##// END OF EJS Templates
Bug 657 HK_LFR_xE_CNT doesn't manage the wrap of 8bits counter error
paul -
r343:66679eb623f2 R3++ draft
parent child
Show More
@@ -1,1005 +1,1005
1 /** General usage functions and RTEMS tasks.
1 /** General usage functions and RTEMS tasks.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 */
6 */
7
7
8 #include "fsw_misc.h"
8 #include "fsw_misc.h"
9
9
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
10 int16_t hk_lfr_sc_v_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
11 int16_t hk_lfr_sc_e1_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
12 int16_t hk_lfr_sc_e2_f3_as_int16 = 0;
13
13
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
14 void timer_configure(unsigned char timer, unsigned int clock_divider,
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
15 unsigned char interrupt_level, rtems_isr (*timer_isr)() )
16 {
16 {
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
17 /** This function configures a GPTIMER timer instantiated in the VHDL design.
18 *
18 *
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
19 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
20 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
21 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
22 * @param interrupt_level is the interrupt level that the timer drives.
22 * @param interrupt_level is the interrupt level that the timer drives.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
23 * @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
24 *
24 *
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
25 * Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
26 *
26 *
27 */
27 */
28
28
29 rtems_status_code status;
29 rtems_status_code status;
30 rtems_isr_entry old_isr_handler;
30 rtems_isr_entry old_isr_handler;
31
31
32 old_isr_handler = NULL;
32 old_isr_handler = NULL;
33
33
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
34 gptimer_regs->timer[timer].ctrl = INIT_CHAR; // reset the control register
35
35
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
36 status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
37 if (status!=RTEMS_SUCCESSFUL)
37 if (status!=RTEMS_SUCCESSFUL)
38 {
38 {
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
39 PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
40 }
40 }
41
41
42 timer_set_clock_divider( timer, clock_divider);
42 timer_set_clock_divider( timer, clock_divider);
43 }
43 }
44
44
45 void timer_start(unsigned char timer)
45 void timer_start(unsigned char timer)
46 {
46 {
47 /** This function starts a GPTIMER timer.
47 /** This function starts a GPTIMER timer.
48 *
48 *
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
49 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
50 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
51 *
51 *
52 */
52 */
53
53
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
54 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
55 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_LD;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
56 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_EN;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
57 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_RS;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
58 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_IE;
59 }
59 }
60
60
61 void timer_stop(unsigned char timer)
61 void timer_stop(unsigned char timer)
62 {
62 {
63 /** This function stops a GPTIMER timer.
63 /** This function stops a GPTIMER timer.
64 *
64 *
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
65 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
66 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
67 *
67 *
68 */
68 */
69
69
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
70 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_EN_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
71 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & GPTIMER_IE_MASK;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
72 gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | GPTIMER_CLEAR_IRQ;
73 }
73 }
74
74
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
75 void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
76 {
76 {
77 /** This function sets the clock divider of a GPTIMER timer.
77 /** This function sets the clock divider of a GPTIMER timer.
78 *
78 *
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
79 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
80 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
81 * @param clock_divider is the divider of the 1 MHz clock that will be configured.
82 *
82 *
83 */
83 */
84
84
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
85 gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
86 }
86 }
87
87
88 // WATCHDOG
88 // WATCHDOG
89
89
90 rtems_isr watchdog_isr( rtems_vector_number vector )
90 rtems_isr watchdog_isr( rtems_vector_number vector )
91 {
91 {
92 rtems_status_code status_code;
92 rtems_status_code status_code;
93
93
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
94 status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
95
95
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
96 PRINTF("watchdog_isr *** this is the end, exit(0)\n");
97
97
98 exit(0);
98 exit(0);
99 }
99 }
100
100
101 void watchdog_configure(void)
101 void watchdog_configure(void)
102 {
102 {
103 /** This function configure the watchdog.
103 /** This function configure the watchdog.
104 *
104 *
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
105 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
106 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
107 *
107 *
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
108 * The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
109 *
109 *
110 */
110 */
111
111
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
112 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
113
113
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
114 timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
115
115
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
116 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
117 }
117 }
118
118
119 void watchdog_stop(void)
119 void watchdog_stop(void)
120 {
120 {
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
121 LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
122 timer_stop( TIMER_WATCHDOG );
122 timer_stop( TIMER_WATCHDOG );
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
123 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
124 }
124 }
125
125
126 void watchdog_reload(void)
126 void watchdog_reload(void)
127 {
127 {
128 /** This function reloads the watchdog timer counter with the timer reload value.
128 /** This function reloads the watchdog timer counter with the timer reload value.
129 *
129 *
130 * @param void
130 * @param void
131 *
131 *
132 * @return void
132 * @return void
133 *
133 *
134 */
134 */
135
135
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
136 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
137 }
137 }
138
138
139 void watchdog_start(void)
139 void watchdog_start(void)
140 {
140 {
141 /** This function starts the watchdog timer.
141 /** This function starts the watchdog timer.
142 *
142 *
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
143 * @param gptimer_regs points to the APB registers of the GPTIMER IP core.
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
144 * @param timer is the number of the timer in the IP core (several timers can be instantiated).
145 *
145 *
146 */
146 */
147
147
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
148 LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
149
149
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
150 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_CLEAR_IRQ;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
151 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_LD;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
152 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_EN;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
153 gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | GPTIMER_IE;
154
154
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
155 LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
156
156
157 }
157 }
158
158
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
159 int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
160 {
160 {
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
161 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
162
162
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
163 apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
164
164
165 return 0;
165 return 0;
166 }
166 }
167
167
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
168 void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
169 {
169 {
170 /** This function sets the scaler reload register of the apbuart module
170 /** This function sets the scaler reload register of the apbuart module
171 *
171 *
172 * @param regs is the address of the apbuart registers in memory
172 * @param regs is the address of the apbuart registers in memory
173 * @param value is the value that will be stored in the scaler register
173 * @param value is the value that will be stored in the scaler register
174 *
174 *
175 * The value shall be set by the software to get data on the serial interface.
175 * The value shall be set by the software to get data on the serial interface.
