|
@@
-1,913
+1,913
|
|
1
|
/** General usage functions and RTEMS tasks.
|
|
1
|
/** General usage functions and RTEMS tasks.
|
|
2
|
*
|
|
2
|
*
|
|
3
|
* @file
|
|
3
|
* @file
|
|
4
|
* @author P. LEROY
|
|
4
|
* @author P. LEROY
|
|
5
|
*
|
|
5
|
*
|
|
6
|
*/
|
|
6
|
*/
|
|
7
|
|
|
7
|
|
|
8
|
#include "fsw_misc.h"
|
|
8
|
#include "fsw_misc.h"
|
|
9
|
|
|
9
|
|
|
10
|
int16_t hk_lfr_sc_v_f3_as_int16;
|
|
10
|
int16_t hk_lfr_sc_v_f3_as_int16;
|
|
11
|
int16_t hk_lfr_sc_e1_f3_as_int16;
|
|
11
|
int16_t hk_lfr_sc_e1_f3_as_int16;
|
|
12
|
int16_t hk_lfr_sc_e2_f3_as_int16;
|
|
12
|
int16_t hk_lfr_sc_e2_f3_as_int16;
|
|
13
|
|
|
13
|
|
|
14
|
void timer_configure(unsigned char timer, unsigned int clock_divider,
|
|
14
|
void timer_configure(unsigned char timer, unsigned int clock_divider,
|
|
15
|
unsigned char interrupt_level, rtems_isr (*timer_isr)() )
|
|
15
|
unsigned char interrupt_level, rtems_isr (*timer_isr)() )
|
|
16
|
{
|
|
16
|
{
|
|
17
|
/** This function configures a GPTIMER timer instantiated in the VHDL design.
|
|
17
|
/** This function configures a GPTIMER timer instantiated in the VHDL design.
|
|
18
|
*
|
|
18
|
*
|
|
19
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
19
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
20
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
20
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
21
|
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
|
|
21
|
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
|
|
22
|
* @param interrupt_level is the interrupt level that the timer drives.
|
|
22
|
* @param interrupt_level is the interrupt level that the timer drives.
|
|
23
|
* @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
|
|
23
|
* @param timer_isr is the interrupt subroutine that will be attached to the IRQ driven by the timer.
|
|
24
|
*
|
|
24
|
*
|
|
25
|
* Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
|
|
25
|
* Interrupt levels are described in the SPARC documentation sparcv8.pdf p.76
|
|
26
|
*
|
|
26
|
*
|
|
27
|
*/
|
|
27
|
*/
|
|
28
|
|
|
28
|
|
|
29
|
rtems_status_code status;
|
|
29
|
rtems_status_code status;
|
|
30
|
rtems_isr_entry old_isr_handler;
|
|
30
|
rtems_isr_entry old_isr_handler;
|
|
31
|
|
|
31
|
|
|
32
|
gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
|
|
32
|
gptimer_regs->timer[timer].ctrl = 0x00; // reset the control register
|
|
33
|
|
|
33
|
|
|
34
|
status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
|
|
34
|
status = rtems_interrupt_catch( timer_isr, interrupt_level, &old_isr_handler) ; // see sparcv8.pdf p.76 for interrupt levels
|
|
35
|
if (status!=RTEMS_SUCCESSFUL)
|
|
35
|
if (status!=RTEMS_SUCCESSFUL)
|
|
36
|
{
|
|
36
|
{
|
|
37
|
PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
|
|
37
|
PRINTF("in configure_timer *** ERR rtems_interrupt_catch\n")
|
|
38
|
}
|
|
38
|
}
|
|
39
|
|
|
39
|
|
|
40
|
timer_set_clock_divider( timer, clock_divider);
|
|
40
|
timer_set_clock_divider( timer, clock_divider);
|
|
41
|
}
|
|
41
|
}
|
|
42
|
|
|
42
|
|
|
43
|
void timer_start(unsigned char timer)
|
|
43
|
void timer_start(unsigned char timer)
|
|
44
|
{
|
|
44
|
{
|
|
45
|
/** This function starts a GPTIMER timer.
|
|
45
|
/** This function starts a GPTIMER timer.
|
|
46
|
*
|
|
46
|
*
|
|
47
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
47
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
48
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
48
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
49
|
*
|
|
49
|
*
|
|
50
|
*/
|
|
50
|
*/
|
|
51
|
|
|
51
|
|
|
52
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
|
|
52
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
|
|
53
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
|
|
53
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000004; // LD load value from the reload register
|
|
54
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
|
|
54
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000001; // EN enable the timer
|
|
55
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
|
|
55
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000002; // RS restart
|
|
56
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
|
|
56
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000008; // IE interrupt enable
|
|
57
|
}
|
|
57
|
}
|
|
58
|
|
|
58
|
|
|
59
|
void timer_stop(unsigned char timer)
|
|
59
|
void timer_stop(unsigned char timer)
|
|
60
|
{
|
|
60
|
{
|
|
61
|
/** This function stops a GPTIMER timer.
|
|
61
|
/** This function stops a GPTIMER timer.
|
|
62
|
*
|
|
62
|
*
|
|
63
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
63
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
64
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
64
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
65
|
*
|
|
65
|
*
|
|
66
|
*/
|
|
66
|
*/
|
|
67
|
|
|
67
|
|
|
68
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
|
|
68
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xfffffffe; // EN enable the timer
|
|
69
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
|
|
69
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl & 0xffffffef; // IE interrupt enable
|
|
70
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
|
|
70
|
gptimer_regs->timer[timer].ctrl = gptimer_regs->timer[timer].ctrl | 0x00000010; // clear pending IRQ if any
|
|
71
|
}
|
|
71
|
}
|
|
72
|
|
|
72
|
|
|
73
|
void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
|
|
73
|
void timer_set_clock_divider(unsigned char timer, unsigned int clock_divider)
|
|
74
|
{
|
|
74
|
{
|
|
75
|
/** This function sets the clock divider of a GPTIMER timer.
