##// END OF EJS Templates
3.0.0.13
paul -
r250:0e4f9f3e6a3f R3a
parent child
Show More
@@ -1,1412 +1,1422
1 /** Functions related to the SpaceWire interface.
1 /** Functions related to the SpaceWire interface.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle SpaceWire transmissions:
6 * A group of functions to handle SpaceWire transmissions:
7 * - configuration of the SpaceWire link
7 * - configuration of the SpaceWire link
8 * - SpaceWire related interruption requests processing
8 * - SpaceWire related interruption requests processing
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
9 * - transmission of TeleMetry packets by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
10 * - reception of TeleCommands by a dedicated RTEMS task
11 *
11 *
12 */
12 */
13
13
14 #include "fsw_spacewire.h"
14 #include "fsw_spacewire.h"
15
15
16 rtems_name semq_name;
16 rtems_name semq_name;
17 rtems_id semq_id;
17 rtems_id semq_id;
18
18
19 //*****************
19 //*****************
20 // waveform headers
20 // waveform headers
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
21 Header_TM_LFR_SCIENCE_CWF_t headerCWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
22 Header_TM_LFR_SCIENCE_SWF_t headerSWF;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
23 Header_TM_LFR_SCIENCE_ASM_t headerASM;
24
24
25 unsigned char previousTimecodeCtr = 0;
25 unsigned char previousTimecodeCtr = 0;
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
26 unsigned int *grspwPtr = (unsigned int *) (REGS_ADDR_GRSPW + APB_OFFSET_GRSPW_TIME_REGISTER);
27
27
28 //***********
28 //***********
29 // RTEMS TASK
29 // RTEMS TASK
30 rtems_task spiq_task(rtems_task_argument unused)
30 rtems_task spiq_task(rtems_task_argument unused)
31 {
31 {
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
32 /** This RTEMS task is awaken by an rtems_event sent by the interruption subroutine of the SpaceWire driver.
33 *
33 *
34 * @param unused is the starting argument of the RTEMS task
34 * @param unused is the starting argument of the RTEMS task
35 *
35 *
36 */
36 */
37
37
38 rtems_event_set event_out;
38 rtems_event_set event_out;
39 rtems_status_code status;
39 rtems_status_code status;
40 int linkStatus;
40 int linkStatus;
41
41
42 BOOT_PRINTF("in SPIQ *** \n")
42 BOOT_PRINTF("in SPIQ *** \n")
43
43
44 while(true){
44 while(true){
45 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
45 rtems_event_receive(SPW_LINKERR_EVENT, RTEMS_WAIT, RTEMS_NO_TIMEOUT, &event_out); // wait for an SPW_LINKERR_EVENT
46 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
46 PRINTF("in SPIQ *** got SPW_LINKERR_EVENT\n")
47
47
48 // [0] SUSPEND RECV AND SEND TASKS
48 // [0] SUSPEND RECV AND SEND TASKS
49 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
49 status = rtems_task_suspend( Task_id[ TASKID_RECV ] );
50 if ( status != RTEMS_SUCCESSFUL ) {
50 if ( status != RTEMS_SUCCESSFUL ) {
51 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
51 PRINTF("in SPIQ *** ERR suspending RECV Task\n")
52 }
52 }
53 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
53 status = rtems_task_suspend( Task_id[ TASKID_SEND ] );
54 if ( status != RTEMS_SUCCESSFUL ) {
54 if ( status != RTEMS_SUCCESSFUL ) {
55 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
55 PRINTF("in SPIQ *** ERR suspending SEND Task\n")
56 }
56 }
57
57
58 // [1] CHECK THE LINK
58 // [1] CHECK THE LINK
59 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
59 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (1)
60 if ( linkStatus != 5) {
60 if ( linkStatus != 5) {
61 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
61 PRINTF1("in SPIQ *** linkStatus %d, wait...\n", linkStatus)
62 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
62 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
63 }
63 }
64
64
65 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
65 // [2] RECHECK THE LINK AFTER SY_LFR_DPU_CONNECT_TIMEOUT
66 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
66 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status (2)
67 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
67 if ( linkStatus != 5 ) // [2.a] not in run state, reset the link
68 {
68 {
69 spacewire_compute_stats_offsets();
69 spacewire_compute_stats_offsets();
70 status = spacewire_reset_link( );
70 status = spacewire_reset_link( );
71 }
71 }
72 else // [2.b] in run state, start the link
72 else // [2.b] in run state, start the link
73 {
73 {
74 status = spacewire_stop_and_start_link( fdSPW ); // start the link
74 status = spacewire_stop_and_start_link( fdSPW ); // start the link
75 if ( status != RTEMS_SUCCESSFUL)
75 if ( status != RTEMS_SUCCESSFUL)
76 {
76 {
77 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
77 PRINTF1("in SPIQ *** ERR spacewire_stop_and_start_link %d\n", status)
78 }
78 }
79 }
79 }
80
80
81 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
81 // [3] COMPLETE RECOVERY ACTION AFTER SY_LFR_DPU_CONNECT_ATTEMPTS
82 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
82 if ( status == RTEMS_SUCCESSFUL ) // [3.a] the link is in run state and has been started successfully
83 {
83 {
84 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
84 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
85 if ( status != RTEMS_SUCCESSFUL ) {
85 if ( status != RTEMS_SUCCESSFUL ) {
86 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
86 PRINTF("in SPIQ *** ERR resuming SEND Task\n")
87 }
87 }
88 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
88 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
89 if ( status != RTEMS_SUCCESSFUL ) {
89 if ( status != RTEMS_SUCCESSFUL ) {
90 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
90 PRINTF("in SPIQ *** ERR resuming RECV Task\n")
91 }
91 }
92 }
92 }
93 else // [3.b] the link is not in run state, go in STANDBY mode
93 else // [3.b] the link is not in run state, go in STANDBY mode
94 {
94 {
95 status = enter_mode_standby();
95 status = enter_mode_standby();
96 if ( status != RTEMS_SUCCESSFUL ) {
96 if ( status != RTEMS_SUCCESSFUL ) {
97 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
97 PRINTF1("in SPIQ *** ERR enter_standby_mode *** code %d\n", status)
98 }
98 }
99 // wake the WTDG task up to wait for the link recovery
99 // wake the WTDG task up to wait for the link recovery
100 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
100 status = rtems_event_send ( Task_id[TASKID_WTDG], RTEMS_EVENT_0 );
101 status = rtems_task_suspend( RTEMS_SELF );
101 status = rtems_task_suspend( RTEMS_SELF );
102 }
102 }
103 }
103 }
104 }
104 }
105
105
106 rtems_task recv_task( rtems_task_argument unused )
106 rtems_task recv_task( rtems_task_argument unused )
107 {
107 {
108 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
108 /** This RTEMS task is dedicated to the reception of incoming TeleCommands.
109 *
109 *
110 * @param unused is the starting argument of the RTEMS task
110 * @param unused is the starting argument of the RTEMS task
111 *
111 *
112 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
112 * The RECV task blocks on a call to the read system call, waiting for incoming SpaceWire data. When unblocked:
113 * 1. It reads the incoming data.
113 * 1. It reads the incoming data.
114 * 2. Launches the acceptance procedure.
114 * 2. Launches the acceptance procedure.
115 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
115 * 3. If the Telecommand is valid, sends it to a dedicated RTEMS message queue.
116 *
116 *
117 */
117 */
118
118
119 int len;
119 int len;
120 ccsdsTelecommandPacket_t currentTC;
120 ccsdsTelecommandPacket_t currentTC;
121 unsigned char computed_CRC[ 2 ];
121 unsigned char computed_CRC[ 2 ];
122 unsigned char currentTC_LEN_RCV[ 2 ];
122 unsigned char currentTC_LEN_RCV[ 2 ];
123 unsigned char destinationID;
123 unsigned char destinationID;
124 unsigned int estimatedPacketLength;
124 unsigned int estimatedPacketLength;
125 unsigned int parserCode;
125 unsigned int parserCode;
126 rtems_status_code status;
126 rtems_status_code status;
127 rtems_id queue_recv_id;
127 rtems_id queue_recv_id;
128 rtems_id queue_send_id;
128 rtems_id queue_send_id;
129
129
130 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
130 initLookUpTableForCRC(); // the table is used to compute Cyclic Redundancy Codes
131
131
132 status = get_message_queue_id_recv( &queue_recv_id );
132 status = get_message_queue_id_recv( &queue_recv_id );
133 if (status != RTEMS_SUCCESSFUL)
133 if (status != RTEMS_SUCCESSFUL)
134 {
134 {
135 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
135 PRINTF1("in RECV *** ERR get_message_queue_id_recv %d\n", status)
136 }
136 }
137
137
138 status = get_message_queue_id_send( &queue_send_id );
138 status = get_message_queue_id_send( &queue_send_id );
139 if (status != RTEMS_SUCCESSFUL)
139 if (status != RTEMS_SUCCESSFUL)
140 {
140 {
141 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
141 PRINTF1("in RECV *** ERR get_message_queue_id_send %d\n", status)
142 }
142 }
143
143
144 BOOT_PRINTF("in RECV *** \n")
144 BOOT_PRINTF("in RECV *** \n")
145
145
146 while(1)
146 while(1)
147 {
147 {
148 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
148 len = read( fdSPW, (char*) &currentTC, CCSDS_TC_PKT_MAX_SIZE ); // the call to read is blocking
149 if (len == -1){ // error during the read call
149 if (len == -1){ // error during the read call
150 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
150 PRINTF1("in RECV *** last read call returned -1, ERRNO %d\n", errno)
151 }
151 }
152 else {
152 else {
153 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
153 if ( (len+1) < CCSDS_TC_PKT_MIN_SIZE ) {
154 PRINTF("in RECV *** packet lenght too short\n")
154 PRINTF("in RECV *** packet lenght too short\n")
155 }
155 }
156 else {
156 else {
157 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
157 estimatedPacketLength = (unsigned int) (len - CCSDS_TC_TM_PACKET_OFFSET - 3); // => -3 is for Prot ID, Reserved and User App bytes
158 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
158 currentTC_LEN_RCV[ 0 ] = (unsigned char) (estimatedPacketLength >> 8);
159 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
159 currentTC_LEN_RCV[ 1 ] = (unsigned char) (estimatedPacketLength );
160 // CHECK THE TC
160 // CHECK THE TC
161 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
161 parserCode = tc_parser( &currentTC, estimatedPacketLength, computed_CRC ) ;
162 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
162 if ( (parserCode == ILLEGAL_APID) || (parserCode == WRONG_LEN_PKT)
163 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
163 || (parserCode == INCOR_CHECKSUM) || (parserCode == ILL_TYPE)
164 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
164 || (parserCode == ILL_SUBTYPE) || (parserCode == WRONG_APP_DATA)
165 || (parserCode == WRONG_SRC_ID) )
165 || (parserCode == WRONG_SRC_ID) )
166 { // send TM_LFR_TC_EXE_CORRUPTED
166 { // send TM_LFR_TC_EXE_CORRUPTED
167 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
167 PRINTF1("TC corrupted received, with code: %d\n", parserCode)
168 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
168 if ( !( (currentTC.serviceType==TC_TYPE_TIME) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_TIME) )
169 &&
169 &&
170 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
170 !( (currentTC.serviceType==TC_TYPE_GEN) && (currentTC.serviceSubType==TC_SUBTYPE_UPDT_INFO))
171 )
171 )
172 {
172 {
173 if ( parserCode == WRONG_SRC_ID )
173 if ( parserCode == WRONG_SRC_ID )
174 {
174 {
175 destinationID = SID_TC_GROUND;
175 destinationID = SID_TC_GROUND;
176 }
176 }
177 else
177 else
178 {
178 {
179 destinationID = currentTC.sourceID;
179 destinationID = currentTC.sourceID;
180 }
180 }
181 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
181 send_tm_lfr_tc_exe_corrupted( &currentTC, queue_send_id,
182 computed_CRC, currentTC_LEN_RCV,
182 computed_CRC, currentTC_LEN_RCV,
183 destinationID );
183 destinationID );
184 }
184 }
185 }
185 }
186 else
186 else
187 { // send valid TC to the action launcher
187 { // send valid TC to the action launcher
188 status = rtems_message_queue_send( queue_recv_id, &currentTC,
188 status = rtems_message_queue_send( queue_recv_id, &currentTC,
189 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
189 estimatedPacketLength + CCSDS_TC_TM_PACKET_OFFSET + 3);
190 }
190 }
191 }
191 }
192 }
192 }
193
193
194 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
194 update_queue_max_count( queue_recv_id, &hk_lfr_q_rv_fifo_size_max );
195
195
196 }
196 }
197 }
197 }
198
198
199 rtems_task send_task( rtems_task_argument argument)
199 rtems_task send_task( rtems_task_argument argument)
200 {
200 {
201 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
201 /** This RTEMS task is dedicated to the transmission of TeleMetry packets.
202 *
202 *
203 * @param unused is the starting argument of the RTEMS task
203 * @param unused is the starting argument of the RTEMS task
204 *
204 *
205 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
205 * The SEND task waits for a message to become available in the dedicated RTEMS queue. When a message arrives:
206 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
206 * - if the first byte is equal to CCSDS_DESTINATION_ID, the message is sent as is using the write system call.
207 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
207 * - if the first byte is not equal to CCSDS_DESTINATION_ID, the message is handled as a spw_ioctl_pkt_send. After
208 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
208 * analyzis, the packet is sent either using the write system call or using the ioctl call SPACEWIRE_IOCTRL_SEND, depending on the
209 * data it contains.
209 * data it contains.