176 *
176 *
177 */
177 */
178
178
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
179 struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
180
180
181 apbuart_regs->scaler = value;
181 apbuart_regs->scaler = value;
182
182
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
183 BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
184 }
184 }
185
185
186 //************
186 //************
187 // RTEMS TASKS
187 // RTEMS TASKS
188
188
189 rtems_task load_task(rtems_task_argument argument)
189 rtems_task load_task(rtems_task_argument argument)
190 {
190 {
191 BOOT_PRINTF("in LOAD *** \n")
191 BOOT_PRINTF("in LOAD *** \n")
192
192
193 rtems_status_code status;
193 rtems_status_code status;
194 unsigned int i;
194 unsigned int i;
195 unsigned int j;
195 unsigned int j;
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
196 rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
197 rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
198
198
199 watchdog_period_id = RTEMS_ID_NONE;
199 watchdog_period_id = RTEMS_ID_NONE;
200
200
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
201 name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
202
202
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
203 status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
204 if( status != RTEMS_SUCCESSFUL ) {
204 if( status != RTEMS_SUCCESSFUL ) {
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
205 PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
206 }
206 }
207
207
208 i = 0;
208 i = 0;
209 j = 0;
209 j = 0;
210
210
211 watchdog_configure();
211 watchdog_configure();
212
212
213 watchdog_start();
213 watchdog_start();
214
214
215 set_sy_lfr_watchdog_enabled( true );
215 set_sy_lfr_watchdog_enabled( true );
216
216
217 while(1){
217 while(1){
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
218 status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
219 watchdog_reload();
219 watchdog_reload();
220 i = i + 1;
220 i = i + 1;
221 if ( i == WATCHDOG_LOOP_PRINTF )
221 if ( i == WATCHDOG_LOOP_PRINTF )
222 {
222 {
223 i = 0;
223 i = 0;
224 j = j + 1;
224 j = j + 1;
225 PRINTF1("%d\n", j)
225 PRINTF1("%d\n", j)
226 }
226 }
227 #ifdef DEBUG_WATCHDOG
227 #ifdef DEBUG_WATCHDOG
228 if (j == WATCHDOG_LOOP_DEBUG )
228 if (j == WATCHDOG_LOOP_DEBUG )
229 {
229 {
230 status = rtems_task_delete(RTEMS_SELF);
230 status = rtems_task_delete(RTEMS_SELF);
231 }
231 }
232 #endif
232 #endif
233 }
233 }
234 }
234 }
235
235
236 rtems_task hous_task(rtems_task_argument argument)
236 rtems_task hous_task(rtems_task_argument argument)
237 {
237 {
238 rtems_status_code status;
238 rtems_status_code status;
239 rtems_status_code spare_status;
239 rtems_status_code spare_status;
240 rtems_id queue_id;
240 rtems_id queue_id;
241 rtems_rate_monotonic_period_status period_status;
241 rtems_rate_monotonic_period_status period_status;
242 bool isSynchronized;
242 bool isSynchronized;
243
243
244 queue_id = RTEMS_ID_NONE;
244 queue_id = RTEMS_ID_NONE;
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
245 memset(&period_status, 0, sizeof(rtems_rate_monotonic_period_status));
246 isSynchronized = false;
246 isSynchronized = false;
247
247
248 status = get_message_queue_id_send( &queue_id );
248 status = get_message_queue_id_send( &queue_id );
249 if (status != RTEMS_SUCCESSFUL)
249 if (status != RTEMS_SUCCESSFUL)
250 {
250 {
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
251 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
252 }
252 }
253
253
254 BOOT_PRINTF("in HOUS ***\n");
254 BOOT_PRINTF("in HOUS ***\n");
255
255
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
256 if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
257 status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
258 if( status != RTEMS_SUCCESSFUL ) {
258 if( status != RTEMS_SUCCESSFUL ) {
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
259 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
260 }
260 }
261 }
261 }
262
262
263 status = rtems_rate_monotonic_cancel(HK_id);
263 status = rtems_rate_monotonic_cancel(HK_id);
264 if( status != RTEMS_SUCCESSFUL ) {
264 if( status != RTEMS_SUCCESSFUL ) {
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
265 PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
266 }
266 }
267 else {
267 else {
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
268 DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
269 }
269 }
270
270
271 // startup phase
271 // startup phase
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
272 status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
273 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
274 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
275 while( (period_status.state != RATE_MONOTONIC_EXPIRED)
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
276 && (isSynchronized == false) ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
277 {
277 {
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
278 if ((time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) == INT32_ALL_0) // check time synchronization
279 {
279 {
280 isSynchronized = true;
280 isSynchronized = true;
281 }
281 }
282 else
282 else
283 {
283 {
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
284 status = rtems_rate_monotonic_get_status( HK_id, &period_status );
285
285
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
286 status = rtems_task_wake_after( HK_SYNC_WAIT ); // wait HK_SYNCH_WAIT 100 ms = 10 * 10 ms
287 }
287 }
288 }
288 }
289 status = rtems_rate_monotonic_cancel(HK_id);
289 status = rtems_rate_monotonic_cancel(HK_id);
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
290 DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
291
291
292 set_hk_lfr_reset_cause( POWER_ON );
292 set_hk_lfr_reset_cause( POWER_ON );
293
293
294 while(1){ // launch the rate monotonic task
294 while(1){ // launch the rate monotonic task
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
295 status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
296 if ( status != RTEMS_SUCCESSFUL ) {
296 if ( status != RTEMS_SUCCESSFUL ) {
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
297 PRINTF1( "in HOUS *** ERR period: %d\n", status);
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
298 spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
299 }
299 }
300 else {
300 else {
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
301 housekeeping_packet.packetSequenceControl[BYTE_0] = (unsigned char) (sequenceCounterHK >> SHIFT_1_BYTE);
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
302 housekeeping_packet.packetSequenceControl[BYTE_1] = (unsigned char) (sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
303 increment_seq_counter( &sequenceCounterHK );
304
304
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
305 housekeeping_packet.time[BYTE_0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
306 housekeeping_packet.time[BYTE_1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
307 housekeeping_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
308 housekeeping_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
309 housekeeping_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
310 housekeeping_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
311
311
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
312 spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
313
313
314 spacewire_read_statistics();
314 spacewire_read_statistics();
315
315
316 update_hk_with_grspw_stats();
316 update_hk_with_grspw_stats();
317
317
318 set_hk_lfr_time_not_synchro();
318 set_hk_lfr_time_not_synchro();
319
319
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
320 housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
321 housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
322 housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
323 housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
324 housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
325
325
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
326 housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
327 housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
328 get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
329 get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
330 get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
331
331
332 hk_lfr_le_me_he_update();
332 hk_lfr_le_me_he_update();
333
333
334 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
334 housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
