID_NORM_SWF_F2)
1317 1317 || (sid ==SID_NORM_CWF_F3) || (sid==SID_NORM_CWF_LONG_F3) || (sid ==SID_BURST_CWF_F2) )
1318 1318 {
1319 1319 sequence_cnt = &sequenceCounters_SCIENCE_NORMAL_BURST;
1320 1320 }
1321 1321 else if ( (sid ==SID_SBM1_CWF_F1) || (sid ==SID_SBM2_CWF_F2) )
1322 1322 {
1323 1323 sequence_cnt = &sequenceCounters_SCIENCE_SBM1_SBM2;
1324 1324 }
1325 1325 else
1326 1326 {
1327 1327 sequence_cnt = NULL;
1328 1328 PRINTF1("in increment_seq_counter_source_id *** ERR apid_destid %d not known\n", sid)
1329 1329 }
1330 1330
1331 1331 if (sequence_cnt != NULL)
1332 1332 {
1333 1333 segmentation_grouping_flag = (packet_sequence_control[ 0 ] & 0xc0) << 8;
1334 1334 *sequence_cnt = (*sequence_cnt) & 0x3fff;
1335 1335
1336 1336 new_packet_sequence_control = segmentation_grouping_flag | *sequence_cnt ;
1337 1337
1338 1338 packet_sequence_control[0] = (unsigned char) (new_packet_sequence_control >> 8);
1339 1339 packet_sequence_control[1] = (unsigned char) (new_packet_sequence_control );
1340 1340
1341 1341 // increment the sequence counter for the next packet
1342 1342 if ( *sequence_cnt < SEQ_CNT_MAX)
1343 1343 {
1344 1344 *sequence_cnt = *sequence_cnt + 1;
1345 1345 }
1346 1346 else
1347 1347 {
1348 1348 *sequence_cnt = 0;
1349 1349 }
1350 1350 }
1351 1351 }
General Comments 0
You need to be logged in to leave comments. Login now