210 *
210 *
211 */
211 */
212
212
213 rtems_status_code status; // RTEMS status code
213 rtems_status_code status; // RTEMS status code
214 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
214 char incomingData[MSG_QUEUE_SIZE_SEND]; // incoming data buffer
215 ring_node *incomingRingNodePtr;
215 ring_node *incomingRingNodePtr;
216 int ring_node_address;
216 int ring_node_address;
217 char *charPtr;
217 char *charPtr;
218 spw_ioctl_pkt_send *spw_ioctl_send;
218 spw_ioctl_pkt_send *spw_ioctl_send;
219 size_t size; // size of the incoming TC packet
219 size_t size; // size of the incoming TC packet
220 rtems_id queue_send_id;
220 rtems_id queue_send_id;
221 unsigned int sid;
221 unsigned int sid;
222 unsigned char sidAsUnsignedChar;
222 unsigned char sidAsUnsignedChar;
223 unsigned char type;
223 unsigned char type;
224
224
225 incomingRingNodePtr = NULL;
225 incomingRingNodePtr = NULL;
226 ring_node_address = 0;
226 ring_node_address = 0;
227 charPtr = (char *) &ring_node_address;
227 charPtr = (char *) &ring_node_address;
228 sid = 0;
228 sid = 0;
229 sidAsUnsignedChar = 0;
229 sidAsUnsignedChar = 0;
230
230
231 init_header_cwf( &headerCWF );
231 init_header_cwf( &headerCWF );
232 init_header_swf( &headerSWF );
232 init_header_swf( &headerSWF );
233 init_header_asm( &headerASM );
233 init_header_asm( &headerASM );
234
234
235 status = get_message_queue_id_send( &queue_send_id );
235 status = get_message_queue_id_send( &queue_send_id );
236 if (status != RTEMS_SUCCESSFUL)
236 if (status != RTEMS_SUCCESSFUL)
237 {
237 {
238 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
238 PRINTF1("in HOUS *** ERR get_message_queue_id_send %d\n", status)
239 }
239 }
240
240
241 BOOT_PRINTF("in SEND *** \n")
241 BOOT_PRINTF("in SEND *** \n")
242
242
243 while(1)
243 while(1)
244 {
244 {
245 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
245 status = rtems_message_queue_receive( queue_send_id, incomingData, &size,
246 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
246 RTEMS_WAIT, RTEMS_NO_TIMEOUT );
247
247
248 if (status!=RTEMS_SUCCESSFUL)
248 if (status!=RTEMS_SUCCESSFUL)
249 {
249 {
250 PRINTF1("in SEND *** (1) ERR = %d\n", status)
250 PRINTF1("in SEND *** (1) ERR = %d\n", status)
251 }
251 }
252 else
252 else
253 {
253 {
254 if ( size == sizeof(ring_node*) )
254 if ( size == sizeof(ring_node*) )
255 {
255 {
256 charPtr[0] = incomingData[0];
256 charPtr[0] = incomingData[0];
257 charPtr[1] = incomingData[1];
257 charPtr[1] = incomingData[1];
258 charPtr[2] = incomingData[2];
258 charPtr[2] = incomingData[2];
259 charPtr[3] = incomingData[3];
259 charPtr[3] = incomingData[3];
260 incomingRingNodePtr = (ring_node*) ring_node_address;
260 incomingRingNodePtr = (ring_node*) ring_node_address;
261 sid = incomingRingNodePtr->sid;
261 sid = incomingRingNodePtr->sid;
262 if ( (sid==SID_NORM_CWF_LONG_F3)
262 if ( (sid==SID_NORM_CWF_LONG_F3)
263 || (sid==SID_BURST_CWF_F2 )
263 || (sid==SID_BURST_CWF_F2 )
264 || (sid==SID_SBM1_CWF_F1 )
264 || (sid==SID_SBM1_CWF_F1 )
265 || (sid==SID_SBM2_CWF_F2 ))
265 || (sid==SID_SBM2_CWF_F2 ))
266 {
266 {
267 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
267 spw_send_waveform_CWF( incomingRingNodePtr, &headerCWF );
268 }
268 }
269 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
269 else if ( (sid==SID_NORM_SWF_F0) || (sid== SID_NORM_SWF_F1) || (sid==SID_NORM_SWF_F2) )
270 {
270 {
271 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
271 spw_send_waveform_SWF( incomingRingNodePtr, &headerSWF );
272 }
272 }
273 else if ( (sid==SID_NORM_CWF_F3) )
273 else if ( (sid==SID_NORM_CWF_F3) )
274 {
274 {
275 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
275 spw_send_waveform_CWF3_light( incomingRingNodePtr, &headerCWF );
276 }
276 }
277 else if (sid==SID_NORM_ASM_F0)
277 else if (sid==SID_NORM_ASM_F0)
278 {
278 {
279 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
279 spw_send_asm_f0( incomingRingNodePtr, &headerASM );
280 }
280 }
281 else if (sid==SID_NORM_ASM_F1)
281 else if (sid==SID_NORM_ASM_F1)
282 {
282 {
283 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
283 spw_send_asm_f1( incomingRingNodePtr, &headerASM );
284 }
284 }
285 else if (sid==SID_NORM_ASM_F2)
285 else if (sid==SID_NORM_ASM_F2)
286 {
286 {
287 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
287 spw_send_asm_f2( incomingRingNodePtr, &headerASM );
288 }
288 }
289 else if ( sid==TM_CODE_K_DUMP )
289 else if ( sid==TM_CODE_K_DUMP )
290 {
290 {
291 spw_send_k_dump( incomingRingNodePtr );
291 spw_send_k_dump( incomingRingNodePtr );
292 }
292 }
293 else
293 else
294 {
294 {
295 PRINTF1("unexpected sid = %d\n", sid);
295 PRINTF1("unexpected sid = %d\n", sid);
296 }
296 }
297 }
297 }
298 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
298 else if ( incomingData[0] == CCSDS_DESTINATION_ID ) // the incoming message is a ccsds packet
299 {
299 {
300 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
300 sidAsUnsignedChar = (unsigned char) incomingData[ PACKET_POS_PA_LFR_SID_PKT ];
301 sid = sidAsUnsignedChar;
301 sid = sidAsUnsignedChar;
302 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
302 type = (unsigned char) incomingData[ PACKET_POS_SERVICE_TYPE ];
303 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
303 if (type == TM_TYPE_LFR_SCIENCE) // this is a BP packet, all other types are handled differently
304 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
304 // SET THE SEQUENCE_CNT PARAMETER IN CASE OF BP0 OR BP1 PACKETS
305 {
305 {
306 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
306 increment_seq_counter_source_id( (unsigned char*) &incomingData[ PACKET_POS_SEQUENCE_CNT ], sid );
307 }
307 }
308
308
309 status = write( fdSPW, incomingData, size );
309 status = write( fdSPW, incomingData, size );
310 if (status == -1){
310 if (status == -1){
311 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
311 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
312 }
312 }
313 }
313 }
314 else // the incoming message is a spw_ioctl_pkt_send structure
314 else // the incoming message is a spw_ioctl_pkt_send structure
315 {
315 {
316 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
316 spw_ioctl_send = (spw_ioctl_pkt_send*) incomingData;
317 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
317 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, spw_ioctl_send );
318 if (status == -1){
318 if (status == -1){
319 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
319 PRINTF2("in SEND *** (2.b) ERRNO = %d, RTEMS = %d\n", errno, status)
320 }
320 }
321 }
321 }
322 }
322 }
323
323
324 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
324 update_queue_max_count( queue_send_id, &hk_lfr_q_sd_fifo_size_max );
325
325
326 }
326 }
327 }
327 }
328
328
329 rtems_task wtdg_task( rtems_task_argument argument )
329 rtems_task wtdg_task( rtems_task_argument argument )
330 {
330 {
331 rtems_event_set event_out;
331 rtems_event_set event_out;
332 rtems_status_code status;
332 rtems_status_code status;
333 int linkStatus;
333 int linkStatus;
334
334
335 BOOT_PRINTF("in WTDG ***\n")
335 BOOT_PRINTF("in WTDG ***\n")
336
336
337 while(1)
337 while(1)
338 {
338 {
339 // wait for an RTEMS_EVENT
339 // wait for an RTEMS_EVENT
340 rtems_event_receive( RTEMS_EVENT_0,
340 rtems_event_receive( RTEMS_EVENT_0,
341 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
341 RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &event_out);
342 PRINTF("in WTDG *** wait for the link\n")
342 PRINTF("in WTDG *** wait for the link\n")
343 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
343 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
344 while( linkStatus != 5) // wait for the link
344 while( linkStatus != 5) // wait for the link
345 {
345 {
346 status = rtems_task_wake_after( 10 ); // monitor the link each 100ms
346 status = rtems_task_wake_after( 10 ); // monitor the link each 100ms
347 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
347 status = ioctl(fdSPW, SPACEWIRE_IOCTRL_GET_LINK_STATUS, &linkStatus); // get the link status
348 }
348 }
349
349
350 status = spacewire_stop_and_start_link( fdSPW );
350 status = spacewire_stop_and_start_link( fdSPW );
351
351
352 if (status != RTEMS_SUCCESSFUL)
352 if (status != RTEMS_SUCCESSFUL)
353 {
353 {
354 PRINTF1("in WTDG *** ERR link not started %d\n", status)
354 PRINTF1("in WTDG *** ERR link not started %d\n", status)
355 }
355 }
356 else
356 else
357 {
357 {
358 PRINTF("in WTDG *** OK link started\n")
358 PRINTF("in WTDG *** OK link started\n")
359 }
359 }
360
360
361 // restart the SPIQ task
361 // restart the SPIQ task
362 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
362 status = rtems_task_restart( Task_id[TASKID_SPIQ], 1 );
363 if ( status != RTEMS_SUCCESSFUL ) {
363 if ( status != RTEMS_SUCCESSFUL ) {
364 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
364 PRINTF("in SPIQ *** ERR restarting SPIQ Task\n")
365 }
365 }
366
366
367 // restart RECV and SEND
367 // restart RECV and SEND
368 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
368 status = rtems_task_restart( Task_id[ TASKID_SEND ], 1 );
369 if ( status != RTEMS_SUCCESSFUL ) {
369 if ( status != RTEMS_SUCCESSFUL ) {
370 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
370 PRINTF("in SPIQ *** ERR restarting SEND Task\n")
371 }
371 }
372 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
372 status = rtems_task_restart( Task_id[ TASKID_RECV ], 1 );
373 if ( status != RTEMS_SUCCESSFUL ) {
373 if ( status != RTEMS_SUCCESSFUL ) {
374 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
374 PRINTF("in SPIQ *** ERR restarting RECV Task\n")
375 }
375 }
376 }
376 }
377 }
377 }
378
378
379 //****************
379 //****************
380 // OTHER FUNCTIONS
380 // OTHER FUNCTIONS
381 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
381 int spacewire_open_link( void ) // by default, the driver resets the core: [SPW_CTRL_WRITE(pDev, SPW_CTRL_RESET);]
382 {
382 {
383 /** This function opens the SpaceWire link.
383 /** This function opens the SpaceWire link.
384 *
384 *
385 * @return a valid file descriptor in case of success, -1 in case of a failure
385 * @return a valid file descriptor in case of success, -1 in case of a failure
386 *
386 *
387 */
387 */
388 rtems_status_code status;
388 rtems_status_code status;
389
389
390 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
390 fdSPW = open(GRSPW_DEVICE_NAME, O_RDWR); // open the device. the open call resets the hardware
391 if ( fdSPW < 0 ) {
391 if ( fdSPW < 0 ) {
392 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
392 PRINTF1("ERR *** in configure_spw_link *** error opening "GRSPW_DEVICE_NAME" with ERR %d\n", errno)
393 }
393 }
394 else
394 else
395 {
395 {
396 status = RTEMS_SUCCESSFUL;
396 status = RTEMS_SUCCESSFUL;
397 }
397 }
398
398
399 return status;
399 return status;
400 }
400 }
401
401
402 int spacewire_start_link( int fd )
402 int spacewire_start_link( int fd )
403 {
403 {
404 rtems_status_code status;
404 rtems_status_code status;
405
405
406 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
406 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
407 // -1 default hardcoded driver timeout
407 // -1 default hardcoded driver timeout
408
408
409 return status;
409 return status;
410 }
410 }
411
411
412 int spacewire_stop_and_start_link( int fd )
412 int spacewire_stop_and_start_link( int fd )
413 {
413 {
414 rtems_status_code status;
414 rtems_status_code status;
415
415
416 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
416 status = ioctl( fd, SPACEWIRE_IOCTRL_STOP); // start fails if link pDev->running != 0
417 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
417 status = ioctl( fd, SPACEWIRE_IOCTRL_START, -1); // returns successfuly if the link is started
418 // -1 default hardcoded driver timeout
418 // -1 default hardcoded driver timeout
419
419
420 return status;
420 return status;
421 }
421 }
422
422
423 int spacewire_configure_link( int fd )
423 int spacewire_configure_link( int fd )
424 {
424 {
425 /** This function configures the SpaceWire link.
425 /** This function configures the SpaceWire link.
426 *
426 *
427 * @return GR-RTEMS-DRIVER directive status codes:
427 * @return GR-RTEMS-DRIVER directive status codes:
428 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
428 * - 22 EINVAL - Null pointer or an out of range value was given as the argument.
429 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
429 * - 16 EBUSY - Only used for SEND. Returned when no descriptors are avialble in non-blocking mode.
430 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
430 * - 88 ENOSYS - Returned for SET_DESTKEY if RMAP command handler is not available or if a non-implemented call is used.
431 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
431 * - 116 ETIMEDOUT - REturned for SET_PACKET_SIZE and START if the link could not be brought up.
432 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
432 * - 12 ENOMEM - Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.
433 * - 5 EIO - Error when writing to grswp hardware registers.
433 * - 5 EIO - Error when writing to grswp hardware registers.
434 * - 2 ENOENT - No such file or directory
434 * - 2 ENOENT - No such file or directory
435 */
435 */
436
436
437 rtems_status_code status;
437 rtems_status_code status;
438
438
439 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
439 spacewire_set_NP(1, REGS_ADDR_GRSPW); // [N]o [P]ort force
440 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
440 spacewire_set_RE(1, REGS_ADDR_GRSPW); // [R]MAP [E]nable, the dedicated call seems to break the no port force configuration
441
441
442 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
442 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK, 1); // sets the blocking mode for reception
443 if (status!=RTEMS_SUCCESSFUL) {
443 if (status!=RTEMS_SUCCESSFUL) {
444 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
444 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_RXBLOCK\n")
445 }
445 }
446 //
446 //
447 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
447 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_EVENT_ID, Task_id[TASKID_SPIQ]); // sets the task ID to which an event is sent when a
448 if (status!=RTEMS_SUCCESSFUL) {
448 if (status!=RTEMS_SUCCESSFUL) {
449 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
449 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_EVENT_ID\n") // link-error interrupt occurs
450 }
450 }
451 //
451 //
452 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
452 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_DISABLE_ERR, 0); // automatic link-disabling due to link-error interrupts
453 if (status!=RTEMS_SUCCESSFUL) {
453 if (status!=RTEMS_SUCCESSFUL) {
454 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
454 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_DISABLE_ERR\n")
455 }
455 }
456 //
456 //
457 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
457 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ, 1); // sets the link-error interrupt bit
458 if (status!=RTEMS_SUCCESSFUL) {
458 if (status!=RTEMS_SUCCESSFUL) {
459 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
459 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_LINK_ERR_IRQ\n")
460 }
460 }
461 //
461 //
462 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
462 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK, 1); // transmission blocks
463 if (status!=RTEMS_SUCCESSFUL) {
463 if (status!=RTEMS_SUCCESSFUL) {
464 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
464 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK\n")
465 }
465 }
466 //
466 //
467 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
467 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL, 1); // transmission blocks when no transmission descriptor is available
468 if (status!=RTEMS_SUCCESSFUL) {
468 if (status!=RTEMS_SUCCESSFUL) {
469 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
469 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TXBLOCK_ON_FULL\n")
470 }
470 }
471 //
471 //
472 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
472 status = ioctl(fd, SPACEWIRE_IOCTRL_SET_TCODE_CTRL, 0x0909); // [Time Rx : Time Tx : Link error : Tick-out IRQ]
473 if (status!=RTEMS_SUCCESSFUL) {
473 if (status!=RTEMS_SUCCESSFUL) {
474 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
474 PRINTF("in SPIQ *** Error SPACEWIRE_IOCTRL_SET_TCODE_CTRL,\n")
475 }
475 }
476
476
477 return status;
477 return status;
478 }
478 }
479
479
480 int spacewire_reset_link( void )
480 int spacewire_reset_link( void )
481 {
481 {
482 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
482 /** This function is executed by the SPIQ rtems_task wehn it has been awaken by an interruption raised by the SpaceWire driver.
483 *
483 *
484 * @return RTEMS directive status code:
484 * @return RTEMS directive status code:
485 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
485 * - RTEMS_UNSATISFIED is returned is the link is not in the running state after 10 s.
486 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
486 * - RTEMS_SUCCESSFUL is returned if the link is up before the timeout.
487 *
487 *
488 */
488 */
489
489
490 rtems_status_code status_spw;
490 rtems_status_code status_spw;
491 rtems_status_code status;
491 rtems_status_code status;
492 int i;
492 int i;
493
493
494 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
494 for ( i=0; i<SY_LFR_DPU_CONNECT_ATTEMPT; i++ )
495 {
495 {
496 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
496 PRINTF1("in spacewire_reset_link *** link recovery, try %d\n", i);
497
497
498 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
498 // CLOSING THE DRIVER AT THIS POINT WILL MAKE THE SEND TASK BLOCK THE SYSTEM
499
499
500 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
500 status = rtems_task_wake_after( SY_LFR_DPU_CONNECT_TIMEOUT ); // wait SY_LFR_DPU_CONNECT_TIMEOUT 1000 ms
501
501
502 status_spw = spacewire_stop_and_start_link( fdSPW );
502 status_spw = spacewire_stop_and_start_link( fdSPW );
503 if ( status_spw != RTEMS_SUCCESSFUL )
503 if ( status_spw != RTEMS_SUCCESSFUL )
504 {
504 {
505 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
505 PRINTF1("in spacewire_reset_link *** ERR spacewire_start_link code %d\n", status_spw)
506 }
506 }
507
507
508 if ( status_spw == RTEMS_SUCCESSFUL)
508 if ( status_spw == RTEMS_SUCCESSFUL)
509 {
509 {
510 break;
510 break;
511 }
511 }
512 }
512 }
513
513
514 return status_spw;
514 return status_spw;
515 }
515 }
516
516
517 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
517 void spacewire_set_NP( unsigned char val, unsigned int regAddr ) // [N]o [P]ort force
518 {
518 {
519 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
519 /** This function sets the [N]o [P]ort force bit of the GRSPW control register.
520 *
520 *
521 * @param val is the value, 0 or 1, used to set the value of the NP bit.
521 * @param val is the value, 0 or 1, used to set the value of the NP bit.
522 * @param regAddr is the address of the GRSPW control register.
522 * @param regAddr is the address of the GRSPW control register.
523 *
523 *
524 * NP is the bit 20 of the GRSPW control register.
524 * NP is the bit 20 of the GRSPW control register.
525 *
525 *
526 */
526 */
527
527
528 unsigned int *spwptr = (unsigned int*) regAddr;
528 unsigned int *spwptr = (unsigned int*) regAddr;
529
529
530 if (val == 1) {
530 if (val == 1) {
531 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
531 *spwptr = *spwptr | 0x00100000; // [NP] set the No port force bit
532 }
532 }
533 if (val== 0) {
533 if (val== 0) {
534 *spwptr = *spwptr & 0xffdfffff;
534 *spwptr = *spwptr & 0xffdfffff;
535 }
535 }
536 }
536 }
537
537
538 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
538 void spacewire_set_RE( unsigned char val, unsigned int regAddr ) // [R]MAP [E]nable
539 {
539 {
540 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
540 /** This function sets the [R]MAP [E]nable bit of the GRSPW control register.
541 *
541 *
542 * @param val is the value, 0 or 1, used to set the value of the RE bit.
542 * @param val is the value, 0 or 1, used to set the value of the RE bit.
543 * @param regAddr is the address of the GRSPW control register.
543 * @param regAddr is the address of the GRSPW control register.
544 *
544 *
545 * RE is the bit 16 of the GRSPW control register.
545 * RE is the bit 16 of the GRSPW control register.
546 *
546 *
547 */
547 */
548
548
549 unsigned int *spwptr = (unsigned int*) regAddr;
549 unsigned int *spwptr = (unsigned int*) regAddr;
550
550
551 if (val == 1)
551 if (val == 1)
552 {
552 {
553 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
553 *spwptr = *spwptr | 0x00010000; // [RE] set the RMAP Enable bit
554 }
554 }
555 if (val== 0)
555 if (val== 0)
556 {
556 {
557 *spwptr = *spwptr & 0xfffdffff;
557 *spwptr = *spwptr & 0xfffdffff;
558 }
558 }
559 }
559 }
560
560
561 void spacewire_compute_stats_offsets( void )
561 void spacewire_compute_stats_offsets( void )
562 {
562 {
563 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
563 /** This function computes the SpaceWire statistics offsets in case of a SpaceWire related interruption raising.
564 *
564 *
565 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
565 * The offsets keep a record of the statistics in case of a reset of the statistics. They are added to the current statistics
566 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
566 * to keep the counters consistent even after a reset of the SpaceWire driver (the counter are set to zero by the driver when it
567 * during the open systel call).
567 * during the open systel call).