335 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
335 housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
336
336
337 // SEND PACKET
337 // SEND PACKET
338 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
338 status = rtems_message_queue_send( queue_id, &housekeeping_packet,
339 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
339 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
340 if (status != RTEMS_SUCCESSFUL) {
340 if (status != RTEMS_SUCCESSFUL) {
341 PRINTF1("in HOUS *** ERR send: %d\n", status)
341 PRINTF1("in HOUS *** ERR send: %d\n", status)
342 }
342 }
343 }
343 }
344 }
344 }
345
345
346 PRINTF("in HOUS *** deleting task\n")
346 PRINTF("in HOUS *** deleting task\n")
347
347
348 status = rtems_task_delete( RTEMS_SELF ); // should not return
348 status = rtems_task_delete( RTEMS_SELF ); // should not return
349
349
350 return;
350 return;
351 }
351 }
352
352
353 rtems_task avgv_task(rtems_task_argument argument)
353 rtems_task avgv_task(rtems_task_argument argument)
354 {
354 {
355 #define MOVING_AVERAGE 16
355 #define MOVING_AVERAGE 16
356 rtems_status_code status;
356 rtems_status_code status;
357 static unsigned int v[MOVING_AVERAGE] = {0};
357 static unsigned int v[MOVING_AVERAGE] = {0};
358 static unsigned int e1[MOVING_AVERAGE] = {0};
358 static unsigned int e1[MOVING_AVERAGE] = {0};
359 static unsigned int e2[MOVING_AVERAGE] = {0};
359 static unsigned int e2[MOVING_AVERAGE] = {0};
360 float average_v;
360 float average_v;
361 float average_e1;
361 float average_e1;
362 float average_e2;
362 float average_e2;
363 float newValue_v;
363 float newValue_v;
364 float newValue_e1;
364 float newValue_e1;
365 float newValue_e2;
365 float newValue_e2;
366 unsigned char k;
366 unsigned char k;
367 unsigned char indexOfOldValue;
367 unsigned char indexOfOldValue;
368
368
369 BOOT_PRINTF("in AVGV ***\n");
369 BOOT_PRINTF("in AVGV ***\n");
370
370
371 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
371 if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
372 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
372 status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
373 if( status != RTEMS_SUCCESSFUL ) {
373 if( status != RTEMS_SUCCESSFUL ) {
374 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
374 PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
375 }
375 }
376 }
376 }
377
377
378 status = rtems_rate_monotonic_cancel(AVGV_id);
378 status = rtems_rate_monotonic_cancel(AVGV_id);
379 if( status != RTEMS_SUCCESSFUL ) {
379 if( status != RTEMS_SUCCESSFUL ) {
380 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
380 PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
381 }
381 }
382 else {
382 else {
383 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
383 DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
384 }
384 }
385
385
386 // initialize values
386 // initialize values
387 indexOfOldValue = MOVING_AVERAGE - 1;
387 indexOfOldValue = MOVING_AVERAGE - 1;
388 average_v = INIT_FLOAT;
388 average_v = INIT_FLOAT;
389 average_e1 = INIT_FLOAT;
389 average_e1 = INIT_FLOAT;
390 average_e2 = INIT_FLOAT;
390 average_e2 = INIT_FLOAT;
391 newValue_v = INIT_FLOAT;
391 newValue_v = INIT_FLOAT;
392 newValue_e1 = INIT_FLOAT;
392 newValue_e1 = INIT_FLOAT;
393 newValue_e2 = INIT_FLOAT;
393 newValue_e2 = INIT_FLOAT;
394
394
395 k = INIT_CHAR;
395 k = INIT_CHAR;
396
396
397 while(1)
397 while(1)
398 { // launch the rate monotonic task
398 { // launch the rate monotonic task
399 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
399 status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
400 if ( status != RTEMS_SUCCESSFUL )
400 if ( status != RTEMS_SUCCESSFUL )
401 {
401 {
402 PRINTF1( "in AVGV *** ERR period: %d\n", status);
402 PRINTF1( "in AVGV *** ERR period: %d\n", status);
403 }
403 }
404 else
404 else
405 {
405 {
406 // get new values
406 // get new values
407 newValue_v = waveform_picker_regs->v;
407 newValue_v = waveform_picker_regs->v;
408 newValue_e1 = waveform_picker_regs->e1;
408 newValue_e1 = waveform_picker_regs->e1;
409 newValue_e2 = waveform_picker_regs->e2;
409 newValue_e2 = waveform_picker_regs->e2;
410
410
411 // compute the moving average
411 // compute the moving average
412 average_v = average_v + newValue_v - v[k];
412 average_v = average_v + newValue_v - v[k];
413 average_e1 = average_e1 + newValue_e1 - e1[k];
413 average_e1 = average_e1 + newValue_e1 - e1[k];
414 average_e2 = average_e2 + newValue_e2 - e2[k];
414 average_e2 = average_e2 + newValue_e2 - e2[k];
415
415
416 // store new values in buffers
416 // store new values in buffers
417 v[k] = newValue_v;
417 v[k] = newValue_v;
418 e1[k] = newValue_e1;
418 e1[k] = newValue_e1;
419 e2[k] = newValue_e2;
419 e2[k] = newValue_e2;
420 }
420 }
421 if (k == (MOVING_AVERAGE-1))
421 if (k == (MOVING_AVERAGE-1))
422 {
422 {
423 k = 0;
423 k = 0;
424 PRINTF("tick\n");
424 PRINTF("tick\n");
425 }
425 }
426 else
426 else
427 {
427 {
428 k++;
428 k++;
429 }
429 }
430 //update int16 values
430 //update int16 values
431 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
431 hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
432 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
432 hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
433 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
433 hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
434 }
434 }
435
435
436 PRINTF("in AVGV *** deleting task\n");
436 PRINTF("in AVGV *** deleting task\n");
437
437
438 status = rtems_task_delete( RTEMS_SELF ); // should not return
438 status = rtems_task_delete( RTEMS_SELF ); // should not return
439
439
440 return;
440 return;
441 }
441 }
442
442
443 rtems_task dumb_task( rtems_task_argument unused )
443 rtems_task dumb_task( rtems_task_argument unused )
444 {
444 {
445 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
445 /** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
446 *
446 *
447 * @param unused is the starting argument of the RTEMS task
447 * @param unused is the starting argument of the RTEMS task
448 *
448 *
449 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
449 * The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
450 *
450 *
451 */
451 */
452
452
453 unsigned int i;
453 unsigned int i;
454 unsigned int intEventOut;
454 unsigned int intEventOut;
455 unsigned int coarse_time = 0;
455 unsigned int coarse_time = 0;
456 unsigned int fine_time = 0;
456 unsigned int fine_time = 0;
457 rtems_event_set event_out;
457 rtems_event_set event_out;
458
458
459 event_out = EVENT_SETS_NONE_PENDING;
459 event_out = EVENT_SETS_NONE_PENDING;
460
460
461 BOOT_PRINTF("in DUMB *** \n")
461 BOOT_PRINTF("in DUMB *** \n")
462
462
463 while(1){
463 while(1){
464 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
464 rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
465 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
465 | RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
466 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
466 | RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
467 | RTEMS_EVENT_14,
467 | RTEMS_EVENT_14,
468 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
468 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
469 intEventOut = (unsigned int) event_out;
469 intEventOut = (unsigned int) event_out;
470 for ( i=0; i<NB_RTEMS_EVENTS; i++)
470 for ( i=0; i<NB_RTEMS_EVENTS; i++)
471 {
471 {
472 if ( ((intEventOut >> i) & 1) != 0)
472 if ( ((intEventOut >> i) & 1) != 0)
473 {
473 {
474 coarse_time = time_management_regs->coarse_time;
474 coarse_time = time_management_regs->coarse_time;
475 fine_time = time_management_regs->fine_time;
475 fine_time = time_management_regs->fine_time;
476 if (i==EVENT_12)
476 if (i==EVENT_12)
477 {
477 {
478 PRINTF1("%s\n", DUMB_MESSAGE_12)
478 PRINTF1("%s\n", DUMB_MESSAGE_12)
479 }
479 }
480 if (i==EVENT_13)
480 if (i==EVENT_13)
481 {
481 {
482 PRINTF1("%s\n", DUMB_MESSAGE_13)
482 PRINTF1("%s\n", DUMB_MESSAGE_13)
483 }
483 }
484 if (i==EVENT_14)
484 if (i==EVENT_14)
485 {
485 {
486 PRINTF1("%s\n", DUMB_MESSAGE_1)
486 PRINTF1("%s\n", DUMB_MESSAGE_1)
487 }
487 }
488 }
488 }
489 }
489 }
490 }
490 }
491 }
491 }
492
492
493 //*****************************
493 //*****************************
494 // init housekeeping parameters
494 // init housekeeping parameters
495
495
496 void init_housekeeping_parameters( void )
496 void init_housekeeping_parameters( void )
497 {
497 {
498 /** This function initialize the housekeeping_packet global variable with default values.