|
|
75
|
/** This function sets the clock divider of a GPTIMER timer.
|
|
76
|
*
|
|
76
|
*
|
|
77
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
77
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
78
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
78
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
79
|
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
|
|
79
|
* @param clock_divider is the divider of the 1 MHz clock that will be configured.
|
|
80
|
*
|
|
80
|
*
|
|
81
|
*/
|
|
81
|
*/
|
|
82
|
|
|
82
|
|
|
83
|
gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
|
|
83
|
gptimer_regs->timer[timer].reload = clock_divider; // base clock frequency is 1 MHz
|
|
84
|
}
|
|
84
|
}
|
|
85
|
|
|
85
|
|
|
86
|
// WATCHDOG
|
|
86
|
// WATCHDOG
|
|
87
|
|
|
87
|
|
|
88
|
rtems_isr watchdog_isr( rtems_vector_number vector )
|
|
88
|
rtems_isr watchdog_isr( rtems_vector_number vector )
|
|
89
|
{
|
|
89
|
{
|
|
90
|
rtems_status_code status_code;
|
|
90
|
rtems_status_code status_code;
|
|
91
|
|
|
91
|
|
|
92
|
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
|
|
92
|
status_code = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_12 );
|
|
93
|
|
|
93
|
|
|
94
|
PRINTF("watchdog_isr *** this is the end, exit(0)\n");
|
|
94
|
PRINTF("watchdog_isr *** this is the end, exit(0)\n");
|
|
95
|
|
|
95
|
|
|
96
|
exit(0);
|
|
96
|
exit(0);
|
|
97
|
}
|
|
97
|
}
|
|
98
|
|
|
98
|
|
|
99
|
void watchdog_configure(void)
|
|
99
|
void watchdog_configure(void)
|
|
100
|
{
|
|
100
|
{
|
|
101
|
/** This function configure the watchdog.
|
|
101
|
/** This function configure the watchdog.
|
|
102
|
*
|
|
102
|
*
|
|
103
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
103
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
104
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
104
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
105
|
*
|
|
105
|
*
|
|
106
|
* The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
|
|
106
|
* The watchdog is a timer provided by the GPTIMER IP core of the GRLIB.
|
|
107
|
*
|
|
107
|
*
|
|
108
|
*/
|
|
108
|
*/
|
|
109
|
|
|
109
|
|
|
110
|
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
|
|
110
|
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt during configuration
|
|
111
|
|
|
111
|
|
|
112
|
timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
|
|
112
|
timer_configure( TIMER_WATCHDOG, CLKDIV_WATCHDOG, IRQ_SPARC_GPTIMER_WATCHDOG, watchdog_isr );
|
|
113
|
|
|
113
|
|
|
114
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
|
|
114
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
|
|
115
|
}
|
|
115
|
}
|
|
116
|
|
|
116
|
|
|
117
|
void watchdog_stop(void)
|
|
117
|
void watchdog_stop(void)
|
|
118
|
{
|
|
118
|
{
|
|
119
|
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
|
|
119
|
LEON_Mask_interrupt( IRQ_GPTIMER_WATCHDOG ); // mask gptimer/watchdog interrupt line
|
|
120
|
timer_stop( TIMER_WATCHDOG );
|
|
120
|
timer_stop( TIMER_WATCHDOG );
|
|
121
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
|
|
121
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG ); // clear gptimer/watchdog interrupt
|
|
122
|
}
|
|
122
|
}
|
|
123
|
|
|
123
|
|
|
124
|
void watchdog_reload(void)
|
|
124
|
void watchdog_reload(void)
|
|
125
|
{
|
|
125
|
{
|
|
126
|
/** This function reloads the watchdog timer counter with the timer reload value.
|
|
126
|
/** This function reloads the watchdog timer counter with the timer reload value.
|
|
127
|
*
|
|
127
|
*
|
|
128
|
* @param void
|
|
128
|
* @param void
|
|
129
|
*
|
|
129
|
*
|
|
130
|
* @return void
|
|
130
|
* @return void
|
|
131
|
*
|
|
131
|
*
|
|
132
|
*/
|
|
132
|
*/
|
|
133
|
|
|
133
|
|
|
134
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
|
|
134
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
|
|
135
|
}
|
|
135
|
}
|
|
136
|
|
|
136
|
|
|
137
|
void watchdog_start(void)
|
|
137
|
void watchdog_start(void)
|
|
138
|
{
|
|
138
|
{
|
|
139
|
/** This function starts the watchdog timer.
|
|
139
|
/** This function starts the watchdog timer.
|
|
140
|
*
|
|
140
|
*
|
|
141
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
141
|
* @param gptimer_regs points to the APB registers of the GPTIMER IP core.
|
|
142
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
142
|
* @param timer is the number of the timer in the IP core (several timers can be instantiated).