568 *
568 *
569 */
569 */
570
570
571 spw_stats spacewire_stats_grspw;
571 spw_stats spacewire_stats_grspw;
572 rtems_status_code status;
572 rtems_status_code status;
573
573
574 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
574 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
575
575
576 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
576 spacewire_stats_backup.packets_received = spacewire_stats_grspw.packets_received
577 + spacewire_stats.packets_received;
577 + spacewire_stats.packets_received;
578 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
578 spacewire_stats_backup.packets_sent = spacewire_stats_grspw.packets_sent
579 + spacewire_stats.packets_sent;
579 + spacewire_stats.packets_sent;
580 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
580 spacewire_stats_backup.parity_err = spacewire_stats_grspw.parity_err
581 + spacewire_stats.parity_err;
581 + spacewire_stats.parity_err;
582 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
582 spacewire_stats_backup.disconnect_err = spacewire_stats_grspw.disconnect_err
583 + spacewire_stats.disconnect_err;
583 + spacewire_stats.disconnect_err;
584 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
584 spacewire_stats_backup.escape_err = spacewire_stats_grspw.escape_err
585 + spacewire_stats.escape_err;
585 + spacewire_stats.escape_err;
586 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
586 spacewire_stats_backup.credit_err = spacewire_stats_grspw.credit_err
587 + spacewire_stats.credit_err;
587 + spacewire_stats.credit_err;
588 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
588 spacewire_stats_backup.write_sync_err = spacewire_stats_grspw.write_sync_err
589 + spacewire_stats.write_sync_err;
589 + spacewire_stats.write_sync_err;
590 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
590 spacewire_stats_backup.rx_rmap_header_crc_err = spacewire_stats_grspw.rx_rmap_header_crc_err
591 + spacewire_stats.rx_rmap_header_crc_err;
591 + spacewire_stats.rx_rmap_header_crc_err;
592 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
592 spacewire_stats_backup.rx_rmap_data_crc_err = spacewire_stats_grspw.rx_rmap_data_crc_err
593 + spacewire_stats.rx_rmap_data_crc_err;
593 + spacewire_stats.rx_rmap_data_crc_err;
594 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
594 spacewire_stats_backup.early_ep = spacewire_stats_grspw.early_ep
595 + spacewire_stats.early_ep;
595 + spacewire_stats.early_ep;
596 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
596 spacewire_stats_backup.invalid_address = spacewire_stats_grspw.invalid_address
597 + spacewire_stats.invalid_address;
597 + spacewire_stats.invalid_address;
598 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
598 spacewire_stats_backup.rx_eep_err = spacewire_stats_grspw.rx_eep_err
599 + spacewire_stats.rx_eep_err;
599 + spacewire_stats.rx_eep_err;
600 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
600 spacewire_stats_backup.rx_truncated = spacewire_stats_grspw.rx_truncated
601 + spacewire_stats.rx_truncated;
601 + spacewire_stats.rx_truncated;
602 }
602 }
603
603
604 void spacewire_update_statistics( void )
604 void spacewire_update_statistics( void )
605 {
605 {
606 rtems_status_code status;
606 rtems_status_code status;
607 spw_stats spacewire_stats_grspw;
607 spw_stats spacewire_stats_grspw;
608
608
609 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
609 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_GET_STATISTICS, &spacewire_stats_grspw );
610
610
611 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
611 spacewire_stats.packets_received = spacewire_stats_backup.packets_received
612 + spacewire_stats_grspw.packets_received;
612 + spacewire_stats_grspw.packets_received;
613 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
613 spacewire_stats.packets_sent = spacewire_stats_backup.packets_sent
614 + spacewire_stats_grspw.packets_sent;
614 + spacewire_stats_grspw.packets_sent;
615 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
615 spacewire_stats.parity_err = spacewire_stats_backup.parity_err
616 + spacewire_stats_grspw.parity_err;
616 + spacewire_stats_grspw.parity_err;
617 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
617 spacewire_stats.disconnect_err = spacewire_stats_backup.disconnect_err
618 + spacewire_stats_grspw.disconnect_err;
618 + spacewire_stats_grspw.disconnect_err;
619 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
619 spacewire_stats.escape_err = spacewire_stats_backup.escape_err
620 + spacewire_stats_grspw.escape_err;
620 + spacewire_stats_grspw.escape_err;
621 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
621 spacewire_stats.credit_err = spacewire_stats_backup.credit_err
622 + spacewire_stats_grspw.credit_err;
622 + spacewire_stats_grspw.credit_err;
623 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
623 spacewire_stats.write_sync_err = spacewire_stats_backup.write_sync_err
624 + spacewire_stats_grspw.write_sync_err;
624 + spacewire_stats_grspw.write_sync_err;
625 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
625 spacewire_stats.rx_rmap_header_crc_err = spacewire_stats_backup.rx_rmap_header_crc_err
626 + spacewire_stats_grspw.rx_rmap_header_crc_err;
626 + spacewire_stats_grspw.rx_rmap_header_crc_err;
627 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
627 spacewire_stats.rx_rmap_data_crc_err = spacewire_stats_backup.rx_rmap_data_crc_err
628 + spacewire_stats_grspw.rx_rmap_data_crc_err;
628 + spacewire_stats_grspw.rx_rmap_data_crc_err;
629 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
629 spacewire_stats.early_ep = spacewire_stats_backup.early_ep
630 + spacewire_stats_grspw.early_ep;
630 + spacewire_stats_grspw.early_ep;
631 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
631 spacewire_stats.invalid_address = spacewire_stats_backup.invalid_address
632 + spacewire_stats_grspw.invalid_address;
632 + spacewire_stats_grspw.invalid_address;
633 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
633 spacewire_stats.rx_eep_err = spacewire_stats_backup.rx_eep_err
634 + spacewire_stats_grspw.rx_eep_err;
634 + spacewire_stats_grspw.rx_eep_err;
635 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
635 spacewire_stats.rx_truncated = spacewire_stats_backup.rx_truncated
636 + spacewire_stats_grspw.rx_truncated;
636 + spacewire_stats_grspw.rx_truncated;
637 //spacewire_stats.tx_link_err;
637 //spacewire_stats.tx_link_err;
638
638
639 //****************************
639 //****************************
640 // DPU_SPACEWIRE_IF_STATISTICS
640 // DPU_SPACEWIRE_IF_STATISTICS
641 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
641 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[0] = (unsigned char) (spacewire_stats.packets_received >> 8);
642 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
642 housekeeping_packet.hk_lfr_dpu_spw_pkt_rcv_cnt[1] = (unsigned char) (spacewire_stats.packets_received);
643 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
643 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[0] = (unsigned char) (spacewire_stats.packets_sent >> 8);
644 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
644 housekeeping_packet.hk_lfr_dpu_spw_pkt_sent_cnt[1] = (unsigned char) (spacewire_stats.packets_sent);
645 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
645 //housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt;
646 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
646 //housekeeping_packet.hk_lfr_dpu_spw_last_timc;
647
647
648 //******************************************
648 //******************************************
649 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
649 // ERROR COUNTERS / SPACEWIRE / LOW SEVERITY
650 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
650 housekeeping_packet.hk_lfr_dpu_spw_parity = (unsigned char) spacewire_stats.parity_err;
651 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
651 housekeeping_packet.hk_lfr_dpu_spw_disconnect = (unsigned char) spacewire_stats.disconnect_err;
652 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
652 housekeeping_packet.hk_lfr_dpu_spw_escape = (unsigned char) spacewire_stats.escape_err;
653 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
653 housekeeping_packet.hk_lfr_dpu_spw_credit = (unsigned char) spacewire_stats.credit_err;
654 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
654 housekeeping_packet.hk_lfr_dpu_spw_write_sync = (unsigned char) spacewire_stats.write_sync_err;
655
655
656 //*********************************************
656 //*********************************************
657 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
657 // ERROR COUNTERS / SPACEWIRE / MEDIUM SEVERITY
658 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
658 housekeeping_packet.hk_lfr_dpu_spw_early_eop = (unsigned char) spacewire_stats.early_ep;
659 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
659 housekeeping_packet.hk_lfr_dpu_spw_invalid_addr = (unsigned char) spacewire_stats.invalid_address;
660 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
660 housekeeping_packet.hk_lfr_dpu_spw_eep = (unsigned char) spacewire_stats.rx_eep_err;
661 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
661 housekeeping_packet.hk_lfr_dpu_spw_rx_too_big = (unsigned char) spacewire_stats.rx_truncated;
662 }
662 }
663
663
664 void increase_unsigned_char_counter( unsigned char *counter )
664 void increase_unsigned_char_counter( unsigned char *counter )
665 {
665 {
666 // update the number of valid timecodes that have been received
666 // update the number of valid timecodes that have been received
667 if (*counter == 255)
667 if (*counter == 255)
668 {
668 {
669 *counter = 0;
669 *counter = 0;
670 }
670 }
671 else
671 else
672 {
672 {
673 *counter = *counter + 1;
673 *counter = *counter + 1;
674 }
674 }
675 }
675 }
676
676
677 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
677 rtems_timer_service_routine timecode_timer_routine( rtems_id timer_id, void *user_data )
678 {
678 {
679
679
680 unsigned char currentTimecodeCtr;
680 unsigned char currentTimecodeCtr;
681
681
682 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
682 currentTimecodeCtr = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
683
683
684 if (currentTimecodeCtr == previousTimecodeCtr)
684 if (currentTimecodeCtr == previousTimecodeCtr)
685 {
685 {
686 //************************
686 //************************
687 // HK_LFR_TIMECODE_MISSING
687 // HK_LFR_TIMECODE_MISSING
688 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
688 // the timecode value has not changed, no valid timecode has been received, the timecode is MISSING
689 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
689 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_missing );
690 }
690 }
691 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
691 else if (currentTimecodeCtr == (previousTimecodeCtr+1))
692 {
692 {
693 // the timecode value has changed and the value is valid, this is unexpected because
693 // the timecode value has changed and the value is valid, this is unexpected because
694 // the timer should not have fired, the timecode_irq_handler should have been raised
694 // the timer should not have fired, the timecode_irq_handler should have been raised
695 }
695 }
696 else
696 else
697 {
697 {
698 //************************
698 //************************
699 // HK_LFR_TIMECODE_INVALID
699 // HK_LFR_TIMECODE_INVALID
700 // the timecode value has changed and the value is not valid, no tickout has been generated
700 // the timecode value has changed and the value is not valid, no tickout has been generated
701 // this is why the timer has fired
701 // this is why the timer has fired
702 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
702 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_invalid );
703 }
703 }
704
704
705 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
705 rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_13 );
706 }
706 }
707
707
708 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
708 unsigned int check_timecode_and_previous_timecode_coherency(unsigned char currentTimecodeCtr)
709 {
709 {
710 /** This function checks the coherency between the incoming timecode and the last valid timecode.
711 *
712 * @param currentTimecodeCtr is the incoming timecode
713 *
714 * @return returned codes::
715 * - LFR_DEFAULT
716 * - LFR_SUCCESSFUL
717 *
718 */
719
710 static unsigned char firstTickout = 1;
720 static unsigned char firstTickout = 1;
711 unsigned char ret;
721 unsigned char ret;
712
722
713 ret = LFR_DEFAULT;
723 ret = LFR_DEFAULT;
714
724
715 if (firstTickout == 0)
725 if (firstTickout == 0)
716 {
726 {
717 if (currentTimecodeCtr == 0)
727 if (currentTimecodeCtr == 0)
718 {
728 {
719 if (previousTimecodeCtr == 63)
729 if (previousTimecodeCtr == 63)
720 {
730 {
721 ret = LFR_SUCCESSFUL;
731 ret = LFR_SUCCESSFUL;
722 }
732 }
723 else
733 else
724 {
734 {
725 ret = LFR_DEFAULT;
735 ret = LFR_DEFAULT;
726 }
736 }
727 }
737 }
728 else
738 else
729 {
739 {
730 if (currentTimecodeCtr == (previousTimecodeCtr +1))
740 if (currentTimecodeCtr == (previousTimecodeCtr +1))
731 {
741 {
732 ret = LFR_SUCCESSFUL;
742 ret = LFR_SUCCESSFUL;
733 }
743 }
734 else
744 else
735 {
745 {
736 ret = LFR_DEFAULT;
746 ret = LFR_DEFAULT;
737 }
747 }
738 }
748 }
739 }
749 }
740 else
750 else
741 {
751 {
742 firstTickout = 0;
752 firstTickout = 0;
743 ret = LFR_SUCCESSFUL;
753 ret = LFR_SUCCESSFUL;
744 }
754 }
745
755
746 return ret;
756 return ret;
747 }
757 }
748
758
749 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
759 unsigned int check_timecode_and_internal_time_coherency(unsigned char timecode, unsigned char internalTime)
750 {
760 {
751 unsigned int ret;
761 unsigned int ret;
752
762
753 ret = LFR_DEFAULT;
763 ret = LFR_DEFAULT;
754
764
755 if (timecode == internalTime)
765 if (timecode == internalTime)
756 {
766 {
757 ret = LFR_SUCCESSFUL;
767 ret = LFR_SUCCESSFUL;
758 }
768 }
759 else
769 else
760 {
770 {
761 ret = LFR_DEFAULT;
771 ret = LFR_DEFAULT;
762 }
772 }
763
773
764 return ret;
774 return ret;
765 }
775 }
766
776
767 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
777 void timecode_irq_handler( void *pDev, void *regs, int minor, unsigned int tc )
768 {
778 {
769 // a tickout has been emitted, perform actions on the incoming timecode
779 // a tickout has been emitted, perform actions on the incoming timecode
770
780
771 unsigned char incomingTimecode;
781 unsigned char incomingTimecode;
772 unsigned char updateTime;
782 unsigned char updateTime;
773 unsigned char internalTime;
783 unsigned char internalTime;
774 rtems_status_code status;
784 rtems_status_code status;
775
785
776 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
786 incomingTimecode = (unsigned char) (grspwPtr[0] & TIMECODE_MASK);
777 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
787 updateTime = time_management_regs->coarse_time_load & TIMECODE_MASK;
778 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
788 internalTime = time_management_regs->coarse_time & TIMECODE_MASK;
779
789
780 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
790 housekeeping_packet.hk_lfr_dpu_spw_last_timc = incomingTimecode;
781
791
782 // update the number of tickout that have been generated
792 // update the number of tickout that have been generated
783 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
793 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_dpu_spw_tick_out_cnt );
784
794
785 //**************************
795 //**************************
786 // HK_LFR_TIMECODE_ERRONEOUS
796 // HK_LFR_TIMECODE_ERRONEOUS
787 // MISSING and INVALID are handled by the timecode_timer_routine service routine
797 // MISSING and INVALID are handled by the timecode_timer_routine service routine
788 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
798 if (check_timecode_and_previous_timecode_coherency( incomingTimecode ) == LFR_DEFAULT)
789 {
799 {
790 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
800 // this is unexpected but a tickout could have been raised despite of the timecode being erroneous
791 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
801 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_timecode_erroneous );
792 }
802 }
793
803
794 //************************
804 //************************
795 // HK_LFR_TIME_TIMECODE_IT
805 // HK_LFR_TIME_TIMECODE_IT
796 // check the coherency between the SpaceWire timecode and the Internal Time
806 // check the coherency between the SpaceWire timecode and the Internal Time
797 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
807 if (check_timecode_and_internal_time_coherency( incomingTimecode, internalTime ) == LFR_DEFAULT)
798 {
808 {
799 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
809 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_it );
800 }
810 }
801
811
802 //********************
812 //********************
803 // HK_LFR_TIMECODE_CTR
813 // HK_LFR_TIMECODE_CTR
804 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
814 // check the value of the timecode with respect to the last TC_LFR_UPDATE_TIME => SSS-CP-FS-370
805 if (incomingTimecode != updateTime)
815 if (incomingTimecode != updateTime)
806 {
816 {
807 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
817 increase_unsigned_char_counter( &housekeeping_packet.hk_lfr_time_timecode_ctr );
808 }
818 }
809
819
810 // launch the timecode timer to detect missing or invalid timecodes
820 // launch the timecode timer to detect missing or invalid timecodes
811 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
821 previousTimecodeCtr = incomingTimecode; // update the previousTimecodeCtr value
812 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
822 status = rtems_timer_fire_after( timecode_timer_id, TIMECODE_TIMER_TIMEOUT, timecode_timer_routine, NULL );
813 }
823 }
814
824
815 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
825 void init_header_cwf( Header_TM_LFR_SCIENCE_CWF_t *header )
816 {
826 {
817 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
827 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
818 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
828 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
819 header->reserved = DEFAULT_RESERVED;
829 header->reserved = DEFAULT_RESERVED;
820 header->userApplication = CCSDS_USER_APP;
830 header->userApplication = CCSDS_USER_APP;
821 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
831 header->packetSequenceControl[0]= TM_PACKET_SEQ_CTRL_STANDALONE;
822 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
832 header->packetSequenceControl[1]= TM_PACKET_SEQ_CNT_DEFAULT;
823 header->packetLength[0] = 0x00;
833 header->packetLength[0] = 0x00;
824 header->packetLength[1] = 0x00;
834 header->packetLength[1] = 0x00;
825 // DATA FIELD HEADER
835 // DATA FIELD HEADER
826 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
836 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
827 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
837 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
828 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
838 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
829 header->destinationID = TM_DESTINATION_ID_GROUND;
839 header->destinationID = TM_DESTINATION_ID_GROUND;
830 header->time[0] = 0x00;
840 header->time[0] = 0x00;
831 header->time[0] = 0x00;
841 header->time[0] = 0x00;
832 header->time[0] = 0x00;
842 header->time[0] = 0x00;
833 header->time[0] = 0x00;
843 header->time[0] = 0x00;
834 header->time[0] = 0x00;
844 header->time[0] = 0x00;
835 header->time[0] = 0x00;
845 header->time[0] = 0x00;
836 // AUXILIARY DATA HEADER
846 // AUXILIARY DATA HEADER
837 header->sid = 0x00;
847 header->sid = 0x00;
838 header->hkBIA = DEFAULT_HKBIA;
848 header->hkBIA = DEFAULT_HKBIA;
839 header->blkNr[0] = 0x00;
849 header->blkNr[0] = 0x00;
840 header->blkNr[1] = 0x00;
850 header->blkNr[1] = 0x00;
841 }
851 }
842
852
843 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
853 void init_header_swf( Header_TM_LFR_SCIENCE_SWF_t *header )
844 {
854 {
845 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
855 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
846 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
856 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
847 header->reserved = DEFAULT_RESERVED;
857 header->reserved = DEFAULT_RESERVED;
848 header->userApplication = CCSDS_USER_APP;
858 header->userApplication = CCSDS_USER_APP;
849 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
859 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
850 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
860 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
851 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
861 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
852 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
862 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
853 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
863 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
854 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
864 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
855 // DATA FIELD HEADER
865 // DATA FIELD HEADER
856 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
866 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
857 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
867 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
858 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
868 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6; // service subtype
859 header->destinationID = TM_DESTINATION_ID_GROUND;
869 header->destinationID = TM_DESTINATION_ID_GROUND;
860 header->time[0] = 0x00;
870 header->time[0] = 0x00;
861 header->time[0] = 0x00;
871 header->time[0] = 0x00;
862 header->time[0] = 0x00;
872 header->time[0] = 0x00;
863 header->time[0] = 0x00;
873 header->time[0] = 0x00;
864 header->time[0] = 0x00;
874 header->time[0] = 0x00;
865 header->time[0] = 0x00;
875 header->time[0] = 0x00;
866 // AUXILIARY DATA HEADER
876 // AUXILIARY DATA HEADER
867 header->sid = 0x00;
877 header->sid = 0x00;
868 header->hkBIA = DEFAULT_HKBIA;
878 header->hkBIA = DEFAULT_HKBIA;
869 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
879 header->pktCnt = DEFAULT_PKTCNT; // PKT_CNT
870 header->pktNr = 0x00;
880 header->pktNr = 0x00;
871 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
881 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
872 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
882 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
873 }
883 }
874
884
875 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
885 void init_header_asm( Header_TM_LFR_SCIENCE_ASM_t *header )
876 {
886 {
877 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
887 header->targetLogicalAddress = CCSDS_DESTINATION_ID;
878 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
888 header->protocolIdentifier = CCSDS_PROTOCOLE_ID;
879 header->reserved = DEFAULT_RESERVED;
889 header->reserved = DEFAULT_RESERVED;
880 header->userApplication = CCSDS_USER_APP;
890 header->userApplication = CCSDS_USER_APP;
881 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
891 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
882 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
892 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
883 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
893 header->packetSequenceControl[0] = TM_PACKET_SEQ_CTRL_STANDALONE;
884 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
894 header->packetSequenceControl[1] = TM_PACKET_SEQ_CNT_DEFAULT;
885 header->packetLength[0] = 0x00;
895 header->packetLength[0] = 0x00;
886 header->packetLength[1] = 0x00;
896 header->packetLength[1] = 0x00;
887 // DATA FIELD HEADER
897 // DATA FIELD HEADER
888 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
898 header->spare1_pusVersion_spare2 = DEFAULT_SPARE1_PUSVERSION_SPARE2;
889 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
899 header->serviceType = TM_TYPE_LFR_SCIENCE; // service type
890 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
900 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3; // service subtype
891 header->destinationID = TM_DESTINATION_ID_GROUND;
901 header->destinationID = TM_DESTINATION_ID_GROUND;
892 header->time[0] = 0x00;
902 header->time[0] = 0x00;
893 header->time[0] = 0x00;
903 header->time[0] = 0x00;
894 header->time[0] = 0x00;
904 header->time[0] = 0x00;
895 header->time[0] = 0x00;
905 header->time[0] = 0x00;
896 header->time[0] = 0x00;
906 header->time[0] = 0x00;
897 header->time[0] = 0x00;
907 header->time[0] = 0x00;
898 // AUXILIARY DATA HEADER
908 // AUXILIARY DATA HEADER
899 header->sid = 0x00;
909 header->sid = 0x00;
900 header->biaStatusInfo = 0x00;
910 header->biaStatusInfo = 0x00;
901 header->pa_lfr_pkt_cnt_asm = 0x00;
911 header->pa_lfr_pkt_cnt_asm = 0x00;
902 header->pa_lfr_pkt_nr_asm = 0x00;
912 header->pa_lfr_pkt_nr_asm = 0x00;
903 header->pa_lfr_asm_blk_nr[0] = 0x00;
913 header->pa_lfr_asm_blk_nr[0] = 0x00;
904 header->pa_lfr_asm_blk_nr[1] = 0x00;
914 header->pa_lfr_asm_blk_nr[1] = 0x00;
905 }
915 }
906
916
907 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
917 int spw_send_waveform_CWF( ring_node *ring_node_to_send,
908 Header_TM_LFR_SCIENCE_CWF_t *header )
918 Header_TM_LFR_SCIENCE_CWF_t *header )
909 {
919 {
910 /** This function sends CWF CCSDS packets (F2, F1 or F0).