498 /** This function initialize the housekeeping_packet global variable with default values.
499 *
499 *
500 */
500 */
501
501
502 unsigned int i = 0;
502 unsigned int i = 0;
503 unsigned char *parameters;
503 unsigned char *parameters;
504 unsigned char sizeOfHK;
504 unsigned char sizeOfHK;
505
505
506 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
506 sizeOfHK = sizeof( Packet_TM_LFR_HK_t );
507
507
508 parameters = (unsigned char*) &housekeeping_packet;
508 parameters = (unsigned char*) &housekeeping_packet;
509
509
510 for(i = 0; i< sizeOfHK; i++)
510 for(i = 0; i< sizeOfHK; i++)
511 {
511 {
512 parameters[i] = INIT_CHAR;
512 parameters[i] = INIT_CHAR;
513 }
513 }
514
514
515 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
515 housekeeping_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
516 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
516 housekeeping_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
517 housekeeping_packet.reserved = DEFAULT_RESERVED;
517 housekeeping_packet.reserved = DEFAULT_RESERVED;
518 housekeeping_packet.userApplication = CCSDS_USER_APP;
518 housekeeping_packet.userApplication = CCSDS_USER_APP;
519 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
519 housekeeping_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
520 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
520 housekeeping_packet.packetID[1] = (unsigned char) (APID_TM_HK);
521 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
521 housekeeping_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
522 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
522 housekeeping_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
523 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
523 housekeeping_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
524 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
524 housekeeping_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
525 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
525 housekeeping_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
526 housekeeping_packet.serviceType = TM_TYPE_HK;
526 housekeeping_packet.serviceType = TM_TYPE_HK;
527 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
527 housekeeping_packet.serviceSubType = TM_SUBTYPE_HK;
528 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
528 housekeeping_packet.destinationID = TM_DESTINATION_ID_GROUND;
529 housekeeping_packet.sid = SID_HK;
529 housekeeping_packet.sid = SID_HK;
530
530
531 // init status word
531 // init status word
532 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
532 housekeeping_packet.lfr_status_word[0] = DEFAULT_STATUS_WORD_BYTE0;
533 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
533 housekeeping_packet.lfr_status_word[1] = DEFAULT_STATUS_WORD_BYTE1;
534 // init software version
534 // init software version
535 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
535 housekeeping_packet.lfr_sw_version[0] = SW_VERSION_N1;
536 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
536 housekeeping_packet.lfr_sw_version[1] = SW_VERSION_N2;
537 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
537 housekeeping_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
538 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
538 housekeeping_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
539 // init fpga version
539 // init fpga version
540 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
540 parameters = (unsigned char *) (REGS_ADDR_VHDL_VERSION);
541 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
541 housekeeping_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
542 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
542 housekeeping_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
543 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
543 housekeeping_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
544
544
545 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
545 housekeeping_packet.hk_lfr_q_sd_fifo_size = MSG_QUEUE_COUNT_SEND;
546 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
546 housekeeping_packet.hk_lfr_q_rv_fifo_size = MSG_QUEUE_COUNT_RECV;
547 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
547 housekeeping_packet.hk_lfr_q_p0_fifo_size = MSG_QUEUE_COUNT_PRC0;
548 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
548 housekeeping_packet.hk_lfr_q_p1_fifo_size = MSG_QUEUE_COUNT_PRC1;
549 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
549 housekeeping_packet.hk_lfr_q_p2_fifo_size = MSG_QUEUE_COUNT_PRC2;
550 }
550 }
551
551
552 void increment_seq_counter( unsigned short *packetSequenceControl )
552 void increment_seq_counter( unsigned short *packetSequenceControl )
553 {
553 {
554 /** This function increment the sequence counter passes in argument.
554 /** This function increment the sequence counter passes in argument.
555 *
555 *
556 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
556 * The increment does not affect the grouping flag. In case of an overflow, the counter is reset to 0.
557 *
557 *
558 */
558 */
559
559
560 unsigned short segmentation_grouping_flag;
560 unsigned short segmentation_grouping_flag;
561 unsigned short sequence_cnt;
561 unsigned short sequence_cnt;
562
562
563 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
563 segmentation_grouping_flag = TM_PACKET_SEQ_CTRL_STANDALONE << SHIFT_1_BYTE; // keep bits 7 downto 6
564 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
564 sequence_cnt = (*packetSequenceControl) & SEQ_CNT_MASK; // [0011 1111 1111 1111]
565
565
566 if ( sequence_cnt < SEQ_CNT_MAX)
566 if ( sequence_cnt < SEQ_CNT_MAX)
567 {
567 {
568 sequence_cnt = sequence_cnt + 1;
568 sequence_cnt = sequence_cnt + 1;
569 }
569 }
570 else
570 else
571 {
571 {
572 sequence_cnt = 0;
572 sequence_cnt = 0;
573 }
573 }
574
574
575 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
575 *packetSequenceControl = segmentation_grouping_flag | sequence_cnt ;
576 }
576 }
577
577
578 void getTime( unsigned char *time)
578 void getTime( unsigned char *time)
579 {
579 {
580 /** This function write the current local time in the time buffer passed in argument.
580 /** This function write the current local time in the time buffer passed in argument.
581 *
581 *
582 */
582 */
583
583
584 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
584 time[0] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_3_BYTES);
585 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
585 time[1] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_2_BYTES);
586 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
586 time[2] = (unsigned char) (time_management_regs->coarse_time>>SHIFT_1_BYTE);
587 time[3] = (unsigned char) (time_management_regs->coarse_time);
587 time[3] = (unsigned char) (time_management_regs->coarse_time);
588 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
588 time[4] = (unsigned char) (time_management_regs->fine_time>>SHIFT_1_BYTE);
589 time[5] = (unsigned char) (time_management_regs->fine_time);
589 time[5] = (unsigned char) (time_management_regs->fine_time);
590 }
590 }
591
591
592 unsigned long long int getTimeAsUnsignedLongLongInt( )
592 unsigned long long int getTimeAsUnsignedLongLongInt( )
593 {
593 {
594 /** This function write the current local time in the time buffer passed in argument.
594 /** This function write the current local time in the time buffer passed in argument.