|
|
143
|
*
|
|
143
|
*
|
|
144
|
*/
|
|
144
|
*/
|
|
145
|
|
|
145
|
|
|
146
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
|
|
146
|
LEON_Clear_interrupt( IRQ_GPTIMER_WATCHDOG );
|
|
147
|
|
|
147
|
|
|
148
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
|
|
148
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000010; // clear pending IRQ if any
|
|
149
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
|
|
149
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000004; // LD load value from the reload register
|
|
150
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
|
|
150
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000001; // EN enable the timer
|
|
151
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
|
|
151
|
gptimer_regs->timer[TIMER_WATCHDOG].ctrl = gptimer_regs->timer[TIMER_WATCHDOG].ctrl | 0x00000008; // IE interrupt enable
|
|
152
|
|
|
152
|
|
|
153
|
LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
|
|
153
|
LEON_Unmask_interrupt( IRQ_GPTIMER_WATCHDOG );
|
|
154
|
|
|
154
|
|
|
155
|
}
|
|
155
|
}
|
|
156
|
|
|
156
|
|
|
157
|
int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
|
|
157
|
int enable_apbuart_transmitter( void ) // set the bit 1, TE Transmitter Enable to 1 in the APBUART control register
|
|
158
|
{
|
|
158
|
{
|
|
159
|
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
|
|
159
|
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) REGS_ADDR_APBUART;
|
|
160
|
|
|
160
|
|
|
161
|
apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
|
|
161
|
apbuart_regs->ctrl = APBUART_CTRL_REG_MASK_TE;
|
|
162
|
|
|
162
|
|
|
163
|
return 0;
|
|
163
|
return 0;
|
|
164
|
}
|
|
164
|
}
|
|
165
|
|
|
165
|
|
|
166
|
void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
|
|
166
|
void set_apbuart_scaler_reload_register(unsigned int regs, unsigned int value)
|
|
167
|
{
|
|
167
|
{
|
|
168
|
/** This function sets the scaler reload register of the apbuart module
|
|
168
|
/** This function sets the scaler reload register of the apbuart module
|
|
169
|
*
|
|
169
|
*
|
|
170
|
* @param regs is the address of the apbuart registers in memory
|
|
170
|
* @param regs is the address of the apbuart registers in memory
|
|
171
|
* @param value is the value that will be stored in the scaler register
|
|
171
|
* @param value is the value that will be stored in the scaler register
|
|
172
|
*
|
|
172
|
*
|
|
173
|
* The value shall be set by the software to get data on the serial interface.
|
|
173
|
* The value shall be set by the software to get data on the serial interface.
|
|
174
|
*
|
|
174
|
*
|
|
175
|
*/
|
|
175
|
*/
|
|
176
|
|
|
176
|
|
|
177
|
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
|
|
177
|
struct apbuart_regs_str *apbuart_regs = (struct apbuart_regs_str *) regs;
|
|
178
|
|
|
178
|
|
|
179
|
apbuart_regs->scaler = value;
|
|
179
|
apbuart_regs->scaler = value;
|
|
180
|
|
|
180
|
|
|
181
|
BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
|
|
181
|
BOOT_PRINTF1("OK *** apbuart port scaler reload register set to 0x%x\n", value)
|
|
182
|
}
|
|
182
|
}
|
|
183
|
|
|
183
|
|
|
184
|
//************
|
|
184
|
//************
|
|
185
|
// RTEMS TASKS
|
|
185
|
// RTEMS TASKS
|
|
186
|
|
|
186
|
|
|
187
|
rtems_task load_task(rtems_task_argument argument)
|
|
187
|
rtems_task load_task(rtems_task_argument argument)
|
|
188
|
{
|
|
188
|
{
|
|
189
|
BOOT_PRINTF("in LOAD *** \n")
|
|
189
|
BOOT_PRINTF("in LOAD *** \n")
|
|
190
|
|
|
190
|
|
|
191
|
rtems_status_code status;
|
|
191
|
rtems_status_code status;
|
|
192
|
unsigned int i;
|
|
192
|
unsigned int i;
|
|
193
|
unsigned int j;
|
|
193
|
unsigned int j;
|
|
194
|
rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
|
|
194
|
rtems_name name_watchdog_rate_monotonic; // name of the watchdog rate monotonic
|
|
195
|
rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
|
|
195
|
rtems_id watchdog_period_id; // id of the watchdog rate monotonic period
|
|
196
|
|
|
196
|
|
|
197
|
name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
|
|
197
|
name_watchdog_rate_monotonic = rtems_build_name( 'L', 'O', 'A', 'D' );
|
|
198
|
|
|
198
|
|
|
199
|
status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
|
|
199
|
status = rtems_rate_monotonic_create( name_watchdog_rate_monotonic, &watchdog_period_id );
|
|
200
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
200
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
201
|
PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
|
|