920 /** This function sends CWF CCSDS packets (F2, F1 or F0).
911 *
921 *
912 * @param waveform points to the buffer containing the data that will be send.
922 * @param waveform points to the buffer containing the data that will be send.
913 * @param sid is the source identifier of the data that will be sent.
923 * @param sid is the source identifier of the data that will be sent.
914 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
924 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
915 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
925 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
916 * contain information to setup the transmission of the data packets.
926 * contain information to setup the transmission of the data packets.
917 *
927 *
918 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
928 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
919 *
929 *
920 */
930 */
921
931
922 unsigned int i;
932 unsigned int i;
923 int ret;
933 int ret;
924 unsigned int coarseTime;
934 unsigned int coarseTime;
925 unsigned int fineTime;
935 unsigned int fineTime;
926 rtems_status_code status;
936 rtems_status_code status;
927 spw_ioctl_pkt_send spw_ioctl_send_CWF;
937 spw_ioctl_pkt_send spw_ioctl_send_CWF;
928 int *dataPtr;
938 int *dataPtr;
929 unsigned char sid;
939 unsigned char sid;
930
940
931 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
941 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
932 spw_ioctl_send_CWF.options = 0;
942 spw_ioctl_send_CWF.options = 0;
933
943
934 ret = LFR_DEFAULT;
944 ret = LFR_DEFAULT;
935 sid = (unsigned char) ring_node_to_send->sid;
945 sid = (unsigned char) ring_node_to_send->sid;
936
946
937 coarseTime = ring_node_to_send->coarseTime;
947 coarseTime = ring_node_to_send->coarseTime;
938 fineTime = ring_node_to_send->fineTime;
948 fineTime = ring_node_to_send->fineTime;
939 dataPtr = (int*) ring_node_to_send->buffer_address;
949 dataPtr = (int*) ring_node_to_send->buffer_address;
940
950
941 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
951 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_336 >> 8);
942 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
952 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_336 );
943 header->hkBIA = pa_bia_status_info;
953 header->hkBIA = pa_bia_status_info;
944 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
954 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
945 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
955 header->blkNr[0] = (unsigned char) (BLK_NR_CWF >> 8);
946 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
956 header->blkNr[1] = (unsigned char) (BLK_NR_CWF );
947
957
948 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
958 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF; i++) // send waveform
949 {
959 {
950 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
960 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF * NB_WORDS_SWF_BLK) ];
951 spw_ioctl_send_CWF.hdr = (char*) header;
961 spw_ioctl_send_CWF.hdr = (char*) header;
952 // BUILD THE DATA
962 // BUILD THE DATA
953 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
963 spw_ioctl_send_CWF.dlen = BLK_NR_CWF * NB_BYTES_SWF_BLK;
954
964
955 // SET PACKET SEQUENCE CONTROL
965 // SET PACKET SEQUENCE CONTROL
956 increment_seq_counter_source_id( header->packetSequenceControl, sid );
966 increment_seq_counter_source_id( header->packetSequenceControl, sid );
957
967
958 // SET SID
968 // SET SID
959 header->sid = sid;
969 header->sid = sid;
960
970
961 // SET PACKET TIME
971 // SET PACKET TIME
962 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
972 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime);
963 //
973 //
964 header->time[0] = header->acquisitionTime[0];
974 header->time[0] = header->acquisitionTime[0];
965 header->time[1] = header->acquisitionTime[1];
975 header->time[1] = header->acquisitionTime[1];
966 header->time[2] = header->acquisitionTime[2];
976 header->time[2] = header->acquisitionTime[2];
967 header->time[3] = header->acquisitionTime[3];
977 header->time[3] = header->acquisitionTime[3];
968 header->time[4] = header->acquisitionTime[4];
978 header->time[4] = header->acquisitionTime[4];
969 header->time[5] = header->acquisitionTime[5];
979 header->time[5] = header->acquisitionTime[5];
970
980
971 // SET PACKET ID
981 // SET PACKET ID
972 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
982 if ( (sid == SID_SBM1_CWF_F1) || (sid == SID_SBM2_CWF_F2) )
973 {
983 {
974 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
984 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2 >> 8);
975 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
985 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_SBM1_SBM2);
976 }
986 }
977 else
987 else
978 {
988 {
979 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
989 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
980 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
990 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
981 }
991 }
982
992
983 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
993 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
984 if (status != RTEMS_SUCCESSFUL) {
994 if (status != RTEMS_SUCCESSFUL) {
985 ret = LFR_DEFAULT;
995 ret = LFR_DEFAULT;
986 }
996 }
987 }
997 }
988
998
989 return ret;
999 return ret;
990 }
1000 }
991
1001
992 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
1002 int spw_send_waveform_SWF( ring_node *ring_node_to_send,
993 Header_TM_LFR_SCIENCE_SWF_t *header )
1003 Header_TM_LFR_SCIENCE_SWF_t *header )
994 {
1004 {
995 /** This function sends SWF CCSDS packets (F2, F1 or F0).
1005 /** This function sends SWF CCSDS packets (F2, F1 or F0).
996 *
1006 *
997 * @param waveform points to the buffer containing the data that will be send.
1007 * @param waveform points to the buffer containing the data that will be send.
998 * @param sid is the source identifier of the data that will be sent.
1008 * @param sid is the source identifier of the data that will be sent.
999 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1009 * @param headerSWF points to a table of headers that have been prepared for the data transmission.
1000 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1010 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1001 * contain information to setup the transmission of the data packets.
1011 * contain information to setup the transmission of the data packets.
1002 *
1012 *
1003 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1013 * One group of 2048 samples is sent as 7 consecutive packets, 6 packets containing 340 blocks and 8 packets containing 8 blocks.
1004 *
1014 *
1005 */
1015 */
1006
1016
1007 unsigned int i;
1017 unsigned int i;
1008 int ret;
1018 int ret;
1009 unsigned int coarseTime;
1019 unsigned int coarseTime;
1010 unsigned int fineTime;
1020 unsigned int fineTime;
1011 rtems_status_code status;
1021 rtems_status_code status;
1012 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1022 spw_ioctl_pkt_send spw_ioctl_send_SWF;
1013 int *dataPtr;
1023 int *dataPtr;
1014 unsigned char sid;
1024 unsigned char sid;
1015
1025
1016 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1026 spw_ioctl_send_SWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_SWF;
1017 spw_ioctl_send_SWF.options = 0;
1027 spw_ioctl_send_SWF.options = 0;
1018
1028
1019 ret = LFR_DEFAULT;
1029 ret = LFR_DEFAULT;
1020
1030
1021 coarseTime = ring_node_to_send->coarseTime;
1031 coarseTime = ring_node_to_send->coarseTime;
1022 fineTime = ring_node_to_send->fineTime;
1032 fineTime = ring_node_to_send->fineTime;
1023 dataPtr = (int*) ring_node_to_send->buffer_address;
1033 dataPtr = (int*) ring_node_to_send->buffer_address;
1024 sid = ring_node_to_send->sid;
1034 sid = ring_node_to_send->sid;
1025
1035
1026 header->hkBIA = pa_bia_status_info;
1036 header->hkBIA = pa_bia_status_info;
1027 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1037 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1028
1038
1029 for (i=0; i<7; i++) // send waveform
1039 for (i=0; i<7; i++) // send waveform
1030 {
1040 {
1031 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1041 spw_ioctl_send_SWF.data = (char*) &dataPtr[ (i * BLK_NR_304 * NB_WORDS_SWF_BLK) ];
1032 spw_ioctl_send_SWF.hdr = (char*) header;
1042 spw_ioctl_send_SWF.hdr = (char*) header;
1033
1043
1034 // SET PACKET SEQUENCE CONTROL
1044 // SET PACKET SEQUENCE CONTROL
1035 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1045 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1036
1046
1037 // SET PACKET LENGTH AND BLKNR
1047 // SET PACKET LENGTH AND BLKNR
1038 if (i == 6)
1048 if (i == 6)
1039 {
1049 {
1040 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1050 spw_ioctl_send_SWF.dlen = BLK_NR_224 * NB_BYTES_SWF_BLK;
1041 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
1051 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_224 >> 8);
1042 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1052 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_224 );
1043 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
1053 header->blkNr[0] = (unsigned char) (BLK_NR_224 >> 8);
1044 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1054 header->blkNr[1] = (unsigned char) (BLK_NR_224 );
1045 }
1055 }
1046 else
1056 else
1047 {
1057 {
1048 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1058 spw_ioctl_send_SWF.dlen = BLK_NR_304 * NB_BYTES_SWF_BLK;
1049 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
1059 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_SWF_304 >> 8);
1050 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1060 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_SWF_304 );
1051 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
1061 header->blkNr[0] = (unsigned char) (BLK_NR_304 >> 8);
1052 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1062 header->blkNr[1] = (unsigned char) (BLK_NR_304 );
1053 }
1063 }
1054
1064
1055 // SET PACKET TIME
1065 // SET PACKET TIME
1056 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1066 compute_acquisition_time( coarseTime, fineTime, sid, i, header->acquisitionTime );
1057 //
1067 //
1058 header->time[0] = header->acquisitionTime[0];
1068 header->time[0] = header->acquisitionTime[0];
1059 header->time[1] = header->acquisitionTime[1];
1069 header->time[1] = header->acquisitionTime[1];
1060 header->time[2] = header->acquisitionTime[2];
1070 header->time[2] = header->acquisitionTime[2];
1061 header->time[3] = header->acquisitionTime[3];
1071 header->time[3] = header->acquisitionTime[3];
1062 header->time[4] = header->acquisitionTime[4];
1072 header->time[4] = header->acquisitionTime[4];
1063 header->time[5] = header->acquisitionTime[5];
1073 header->time[5] = header->acquisitionTime[5];
1064
1074
1065 // SET SID
1075 // SET SID
1066 header->sid = sid;
1076 header->sid = sid;
1067
1077
1068 // SET PKTNR
1078 // SET PKTNR
1069 header->pktNr = i+1; // PKT_NR
1079 header->pktNr = i+1; // PKT_NR
1070
1080
1071 // SEND PACKET
1081 // SEND PACKET
1072 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1082 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_SWF );
1073 if (status != RTEMS_SUCCESSFUL) {
1083 if (status != RTEMS_SUCCESSFUL) {
1074 ret = LFR_DEFAULT;
1084 ret = LFR_DEFAULT;
1075 }
1085 }
1076 }
1086 }
1077
1087
1078 return ret;
1088 return ret;
1079 }
1089 }
1080
1090
1081 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1091 int spw_send_waveform_CWF3_light( ring_node *ring_node_to_send,
1082 Header_TM_LFR_SCIENCE_CWF_t *header )
1092 Header_TM_LFR_SCIENCE_CWF_t *header )
1083 {
1093 {
1084 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1094 /** This function sends CWF_F3 CCSDS packets without the b1, b2 and b3 data.
1085 *
1095 *
1086 * @param waveform points to the buffer containing the data that will be send.
1096 * @param waveform points to the buffer containing the data that will be send.
1087 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1097 * @param headerCWF points to a table of headers that have been prepared for the data transmission.
1088 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1098 * @param queue_id is the id of the rtems queue to which spw_ioctl_pkt_send structures will be send. The structures
1089 * contain information to setup the transmission of the data packets.
1099 * contain information to setup the transmission of the data packets.
1090 *
1100 *
1091 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1101 * By default, CWF_F3 packet are send without the b1, b2 and b3 data. This function rebuilds a data buffer
1092 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1102 * from the incoming data and sends it in 7 packets, 6 containing 340 blocks and 1 one containing 8 blocks.
1093 *
1103 *
1094 */
1104 */
1095
1105
1096 unsigned int i;
1106 unsigned int i;
1097 int ret;
1107 int ret;
1098 unsigned int coarseTime;
1108 unsigned int coarseTime;
1099 unsigned int fineTime;
1109 unsigned int fineTime;
1100 rtems_status_code status;
1110 rtems_status_code status;
1101 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1111 spw_ioctl_pkt_send spw_ioctl_send_CWF;
1102 char *dataPtr;
1112 char *dataPtr;
1103 unsigned char sid;
1113 unsigned char sid;
1104
1114
1105 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1115 spw_ioctl_send_CWF.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_CWF;
1106 spw_ioctl_send_CWF.options = 0;
1116 spw_ioctl_send_CWF.options = 0;
1107
1117
1108 ret = LFR_DEFAULT;
1118 ret = LFR_DEFAULT;
1109 sid = ring_node_to_send->sid;
1119 sid = ring_node_to_send->sid;
1110
1120
1111 coarseTime = ring_node_to_send->coarseTime;
1121 coarseTime = ring_node_to_send->coarseTime;
1112 fineTime = ring_node_to_send->fineTime;
1122 fineTime = ring_node_to_send->fineTime;
1113 dataPtr = (char*) ring_node_to_send->buffer_address;
1123 dataPtr = (char*) ring_node_to_send->buffer_address;
1114
1124
1115 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
1125 header->packetLength[0] = (unsigned char) (TM_LEN_SCI_CWF_672 >> 8);
1116 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1126 header->packetLength[1] = (unsigned char) (TM_LEN_SCI_CWF_672 );
1117 header->hkBIA = pa_bia_status_info;
1127 header->hkBIA = pa_bia_status_info;
1118 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1128 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1119 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
1129 header->blkNr[0] = (unsigned char) (BLK_NR_CWF_SHORT_F3 >> 8);
1120 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1130 header->blkNr[1] = (unsigned char) (BLK_NR_CWF_SHORT_F3 );
1121
1131
1122 //*********************
1132 //*********************
1123 // SEND CWF3_light DATA
1133 // SEND CWF3_light DATA
1124 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1134 for (i=0; i<NB_PACKETS_PER_GROUP_OF_CWF_LIGHT; i++) // send waveform
1125 {
1135 {
1126 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1136 spw_ioctl_send_CWF.data = (char*) &dataPtr[ (i * BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK) ];
1127 spw_ioctl_send_CWF.hdr = (char*) header;
1137 spw_ioctl_send_CWF.hdr = (char*) header;
1128 // BUILD THE DATA
1138 // BUILD THE DATA
1129 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1139 spw_ioctl_send_CWF.dlen = BLK_NR_CWF_SHORT_F3 * NB_BYTES_CWF3_LIGHT_BLK;
1130
1140
1131 // SET PACKET SEQUENCE COUNTER
1141 // SET PACKET SEQUENCE COUNTER
1132 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1142 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1133
1143
1134 // SET SID
1144 // SET SID
1135 header->sid = sid;
1145 header->sid = sid;
1136
1146
1137 // SET PACKET TIME
1147 // SET PACKET TIME
1138 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1148 compute_acquisition_time( coarseTime, fineTime, SID_NORM_CWF_F3, i, header->acquisitionTime );
1139 //
1149 //
1140 header->time[0] = header->acquisitionTime[0];
1150 header->time[0] = header->acquisitionTime[0];
1141 header->time[1] = header->acquisitionTime[1];
1151 header->time[1] = header->acquisitionTime[1];
1142 header->time[2] = header->acquisitionTime[2];
1152 header->time[2] = header->acquisitionTime[2];
1143 header->time[3] = header->acquisitionTime[3];
1153 header->time[3] = header->acquisitionTime[3];
1144 header->time[4] = header->acquisitionTime[4];
1154 header->time[4] = header->acquisitionTime[4];
1145 header->time[5] = header->acquisitionTime[5];
1155 header->time[5] = header->acquisitionTime[5];
1146
1156
1147 // SET PACKET ID
1157 // SET PACKET ID
1148 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1158 header->packetID[0] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST >> 8);
1149 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1159 header->packetID[1] = (unsigned char) (APID_TM_SCIENCE_NORMAL_BURST);
1150
1160
1151 // SEND PACKET
1161 // SEND PACKET
1152 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1162 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_CWF );
1153 if (status != RTEMS_SUCCESSFUL) {
1163 if (status != RTEMS_SUCCESSFUL) {
1154 ret = LFR_DEFAULT;
1164 ret = LFR_DEFAULT;
1155 }
1165 }
1156 }
1166 }
1157
1167
1158 return ret;
1168 return ret;
1159 }
1169 }
1160
1170
1161 void spw_send_asm_f0( ring_node *ring_node_to_send,
1171 void spw_send_asm_f0( ring_node *ring_node_to_send,
1162 Header_TM_LFR_SCIENCE_ASM_t *header )
1172 Header_TM_LFR_SCIENCE_ASM_t *header )
1163 {
1173 {
1164 unsigned int i;
1174 unsigned int i;
1165 unsigned int length = 0;
1175 unsigned int length = 0;
1166 rtems_status_code status;
1176 rtems_status_code status;
1167 unsigned int sid;
1177 unsigned int sid;
1168 float *spectral_matrix;
1178 float *spectral_matrix;
1169 int coarseTime;
1179 int coarseTime;
1170 int fineTime;
1180 int fineTime;
1171 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1181 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1172
1182
1173 sid = ring_node_to_send->sid;
1183 sid = ring_node_to_send->sid;
1174 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1184 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1175 coarseTime = ring_node_to_send->coarseTime;
1185 coarseTime = ring_node_to_send->coarseTime;
1176 fineTime = ring_node_to_send->fineTime;
1186 fineTime = ring_node_to_send->fineTime;
1177
1187
1178 header->biaStatusInfo = pa_bia_status_info;
1188 header->biaStatusInfo = pa_bia_status_info;
1179 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1189 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1180
1190
1181 for (i=0; i<3; i++)
1191 for (i=0; i<3; i++)
1182 {
1192 {
1183 if ((i==0) || (i==1))
1193 if ((i==0) || (i==1))
1184 {
1194 {