595 *
595 *
596 */
596 */
597 unsigned long long int time;
597 unsigned long long int time;
598
598
599 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
599 time = ( (unsigned long long int) (time_management_regs->coarse_time & COARSE_TIME_MASK) << SHIFT_2_BYTES )
600 + time_management_regs->fine_time;
600 + time_management_regs->fine_time;
601
601
602 return time;
602 return time;
603 }
603 }
604
604
605 void send_dumb_hk( void )
605 void send_dumb_hk( void )
606 {
606 {
607 Packet_TM_LFR_HK_t dummy_hk_packet;
607 Packet_TM_LFR_HK_t dummy_hk_packet;
608 unsigned char *parameters;
608 unsigned char *parameters;
609 unsigned int i;
609 unsigned int i;
610 rtems_id queue_id;
610 rtems_id queue_id;
611
611
612 queue_id = RTEMS_ID_NONE;
612 queue_id = RTEMS_ID_NONE;
613
613
614 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
614 dummy_hk_packet.targetLogicalAddress = CCSDS_DESTINATION_ID;
615 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
615 dummy_hk_packet.protocolIdentifier = CCSDS_PROTOCOLE_ID;
616 dummy_hk_packet.reserved = DEFAULT_RESERVED;
616 dummy_hk_packet.reserved = DEFAULT_RESERVED;
617 dummy_hk_packet.userApplication = CCSDS_USER_APP;
617 dummy_hk_packet.userApplication = CCSDS_USER_APP;
618 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
618 dummy_hk_packet.packetID[0] = (unsigned char) (APID_TM_HK >> SHIFT_1_BYTE);
619 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
619 dummy_hk_packet.packetID[1] = (unsigned char) (APID_TM_HK);
620 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
620 dummy_hk_packet.packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
621 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
621 dummy_hk_packet.packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
622 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
622 dummy_hk_packet.packetLength[0] = (unsigned char) (PACKET_LENGTH_HK >> SHIFT_1_BYTE);
623 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
623 dummy_hk_packet.packetLength[1] = (unsigned char) (PACKET_LENGTH_HK );
624 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
624 dummy_hk_packet.spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
625 dummy_hk_packet.serviceType = TM_TYPE_HK;
625 dummy_hk_packet.serviceType = TM_TYPE_HK;
626 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
626 dummy_hk_packet.serviceSubType = TM_SUBTYPE_HK;
627 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
627 dummy_hk_packet.destinationID = TM_DESTINATION_ID_GROUND;
628 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
628 dummy_hk_packet.time[0] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_3_BYTES);
629 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
629 dummy_hk_packet.time[1] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_2_BYTES);
630 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
630 dummy_hk_packet.time[BYTE_2] = (unsigned char) (time_management_regs->coarse_time >> SHIFT_1_BYTE);
631 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
631 dummy_hk_packet.time[BYTE_3] = (unsigned char) (time_management_regs->coarse_time);
632 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
632 dummy_hk_packet.time[BYTE_4] = (unsigned char) (time_management_regs->fine_time >> SHIFT_1_BYTE);
633 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
633 dummy_hk_packet.time[BYTE_5] = (unsigned char) (time_management_regs->fine_time);
634 dummy_hk_packet.sid = SID_HK;
634 dummy_hk_packet.sid = SID_HK;
635
635
636 // init status word
636 // init status word
637 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
637 dummy_hk_packet.lfr_status_word[0] = INT8_ALL_F;
638 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
638 dummy_hk_packet.lfr_status_word[1] = INT8_ALL_F;
639 // init software version
639 // init software version
640 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
640 dummy_hk_packet.lfr_sw_version[0] = SW_VERSION_N1;
641 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
641 dummy_hk_packet.lfr_sw_version[1] = SW_VERSION_N2;
642 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
642 dummy_hk_packet.lfr_sw_version[BYTE_2] = SW_VERSION_N3;
643 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
643 dummy_hk_packet.lfr_sw_version[BYTE_3] = SW_VERSION_N4;
644 // init fpga version
644 // init fpga version
645 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
645 parameters = (unsigned char *) (REGS_ADDR_WAVEFORM_PICKER + APB_OFFSET_VHDL_REV);
646 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
646 dummy_hk_packet.lfr_fpga_version[BYTE_0] = parameters[BYTE_1]; // n1
647 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
647 dummy_hk_packet.lfr_fpga_version[BYTE_1] = parameters[BYTE_2]; // n2
648 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
648 dummy_hk_packet.lfr_fpga_version[BYTE_2] = parameters[BYTE_3]; // n3
649
649
650 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
650 parameters = (unsigned char *) &dummy_hk_packet.hk_lfr_cpu_load;
651
651
652 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
652 for (i=0; i<(BYTE_POS_HK_REACTION_WHEELS_FREQUENCY - BYTE_POS_HK_LFR_CPU_LOAD); i++)
653 {
653 {
654 parameters[i] = INT8_ALL_F;
654 parameters[i] = INT8_ALL_F;
655 }
655 }
656
656
657 get_message_queue_id_send( &queue_id );
657 get_message_queue_id_send( &queue_id );
658
658
659 rtems_message_queue_send( queue_id, &dummy_hk_packet,
659 rtems_message_queue_send( queue_id, &dummy_hk_packet,
660 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
660 PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
661 }
661 }
662
662
663 void get_temperatures( unsigned char *temperatures )
663 void get_temperatures( unsigned char *temperatures )
664 {
664 {
665 unsigned char* temp_scm_ptr;
665 unsigned char* temp_scm_ptr;
666 unsigned char* temp_pcb_ptr;
666 unsigned char* temp_pcb_ptr;
667 unsigned char* temp_fpga_ptr;
667 unsigned char* temp_fpga_ptr;
668
668
669 // SEL1 SEL0
669 // SEL1 SEL0
670 // 0 0 => PCB
670 // 0 0 => PCB
671 // 0 1 => FPGA
671 // 0 1 => FPGA
672 // 1 0 => SCM
672 // 1 0 => SCM
673
673
674 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
674 temp_scm_ptr = (unsigned char *) &time_management_regs->temp_scm;
675 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
675 temp_pcb_ptr = (unsigned char *) &time_management_regs->temp_pcb;
676 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
676 temp_fpga_ptr = (unsigned char *) &time_management_regs->temp_fpga;
677
677
678 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
678 temperatures[ BYTE_0 ] = temp_scm_ptr[ BYTE_2 ];
679 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
679 temperatures[ BYTE_1 ] = temp_scm_ptr[ BYTE_3 ];
680 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
680 temperatures[ BYTE_2 ] = temp_pcb_ptr[ BYTE_2 ];
681 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
681 temperatures[ BYTE_3 ] = temp_pcb_ptr[ BYTE_3 ];
682 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
682 temperatures[ BYTE_4 ] = temp_fpga_ptr[ BYTE_2 ];
683 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
683 temperatures[ BYTE_5 ] = temp_fpga_ptr[ BYTE_3 ];
684 }
684 }
685
685