201
|
PRINTF1( "in LOAD *** rtems_rate_monotonic_create failed with status of %d\n", status )
|
|
202
|
}
|
|
202
|
}
|
|
203
|
|
|
203
|
|
|
204
|
i = 0;
|
|
204
|
i = 0;
|
|
205
|
j = 0;
|
|
205
|
j = 0;
|
|
206
|
|
|
206
|
|
|
207
|
watchdog_configure();
|
|
207
|
watchdog_configure();
|
|
208
|
|
|
208
|
|
|
209
|
watchdog_start();
|
|
209
|
watchdog_start();
|
|
210
|
|
|
210
|
|
|
211
|
set_sy_lfr_watchdog_enabled( true );
|
|
211
|
set_sy_lfr_watchdog_enabled( true );
|
|
212
|
|
|
212
|
|
|
213
|
while(1){
|
|
213
|
while(1){
|
|
214
|
status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
|
|
214
|
status = rtems_rate_monotonic_period( watchdog_period_id, WATCHDOG_PERIOD );
|
|
215
|
watchdog_reload();
|
|
215
|
watchdog_reload();
|
|
216
|
i = i + 1;
|
|
216
|
i = i + 1;
|
|
217
|
if ( i == 10 )
|
|
217
|
if ( i == 10 )
|
|
218
|
{
|
|
218
|
{
|
|
219
|
i = 0;
|
|
219
|
i = 0;
|
|
220
|
j = j + 1;
|
|
220
|
j = j + 1;
|
|
221
|
PRINTF1("%d\n", j)
|
|
221
|
PRINTF1("%d\n", j)
|
|
222
|
}
|
|
222
|
}
|
|
223
|
#ifdef DEBUG_WATCHDOG
|
|
223
|
#ifdef DEBUG_WATCHDOG
|
|
224
|
if (j == 3 )
|
|
224
|
if (j == 3 )
|
|
225
|
{
|
|
225
|
{
|
|
226
|
status = rtems_task_delete(RTEMS_SELF);
|
|
226
|
status = rtems_task_delete(RTEMS_SELF);
|
|
227
|
}
|
|
227
|
}
|
|
228
|
#endif
|
|
228
|
#endif
|
|
229
|
}
|
|
229
|
}
|
|
230
|
}
|
|
230
|
}
|
|
231
|
|
|
231
|
|
|
232
|
rtems_task hous_task(rtems_task_argument argument)
|
|
232
|
rtems_task hous_task(rtems_task_argument argument)
|
|
233
|
{
|
|
233
|
{
|
|
234
|
rtems_status_code status;
|
|
234
|
rtems_status_code status;
|
|
235
|
rtems_status_code spare_status;
|
|
235
|
rtems_status_code spare_status;
|
|
236
|
rtems_id queue_id;
|
|
236
|
rtems_id queue_id;
|
|
237
|
rtems_rate_monotonic_period_status period_status;
|
|
237
|
rtems_rate_monotonic_period_status period_status;
|
|
238
|
|
|
238
|
|
|
239
|
status = get_message_queue_id_send( &queue_id );
|
|
239
|
status = get_message_queue_id_send( &queue_id );
|
|
240
|
if (status != RTEMS_SUCCESSFUL)
|
|
240
|
if (status != RTEMS_SUCCESSFUL)
|
|
241
|
{
|
|
241
|
{
|
|
242
|
PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
|
|
242
|
PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
|
|
243
|
}
|
|
243
|
}
|
|
244
|
|
|
244
|
|
|
245
|
BOOT_PRINTF("in HOUS ***\n");
|
|
245
|
BOOT_PRINTF("in HOUS ***\n");
|
|
246
|
|
|
246
|
|
|
247
|
if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
|
|
247
|
if (rtems_rate_monotonic_ident( name_hk_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
|
|
248
|
status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
|
|
248
|
status = rtems_rate_monotonic_create( name_hk_rate_monotonic, &HK_id );
|
|
249
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
249
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
250
|
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
|
|
250
|
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
|
|
251
|
}
|
|
251
|
}
|
|
252
|
}
|
|
252
|
}
|
|
253
|
|
|
253
|
|
|
254
|
status = rtems_rate_monotonic_cancel(HK_id);
|
|
254
|
status = rtems_rate_monotonic_cancel(HK_id);
|
|
255
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
255
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
256
|
PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
|
|
256
|
PRINTF1( "ERR *** in HOUS *** rtems_rate_monotonic_cancel(HK_id) ***code: %d\n", status );
|
|
257
|
}
|
|
257
|
}
|
|
258
|
else {
|
|
258
|
else {
|
|
259
|
DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
|
|
259
|
DEBUG_PRINTF("OK *** in HOUS *** rtems_rate_monotonic_cancel(HK_id)\n");
|
|
260
|
}
|
|
260
|
}
|
|
261
|
|
|
261
|
|
|
262
|
// startup phase
|
|
262
|
// startup phase
|
|
263
|
status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
|
|
263
|
status = rtems_rate_monotonic_period( HK_id, SY_LFR_TIME_SYN_TIMEOUT_in_ticks );
|
|
264
|
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
|
|
264
|
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
|
|
265
|
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
|
|
265
|
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
|
|
266
|
while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
|
|
266
|
while(period_status.state != RATE_MONOTONIC_EXPIRED ) // after SY_LFR_TIME_SYN_TIMEOUT ms, starts HK anyway
|
|
267
|
{
|
|
267
|
{
|
|
268
|
if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
|
|
268
|
if ((time_management_regs->coarse_time & 0x80000000) == 0x00000000) // check time synchronization