1185 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1195 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_1;
1186 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1196 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1187 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1197 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1188 ];
1198 ];
1189 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1199 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_1;
1190 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1200 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1191 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> 8 ); // BLK_NR MSB
1201 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_1) >> 8 ); // BLK_NR MSB
1192 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1202 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_1); // BLK_NR LSB
1193 }
1203 }
1194 else
1204 else
1195 {
1205 {
1196 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1206 spw_ioctl_send_ASM.dlen = DLEN_ASM_F0_PKT_2;
1197 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1207 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1198 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1208 ( (ASM_F0_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F0_1) ) * NB_VALUES_PER_SM )
1199 ];
1209 ];
1200 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1210 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F0_2;
1201 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1211 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1202 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> 8 ); // BLK_NR MSB
1212 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F0_2) >> 8 ); // BLK_NR MSB
1203 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1213 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F0_2); // BLK_NR LSB
1204 }
1214 }
1205
1215
1206 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1216 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1207 spw_ioctl_send_ASM.hdr = (char *) header;
1217 spw_ioctl_send_ASM.hdr = (char *) header;
1208 spw_ioctl_send_ASM.options = 0;
1218 spw_ioctl_send_ASM.options = 0;
1209
1219
1210 // (2) BUILD THE HEADER
1220 // (2) BUILD THE HEADER
1211 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1221 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1212 header->packetLength[0] = (unsigned char) (length>>8);
1222 header->packetLength[0] = (unsigned char) (length>>8);
1213 header->packetLength[1] = (unsigned char) (length);
1223 header->packetLength[1] = (unsigned char) (length);
1214 header->sid = (unsigned char) sid; // SID
1224 header->sid = (unsigned char) sid; // SID
1215 header->pa_lfr_pkt_cnt_asm = 3;
1225 header->pa_lfr_pkt_cnt_asm = 3;
1216 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1226 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1217
1227
1218 // (3) SET PACKET TIME
1228 // (3) SET PACKET TIME
1219 header->time[0] = (unsigned char) (coarseTime>>24);
1229 header->time[0] = (unsigned char) (coarseTime>>24);
1220 header->time[1] = (unsigned char) (coarseTime>>16);
1230 header->time[1] = (unsigned char) (coarseTime>>16);
1221 header->time[2] = (unsigned char) (coarseTime>>8);
1231 header->time[2] = (unsigned char) (coarseTime>>8);
1222 header->time[3] = (unsigned char) (coarseTime);
1232 header->time[3] = (unsigned char) (coarseTime);
1223 header->time[4] = (unsigned char) (fineTime>>8);
1233 header->time[4] = (unsigned char) (fineTime>>8);
1224 header->time[5] = (unsigned char) (fineTime);
1234 header->time[5] = (unsigned char) (fineTime);
1225 //
1235 //
1226 header->acquisitionTime[0] = header->time[0];
1236 header->acquisitionTime[0] = header->time[0];
1227 header->acquisitionTime[1] = header->time[1];
1237 header->acquisitionTime[1] = header->time[1];
1228 header->acquisitionTime[2] = header->time[2];
1238 header->acquisitionTime[2] = header->time[2];
1229 header->acquisitionTime[3] = header->time[3];
1239 header->acquisitionTime[3] = header->time[3];
1230 header->acquisitionTime[4] = header->time[4];
1240 header->acquisitionTime[4] = header->time[4];
1231 header->acquisitionTime[5] = header->time[5];
1241 header->acquisitionTime[5] = header->time[5];
1232
1242
1233 // (4) SEND PACKET
1243 // (4) SEND PACKET
1234 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1244 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1235 if (status != RTEMS_SUCCESSFUL) {
1245 if (status != RTEMS_SUCCESSFUL) {
1236 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1246 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1237 }
1247 }
1238 }
1248 }
1239 }
1249 }
1240
1250
1241 void spw_send_asm_f1( ring_node *ring_node_to_send,
1251 void spw_send_asm_f1( ring_node *ring_node_to_send,
1242 Header_TM_LFR_SCIENCE_ASM_t *header )
1252 Header_TM_LFR_SCIENCE_ASM_t *header )
1243 {
1253 {
1244 unsigned int i;
1254 unsigned int i;
1245 unsigned int length = 0;
1255 unsigned int length = 0;
1246 rtems_status_code status;
1256 rtems_status_code status;
1247 unsigned int sid;
1257 unsigned int sid;
1248 float *spectral_matrix;
1258 float *spectral_matrix;
1249 int coarseTime;
1259 int coarseTime;
1250 int fineTime;
1260 int fineTime;
1251 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1261 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1252
1262
1253 sid = ring_node_to_send->sid;
1263 sid = ring_node_to_send->sid;
1254 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1264 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1255 coarseTime = ring_node_to_send->coarseTime;
1265 coarseTime = ring_node_to_send->coarseTime;
1256 fineTime = ring_node_to_send->fineTime;
1266 fineTime = ring_node_to_send->fineTime;
1257
1267
1258 header->biaStatusInfo = pa_bia_status_info;
1268 header->biaStatusInfo = pa_bia_status_info;
1259 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1269 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1260
1270
1261 for (i=0; i<3; i++)
1271 for (i=0; i<3; i++)
1262 {
1272 {
1263 if ((i==0) || (i==1))
1273 if ((i==0) || (i==1))
1264 {
1274 {
1265 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1275 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_1;
1266 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1276 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1267 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1277 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1268 ];
1278 ];
1269 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1279 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_1;
1270 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1280 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1271 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> 8 ); // BLK_NR MSB
1281 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_1) >> 8 ); // BLK_NR MSB
1272 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1282 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_1); // BLK_NR LSB
1273 }
1283 }
1274 else
1284 else
1275 {
1285 {
1276 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1286 spw_ioctl_send_ASM.dlen = DLEN_ASM_F1_PKT_2;
1277 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1287 spw_ioctl_send_ASM.data = (char*) &spectral_matrix[
1278 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1288 ( (ASM_F1_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F1_1) ) * NB_VALUES_PER_SM )
1279 ];
1289 ];
1280 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1290 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F1_2;
1281 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1291 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_6;
1282 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> 8 ); // BLK_NR MSB
1292 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F1_2) >> 8 ); // BLK_NR MSB
1283 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1293 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F1_2); // BLK_NR LSB
1284 }
1294 }
1285
1295
1286 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1296 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1287 spw_ioctl_send_ASM.hdr = (char *) header;
1297 spw_ioctl_send_ASM.hdr = (char *) header;
1288 spw_ioctl_send_ASM.options = 0;
1298 spw_ioctl_send_ASM.options = 0;
1289
1299
1290 // (2) BUILD THE HEADER
1300 // (2) BUILD THE HEADER
1291 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1301 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1292 header->packetLength[0] = (unsigned char) (length>>8);
1302 header->packetLength[0] = (unsigned char) (length>>8);
1293 header->packetLength[1] = (unsigned char) (length);
1303 header->packetLength[1] = (unsigned char) (length);
1294 header->sid = (unsigned char) sid; // SID
1304 header->sid = (unsigned char) sid; // SID
1295 header->pa_lfr_pkt_cnt_asm = 3;
1305 header->pa_lfr_pkt_cnt_asm = 3;
1296 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1306 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1297
1307
1298 // (3) SET PACKET TIME
1308 // (3) SET PACKET TIME
1299 header->time[0] = (unsigned char) (coarseTime>>24);
1309 header->time[0] = (unsigned char) (coarseTime>>24);
1300 header->time[1] = (unsigned char) (coarseTime>>16);
1310 header->time[1] = (unsigned char) (coarseTime>>16);
1301 header->time[2] = (unsigned char) (coarseTime>>8);
1311 header->time[2] = (unsigned char) (coarseTime>>8);
1302 header->time[3] = (unsigned char) (coarseTime);
1312 header->time[3] = (unsigned char) (coarseTime);
1303 header->time[4] = (unsigned char) (fineTime>>8);
1313 header->time[4] = (unsigned char) (fineTime>>8);
1304 header->time[5] = (unsigned char) (fineTime);
1314 header->time[5] = (unsigned char) (fineTime);
1305 //
1315 //
1306 header->acquisitionTime[0] = header->time[0];
1316 header->acquisitionTime[0] = header->time[0];
1307 header->acquisitionTime[1] = header->time[1];
1317 header->acquisitionTime[1] = header->time[1];
1308 header->acquisitionTime[2] = header->time[2];
1318 header->acquisitionTime[2] = header->time[2];
1309 header->acquisitionTime[3] = header->time[3];
1319 header->acquisitionTime[3] = header->time[3];
1310 header->acquisitionTime[4] = header->time[4];
1320 header->acquisitionTime[4] = header->time[4];
1311 header->acquisitionTime[5] = header->time[5];
1321 header->acquisitionTime[5] = header->time[5];
1312
1322
1313 // (4) SEND PACKET
1323 // (4) SEND PACKET
1314 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1324 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1315 if (status != RTEMS_SUCCESSFUL) {
1325 if (status != RTEMS_SUCCESSFUL) {
1316 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1326 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1317 }
1327 }
1318 }
1328 }
1319 }
1329 }
1320
1330
1321 void spw_send_asm_f2( ring_node *ring_node_to_send,
1331 void spw_send_asm_f2( ring_node *ring_node_to_send,
1322 Header_TM_LFR_SCIENCE_ASM_t *header )
1332 Header_TM_LFR_SCIENCE_ASM_t *header )
1323 {
1333 {
1324 unsigned int i;
1334 unsigned int i;
1325 unsigned int length = 0;
1335 unsigned int length = 0;
1326 rtems_status_code status;
1336 rtems_status_code status;
1327 unsigned int sid;
1337 unsigned int sid;
1328 float *spectral_matrix;
1338 float *spectral_matrix;
1329 int coarseTime;
1339 int coarseTime;
1330 int fineTime;
1340 int fineTime;
1331 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1341 spw_ioctl_pkt_send spw_ioctl_send_ASM;
1332
1342
1333 sid = ring_node_to_send->sid;
1343 sid = ring_node_to_send->sid;
1334 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1344 spectral_matrix = (float*) ring_node_to_send->buffer_address;
1335 coarseTime = ring_node_to_send->coarseTime;
1345 coarseTime = ring_node_to_send->coarseTime;
1336 fineTime = ring_node_to_send->fineTime;
1346 fineTime = ring_node_to_send->fineTime;
1337
1347
1338 header->biaStatusInfo = pa_bia_status_info;
1348 header->biaStatusInfo = pa_bia_status_info;
1339 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1349 header->sy_lfr_common_parameters = parameter_dump_packet.sy_lfr_common_parameters;
1340
1350
1341 for (i=0; i<3; i++)
1351 for (i=0; i<3; i++)
1342 {
1352 {
1343
1353
1344 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1354 spw_ioctl_send_ASM.dlen = DLEN_ASM_F2_PKT;
1345 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1355 spw_ioctl_send_ASM.data = (char *) &spectral_matrix[
1346 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1356 ( (ASM_F2_INDICE_START + (i*NB_BINS_PER_PKT_ASM_F2) ) * NB_VALUES_PER_SM )
1347 ];
1357 ];
1348 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1358 length = PACKET_LENGTH_TM_LFR_SCIENCE_ASM_F2;
1349 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1359 header->serviceSubType = TM_SUBTYPE_LFR_SCIENCE_3;
1350 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1360 header->pa_lfr_asm_blk_nr[0] = (unsigned char) ( (NB_BINS_PER_PKT_ASM_F2) >> 8 ); // BLK_NR MSB
1351 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1361 header->pa_lfr_asm_blk_nr[1] = (unsigned char) (NB_BINS_PER_PKT_ASM_F2); // BLK_NR LSB
1352
1362
1353 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1363 spw_ioctl_send_ASM.hlen = HEADER_LENGTH_TM_LFR_SCIENCE_ASM;
1354 spw_ioctl_send_ASM.hdr = (char *) header;
1364 spw_ioctl_send_ASM.hdr = (char *) header;
1355 spw_ioctl_send_ASM.options = 0;
1365 spw_ioctl_send_ASM.options = 0;
1356
1366
1357 // (2) BUILD THE HEADER
1367 // (2) BUILD THE HEADER
1358 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1368 increment_seq_counter_source_id( header->packetSequenceControl, sid );
1359 header->packetLength[0] = (unsigned char) (length>>8);
1369 header->packetLength[0] = (unsigned char) (length>>8);
1360 header->packetLength[1] = (unsigned char) (length);
1370 header->packetLength[1] = (unsigned char) (length);
1361 header->sid = (unsigned char) sid; // SID
1371 header->sid = (unsigned char) sid; // SID
1362 header->pa_lfr_pkt_cnt_asm = 3;
1372 header->pa_lfr_pkt_cnt_asm = 3;
1363 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1373 header->pa_lfr_pkt_nr_asm = (unsigned char) (i+1);
1364
1374
1365 // (3) SET PACKET TIME
1375 // (3) SET PACKET TIME
1366 header->time[0] = (unsigned char) (coarseTime>>24);
1376 header->time[0] = (unsigned char) (coarseTime>>24);
1367 header->time[1] = (unsigned char) (coarseTime>>16);
1377 header->time[1] = (unsigned char) (coarseTime>>16);
1368 header->time[2] = (unsigned char) (coarseTime>>8);
1378 header->time[2] = (unsigned char) (coarseTime>>8);
1369 header->time[3] = (unsigned char) (coarseTime);
1379 header->time[3] = (unsigned char) (coarseTime);
1370 header->time[4] = (unsigned char) (fineTime>>8);
1380 header->time[4] = (unsigned char) (fineTime>>8);
1371 header->time[5] = (unsigned char) (fineTime);
1381 header->time[5] = (unsigned char) (fineTime);
1372 //
1382 //
1373 header->acquisitionTime[0] = header->time[0];
1383 header->acquisitionTime[0] = header->time[0];
1374 header->acquisitionTime[1] = header->time[1];
1384 header->acquisitionTime[1] = header->time[1];
1375 header->acquisitionTime[2] = header->time[2];
1385 header->acquisitionTime[2] = header->time[2];
1376 header->acquisitionTime[3] = header->time[3];
1386 header->acquisitionTime[3] = header->time[3];
1377 header->acquisitionTime[4] = header->time[4];
1387 header->acquisitionTime[4] = header->time[4];
1378 header->acquisitionTime[5] = header->time[5];
1388 header->acquisitionTime[5] = header->time[5];
1379
1389
1380 // (4) SEND PACKET
1390 // (4) SEND PACKET
1381 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1391 status = ioctl( fdSPW, SPACEWIRE_IOCTRL_SEND, &spw_ioctl_send_ASM );
1382 if (status != RTEMS_SUCCESSFUL) {
1392 if (status != RTEMS_SUCCESSFUL) {
1383 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1393 PRINTF1("in ASM_send *** ERR %d\n", (int) status)
1384 }
1394 }
1385 }
1395 }
1386 }
1396 }
1387
1397
1388 void spw_send_k_dump( ring_node *ring_node_to_send )
1398 void spw_send_k_dump( ring_node *ring_node_to_send )
1389 {
1399 {
1390 rtems_status_code status;
1400 rtems_status_code status;
1391 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1401 Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *kcoefficients_dump;
1392 unsigned int packetLength;
1402 unsigned int packetLength;
1393 unsigned int size;
1403 unsigned int size;
1394
1404
1395 PRINTF("spw_send_k_dump\n")
1405 PRINTF("spw_send_k_dump\n")
1396
1406
1397 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1407 kcoefficients_dump = (Packet_TM_LFR_KCOEFFICIENTS_DUMP_t *) ring_node_to_send->buffer_address;
1398
1408
1399 packetLength = kcoefficients_dump->packetLength[0] * 256 + kcoefficients_dump->packetLength[1];
1409 packetLength = kcoefficients_dump->packetLength[0] * 256 + kcoefficients_dump->packetLength[1];
1400
1410
1401 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1411 size = packetLength + CCSDS_TC_TM_PACKET_OFFSET + CCSDS_PROTOCOLE_EXTRA_BYTES;
1402
1412
1403 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1413 PRINTF2("packetLength %d, size %d\n", packetLength, size )
1404
1414
1405 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1415 status = write( fdSPW, (char *) ring_node_to_send->buffer_address, size );
1406
1416
1407 if (status == -1){
1417 if (status == -1){
1408 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1418 PRINTF2("in SEND *** (2.a) ERRNO = %d, size = %d\n", errno, size)
1409 }
1419 }
1410
1420
1411 ring_node_to_send->status = 0x00;
1421 ring_node_to_send->status = 0x00;
1412 }
1422 }
@@ -1,1606 +1,1606
1 /** Functions and tasks related to TeleCommand handling.
1 /** Functions and tasks related to TeleCommand handling.
2 *
2 *
3 * @file
3 * @file
4 * @author P. LEROY
4 * @author P. LEROY
5 *
5 *
6 * A group of functions to handle TeleCommands:\n
6 * A group of functions to handle TeleCommands:\n
7 * action launching\n
7 * action launching\n
8 * TC parsing\n
8 * TC parsing\n
9 * ...
9 * ...
10 *
10 *
11 */
11 */
12
12
13 #include "tc_handler.h"
13 #include "tc_handler.h"
14 #include "math.h"
14 #include "math.h"
15
15
16 //***********
16 //***********
17 // RTEMS TASK
17 // RTEMS TASK
18
18
19 rtems_task actn_task( rtems_task_argument unused )
19 rtems_task actn_task( rtems_task_argument unused )
20 {
20 {
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
21 /** This RTEMS task is responsible for launching actions upton the reception of valid TeleCommands.
22 *
22 *
23 * @param unused is the starting argument of the RTEMS task
23 * @param unused is the starting argument of the RTEMS task
24 *
24 *
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
25 * The ACTN task waits for data coming from an RTEMS msesage queue. When data arrives, it launches specific actions depending
26 * on the incoming TeleCommand.
26 * on the incoming TeleCommand.