686 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
686 void get_v_e1_e2_f3( unsigned char *spacecraft_potential )
687 {
687 {
688 unsigned char* v_ptr;
688 unsigned char* v_ptr;
689 unsigned char* e1_ptr;
689 unsigned char* e1_ptr;
690 unsigned char* e2_ptr;
690 unsigned char* e2_ptr;
691
691
692 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
692 v_ptr = (unsigned char *) &hk_lfr_sc_v_f3_as_int16;
693 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
693 e1_ptr = (unsigned char *) &hk_lfr_sc_e1_f3_as_int16;
694 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
694 e2_ptr = (unsigned char *) &hk_lfr_sc_e2_f3_as_int16;
695
695
696 spacecraft_potential[BYTE_0] = v_ptr[0];
696 spacecraft_potential[BYTE_0] = v_ptr[0];
697 spacecraft_potential[BYTE_1] = v_ptr[1];
697 spacecraft_potential[BYTE_1] = v_ptr[1];
698 spacecraft_potential[BYTE_2] = e1_ptr[0];
698 spacecraft_potential[BYTE_2] = e1_ptr[0];
699 spacecraft_potential[BYTE_3] = e1_ptr[1];
699 spacecraft_potential[BYTE_3] = e1_ptr[1];
700 spacecraft_potential[BYTE_4] = e2_ptr[0];
700 spacecraft_potential[BYTE_4] = e2_ptr[0];
701 spacecraft_potential[BYTE_5] = e2_ptr[1];
701 spacecraft_potential[BYTE_5] = e2_ptr[1];
702 }
702 }
703
703
704 void get_cpu_load( unsigned char *resource_statistics )
704 void get_cpu_load( unsigned char *resource_statistics )
705 {
705 {
706 unsigned char cpu_load;
706 unsigned char cpu_load;
707
707
708 cpu_load = lfr_rtems_cpu_usage_report();
708 cpu_load = lfr_rtems_cpu_usage_report();
709
709
710 // HK_LFR_CPU_LOAD
710 // HK_LFR_CPU_LOAD
711 resource_statistics[0] = cpu_load;
711 resource_statistics[0] = cpu_load;
712
712
713 // HK_LFR_CPU_LOAD_MAX
713 // HK_LFR_CPU_LOAD_MAX
714 if (cpu_load > resource_statistics[1])
714 if (cpu_load > resource_statistics[1])
715 {
715 {
716 resource_statistics[1] = cpu_load;
716 resource_statistics[1] = cpu_load;
717 }
717 }
718
718
719 // CPU_LOAD_AVE
719 // CPU_LOAD_AVE
720 resource_statistics[BYTE_2] = 0;
720 resource_statistics[BYTE_2] = 0;
721
721
722 #ifndef PRINT_TASK_STATISTICS
722 #ifndef PRINT_TASK_STATISTICS
723 rtems_cpu_usage_reset();
723 rtems_cpu_usage_reset();
724 #endif
724 #endif
725
725
726 }
726 }
727
727
728 void set_hk_lfr_sc_potential_flag( bool state )
728 void set_hk_lfr_sc_potential_flag( bool state )
729 {
729 {
730 if (state == true)
730 if (state == true)
731 {
731 {
732 housekeeping_packet.lfr_status_word[1] =
732 housekeeping_packet.lfr_status_word[1] =
733 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
733 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_SC_POTENTIAL_FLAG_BIT; // [0100 0000]
734 }
734 }
735 else
735 else
736 {
736 {
737 housekeeping_packet.lfr_status_word[1] =
737 housekeeping_packet.lfr_status_word[1] =
738 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
738 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_SC_POTENTIAL_FLAG_MASK; // [1011 1111]
739 }
739 }
740 }
740 }
741
741
742 void set_sy_lfr_pas_filter_enabled( bool state )
742 void set_sy_lfr_pas_filter_enabled( bool state )
743 {
743 {
744 if (state == true)
744 if (state == true)
745 {
745 {
746 housekeeping_packet.lfr_status_word[1] =
746 housekeeping_packet.lfr_status_word[1] =
747 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
747 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_PAS_FILTER_ENABLED_BIT; // [0010 0000]
748 }
748 }
749 else
749 else
750 {
750 {
751 housekeeping_packet.lfr_status_word[1] =
751 housekeeping_packet.lfr_status_word[1] =
752 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
752 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_PAS_FILTER_ENABLED_MASK; // [1101 1111]
753 }
753 }
754 }
754 }
755
755
756 void set_sy_lfr_watchdog_enabled( bool state )
756 void set_sy_lfr_watchdog_enabled( bool state )
757 {
757 {
758 if (state == true)
758 if (state == true)
759 {
759 {
760 housekeeping_packet.lfr_status_word[1] =
760 housekeeping_packet.lfr_status_word[1] =
761 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
761 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_WATCHDOG_BIT; // [0001 0000]
762 }
762 }
763 else
763 else
764 {
764 {
765 housekeeping_packet.lfr_status_word[1] =
765 housekeeping_packet.lfr_status_word[1] =
766 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
766 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_WATCHDOG_MASK; // [1110 1111]
767 }
767 }
768 }
768 }
769
769
770 void set_hk_lfr_calib_enable( bool state )
770 void set_hk_lfr_calib_enable( bool state )
771 {
771 {
772 if (state == true)
772 if (state == true)
773 {
773 {
774 housekeeping_packet.lfr_status_word[1] =
774 housekeeping_packet.lfr_status_word[1] =
775 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
775 housekeeping_packet.lfr_status_word[1] | STATUS_WORD_CALIB_BIT; // [0000 1000]
776 }
776 }
777 else
777 else
778 {
778 {
779 housekeeping_packet.lfr_status_word[1] =
779 housekeeping_packet.lfr_status_word[1] =
780 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
780 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_CALIB_MASK; // [1111 0111]
781 }
781 }
782 }
782 }
783
783
784 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
784 void set_hk_lfr_reset_cause( enum lfr_reset_cause_t lfr_reset_cause )
785 {
785 {
786 housekeeping_packet.lfr_status_word[1] =
786 housekeeping_packet.lfr_status_word[1] =
787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
787 housekeeping_packet.lfr_status_word[1] & STATUS_WORD_RESET_CAUSE_MASK; // [1111 1000]
788
788
789 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
789 housekeeping_packet.lfr_status_word[1] = housekeeping_packet.lfr_status_word[1]
790 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
790 | (lfr_reset_cause & STATUS_WORD_RESET_CAUSE_BITS ); // [0000 0111]
791
791
792 }
792 }
793
793
794 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
794 void increment_hk_counter( unsigned char newValue, unsigned char oldValue, unsigned int *counter )
795 {
795 {
796 int delta;
796 int delta;
797
797
798 delta = 0;
798 delta = 0;
799
799
800 if (newValue >= oldValue)
800 if (newValue >= oldValue)
801 {
801 {
802 delta = newValue - oldValue;
802 delta = newValue - oldValue;
803 }
803 }
804 else
804 else
805 {
805 {
806 delta = (255 - oldValue) + newValue;
806 delta = (CONST_256 - oldValue) + newValue;
807 }
807 }
808
808
809 *counter = *counter + delta;
809 *counter = *counter + delta;
810 }
810 }
811
811
812 void hk_lfr_le_update( void )
812 void hk_lfr_le_update( void )
813 {
813 {
814 static hk_lfr_le_t old_hk_lfr_le = {0};
814 static hk_lfr_le_t old_hk_lfr_le = {0};
815 hk_lfr_le_t new_hk_lfr_le;
815 hk_lfr_le_t new_hk_lfr_le;
816 unsigned int counter;
816 unsigned int counter;
817
817
818 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * 256) + housekeeping_packet.hk_lfr_le_cnt[1];
818 counter = (((unsigned int) housekeeping_packet.hk_lfr_le_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_le_cnt[1];
819
819
820 // DPU
820 // DPU
821 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
821 new_hk_lfr_le.dpu_spw_parity = housekeeping_packet.hk_lfr_dpu_spw_parity;
822 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