|
|
269
|
{
|
|
269
|
{
|
|
270
|
break; // break if LFR is synchronized
|
|
270
|
break; // break if LFR is synchronized
|
|
271
|
}
|
|
271
|
}
|
|
272
|
else
|
|
272
|
else
|
|
273
|
{
|
|
273
|
{
|
|
274
|
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
|
|
274
|
status = rtems_rate_monotonic_get_status( HK_id, &period_status );
|
|
275
|
// sched_yield();
|
|
275
|
// sched_yield();
|
|
276
|
status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
|
|
276
|
status = rtems_task_wake_after( 10 ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 100 ms = 10 * 10 ms
|
|
277
|
}
|
|
277
|
}
|
|
278
|
}
|
|
278
|
}
|
|
279
|
status = rtems_rate_monotonic_cancel(HK_id);
|
|
279
|
status = rtems_rate_monotonic_cancel(HK_id);
|
|
280
|
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
|
|
280
|
DEBUG_PRINTF1("startup HK, HK_id status = %d\n", period_status.state)
|
|
281
|
|
|
281
|
|
|
282
|
set_hk_lfr_reset_cause( POWER_ON );
|
|
282
|
set_hk_lfr_reset_cause( POWER_ON );
|
|
283
|
|
|
283
|
|
|
284
|
while(1){ // launch the rate monotonic task
|
|
284
|
while(1){ // launch the rate monotonic task
|
|
285
|
status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
|
|
285
|
status = rtems_rate_monotonic_period( HK_id, HK_PERIOD );
|
|
286
|
if ( status != RTEMS_SUCCESSFUL ) {
|
|
286
|
if ( status != RTEMS_SUCCESSFUL ) {
|
|
287
|
PRINTF1( "in HOUS *** ERR period: %d\n", status);
|
|
287
|
PRINTF1( "in HOUS *** ERR period: %d\n", status);
|
|
288
|
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
|
|
288
|
spare_status = rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_6 );
|
|
289
|
}
|
|
289
|
}
|
|
290
|
else {
|
|
290
|
else {
|
|
291
|
housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
|
|
291
|
housekeeping_packet.packetSequenceControl[0] = (unsigned char) (sequenceCounterHK >> 8);
|
|
292
|
housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
|
|
292
|
housekeeping_packet.packetSequenceControl[1] = (unsigned char) (sequenceCounterHK );
|
|
293
|
increment_seq_counter( &sequenceCounterHK );
|
|
293
|
increment_seq_counter( &sequenceCounterHK );
|
|
294
|
|
|
294
|
|
|
295
|
housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
|
|
295
|
housekeeping_packet.time[0] = (unsigned char) (time_management_regs->coarse_time>>24);
|
|
296
|
housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
|
|
296
|
housekeeping_packet.time[1] = (unsigned char) (time_management_regs->coarse_time>>16);
|
|
297
|
housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
|
|
297
|
housekeeping_packet.time[2] = (unsigned char) (time_management_regs->coarse_time>>8);
|
|
298
|
housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
|
|
298
|
housekeeping_packet.time[3] = (unsigned char) (time_management_regs->coarse_time);
|
|
299
|
housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
|
|
299
|
housekeeping_packet.time[4] = (unsigned char) (time_management_regs->fine_time>>8);
|
|
300
|
housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
|
|
300
|
housekeeping_packet.time[5] = (unsigned char) (time_management_regs->fine_time);
|
|
301
|
|
|
301
|
|
|
302
|
spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
|
|
302
|
spacewire_update_hk_lfr_link_state( &housekeeping_packet.lfr_status_word[0] );
|
|
303
|
|
|
303
|
|
|
304
|
spacewire_read_statistics();
|
|
304
|
spacewire_read_statistics();
|
|
305
|
|
|
305
|
|
|
306
|
update_hk_with_grspw_stats();
|
|
306
|
update_hk_with_grspw_stats();
|
|
307
|
|
|
307
|
|
|
308
|
set_hk_lfr_time_not_synchro();
|
|
308
|
set_hk_lfr_time_not_synchro();
|
|
309
|
|
|
309
|
|
|
310
|
housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
|
|
310
|
housekeeping_packet.hk_lfr_q_sd_fifo_size_max = hk_lfr_q_sd_fifo_size_max;
|
|
311
|
housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
|
|
311
|
housekeeping_packet.hk_lfr_q_rv_fifo_size_max = hk_lfr_q_rv_fifo_size_max;
|
|
312
|
housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
|
|
312
|
housekeeping_packet.hk_lfr_q_p0_fifo_size_max = hk_lfr_q_p0_fifo_size_max;
|
|
313
|
housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
|
|
313
|
housekeeping_packet.hk_lfr_q_p1_fifo_size_max = hk_lfr_q_p1_fifo_size_max;
|
|
314
|
housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
|
|
314
|
housekeeping_packet.hk_lfr_q_p2_fifo_size_max = hk_lfr_q_p2_fifo_size_max;
|
|
315
|
|
|
315
|
|
|
316
|
housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
|
|
316
|