27 *
27 *
28 */
28 */
29
29
30 int result;
30 int result;
31 rtems_status_code status; // RTEMS status code
31 rtems_status_code status; // RTEMS status code
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
32 ccsdsTelecommandPacket_t TC; // TC sent to the ACTN task
33 size_t size; // size of the incoming TC packet
33 size_t size; // size of the incoming TC packet
34 unsigned char subtype; // subtype of the current TC packet
34 unsigned char subtype; // subtype of the current TC packet
35 unsigned char time[6];
35 unsigned char time[6];
36 rtems_id queue_rcv_id;
36 rtems_id queue_rcv_id;
37 rtems_id queue_snd_id;
37 rtems_id queue_snd_id;
38
38
39 status = get_message_queue_id_recv( &queue_rcv_id );
39 status = get_message_queue_id_recv( &queue_rcv_id );
40 if (status != RTEMS_SUCCESSFUL)
40 if (status != RTEMS_SUCCESSFUL)
41 {
41 {
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
42 PRINTF1("in ACTN *** ERR get_message_queue_id_recv %d\n", status)
43 }
43 }
44
44
45 status = get_message_queue_id_send( &queue_snd_id );
45 status = get_message_queue_id_send( &queue_snd_id );
46 if (status != RTEMS_SUCCESSFUL)
46 if (status != RTEMS_SUCCESSFUL)
47 {
47 {
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
48 PRINTF1("in ACTN *** ERR get_message_queue_id_send %d\n", status)
49 }
49 }
50
50
51 result = LFR_SUCCESSFUL;
51 result = LFR_SUCCESSFUL;
52 subtype = 0; // subtype of the current TC packet
52 subtype = 0; // subtype of the current TC packet
53
53
54 BOOT_PRINTF("in ACTN *** \n")
54 BOOT_PRINTF("in ACTN *** \n")
55
55
56 while(1)
56 while(1)
57 {
57 {
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
58 status = rtems_message_queue_receive( queue_rcv_id, (char*) &TC, &size,
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
59 RTEMS_WAIT, RTEMS_NO_TIMEOUT);
60 getTime( time ); // set time to the current time
60 getTime( time ); // set time to the current time
61 if (status!=RTEMS_SUCCESSFUL)
61 if (status!=RTEMS_SUCCESSFUL)
62 {
62 {
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
63 PRINTF1("ERR *** in task ACTN *** error receiving a message, code %d \n", status)
64 }
64 }
65 else
65 else
66 {
66 {
67 subtype = TC.serviceSubType;
67 subtype = TC.serviceSubType;
68 switch(subtype)
68 switch(subtype)
69 {
69 {
70 case TC_SUBTYPE_RESET:
70 case TC_SUBTYPE_RESET:
71 result = action_reset( &TC, queue_snd_id, time );
71 result = action_reset( &TC, queue_snd_id, time );
72 close_action( &TC, result, queue_snd_id );
72 close_action( &TC, result, queue_snd_id );
73 break;
73 break;
74 case TC_SUBTYPE_LOAD_COMM:
74 case TC_SUBTYPE_LOAD_COMM:
75 result = action_load_common_par( &TC );
75 result = action_load_common_par( &TC );
76 close_action( &TC, result, queue_snd_id );
76 close_action( &TC, result, queue_snd_id );
77 break;
77 break;
78 case TC_SUBTYPE_LOAD_NORM:
78 case TC_SUBTYPE_LOAD_NORM:
79 result = action_load_normal_par( &TC, queue_snd_id, time );
79 result = action_load_normal_par( &TC, queue_snd_id, time );
80 close_action( &TC, result, queue_snd_id );
80 close_action( &TC, result, queue_snd_id );
81 break;
81 break;
82 case TC_SUBTYPE_LOAD_BURST:
82 case TC_SUBTYPE_LOAD_BURST:
83 result = action_load_burst_par( &TC, queue_snd_id, time );
83 result = action_load_burst_par( &TC, queue_snd_id, time );
84 close_action( &TC, result, queue_snd_id );
84 close_action( &TC, result, queue_snd_id );
85 break;
85 break;
86 case TC_SUBTYPE_LOAD_SBM1:
86 case TC_SUBTYPE_LOAD_SBM1:
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
87 result = action_load_sbm1_par( &TC, queue_snd_id, time );
88 close_action( &TC, result, queue_snd_id );
88 close_action( &TC, result, queue_snd_id );
89 break;
89 break;
90 case TC_SUBTYPE_LOAD_SBM2:
90 case TC_SUBTYPE_LOAD_SBM2:
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
91 result = action_load_sbm2_par( &TC, queue_snd_id, time );
92 close_action( &TC, result, queue_snd_id );
92 close_action( &TC, result, queue_snd_id );
93 break;
93 break;
94 case TC_SUBTYPE_DUMP:
94 case TC_SUBTYPE_DUMP:
95 result = action_dump_par( &TC, queue_snd_id );
95 result = action_dump_par( &TC, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
96 close_action( &TC, result, queue_snd_id );
97 break;
97 break;
98 case TC_SUBTYPE_ENTER:
98 case TC_SUBTYPE_ENTER:
99 result = action_enter_mode( &TC, queue_snd_id );
99 result = action_enter_mode( &TC, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
100 close_action( &TC, result, queue_snd_id );
101 break;
101 break;
102 case TC_SUBTYPE_UPDT_INFO:
102 case TC_SUBTYPE_UPDT_INFO:
103 result = action_update_info( &TC, queue_snd_id );
103 result = action_update_info( &TC, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
104 close_action( &TC, result, queue_snd_id );
105 break;
105 break;
106 case TC_SUBTYPE_EN_CAL:
106 case TC_SUBTYPE_EN_CAL:
107 result = action_enable_calibration( &TC, queue_snd_id, time );
107 result = action_enable_calibration( &TC, queue_snd_id, time );
108 close_action( &TC, result, queue_snd_id );
108 close_action( &TC, result, queue_snd_id );
109 break;
109 break;
110 case TC_SUBTYPE_DIS_CAL:
110 case TC_SUBTYPE_DIS_CAL:
111 result = action_disable_calibration( &TC, queue_snd_id, time );
111 result = action_disable_calibration( &TC, queue_snd_id, time );
112 close_action( &TC, result, queue_snd_id );
112 close_action( &TC, result, queue_snd_id );
113 break;
113 break;
114 case TC_SUBTYPE_LOAD_K:
114 case TC_SUBTYPE_LOAD_K:
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
115 result = action_load_kcoefficients( &TC, queue_snd_id, time );
116 close_action( &TC, result, queue_snd_id );
116 close_action( &TC, result, queue_snd_id );
117 break;
117 break;
118 case TC_SUBTYPE_DUMP_K:
118 case TC_SUBTYPE_DUMP_K:
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
119 result = action_dump_kcoefficients( &TC, queue_snd_id, time );
120 close_action( &TC, result, queue_snd_id );
120 close_action( &TC, result, queue_snd_id );
121 break;
121 break;
122 case TC_SUBTYPE_LOAD_FBINS:
122 case TC_SUBTYPE_LOAD_FBINS:
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
123 result = action_load_fbins_mask( &TC, queue_snd_id, time );
124 close_action( &TC, result, queue_snd_id );
124 close_action( &TC, result, queue_snd_id );
125 break;
125 break;
126 case TC_SUBTYPE_UPDT_TIME:
126 case TC_SUBTYPE_UPDT_TIME:
127 result = action_update_time( &TC );
127 result = action_update_time( &TC );
128 close_action( &TC, result, queue_snd_id );
128 close_action( &TC, result, queue_snd_id );
129 break;
129 break;
130 default:
130 default:
131 break;
131 break;
132 }
132 }
133 }
133 }
134 }
134 }
135 }
135 }
136
136
137 //***********
137 //***********
138 // TC ACTIONS
138 // TC ACTIONS
139
139
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
140 int action_reset(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
141 {
141 {
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
142 /** This function executes specific actions when a TC_LFR_RESET TeleCommand has been received.
143 *
143 *
144 * @param TC points to the TeleCommand packet that is being processed
144 * @param TC points to the TeleCommand packet that is being processed
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
145 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
146 *
146 *
147 */
147 */
148
148
149 PRINTF("this is the end!!!\n")
149 PRINTF("this is the end!!!\n")
150 exit(0);
150 exit(0);
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
151 send_tm_lfr_tc_exe_not_implemented( TC, queue_id, time );
152 return LFR_DEFAULT;
152 return LFR_DEFAULT;
153 }
153 }
154
154
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
155 int action_enter_mode(ccsdsTelecommandPacket_t *TC, rtems_id queue_id )
156 {
156 {
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
157 /** This function executes specific actions when a TC_LFR_ENTER_MODE TeleCommand has been received.
158 *
158 *
159 * @param TC points to the TeleCommand packet that is being processed
159 * @param TC points to the TeleCommand packet that is being processed
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
160 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
161 *
161 *
162 */
162 */
163
163
164 rtems_status_code status;
164 rtems_status_code status;
165 unsigned char requestedMode;
165 unsigned char requestedMode;
166 unsigned int *transitionCoarseTime_ptr;
166 unsigned int *transitionCoarseTime_ptr;
167 unsigned int transitionCoarseTime;
167 unsigned int transitionCoarseTime;
168 unsigned char * bytePosPtr;
168 unsigned char * bytePosPtr;
169
169
170 bytePosPtr = (unsigned char *) &TC->packetID;
170 bytePosPtr = (unsigned char *) &TC->packetID;
171
171
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
172 requestedMode = bytePosPtr[ BYTE_POS_CP_MODE_LFR_SET ];
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
173 transitionCoarseTime_ptr = (unsigned int *) ( &bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME ] );
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
174 transitionCoarseTime = (*transitionCoarseTime_ptr) & 0x7fffffff;
175
175
176 status = check_mode_value( requestedMode );
176 status = check_mode_value( requestedMode );
177
177
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
178 if ( status != LFR_SUCCESSFUL ) // the mode value is inconsistent
179 {
179 {
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
180 send_tm_lfr_tc_exe_inconsistent( TC, queue_id, BYTE_POS_CP_MODE_LFR_SET, requestedMode );
181 }
181 }
182
182
183 else // the mode value is valid, check the transition
183 else // the mode value is valid, check the transition
184 {
184 {
185 status = check_mode_transition(requestedMode);
185 status = check_mode_transition(requestedMode);
186 if (status != LFR_SUCCESSFUL)
186 if (status != LFR_SUCCESSFUL)
187 {
187 {
188 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
188 PRINTF("ERR *** in action_enter_mode *** check_mode_transition\n")
189 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
189 send_tm_lfr_tc_exe_not_executable( TC, queue_id );
190 }
190 }
191 }
191 }
192
192
193 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
193 if ( status == LFR_SUCCESSFUL ) // the transition is valid, check the date
194 {
194 {
195 status = check_transition_date( transitionCoarseTime );
195 status = check_transition_date( transitionCoarseTime );
196 if (status != LFR_SUCCESSFUL)
196 if (status != LFR_SUCCESSFUL)
197 {
197 {
198 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
198 PRINTF("ERR *** in action_enter_mode *** check_transition_date\n")
199 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
199 send_tm_lfr_tc_exe_inconsistent( TC, queue_id,
200 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
200 BYTE_POS_CP_LFR_ENTER_MODE_TIME,
201 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
201 bytePosPtr[ BYTE_POS_CP_LFR_ENTER_MODE_TIME + 3 ] );
202 }
202 }
203 }
203 }
204
204
205 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
205 if ( status == LFR_SUCCESSFUL ) // the date is valid, enter the mode
206 {
206 {
207 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
207 PRINTF1("OK *** in action_enter_mode *** enter mode %d\n", requestedMode);
208
208
209 update_last_valid_transition_date( transitionCoarseTime );
209 update_last_valid_transition_date( transitionCoarseTime );
210
210
211 switch(requestedMode)
211 switch(requestedMode)
212 {
212 {
213 case LFR_MODE_STANDBY:
213 case LFR_MODE_STANDBY:
214 status = enter_mode_standby();
214 status = enter_mode_standby();
215 break;
215 break;
216 case LFR_MODE_NORMAL:
216 case LFR_MODE_NORMAL:
217 status = enter_mode_normal( transitionCoarseTime );
217 status = enter_mode_normal( transitionCoarseTime );
218 break;
218 break;
219 case LFR_MODE_BURST:
219 case LFR_MODE_BURST:
220 status = enter_mode_burst( transitionCoarseTime );
220 status = enter_mode_burst( transitionCoarseTime );
221 break;
221 break;
222 case LFR_MODE_SBM1:
222 case LFR_MODE_SBM1:
223 status = enter_mode_sbm1( transitionCoarseTime );
223 status = enter_mode_sbm1( transitionCoarseTime );
224 break;
224 break;
225 case LFR_MODE_SBM2:
225 case LFR_MODE_SBM2:
226 status = enter_mode_sbm2( transitionCoarseTime );
226 status = enter_mode_sbm2( transitionCoarseTime );
227 break;
227 break;
228 default:
228 default:
229 break;
229 break;
230 }
230 }
231 }
231 }
232
232
233 return status;
233 return status;
234 }
234 }
235
235
236 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
236 int action_update_info(ccsdsTelecommandPacket_t *TC, rtems_id queue_id)
237 {
237 {
238 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
238 /** This function executes specific actions when a TC_LFR_UPDATE_INFO TeleCommand has been received.
239 *
239 *
240 * @param TC points to the TeleCommand packet that is being processed
240 * @param TC points to the TeleCommand packet that is being processed
241 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
241 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
242 *
242 *
243 * @return LFR directive status code:
243 * @return LFR directive status code:
244 * - LFR_DEFAULT
244 * - LFR_DEFAULT
245 * - LFR_SUCCESSFUL
245 * - LFR_SUCCESSFUL
246 *
246 *
247 */
247 */
248
248
249 unsigned int val;
249 unsigned int val;
250 int result;
250 int result;
251 unsigned int status;
251 unsigned int status;
252 unsigned char mode;
252 unsigned char mode;
253 unsigned char * bytePosPtr;
253 unsigned char * bytePosPtr;
254
254
255 bytePosPtr = (unsigned char *) &TC->packetID;
255 bytePosPtr = (unsigned char *) &TC->packetID;
256
256
257 // check LFR mode
257 // check LFR mode
258 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
258 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET5 ] & 0x1e) >> 1;
259 status = check_update_info_hk_lfr_mode( mode );
259 status = check_update_info_hk_lfr_mode( mode );
260 if (status == LFR_SUCCESSFUL) // check TDS mode
260 if (status == LFR_SUCCESSFUL) // check TDS mode
261 {
261 {
262 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
262 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0xf0) >> 4;
263 status = check_update_info_hk_tds_mode( mode );
263 status = check_update_info_hk_tds_mode( mode );
264 }
264 }
265 if (status == LFR_SUCCESSFUL) // check THR mode
265 if (status == LFR_SUCCESSFUL) // check THR mode
266 {
266 {
267 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
267 mode = (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET6 ] & 0x0f);
268 status = check_update_info_hk_thr_mode( mode );
268 status = check_update_info_hk_thr_mode( mode );
269 }
269 }
270 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
270 if (status == LFR_SUCCESSFUL) // if the parameter check is successful
271 {
271 {
272 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
272 val = housekeeping_packet.hk_lfr_update_info_tc_cnt[0] * 256
273 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
273 + housekeeping_packet.hk_lfr_update_info_tc_cnt[1];
274 val++;
274 val++;
275 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
275 housekeeping_packet.hk_lfr_update_info_tc_cnt[0] = (unsigned char) (val >> 8);
276 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
276 housekeeping_packet.hk_lfr_update_info_tc_cnt[1] = (unsigned char) (val);
277 }
277 }
278
278
279 // pa_bia_status_info
279 // pa_bia_status_info
280 // => pa_bia_mode_mux_set 3 bits
280 // => pa_bia_mode_mux_set 3 bits
281 // => pa_bia_mode_hv_enabled 1 bit
281 // => pa_bia_mode_hv_enabled 1 bit
282 // => pa_bia_mode_bias1_enabled 1 bit
282 // => pa_bia_mode_bias1_enabled 1 bit
283 // => pa_bia_mode_bias2_enabled 1 bit
283 // => pa_bia_mode_bias2_enabled 1 bit
284 // => pa_bia_mode_bias3_enabled 1 bit
284 // => pa_bia_mode_bias3_enabled 1 bit
285 // => pa_bia_on_off (cp_dpu_bias_on_off)
285 // => pa_bia_on_off (cp_dpu_bias_on_off)
286 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & 0xfe; // [1111 1110]
286 pa_bia_status_info = bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET2 ] & 0xfe; // [1111 1110]
287 pa_bia_status_info = pa_bia_status_info
287 pa_bia_status_info = pa_bia_status_info
288 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 0x1);
288 | (bytePosPtr[ BYTE_POS_UPDATE_INFO_PARAMETERS_SET1 ] & 0x1);
289
289
290 result = status;
290 result = status;
291
291
292 return result;
292 return result;
293 }
293 }
294
294
295 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
295 int action_enable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
296 {
296 {
297 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
297 /** This function executes specific actions when a TC_LFR_ENABLE_CALIBRATION TeleCommand has been received.
298 *
298 *
299 * @param TC points to the TeleCommand packet that is being processed
299 * @param TC points to the TeleCommand packet that is being processed
300 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
300 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
301 *
301 *
302 */
302 */
303
303
304 int result;
304 int result;
305
305
306 result = LFR_DEFAULT;
306 result = LFR_DEFAULT;
307
307
308 setCalibration( true );
308 setCalibration( true );
309
309
310 result = LFR_SUCCESSFUL;
310 result = LFR_SUCCESSFUL;
311
311
312 return result;
312 return result;
313 }
313 }
314
314
315 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
315 int action_disable_calibration(ccsdsTelecommandPacket_t *TC, rtems_id queue_id, unsigned char *time)
316 {
316 {
317 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
317 /** This function executes specific actions when a TC_LFR_DISABLE_CALIBRATION TeleCommand has been received.
318 *
318 *
319 * @param TC points to the TeleCommand packet that is being processed
319 * @param TC points to the TeleCommand packet that is being processed
320 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
320 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
321 *
321 *
322 */
322 */
323
323
324 int result;
324 int result;
325
325
326 result = LFR_DEFAULT;
326 result = LFR_DEFAULT;
327
327
328 setCalibration( false );
328 setCalibration( false );
329
329
330 result = LFR_SUCCESSFUL;
330 result = LFR_SUCCESSFUL;
331
331
332 return result;
332 return result;
333 }
333 }
334
334
335 int action_update_time(ccsdsTelecommandPacket_t *TC)
335 int action_update_time(ccsdsTelecommandPacket_t *TC)
336 {
336 {
337 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
337 /** This function executes specific actions when a TC_LFR_UPDATE_TIME TeleCommand has been received.
338 *
338 *
339 * @param TC points to the TeleCommand packet that is being processed
339 * @param TC points to the TeleCommand packet that is being processed
340 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
340 * @param queue_id is the id of the queue which handles TM transmission by the SpaceWire driver
341 *
341 *
342 * @return LFR_SUCCESSFUL
342 * @return LFR_SUCCESSFUL
343 *
343 *
344 */
344 */
345
345
346 unsigned int val;
346 unsigned int val;
347
347
348 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
348 time_management_regs->coarse_time_load = (TC->dataAndCRC[0] << 24)
349 + (TC->dataAndCRC[1] << 16)
349 + (TC->dataAndCRC[1] << 16)
350 + (TC->dataAndCRC[2] << 8)
350 + (TC->dataAndCRC[2] << 8)
351 + TC->dataAndCRC[3];
351 + TC->dataAndCRC[3];
352
352
353 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
353 val = housekeeping_packet.hk_lfr_update_time_tc_cnt[0] * 256
354 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
354 + housekeeping_packet.hk_lfr_update_time_tc_cnt[1];
355 val++;
355 val++;
356 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
356 housekeeping_packet.hk_lfr_update_time_tc_cnt[0] = (unsigned char) (val >> 8);
357 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
357 housekeeping_packet.hk_lfr_update_time_tc_cnt[1] = (unsigned char) (val);
358
358
359 return LFR_SUCCESSFUL;
359 return LFR_SUCCESSFUL;
360 }
360 }
361
361
362 //*******************
362 //*******************
363 // ENTERING THE MODES
363 // ENTERING THE MODES
364 int check_mode_value( unsigned char requestedMode )
364 int check_mode_value( unsigned char requestedMode )
365 {
365 {
366 int status;
366 int status;
367
367
368 if ( (requestedMode != LFR_MODE_STANDBY)
368 if ( (requestedMode != LFR_MODE_STANDBY)
369 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
369 && (requestedMode != LFR_MODE_NORMAL) && (requestedMode != LFR_MODE_BURST)
370 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
370 && (requestedMode != LFR_MODE_SBM1) && (requestedMode != LFR_MODE_SBM2) )
371 {
371 {
372 status = LFR_DEFAULT;
372 status = LFR_DEFAULT;
373 }
373 }
374 else
374 else
375 {
375 {
376 status = LFR_SUCCESSFUL;
376 status = LFR_SUCCESSFUL;
377 }
377 }
378
378
379 return status;
379 return status;
380 }
380 }
381
381
382 int check_mode_transition( unsigned char requestedMode )
382 int check_mode_transition( unsigned char requestedMode )
383 {
383 {
384 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
384 /** This function checks the validity of the transition requested by the TC_LFR_ENTER_MODE.