822 new_hk_lfr_le.dpu_spw_disconnect= housekeeping_packet.hk_lfr_dpu_spw_disconnect;
823 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
823 new_hk_lfr_le.dpu_spw_escape = housekeeping_packet.hk_lfr_dpu_spw_escape;
824 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
824 new_hk_lfr_le.dpu_spw_credit = housekeeping_packet.hk_lfr_dpu_spw_credit;
825 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
825 new_hk_lfr_le.dpu_spw_write_sync= housekeeping_packet.hk_lfr_dpu_spw_write_sync;
826 // TIMECODE
826 // TIMECODE
827 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
827 new_hk_lfr_le.timecode_erroneous= housekeeping_packet.hk_lfr_timecode_erroneous;
828 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
828 new_hk_lfr_le.timecode_missing = housekeeping_packet.hk_lfr_timecode_missing;
829 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
829 new_hk_lfr_le.timecode_invalid = housekeeping_packet.hk_lfr_timecode_invalid;
830 // TIME
830 // TIME
831 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
831 new_hk_lfr_le.time_timecode_it = housekeeping_packet.hk_lfr_time_timecode_it;
832 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
832 new_hk_lfr_le.time_not_synchro = housekeeping_packet.hk_lfr_time_not_synchro;
833 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
833 new_hk_lfr_le.time_timecode_ctr = housekeeping_packet.hk_lfr_time_timecode_ctr;
834 //AHB
834 //AHB
835 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
835 new_hk_lfr_le.ahb_correctable = housekeeping_packet.hk_lfr_ahb_correctable;
836 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
836 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
837 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
837 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
838
838
839 // update the le counter
839 // update the le counter
840 // DPU
840 // DPU
841 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
841 increment_hk_counter( new_hk_lfr_le.dpu_spw_parity, old_hk_lfr_le.dpu_spw_parity, &counter );
842 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
842 increment_hk_counter( new_hk_lfr_le.dpu_spw_disconnect,old_hk_lfr_le.dpu_spw_disconnect, &counter );
843 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
843 increment_hk_counter( new_hk_lfr_le.dpu_spw_escape, old_hk_lfr_le.dpu_spw_escape, &counter );
844 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
844 increment_hk_counter( new_hk_lfr_le.dpu_spw_credit, old_hk_lfr_le.dpu_spw_credit, &counter );
845 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
845 increment_hk_counter( new_hk_lfr_le.dpu_spw_write_sync,old_hk_lfr_le.dpu_spw_write_sync, &counter );
846 // TIMECODE
846 // TIMECODE
847 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
847 increment_hk_counter( new_hk_lfr_le.timecode_erroneous,old_hk_lfr_le.timecode_erroneous, &counter );
848 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
848 increment_hk_counter( new_hk_lfr_le.timecode_missing, old_hk_lfr_le.timecode_missing, &counter );
849 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
849 increment_hk_counter( new_hk_lfr_le.timecode_invalid, old_hk_lfr_le.timecode_invalid, &counter );
850 // TIME
850 // TIME
851 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
851 increment_hk_counter( new_hk_lfr_le.time_timecode_it, old_hk_lfr_le.time_timecode_it, &counter );
852 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
852 increment_hk_counter( new_hk_lfr_le.time_not_synchro, old_hk_lfr_le.time_not_synchro, &counter );
853 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
853 increment_hk_counter( new_hk_lfr_le.time_timecode_ctr, old_hk_lfr_le.time_timecode_ctr, &counter );
854 // AHB
854 // AHB
855 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
855 increment_hk_counter( new_hk_lfr_le.ahb_correctable, old_hk_lfr_le.ahb_correctable, &counter );
856
856
857 // DPU
857 // DPU
858 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
858 old_hk_lfr_le.dpu_spw_parity = new_hk_lfr_le.dpu_spw_parity;
859 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
859 old_hk_lfr_le.dpu_spw_disconnect= new_hk_lfr_le.dpu_spw_disconnect;
860 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
860 old_hk_lfr_le.dpu_spw_escape = new_hk_lfr_le.dpu_spw_escape;
861 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
861 old_hk_lfr_le.dpu_spw_credit = new_hk_lfr_le.dpu_spw_credit;
862 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
862 old_hk_lfr_le.dpu_spw_write_sync= new_hk_lfr_le.dpu_spw_write_sync;
863 // TIMECODE
863 // TIMECODE
864 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
864 old_hk_lfr_le.timecode_erroneous= new_hk_lfr_le.timecode_erroneous;
865 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
865 old_hk_lfr_le.timecode_missing = new_hk_lfr_le.timecode_missing;
866 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
866 old_hk_lfr_le.timecode_invalid = new_hk_lfr_le.timecode_invalid;
867 // TIME
867 // TIME
868 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
868 old_hk_lfr_le.time_timecode_it = new_hk_lfr_le.time_timecode_it;
869 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
869 old_hk_lfr_le.time_not_synchro = new_hk_lfr_le.time_not_synchro;
870 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
870 old_hk_lfr_le.time_timecode_ctr = new_hk_lfr_le.time_timecode_ctr;
871 //AHB
871 //AHB
872 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
872 old_hk_lfr_le.ahb_correctable = new_hk_lfr_le.ahb_correctable;
873 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
873 // housekeeping_packet.hk_lfr_dpu_spw_rx_ahb => not handled by the grspw driver
874 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
874 // housekeeping_packet.hk_lfr_dpu_spw_tx_ahb => not handled by the grspw driver
875
875
876 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
876 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
877 // LE
877 // LE
878 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
878 housekeeping_packet.hk_lfr_le_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
879 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
879 housekeeping_packet.hk_lfr_le_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
880 }
880 }
881
881
882 void hk_lfr_me_update( void )
882 void hk_lfr_me_update( void )
883 {
883 {
884 static hk_lfr_me_t old_hk_lfr_me = {0};
884 static hk_lfr_me_t old_hk_lfr_me = {0};
885 hk_lfr_me_t new_hk_lfr_me;
885 hk_lfr_me_t new_hk_lfr_me;
886 unsigned int counter;
886 unsigned int counter;
887
887
888 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * 256) + housekeeping_packet.hk_lfr_me_cnt[1];
888 counter = (((unsigned int) housekeeping_packet.hk_lfr_me_cnt[0]) * CONST_256) + housekeeping_packet.hk_lfr_me_cnt[1];
889
889
890 // get the current values
890 // get the current values
891 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
891 new_hk_lfr_me.dpu_spw_early_eop = housekeeping_packet.hk_lfr_dpu_spw_early_eop;
892 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
892 new_hk_lfr_me.dpu_spw_invalid_addr = housekeeping_packet.hk_lfr_dpu_spw_invalid_addr;
893 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