housekeeping_packet.sy_lfr_common_parameters_spare = parameter_dump_packet.sy_lfr_common_parameters_spare;
|
|
317
|
housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
|
|
317
|
housekeeping_packet.sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
|
|
318
|
get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
|
|
318
|
get_temperatures( housekeeping_packet.hk_lfr_temp_scm );
|
|
319
|
get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
|
|
319
|
get_v_e1_e2_f3( housekeeping_packet.hk_lfr_sc_v_f3 );
|
|
320
|
get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
|
|
320
|
get_cpu_load( (unsigned char *) &housekeeping_packet.hk_lfr_cpu_load );
|
|
321
|
|
|
321
|
|
|
322
|
hk_lfr_le_me_he_update();
|
|
322
|
hk_lfr_le_me_he_update();
|
|
323
|
|
|
323
|
|
|
324
|
housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
|
|
324
|
housekeeping_packet.hk_lfr_sc_rw1_rw2_f_flags = cp_rpw_sc_rw1_rw2_f_flags;
|
|
325
|
housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
|
|
325
|
housekeeping_packet.hk_lfr_sc_rw3_rw4_f_flags = cp_rpw_sc_rw3_rw4_f_flags;
|
|
326
|
|
|
326
|
|
|
327
|
// SEND PACKET
|
|
327
|
// SEND PACKET
|
|
328
|
status = rtems_message_queue_send( queue_id, &housekeeping_packet,
|
|
328
|
status = rtems_message_queue_send( queue_id, &housekeeping_packet,
|
|
329
|
PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
|
|
329
|
PACKET_LENGTH_HK + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES);
|
|
330
|
if (status != RTEMS_SUCCESSFUL) {
|
|
330
|
if (status != RTEMS_SUCCESSFUL) {
|
|
331
|
PRINTF1("in HOUS *** ERR send: %d\n", status)
|
|
331
|
PRINTF1("in HOUS *** ERR send: %d\n", status)
|
|
332
|
}
|
|
332
|
}
|
|
333
|
}
|
|
333
|
}
|
|
334
|
}
|
|
334
|
}
|
|
335
|
|
|
335
|
|
|
336
|
PRINTF("in HOUS *** deleting task\n")
|
|
336
|
PRINTF("in HOUS *** deleting task\n")
|
|
337
|
|
|
337
|
|
|
338
|
status = rtems_task_delete( RTEMS_SELF ); // should not return
|
|
338
|
status = rtems_task_delete( RTEMS_SELF ); // should not return
|
|
339
|
|
|
339
|
|
|
340
|
return;
|
|
340
|
return;
|
|
341
|
}
|
|
341
|
}
|
|
342
|
|
|
342
|
|
|
343
|
rtems_task avgv_task(rtems_task_argument argument)
|
|
343
|
rtems_task avgv_task(rtems_task_argument argument)
|
|
344
|
{
|
|
344
|
{
|
|
345
|
#define MOVING_AVERAGE 16
|
|
345
|
#define MOVING_AVERAGE 16
|
|
346
|
rtems_status_code status;
|
|
346
|
rtems_status_code status;
|
|
347
|
unsigned int v[MOVING_AVERAGE];
|
|
347
|
unsigned int v[MOVING_AVERAGE];
|
|
348
|
unsigned int e1[MOVING_AVERAGE];
|
|
348
|
unsigned int e1[MOVING_AVERAGE];
|
|
349
|
unsigned int e2[MOVING_AVERAGE];
|
|
349
|
unsigned int e2[MOVING_AVERAGE];
|
|
350
|
float average_v;
|
|
350
|
float average_v;
|
|
351
|
float average_e1;
|
|
351
|
float average_e1;
|
|
352
|
float average_e2;
|
|
352
|
float average_e2;
|
|
353
|
float newValue_v;
|
|
353
|
float newValue_v;
|
|
354
|
float newValue_e1;
|
|
354
|
float newValue_e1;
|
|
355
|
float newValue_e2;
|
|
355
|
float newValue_e2;
|
|
356
|
unsigned char k;
|
|
356
|
unsigned char k;
|
|
357
|
unsigned char indexOfOldValue;
|
|
357
|
unsigned char indexOfOldValue;
|
|
358
|
|
|
358
|
|
|
359
|
BOOT_PRINTF("in AVGV ***\n");
|
|
359
|
BOOT_PRINTF("in AVGV ***\n");
|
|
360
|
|
|
360
|
|
|
361
|
if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
|
|
361
|
if (rtems_rate_monotonic_ident( name_avgv_rate_monotonic, &HK_id) != RTEMS_SUCCESSFUL) {
|
|
362
|
status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
|
|
362
|
status = rtems_rate_monotonic_create( name_avgv_rate_monotonic, &AVGV_id );
|
|
363
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
363
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
364
|
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
|
|
364
|
PRINTF1( "rtems_rate_monotonic_create failed with status of %d\n", status );
|
|
365
|
}
|
|
365
|
}
|
|
366
|
}
|
|
366
|
}
|
|
367
|
|
|
367
|
|
|
368
|
status = rtems_rate_monotonic_cancel(AVGV_id);
|
|
368
|
status = rtems_rate_monotonic_cancel(AVGV_id);
|
|
369
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
369
|
if( status != RTEMS_SUCCESSFUL ) {
|
|
370
|
PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
|
|
370
|
PRINTF1( "ERR *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id) ***code: %d\n", status );
|
|
371
|
}
|
|
371
|
}
|
|
372
|
else {
|
|
372
|
else {
|
|
373
|
DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
|
|
373
|
DEBUG_PRINTF("OK *** in AVGV *** rtems_rate_monotonic_cancel(AVGV_id)\n");
|
|
374
|
}
|
|
374
|