385 *
385 *
386 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
386 * @param requestedMode is the mode requested by the TC_LFR_ENTER_MODE
387 *
387 *
388 * @return LFR directive status codes:
388 * @return LFR directive status codes:
389 * - LFR_SUCCESSFUL - the transition is authorized
389 * - LFR_SUCCESSFUL - the transition is authorized
390 * - LFR_DEFAULT - the transition is not authorized
390 * - LFR_DEFAULT - the transition is not authorized
391 *
391 *
392 */
392 */
393
393
394 int status;
394 int status;
395
395
396 switch (requestedMode)
396 switch (requestedMode)
397 {
397 {
398 case LFR_MODE_STANDBY:
398 case LFR_MODE_STANDBY:
399 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
399 if ( lfrCurrentMode == LFR_MODE_STANDBY ) {
400 status = LFR_DEFAULT;
400 status = LFR_DEFAULT;
401 }
401 }
402 else
402 else
403 {
403 {
404 status = LFR_SUCCESSFUL;
404 status = LFR_SUCCESSFUL;
405 }
405 }
406 break;
406 break;
407 case LFR_MODE_NORMAL:
407 case LFR_MODE_NORMAL:
408 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
408 if ( lfrCurrentMode == LFR_MODE_NORMAL ) {
409 status = LFR_DEFAULT;
409 status = LFR_DEFAULT;
410 }
410 }
411 else {
411 else {
412 status = LFR_SUCCESSFUL;
412 status = LFR_SUCCESSFUL;
413 }
413 }
414 break;
414 break;
415 case LFR_MODE_BURST:
415 case LFR_MODE_BURST:
416 if ( lfrCurrentMode == LFR_MODE_BURST ) {
416 if ( lfrCurrentMode == LFR_MODE_BURST ) {
417 status = LFR_DEFAULT;
417 status = LFR_DEFAULT;
418 }
418 }
419 else {
419 else {
420 status = LFR_SUCCESSFUL;
420 status = LFR_SUCCESSFUL;
421 }
421 }
422 break;
422 break;
423 case LFR_MODE_SBM1:
423 case LFR_MODE_SBM1:
424 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
424 if ( lfrCurrentMode == LFR_MODE_SBM1 ) {
425 status = LFR_DEFAULT;
425 status = LFR_DEFAULT;
426 }
426 }
427 else {
427 else {
428 status = LFR_SUCCESSFUL;
428 status = LFR_SUCCESSFUL;
429 }
429 }
430 break;
430 break;
431 case LFR_MODE_SBM2:
431 case LFR_MODE_SBM2:
432 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
432 if ( lfrCurrentMode == LFR_MODE_SBM2 ) {
433 status = LFR_DEFAULT;
433 status = LFR_DEFAULT;
434 }
434 }
435 else {
435 else {
436 status = LFR_SUCCESSFUL;
436 status = LFR_SUCCESSFUL;
437 }
437 }
438 break;
438 break;
439 default:
439 default:
440 status = LFR_DEFAULT;
440 status = LFR_DEFAULT;
441 break;
441 break;
442 }
442 }
443
443
444 return status;
444 return status;
445 }
445 }
446
446
447 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
447 void update_last_valid_transition_date( unsigned int transitionCoarseTime )
448 {
448 {
449 lastValidEnterModeTime = transitionCoarseTime;
449 lastValidEnterModeTime = transitionCoarseTime;
450 }
450 }
451
451
452 int check_transition_date( unsigned int transitionCoarseTime )
452 int check_transition_date( unsigned int transitionCoarseTime )
453 {
453 {
454 int status;
454 int status;
455 unsigned int localCoarseTime;
455 unsigned int localCoarseTime;
456 unsigned int deltaCoarseTime;
456 unsigned int deltaCoarseTime;
457
457
458 status = LFR_SUCCESSFUL;
458 status = LFR_SUCCESSFUL;
459
459
460 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
460 if (transitionCoarseTime == 0) // transition time = 0 means an instant transition
461 {
461 {
462 status = LFR_SUCCESSFUL;
462 status = LFR_SUCCESSFUL;
463 }
463 }
464 else
464 else
465 {
465 {
466 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
466 localCoarseTime = time_management_regs->coarse_time & 0x7fffffff;
467
467
468 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
468 PRINTF2("localTime = %x, transitionTime = %x\n", localCoarseTime, transitionCoarseTime)
469
469
470 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
470 if ( transitionCoarseTime <= localCoarseTime ) // SSS-CP-EQS-322
471 {
471 {
472 status = LFR_DEFAULT;
472 status = LFR_DEFAULT;
473 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
473 PRINTF("ERR *** in check_transition_date *** transitionCoarseTime <= localCoarseTime\n")
474 }
474 }
475
475
476 if (status == LFR_SUCCESSFUL)
476 if (status == LFR_SUCCESSFUL)
477 {
477 {
478 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
478 deltaCoarseTime = transitionCoarseTime - localCoarseTime;
479 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
479 if ( deltaCoarseTime > 3 ) // SSS-CP-EQS-323
480 {
480 {
481 status = LFR_DEFAULT;
481 status = LFR_DEFAULT;
482 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
482 PRINTF1("ERR *** in check_transition_date *** deltaCoarseTime = %x\n", deltaCoarseTime)
483 }
483 }
484 }
484 }
485 }
485 }
486
486
487 return status;
487 return status;
488 }
488 }
489
489
490 int restart_asm_activities( unsigned char lfrRequestedMode )
490 int restart_asm_activities( unsigned char lfrRequestedMode )
491 {
491 {
492 rtems_status_code status;
492 rtems_status_code status;
493
493
494 status = stop_spectral_matrices();
494 status = stop_spectral_matrices();
495
495
496 status = restart_asm_tasks( lfrRequestedMode );
496 status = restart_asm_tasks( lfrRequestedMode );
497
497
498 launch_spectral_matrix();
498 launch_spectral_matrix();
499
499
500 return status;
500 return status;
501 }
501 }
502
502
503 int stop_spectral_matrices( void )
503 int stop_spectral_matrices( void )
504 {
504 {
505 /** This function stops and restarts the current mode average spectral matrices activities.
505 /** This function stops and restarts the current mode average spectral matrices activities.
506 *
506 *
507 * @return RTEMS directive status codes:
507 * @return RTEMS directive status codes:
508 * - RTEMS_SUCCESSFUL - task restarted successfully
508 * - RTEMS_SUCCESSFUL - task restarted successfully
509 * - RTEMS_INVALID_ID - task id invalid
509 * - RTEMS_INVALID_ID - task id invalid
510 * - RTEMS_ALREADY_SUSPENDED - task already suspended
510 * - RTEMS_ALREADY_SUSPENDED - task already suspended
511 *
511 *
512 */
512 */
513
513
514 rtems_status_code status;
514 rtems_status_code status;
515
515
516 status = RTEMS_SUCCESSFUL;
516 status = RTEMS_SUCCESSFUL;
517
517
518 // (1) mask interruptions
518 // (1) mask interruptions
519 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
519 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
520
520
521 // (2) reset spectral matrices registers
521 // (2) reset spectral matrices registers
522 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
522 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
523 reset_sm_status();
523 reset_sm_status();
524
524
525 // (3) clear interruptions
525 // (3) clear interruptions
526 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
526 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
527
527
528 // suspend several tasks
528 // suspend several tasks
529 if (lfrCurrentMode != LFR_MODE_STANDBY) {
529 if (lfrCurrentMode != LFR_MODE_STANDBY) {
530 status = suspend_asm_tasks();
530 status = suspend_asm_tasks();
531 }
531 }
532
532
533 if (status != RTEMS_SUCCESSFUL)
533 if (status != RTEMS_SUCCESSFUL)
534 {
534 {
535 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
535 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
536 }
536 }
537
537
538 return status;
538 return status;
539 }
539 }
540
540
541 int stop_current_mode( void )
541 int stop_current_mode( void )
542 {
542 {
543 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
543 /** This function stops the current mode by masking interrupt lines and suspending science tasks.
544 *
544 *
545 * @return RTEMS directive status codes:
545 * @return RTEMS directive status codes:
546 * - RTEMS_SUCCESSFUL - task restarted successfully
546 * - RTEMS_SUCCESSFUL - task restarted successfully
547 * - RTEMS_INVALID_ID - task id invalid
547 * - RTEMS_INVALID_ID - task id invalid
548 * - RTEMS_ALREADY_SUSPENDED - task already suspended
548 * - RTEMS_ALREADY_SUSPENDED - task already suspended
549 *
549 *
550 */
550 */
551
551
552 rtems_status_code status;
552 rtems_status_code status;
553
553
554 status = RTEMS_SUCCESSFUL;
554 status = RTEMS_SUCCESSFUL;
555
555
556 // (1) mask interruptions
556 // (1) mask interruptions
557 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
557 LEON_Mask_interrupt( IRQ_WAVEFORM_PICKER ); // mask waveform picker interrupt
558 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
558 LEON_Mask_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
559
559
560 // (2) reset waveform picker registers
560 // (2) reset waveform picker registers
561 reset_wfp_burst_enable(); // reset burst and enable bits
561 reset_wfp_burst_enable(); // reset burst and enable bits
562 reset_wfp_status(); // reset all the status bits
562 reset_wfp_status(); // reset all the status bits
563
563
564 // (3) reset spectral matrices registers
564 // (3) reset spectral matrices registers
565 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
565 set_sm_irq_onNewMatrix( 0 ); // stop the spectral matrices
566 reset_sm_status();
566 reset_sm_status();
567
567
568 // reset lfr VHDL module
568 // reset lfr VHDL module
569 reset_lfr();
569 reset_lfr();
570
570
571 reset_extractSWF(); // reset the extractSWF flag to false
571 reset_extractSWF(); // reset the extractSWF flag to false
572
572
573 // (4) clear interruptions
573 // (4) clear interruptions
574 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
574 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER ); // clear waveform picker interrupt
575 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
575 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX ); // clear spectral matrix interrupt
576
576
577 // suspend several tasks
577 // suspend several tasks
578 if (lfrCurrentMode != LFR_MODE_STANDBY) {
578 if (lfrCurrentMode != LFR_MODE_STANDBY) {
579 status = suspend_science_tasks();
579 status = suspend_science_tasks();
580 }
580 }
581
581
582 if (status != RTEMS_SUCCESSFUL)
582 if (status != RTEMS_SUCCESSFUL)
583 {
583 {
584 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
584 PRINTF1("in stop_current_mode *** in suspend_science_tasks *** ERR code: %d\n", status)
585 }
585 }
586
586
587 return status;
587 return status;
588 }
588 }
589
589
590 int enter_mode_standby()
590 int enter_mode_standby()
591 {
591 {
592 /** This function is used to put LFR in the STANDBY mode.
592 /** This function is used to put LFR in the STANDBY mode.
593 *
593 *
594 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
594 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
595 *
595 *
596 * @return RTEMS directive status codes:
596 * @return RTEMS directive status codes:
597 * - RTEMS_SUCCESSFUL - task restarted successfully
597 * - RTEMS_SUCCESSFUL - task restarted successfully
598 * - RTEMS_INVALID_ID - task id invalid
598 * - RTEMS_INVALID_ID - task id invalid
599 * - RTEMS_INCORRECT_STATE - task never started
599 * - RTEMS_INCORRECT_STATE - task never started
600 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
600 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
601 *
601 *
602 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
602 * The STANDBY mode does not depends on a specific transition date, the effect of the TC_LFR_ENTER_MODE
603 * is immediate.
603 * is immediate.
604 *
604 *
605 */
605 */
606
606
607 int status;
607 int status;
608
608
609 status = stop_current_mode(); // STOP THE CURRENT MODE
609 status = stop_current_mode(); // STOP THE CURRENT MODE
610
610
611 #ifdef PRINT_TASK_STATISTICS
611 #ifdef PRINT_TASK_STATISTICS
612 rtems_cpu_usage_report();
612 rtems_cpu_usage_report();
613 #endif
613 #endif
614
614
615 #ifdef PRINT_STACK_REPORT
615 #ifdef PRINT_STACK_REPORT
616 PRINTF("stack report selected\n")
616 PRINTF("stack report selected\n")
617 rtems_stack_checker_report_usage();
617 rtems_stack_checker_report_usage();
618 #endif
618 #endif
619
619
620 return status;
620 return status;
621 }
621 }
622
622
623 int enter_mode_normal( unsigned int transitionCoarseTime )
623 int enter_mode_normal( unsigned int transitionCoarseTime )
624 {
624 {
625 /** This function is used to start the NORMAL mode.
625 /** This function is used to start the NORMAL mode.
626 *
626 *
627 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
627 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
628 *
628 *
629 * @return RTEMS directive status codes:
629 * @return RTEMS directive status codes:
630 * - RTEMS_SUCCESSFUL - task restarted successfully
630 * - RTEMS_SUCCESSFUL - task restarted successfully
631 * - RTEMS_INVALID_ID - task id invalid
631 * - RTEMS_INVALID_ID - task id invalid
632 * - RTEMS_INCORRECT_STATE - task never started
632 * - RTEMS_INCORRECT_STATE - task never started
633 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
633 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
634 *
634 *
635 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
635 * The way the NORMAL mode is started depends on the LFR current mode. If LFR is in SBM1 or SBM2,
636 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
636 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected.
637 *
637 *
638 */
638 */
639
639
640 int status;
640 int status;
641
641
642 #ifdef PRINT_TASK_STATISTICS
642 #ifdef PRINT_TASK_STATISTICS
643 rtems_cpu_usage_reset();
643 rtems_cpu_usage_reset();
644 #endif
644 #endif
645
645
646 status = RTEMS_UNSATISFIED;
646 status = RTEMS_UNSATISFIED;
647
647
648 switch( lfrCurrentMode )
648 switch( lfrCurrentMode )
649 {
649 {
650 case LFR_MODE_STANDBY:
650 case LFR_MODE_STANDBY:
651 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
651 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart science tasks
652 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
652 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
653 {
653 {
654 launch_spectral_matrix( );
654 launch_spectral_matrix( );
655 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
655 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
656 }
656 }
657 break;
657 break;
658 case LFR_MODE_BURST:
658 case LFR_MODE_BURST:
659 status = stop_current_mode(); // stop the current mode
659 status = stop_current_mode(); // stop the current mode
660 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
660 status = restart_science_tasks( LFR_MODE_NORMAL ); // restart the science tasks
661 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
661 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
662 {
662 {
663 launch_spectral_matrix( );
663 launch_spectral_matrix( );
664 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
664 launch_waveform_picker( LFR_MODE_NORMAL, transitionCoarseTime );
665 }
665 }
666 break;
666 break;
667 case LFR_MODE_SBM1:
667 case LFR_MODE_SBM1:
668 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
668 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
669 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
669 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
670 break;
670 break;
671 case LFR_MODE_SBM2:
671 case LFR_MODE_SBM2:
672 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
672 restart_asm_activities( LFR_MODE_NORMAL ); // this is necessary to restart ASM tasks to update the parameters
673 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
673 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
674 break;
674 break;
675 default:
675 default:
676 break;
676 break;
677 }
677 }
678
678
679 if (status != RTEMS_SUCCESSFUL)
679 if (status != RTEMS_SUCCESSFUL)
680 {
680 {
681 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
681 PRINTF1("ERR *** in enter_mode_normal *** status = %d\n", status)
682 status = RTEMS_UNSATISFIED;
682 status = RTEMS_UNSATISFIED;
683 }
683 }
684
684
685 return status;
685 return status;
686 }
686 }
687
687
688 int enter_mode_burst( unsigned int transitionCoarseTime )
688 int enter_mode_burst( unsigned int transitionCoarseTime )
689 {
689 {
690 /** This function is used to start the BURST mode.
690 /** This function is used to start the BURST mode.
691 *
691 *
692 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
692 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
693 *
693 *
694 * @return RTEMS directive status codes:
694 * @return RTEMS directive status codes:
695 * - RTEMS_SUCCESSFUL - task restarted successfully
695 * - RTEMS_SUCCESSFUL - task restarted successfully
696 * - RTEMS_INVALID_ID - task id invalid
696 * - RTEMS_INVALID_ID - task id invalid
697 * - RTEMS_INCORRECT_STATE - task never started
697 * - RTEMS_INCORRECT_STATE - task never started
698 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
698 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
699 *
699 *
700 * The way the BURST mode is started does not depend on the LFR current mode.
700 * The way the BURST mode is started does not depend on the LFR current mode.
701 *
701 *
702 */
702 */
703
703
704
704
705 int status;
705 int status;
706
706
707 #ifdef PRINT_TASK_STATISTICS
707 #ifdef PRINT_TASK_STATISTICS
708 rtems_cpu_usage_reset();
708 rtems_cpu_usage_reset();
709 #endif
709 #endif
710
710
711 status = stop_current_mode(); // stop the current mode
711 status = stop_current_mode(); // stop the current mode
712 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
712 status = restart_science_tasks( LFR_MODE_BURST ); // restart the science tasks
713 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
713 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
714 {
714 {
715 launch_spectral_matrix( );
715 launch_spectral_matrix( );
716 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
716 launch_waveform_picker( LFR_MODE_BURST, transitionCoarseTime );
717 }
717 }
718
718
719 if (status != RTEMS_SUCCESSFUL)
719 if (status != RTEMS_SUCCESSFUL)
720 {
720 {
721 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
721 PRINTF1("ERR *** in enter_mode_burst *** status = %d\n", status)
722 status = RTEMS_UNSATISFIED;
722 status = RTEMS_UNSATISFIED;
723 }
723 }
724
724
725 return status;
725 return status;
726 }
726 }
727
727
728 int enter_mode_sbm1( unsigned int transitionCoarseTime )
728 int enter_mode_sbm1( unsigned int transitionCoarseTime )
729 {
729 {
730 /** This function is used to start the SBM1 mode.
730 /** This function is used to start the SBM1 mode.