893 new_hk_lfr_me.dpu_spw_eep = housekeeping_packet.hk_lfr_dpu_spw_eep;
894 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
894 new_hk_lfr_me.dpu_spw_rx_too_big = housekeeping_packet.hk_lfr_dpu_spw_rx_too_big;
895
895
896 // update the me counter
896 // update the me counter
897 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
897 increment_hk_counter( new_hk_lfr_me.dpu_spw_early_eop, old_hk_lfr_me.dpu_spw_early_eop, &counter );
898 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
898 increment_hk_counter( new_hk_lfr_me.dpu_spw_invalid_addr, old_hk_lfr_me.dpu_spw_invalid_addr, &counter );
899 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
899 increment_hk_counter( new_hk_lfr_me.dpu_spw_eep, old_hk_lfr_me.dpu_spw_eep, &counter );
900 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
900 increment_hk_counter( new_hk_lfr_me.dpu_spw_rx_too_big, old_hk_lfr_me.dpu_spw_rx_too_big, &counter );
901
901
902 // store the counters for the next time
902 // store the counters for the next time
903 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
903 old_hk_lfr_me.dpu_spw_early_eop = new_hk_lfr_me.dpu_spw_early_eop;
904 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
904 old_hk_lfr_me.dpu_spw_invalid_addr = new_hk_lfr_me.dpu_spw_invalid_addr;
905 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
905 old_hk_lfr_me.dpu_spw_eep = new_hk_lfr_me.dpu_spw_eep;
906 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
906 old_hk_lfr_me.dpu_spw_rx_too_big = new_hk_lfr_me.dpu_spw_rx_too_big;
907
907
908 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
908 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
909 // ME
909 // ME
910 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
910 housekeeping_packet.hk_lfr_me_cnt[0] = (unsigned char) ((counter & BYTE0_MASK) >> SHIFT_1_BYTE);
911 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
911 housekeeping_packet.hk_lfr_me_cnt[1] = (unsigned char) (counter & BYTE1_MASK);
912 }
912 }
913
913
914 void hk_lfr_le_me_he_update()
914 void hk_lfr_le_me_he_update()
915 {
915 {
916
916
917 unsigned int hk_lfr_he_cnt;
917 unsigned int hk_lfr_he_cnt;
918
918
919 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
919 hk_lfr_he_cnt = (((unsigned int) housekeeping_packet.hk_lfr_he_cnt[0]) * 256) + housekeeping_packet.hk_lfr_he_cnt[1];
920
920
921 //update the low severity error counter
921 //update the low severity error counter
922 hk_lfr_le_update( );
922 hk_lfr_le_update( );
923
923
924 //update the medium severity error counter
924 //update the medium severity error counter
925 hk_lfr_me_update();
925 hk_lfr_me_update();
926
926
927 //update the high severity error counter
927 //update the high severity error counter
928 hk_lfr_he_cnt = 0;
928 hk_lfr_he_cnt = 0;
929
929
930 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
930 // update housekeeping packet counters, convert unsigned int numbers in 2 bytes numbers
931 // HE
931 // HE
932 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
932 housekeeping_packet.hk_lfr_he_cnt[0] = (unsigned char) ((hk_lfr_he_cnt & BYTE0_MASK) >> SHIFT_1_BYTE);
933 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
933 housekeeping_packet.hk_lfr_he_cnt[1] = (unsigned char) (hk_lfr_he_cnt & BYTE1_MASK);
934
934
935 }
935 }
936
936
937 void set_hk_lfr_time_not_synchro()
937 void set_hk_lfr_time_not_synchro()
938 {
938 {
939 static unsigned char synchroLost = 1;
939 static unsigned char synchroLost = 1;
940 int synchronizationBit;
940 int synchronizationBit;
941
941
942 // get the synchronization bit
942 // get the synchronization bit
943 synchronizationBit =
943 synchronizationBit =
944 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
944 (time_management_regs->coarse_time & VAL_LFR_SYNCHRONIZED) >> BIT_SYNCHRONIZATION; // 1000 0000 0000 0000
945
945
946 switch (synchronizationBit)
946 switch (synchronizationBit)
947 {
947 {
948 case 0:
948 case 0:
949 if (synchroLost == 1)
949 if (synchroLost == 1)
950 {
950 {
951 synchroLost = 0;
951 synchroLost = 0;
952 }
952 }
953 break;
953 break;
954 case 1:
954 case 1:
955 if (synchroLost == 0 )
955 if (synchroLost == 0 )
956 {
956 {
957 synchroLost = 1;
957 synchroLost = 1;
958 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
958 increase_unsigned_char_counter(&housekeeping_packet.hk_lfr_time_not_synchro);
959 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
959 update_hk_lfr_last_er_fields( RID_LE_LFR_TIME, CODE_NOT_SYNCHRO );
960 }
960 }
961 break;
961 break;
962 default:
962 default:
963 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
963 PRINTF1("in hk_lfr_time_not_synchro *** unexpected value for synchronizationBit = %d\n", synchronizationBit);
964 break;
964 break;
965 }
965 }
966
966
967 }
967 }
968
968
969 void set_hk_lfr_ahb_correctable() // CRITICITY L
969 void set_hk_lfr_ahb_correctable() // CRITICITY L
970 {
970 {
971 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
971 /** This function builds the error counter hk_lfr_ahb_correctable using the statistics provided
972 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
972 * by the Cache Control Register (ASI 2, offset 0) and in the Register Protection Control Register (ASR16) on the
973 * detected errors in the cache, in the integer unit and in the floating point unit.
973 * detected errors in the cache, in the integer unit and in the floating point unit.
974 *
974 *
975 * @param void
975 * @param void
976 *
976 *
977 * @return void
977 * @return void
978 *
978 *
979 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
979 * All errors are summed to set the value of the hk_lfr_ahb_correctable counter.
980 *
980 *
981 */
981 */
982
982
983 unsigned int ahb_correctable;
983 unsigned int ahb_correctable;
984 unsigned int instructionErrorCounter;
984 unsigned int instructionErrorCounter;
985 unsigned int dataErrorCounter;
985 unsigned int dataErrorCounter;
986 unsigned int fprfErrorCounter;
986 unsigned int fprfErrorCounter;
987 unsigned int iurfErrorCounter;
987 unsigned int iurfErrorCounter;
988
988
989 instructionErrorCounter = 0;
989 instructionErrorCounter = 0;
990 dataErrorCounter = 0;
990 dataErrorCounter = 0;
991 fprfErrorCounter = 0;
991 fprfErrorCounter = 0;
992 iurfErrorCounter = 0;
992 iurfErrorCounter = 0;
993
993
994 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
994 CCR_getInstructionAndDataErrorCounters( &instructionErrorCounter, &dataErrorCounter);
995 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
995 ASR16_get_FPRF_IURF_ErrorCounters( &fprfErrorCounter, &iurfErrorCounter);
996
996
997 ahb_correctable = instructionErrorCounter
997 ahb_correctable = instructionErrorCounter
998 + dataErrorCounter
998 + dataErrorCounter
999 + fprfErrorCounter
999 + fprfErrorCounter
1000 + iurfErrorCounter
1000 + iurfErrorCounter
1001 + housekeeping_packet.hk_lfr_ahb_correctable;
1001 + housekeeping_packet.hk_lfr_ahb_correctable;
1002
1002
1003 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1003 housekeeping_packet.hk_lfr_ahb_correctable = (unsigned char) (ahb_correctable & INT8_ALL_F); // [1111 1111]
1004
1004
1005 }
1005 }
General Comments 0
You need to be logged in to leave comments. Login now