}
|
|
375
|
|
|
375
|
|
|
376
|
// initialize values
|
|
376
|
// initialize values
|
|
377
|
k = 0;
|
|
377
|
k = 0;
|
|
378
|
indexOfOldValue = MOVING_AVERAGE - 1;
|
|
378
|
indexOfOldValue = MOVING_AVERAGE - 1;
|
|
379
|
for (k = 0; k < MOVING_AVERAGE; k++)
|
|
379
|
for (k = 0; k < MOVING_AVERAGE; k++)
|
|
380
|
{
|
|
380
|
{
|
|
381
|
v[k] = 0;
|
|
381
|
v[k] = 0;
|
|
382
|
e1[k] = 0;
|
|
382
|
e1[k] = 0;
|
|
383
|
e2[k] = 0;
|
|
383
|
e2[k] = 0;
|
|
384
|
average_v = 0.;
|
|
384
|
average_v = 0.;
|
|
385
|
average_e1 = 0.;
|
|
385
|
average_e1 = 0.;
|
|
386
|
average_e2 = 0.;
|
|
386
|
average_e2 = 0.;
|
|
387
|
newValue_v = 0.;
|
|
387
|
newValue_v = 0.;
|
|
388
|
newValue_e1 = 0.;
|
|
388
|
newValue_e1 = 0.;
|
|
389
|
newValue_e2 = 0.;
|
|
389
|
newValue_e2 = 0.;
|
|
390
|
}
|
|
390
|
}
|
|
391
|
|
|
391
|
|
|
392
|
k = 0;
|
|
392
|
k = 0;
|
|
393
|
|
|
393
|
|
|
394
|
while(1){ // launch the rate monotonic task
|
|
394
|
while(1){ // launch the rate monotonic task
|
|
395
|
status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
|
|
395
|
status = rtems_rate_monotonic_period( AVGV_id, AVGV_PERIOD );
|
|
396
|
if ( status != RTEMS_SUCCESSFUL ) {
|
|
396
|
if ( status != RTEMS_SUCCESSFUL ) {
|
|
397
|
PRINTF1( "in AVGV *** ERR period: %d\n", status);
|
|
397
|
PRINTF1( "in AVGV *** ERR period: %d\n", status);
|
|
398
|
}
|
|
398
|
}
|
|
399
|
else {
|
|
399
|
else {
|
|
400
|
// get new values
|
|
400
|
// get new values
|
|
401
|
newValue_v = waveform_picker_regs->v;
|
|
401
|
newValue_v = waveform_picker_regs->v;
|
|
402
|
newValue_e1 = waveform_picker_regs->e1;
|
|
402
|
newValue_e1 = waveform_picker_regs->e1;
|
|
403
|
newValue_e2 = waveform_picker_regs->e2;
|
|
403
|
newValue_e2 = waveform_picker_regs->e2;
|
|
404
|
|
|
404
|
|
|
405
|
// compute the moving average
|
|
405
|
// compute the moving average
|
|
406
|
average_v = average_v + newValue_v - v[k];
|
|
406
|
average_v = average_v + newValue_v - v[k];
|
|
407
|
average_e1 = average_e1 + newValue_e1 - e1[k];
|
|
407
|
average_e1 = average_e1 + newValue_e1 - e1[k];
|
|
408
|
average_e2 = average_e2 + newValue_e2 - e2[k];
|
|
408
|
average_e2 = average_e2 + newValue_e2 - e2[k];
|
|
409
|
|
|
409
|
|
|
410
|
// store new values in buffers
|
|
410
|
// store new values in buffers
|
|
411
|
v[k] = newValue_v;
|
|
411
|
v[k] = newValue_v;
|
|
412
|
e1[k] = newValue_e1;
|
|
412
|
e1[k] = newValue_e1;
|
|
413
|
e2[k] = newValue_e2;
|
|
413
|
e2[k] = newValue_e2;
|
|
414
|
}
|
|
414
|
}
|
|
415
|
if (k == (MOVING_AVERAGE-1))
|
|
415
|
if (k == (MOVING_AVERAGE-1))
|
|
416
|
{
|
|
416
|
{
|
|
417
|
k = 0;
|
|
417
|
k = 0;
|
|
418
|
printf("tick\n");
|
|
418
|
printf("tick\n");
|
|
419
|
}
|
|
419
|
}
|
|
420
|
else
|
|
420
|
else
|
|
421
|
{
|
|
421
|
{
|
|
422
|
k++;
|
|
422
|
k++;
|
|
423
|
}
|
|
423
|
}
|
|
|
|
|
424
|
|
|
|
|
|
425
|
//update int16 values
|
|
|
|
|
426
|
hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
|
|
|
|
|
427
|
hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
|
|
|
|
|
428
|
hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
|
|
424
|
}
|
|
429
|
}
|
|
425
|
|
|
430
|
|
|
426
|
//update int16 values
|
|
|
|
|
427
|
hk_lfr_sc_v_f3_as_int16 = (int16_t) (average_v / ((float) MOVING_AVERAGE) );
|
|
|
|
|
428
|
hk_lfr_sc_e1_f3_as_int16 = (int16_t) (average_e1 / ((float) MOVING_AVERAGE) );
|
|
|
|
|
429
|
hk_lfr_sc_e2_f3_as_int16 = (int16_t) (average_e2 / ((float) MOVING_AVERAGE) );
|
|
|
|
|
430
|
|
|
|
|
|
431
|
PRINTF("in AVGV *** deleting task\n");
|
|
431
|
PRINTF("in AVGV *** deleting task\n");
|
|
432
|
|
|
432
|
|
|
433
|
status = rtems_task_delete( RTEMS_SELF ); // should not return
|
|
433
|
status = rtems_task_delete( RTEMS_SELF ); // should not return
|
|
434
|
|
|
434
|
|
|
435
|
return;
|
|
435
|
return;
|
|
436
|
}
|
|
436
|
}
|
|
437
|
|
|
437
|
|
|
438
|
rtems_task dumb_task( rtems_task_argument unused )
|
|
438
|
rtems_task dumb_task( rtems_task_argument unused )
|
|
439
|
{
|
|
439
|
{
|
|
440
|
/** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
|
|
440
|
/** This RTEMS taks is used to print messages without affecting the general behaviour of the software.
|
|
441
|
*
|
|
441
|
*
|
|
442
|
* @param unused is the starting argument of the RTEMS task
|
|
442
|
* @param unused is the starting argument of the RTEMS task
|
|
443
|
*
|
|
443
|
*
|
|
444
|
* The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
|
|
444
|
* The DUMB taks waits for RTEMS events and print messages depending on the incoming events.
|
|
445
|
*
|
|
445
|
*
|
|
446
|
*/
|
|
446
|
*/
|
|
447
|
|
|
447
|
|
|
448
|
unsigned int i;
|
|
448
|
unsigned int i;
|
|
449
|
unsigned int intEventOut;
|
|
449
|
unsigned int intEventOut;
|
|
450
|
unsigned int coarse_time = 0;
|
|
450
|
unsigned int coarse_time = 0;
|
|
451
|
unsigned int fine_time = 0;
|
|
451
|
unsigned int fine_time = 0;
|
|
452
|
rtems_event_set event_out;
|
|
452
|
rtems_event_set event_out;
|
|
453
|
|
|
453
|
|
|
454
|
char *DumbMessages[15] = {"in DUMB *** default", // RTEMS_EVENT_0
|
|
454
|
char *DumbMessages[15] = {"in DUMB *** default", // RTEMS_EVENT_0
|
|
455
|
"in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
|
|
455
|
"in DUMB *** timecode_irq_handler", // RTEMS_EVENT_1
|
|
456
|
"in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
|
|
456
|
"in DUMB *** f3 buffer changed", // RTEMS_EVENT_2
|
|
457
|
"in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
|
|
457
|
"in DUMB *** in SMIQ *** Error sending event to AVF0", // RTEMS_EVENT_3
|
|
458
|
"in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
|
|
458
|
"in DUMB *** spectral_matrices_isr *** Error sending event to SMIQ", // RTEMS_EVENT_4
|
|
459
|
"in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
|
|
459
|
"in DUMB *** waveforms_simulator_isr", // RTEMS_EVENT_5
|
|
460
|
"VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
|
|
460
|
"VHDL SM *** two buffers f0 ready", // RTEMS_EVENT_6
|
|
461
|
"ready for dump", // RTEMS_EVENT_7
|
|
461
|
"ready for dump", // RTEMS_EVENT_7
|
|
462
|
"VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
|
|
462
|
"VHDL ERR *** spectral matrix", // RTEMS_EVENT_8
|
|
463
|
"tick", // RTEMS_EVENT_9
|
|
463
|
"tick", // RTEMS_EVENT_9
|
|
464
|
"VHDL ERR *** waveform picker", // RTEMS_EVENT_10
|
|
464
|
"VHDL ERR *** waveform picker", // RTEMS_EVENT_10
|
|
465
|
"VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
|
|
465
|
"VHDL ERR *** unexpected ready matrix values", // RTEMS_EVENT_11
|
|
466
|
"WATCHDOG timer", // RTEMS_EVENT_12
|
|
466
|
"WATCHDOG timer", // RTEMS_EVENT_12
|
|
467
|
"TIMECODE timer", // RTEMS_EVENT_13
|
|
467
|
"TIMECODE timer", // RTEMS_EVENT_13
|
|
468
|
"TIMECODE ISR" // RTEMS_EVENT_14
|
|
468
|
"TIMECODE ISR" // RTEMS_EVENT_14
|
|
469
|
};
|
|
469
|
};
|
|
470
|
|
|
470
|
|
|
471
|
BOOT_PRINTF("in DUMB *** \n")
|
|
471
|
BOOT_PRINTF("in DUMB *** \n")
|
|
472
|
|
|
472
|
|
|
473
|
while(1){
|
|
473
|
while(1){
|
|
474
|
rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
|
|
474
|
rtems_event_receive(RTEMS_EVENT_0 | RTEMS_EVENT_1 | RTEMS_EVENT_2 | RTEMS_EVENT_3
|
|
475
|
| RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
|
|
475
|
| RTEMS_EVENT_4 | RTEMS_EVENT_5 | RTEMS_EVENT_6 | RTEMS_EVENT_7
|
|
476
|
| RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
|
|
476
|
| RTEMS_EVENT_8 | RTEMS_EVENT_9 | RTEMS_EVENT_12 | RTEMS_EVENT_13
|
|
477
|
| RTEMS_EVENT_14,
|
|
477
|
| RTEMS_EVENT_14,
|
|
478
|
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
|
|
478
|
RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out); // wait for an RTEMS_EVENT
|
|
479
|
intEventOut = (unsigned int) event_out;
|
|
479
|
intEventOut = (unsigned int) event_out;
|
|
480
|
for ( i=0; i<32; i++)
|
|
480
|
for ( i=0; i<32; i++)
|
|
481
|
{
|
|
481
|
{
|
|
482
|
if ( ((intEventOut >> i) & 0x0001) != 0)
|
|
482
|
if ( ((intEventOut >> i) & 0x0001) != 0)
|
|
483
|
{
|
|
483
|
{
|
|
484
|
coarse_time = time_management_regs->coarse_time;
|
|
484
|
coarse_time = time_management_regs->coarse_time;
|
|
485
|
fine_time = time_management_regs->fine_time;
|
|
485
|
fine_time = time_management_regs->fine_time;
|
|
486
|
if (i==12)
|
|
486
|
if (i==12)
|
|
487
|
{
|
|
487
|
{
|
|
488
|
PRINTF1("%s\n", DumbMessages[12])
|
|
488
|
PRINTF1("%s\n", DumbMessages[12])
|
|
489
|
}
|
|
489
|
}
|
|
490
|
if (i==13)
|
|
490
|
if (i==13)
|
|
491
|
{
|
|
491
|
{
|
|
492
|
PRINTF1("%s\n", DumbMessages[13])
|
|
492
|
PRINTF1("%s\n", DumbMessages[13])
|
|
493
|
}
|
|
493
|
}
|
|
494
|
if (i==14)
|
|
494
|
if (i==14)
|
|
495
|
{
|
|
495
|
{
|
|
496
|
PRINTF1("%s\n", DumbMessages[1])
|
|
496
|
PRINTF1("%s\n", DumbMessages[1])
|
|
497
|
}
|
|
497
|
}
|
|
498
|
}
|
|
498
|
}
|
|
499
|
}
|
|
499
|
}
|
|
500
|
}
|
|
500
|
}
|
|