731 *
731 *
732 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
732 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
733 *
733 *
734 * @return RTEMS directive status codes:
734 * @return RTEMS directive status codes:
735 * - RTEMS_SUCCESSFUL - task restarted successfully
735 * - RTEMS_SUCCESSFUL - task restarted successfully
736 * - RTEMS_INVALID_ID - task id invalid
736 * - RTEMS_INVALID_ID - task id invalid
737 * - RTEMS_INCORRECT_STATE - task never started
737 * - RTEMS_INCORRECT_STATE - task never started
738 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
738 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
739 *
739 *
740 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
740 * The way the SBM1 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM2,
741 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
741 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
742 * cases, the acquisition is completely restarted.
742 * cases, the acquisition is completely restarted.
743 *
743 *
744 */
744 */
745
745
746 int status;
746 int status;
747
747
748 #ifdef PRINT_TASK_STATISTICS
748 #ifdef PRINT_TASK_STATISTICS
749 rtems_cpu_usage_reset();
749 rtems_cpu_usage_reset();
750 #endif
750 #endif
751
751
752 status = RTEMS_UNSATISFIED;
752 status = RTEMS_UNSATISFIED;
753
753
754 switch( lfrCurrentMode )
754 switch( lfrCurrentMode )
755 {
755 {
756 case LFR_MODE_STANDBY:
756 case LFR_MODE_STANDBY:
757 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
757 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart science tasks
758 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
758 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
759 {
759 {
760 launch_spectral_matrix( );
760 launch_spectral_matrix( );
761 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
761 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
762 }
762 }
763 break;
763 break;
764 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
764 case LFR_MODE_NORMAL: // lfrCurrentMode will be updated after the execution of close_action
765 restart_asm_activities( LFR_MODE_SBM1 );
765 restart_asm_activities( LFR_MODE_SBM1 );
766 status = LFR_SUCCESSFUL;
766 status = LFR_SUCCESSFUL;
767 break;
767 break;
768 case LFR_MODE_BURST:
768 case LFR_MODE_BURST:
769 status = stop_current_mode(); // stop the current mode
769 status = stop_current_mode(); // stop the current mode
770 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
770 status = restart_science_tasks( LFR_MODE_SBM1 ); // restart the science tasks
771 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
771 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
772 {
772 {
773 launch_spectral_matrix( );
773 launch_spectral_matrix( );
774 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
774 launch_waveform_picker( LFR_MODE_SBM1, transitionCoarseTime );
775 }
775 }
776 break;
776 break;
777 case LFR_MODE_SBM2:
777 case LFR_MODE_SBM2:
778 restart_asm_activities( LFR_MODE_SBM1 );
778 restart_asm_activities( LFR_MODE_SBM1 );
779 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
779 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
780 break;
780 break;
781 default:
781 default:
782 break;
782 break;
783 }
783 }
784
784
785 if (status != RTEMS_SUCCESSFUL)
785 if (status != RTEMS_SUCCESSFUL)
786 {
786 {
787 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status)
787 PRINTF1("ERR *** in enter_mode_sbm1 *** status = %d\n", status)
788 status = RTEMS_UNSATISFIED;
788 status = RTEMS_UNSATISFIED;
789 }
789 }
790
790
791 return status;
791 return status;
792 }
792 }
793
793
794 int enter_mode_sbm2( unsigned int transitionCoarseTime )
794 int enter_mode_sbm2( unsigned int transitionCoarseTime )
795 {
795 {
796 /** This function is used to start the SBM2 mode.
796 /** This function is used to start the SBM2 mode.
797 *
797 *
798 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
798 * @param transitionCoarseTime is the requested transition time contained in the TC_LFR_ENTER_MODE
799 *
799 *
800 * @return RTEMS directive status codes:
800 * @return RTEMS directive status codes:
801 * - RTEMS_SUCCESSFUL - task restarted successfully
801 * - RTEMS_SUCCESSFUL - task restarted successfully
802 * - RTEMS_INVALID_ID - task id invalid
802 * - RTEMS_INVALID_ID - task id invalid
803 * - RTEMS_INCORRECT_STATE - task never started
803 * - RTEMS_INCORRECT_STATE - task never started
804 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
804 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
805 *
805 *
806 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
806 * The way the SBM2 mode is started depends on the LFR current mode. If LFR is in NORMAL or SBM1,
807 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
807 * the snapshots are not restarted, only ASM, BP and CWF data generation are affected. In other
808 * cases, the acquisition is completely restarted.
808 * cases, the acquisition is completely restarted.
809 *
809 *
810 */
810 */
811
811
812 int status;
812 int status;
813
813
814 #ifdef PRINT_TASK_STATISTICS
814 #ifdef PRINT_TASK_STATISTICS
815 rtems_cpu_usage_reset();
815 rtems_cpu_usage_reset();
816 #endif
816 #endif
817
817
818 status = RTEMS_UNSATISFIED;
818 status = RTEMS_UNSATISFIED;
819
819
820 switch( lfrCurrentMode )
820 switch( lfrCurrentMode )
821 {
821 {
822 case LFR_MODE_STANDBY:
822 case LFR_MODE_STANDBY:
823 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
823 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart science tasks
824 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
824 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
825 {
825 {
826 launch_spectral_matrix( );
826 launch_spectral_matrix( );
827 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
827 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
828 }
828 }
829 break;
829 break;
830 case LFR_MODE_NORMAL:
830 case LFR_MODE_NORMAL:
831 restart_asm_activities( LFR_MODE_SBM2 );
831 restart_asm_activities( LFR_MODE_SBM2 );
832 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
832 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
833 break;
833 break;
834 case LFR_MODE_BURST:
834 case LFR_MODE_BURST:
835 status = stop_current_mode(); // stop the current mode
835 status = stop_current_mode(); // stop the current mode
836 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
836 status = restart_science_tasks( LFR_MODE_SBM2 ); // restart the science tasks
837 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
837 if (status == RTEMS_SUCCESSFUL) // relaunch spectral_matrix and waveform_picker modules
838 {
838 {
839 launch_spectral_matrix( );
839 launch_spectral_matrix( );
840 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
840 launch_waveform_picker( LFR_MODE_SBM2, transitionCoarseTime );
841 }
841 }
842 break;
842 break;
843 case LFR_MODE_SBM1:
843 case LFR_MODE_SBM1:
844 restart_asm_activities( LFR_MODE_SBM2 );
844 restart_asm_activities( LFR_MODE_SBM2 );
845 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
845 status = LFR_SUCCESSFUL; // lfrCurrentMode will be updated after the execution of close_action
846 break;
846 break;
847 default:
847 default:
848 break;
848 break;
849 }
849 }
850
850
851 if (status != RTEMS_SUCCESSFUL)
851 if (status != RTEMS_SUCCESSFUL)
852 {
852 {
853 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
853 PRINTF1("ERR *** in enter_mode_sbm2 *** status = %d\n", status)
854 status = RTEMS_UNSATISFIED;
854 status = RTEMS_UNSATISFIED;
855 }
855 }
856
856
857 return status;
857 return status;
858 }
858 }
859
859
860 int restart_science_tasks( unsigned char lfrRequestedMode )
860 int restart_science_tasks( unsigned char lfrRequestedMode )
861 {
861 {
862 /** This function is used to restart all science tasks.
862 /** This function is used to restart all science tasks.
863 *
863 *
864 * @return RTEMS directive status codes:
864 * @return RTEMS directive status codes:
865 * - RTEMS_SUCCESSFUL - task restarted successfully
865 * - RTEMS_SUCCESSFUL - task restarted successfully
866 * - RTEMS_INVALID_ID - task id invalid
866 * - RTEMS_INVALID_ID - task id invalid
867 * - RTEMS_INCORRECT_STATE - task never started
867 * - RTEMS_INCORRECT_STATE - task never started
868 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
868 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
869 *
869 *
870 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
870 * Science tasks are AVF0, PRC0, WFRM, CWF3, CW2, CWF1
871 *
871 *
872 */
872 */
873
873
874 rtems_status_code status[10];
874 rtems_status_code status[10];
875 rtems_status_code ret;
875 rtems_status_code ret;
876
876
877 ret = RTEMS_SUCCESSFUL;
877 ret = RTEMS_SUCCESSFUL;
878
878
879 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
879 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
880 if (status[0] != RTEMS_SUCCESSFUL)
880 if (status[0] != RTEMS_SUCCESSFUL)
881 {
881 {
882 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
882 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
883 }
883 }
884
884
885 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
885 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
886 if (status[1] != RTEMS_SUCCESSFUL)
886 if (status[1] != RTEMS_SUCCESSFUL)
887 {
887 {
888 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
888 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
889 }
889 }
890
890
891 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
891 status[2] = rtems_task_restart( Task_id[TASKID_WFRM],1 );
892 if (status[2] != RTEMS_SUCCESSFUL)
892 if (status[2] != RTEMS_SUCCESSFUL)
893 {
893 {
894 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
894 PRINTF1("in restart_science_task *** WFRM ERR %d\n", status[2])
895 }
895 }
896
896
897 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
897 status[3] = rtems_task_restart( Task_id[TASKID_CWF3],1 );
898 if (status[3] != RTEMS_SUCCESSFUL)
898 if (status[3] != RTEMS_SUCCESSFUL)
899 {
899 {
900 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
900 PRINTF1("in restart_science_task *** CWF3 ERR %d\n", status[3])
901 }
901 }
902
902
903 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
903 status[4] = rtems_task_restart( Task_id[TASKID_CWF2],1 );
904 if (status[4] != RTEMS_SUCCESSFUL)
904 if (status[4] != RTEMS_SUCCESSFUL)
905 {
905 {
906 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
906 PRINTF1("in restart_science_task *** CWF2 ERR %d\n", status[4])
907 }
907 }
908
908
909 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
909 status[5] = rtems_task_restart( Task_id[TASKID_CWF1],1 );
910 if (status[5] != RTEMS_SUCCESSFUL)
910 if (status[5] != RTEMS_SUCCESSFUL)
911 {
911 {
912 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
912 PRINTF1("in restart_science_task *** CWF1 ERR %d\n", status[5])
913 }
913 }
914
914
915 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
915 status[6] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
916 if (status[6] != RTEMS_SUCCESSFUL)
916 if (status[6] != RTEMS_SUCCESSFUL)
917 {
917 {
918 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
918 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[6])
919 }
919 }
920
920
921 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
921 status[7] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
922 if (status[7] != RTEMS_SUCCESSFUL)
922 if (status[7] != RTEMS_SUCCESSFUL)
923 {
923 {
924 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
924 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[7])
925 }
925 }
926
926
927 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
927 status[8] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
928 if (status[8] != RTEMS_SUCCESSFUL)
928 if (status[8] != RTEMS_SUCCESSFUL)
929 {
929 {
930 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
930 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[8])
931 }
931 }
932
932
933 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
933 status[9] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
934 if (status[9] != RTEMS_SUCCESSFUL)
934 if (status[9] != RTEMS_SUCCESSFUL)
935 {
935 {
936 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
936 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[9])
937 }
937 }
938
938
939 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
939 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
940 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
940 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
941 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
941 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) ||
942 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
942 (status[6] != RTEMS_SUCCESSFUL) || (status[7] != RTEMS_SUCCESSFUL) ||
943 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
943 (status[8] != RTEMS_SUCCESSFUL) || (status[9] != RTEMS_SUCCESSFUL) )
944 {
944 {
945 ret = RTEMS_UNSATISFIED;
945 ret = RTEMS_UNSATISFIED;
946 }
946 }
947
947
948 return ret;
948 return ret;
949 }
949 }
950
950
951 int restart_asm_tasks( unsigned char lfrRequestedMode )
951 int restart_asm_tasks( unsigned char lfrRequestedMode )
952 {
952 {
953 /** This function is used to restart average spectral matrices tasks.
953 /** This function is used to restart average spectral matrices tasks.
954 *
954 *
955 * @return RTEMS directive status codes:
955 * @return RTEMS directive status codes:
956 * - RTEMS_SUCCESSFUL - task restarted successfully
956 * - RTEMS_SUCCESSFUL - task restarted successfully
957 * - RTEMS_INVALID_ID - task id invalid
957 * - RTEMS_INVALID_ID - task id invalid
958 * - RTEMS_INCORRECT_STATE - task never started
958 * - RTEMS_INCORRECT_STATE - task never started
959 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
959 * - RTEMS_ILLEGAL_ON_REMOTE_OBJECT - cannot restart remote task
960 *
960 *
961 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
961 * ASM tasks are AVF0, PRC0, AVF1, PRC1, AVF2 and PRC2
962 *
962 *
963 */
963 */
964
964
965 rtems_status_code status[6];
965 rtems_status_code status[6];
966 rtems_status_code ret;
966 rtems_status_code ret;
967
967
968 ret = RTEMS_SUCCESSFUL;
968 ret = RTEMS_SUCCESSFUL;
969
969
970 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
970 status[0] = rtems_task_restart( Task_id[TASKID_AVF0], lfrRequestedMode );
971 if (status[0] != RTEMS_SUCCESSFUL)
971 if (status[0] != RTEMS_SUCCESSFUL)
972 {
972 {
973 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
973 PRINTF1("in restart_science_task *** AVF0 ERR %d\n", status[0])
974 }
974 }
975
975
976 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
976 status[1] = rtems_task_restart( Task_id[TASKID_PRC0], lfrRequestedMode );
977 if (status[1] != RTEMS_SUCCESSFUL)
977 if (status[1] != RTEMS_SUCCESSFUL)
978 {
978 {
979 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
979 PRINTF1("in restart_science_task *** PRC0 ERR %d\n", status[1])
980 }
980 }
981
981
982 status[2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
982 status[2] = rtems_task_restart( Task_id[TASKID_AVF1], lfrRequestedMode );
983 if (status[2] != RTEMS_SUCCESSFUL)
983 if (status[2] != RTEMS_SUCCESSFUL)
984 {
984 {
985 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[2])
985 PRINTF1("in restart_science_task *** AVF1 ERR %d\n", status[2])
986 }
986 }
987
987
988 status[3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
988 status[3] = rtems_task_restart( Task_id[TASKID_PRC1],lfrRequestedMode );
989 if (status[3] != RTEMS_SUCCESSFUL)
989 if (status[3] != RTEMS_SUCCESSFUL)
990 {
990 {
991 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[3])
991 PRINTF1("in restart_science_task *** PRC1 ERR %d\n", status[3])
992 }
992 }
993
993
994 status[4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
994 status[4] = rtems_task_restart( Task_id[TASKID_AVF2], 1 );
995 if (status[4] != RTEMS_SUCCESSFUL)
995 if (status[4] != RTEMS_SUCCESSFUL)
996 {
996 {
997 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[4])
997 PRINTF1("in restart_science_task *** AVF2 ERR %d\n", status[4])
998 }
998 }
999
999
1000 status[5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1000 status[5] = rtems_task_restart( Task_id[TASKID_PRC2], 1 );
1001 if (status[5] != RTEMS_SUCCESSFUL)
1001 if (status[5] != RTEMS_SUCCESSFUL)
1002 {
1002 {
1003 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[5])
1003 PRINTF1("in restart_science_task *** PRC2 ERR %d\n", status[5])
1004 }
1004 }
1005
1005
1006 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
1006 if ( (status[0] != RTEMS_SUCCESSFUL) || (status[1] != RTEMS_SUCCESSFUL) ||
1007 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
1007 (status[2] != RTEMS_SUCCESSFUL) || (status[3] != RTEMS_SUCCESSFUL) ||
1008 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
1008 (status[4] != RTEMS_SUCCESSFUL) || (status[5] != RTEMS_SUCCESSFUL) )
1009 {
1009 {
1010 ret = RTEMS_UNSATISFIED;
1010 ret = RTEMS_UNSATISFIED;
1011 }
1011 }
1012
1012
1013 return ret;
1013 return ret;
1014 }
1014 }
1015
1015
1016 int suspend_science_tasks( void )
1016 int suspend_science_tasks( void )
1017 {
1017 {
1018 /** This function suspends the science tasks.
1018 /** This function suspends the science tasks.
1019 *
1019 *
1020 * @return RTEMS directive status codes:
1020 * @return RTEMS directive status codes:
1021 * - RTEMS_SUCCESSFUL - task restarted successfully
1021 * - RTEMS_SUCCESSFUL - task restarted successfully
1022 * - RTEMS_INVALID_ID - task id invalid
1022 * - RTEMS_INVALID_ID - task id invalid
1023 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1023 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1024 *
1024 *
1025 */
1025 */
1026
1026
1027 rtems_status_code status;
1027 rtems_status_code status;
1028
1028
1029 PRINTF("in suspend_science_tasks\n")
1029 PRINTF("in suspend_science_tasks\n")
1030
1030
1031 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1031 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1032 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1032 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1033 {
1033 {
1034 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1034 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1035 }
1035 }
1036 else
1036 else
1037 {
1037 {
1038 status = RTEMS_SUCCESSFUL;
1038 status = RTEMS_SUCCESSFUL;
1039 }
1039 }
1040 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1040 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1041 {
1041 {
1042 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1042 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1043 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1043 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1044 {
1044 {
1045 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1045 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1046 }
1046 }
1047 else
1047 else
1048 {
1048 {
1049 status = RTEMS_SUCCESSFUL;
1049 status = RTEMS_SUCCESSFUL;
1050 }
1050 }
1051 }
1051 }
1052 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1052 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1053 {
1053 {
1054 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1054 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1055 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1055 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1056 {
1056 {
1057 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1057 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1058 }
1058 }
1059 else
1059 else
1060 {
1060 {
1061 status = RTEMS_SUCCESSFUL;
1061 status = RTEMS_SUCCESSFUL;
1062 }
1062 }
1063 }
1063 }
1064 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1064 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1065 {
1065 {
1066 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1066 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1067 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1067 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1068 {
1068 {
1069 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1069 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1070 }
1070 }
1071 else
1071 else
1072 {
1072 {
1073 status = RTEMS_SUCCESSFUL;
1073 status = RTEMS_SUCCESSFUL;
1074 }
1074 }
1075 }
1075 }
1076 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1076 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1077 {
1077 {
1078 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1078 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1079 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1079 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1080 {
1080 {
1081 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1081 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1082 }
1082 }
1083 else
1083 else
1084 {
1084 {
1085 status = RTEMS_SUCCESSFUL;
1085 status = RTEMS_SUCCESSFUL;
1086 }
1086 }
1087 }
1087 }
1088 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1088 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1089 {
1089 {
1090 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1090 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1091 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1091 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1092 {
1092 {
1093 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1093 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1094 }
1094 }
1095 else
1095 else
1096 {
1096 {
1097 status = RTEMS_SUCCESSFUL;
1097 status = RTEMS_SUCCESSFUL;
1098 }
1098 }
1099 }
1099 }
1100 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1100 if (status == RTEMS_SUCCESSFUL) // suspend WFRM
1101 {
1101 {
1102 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1102 status = rtems_task_suspend( Task_id[TASKID_WFRM] );
1103 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1103 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1104 {
1104 {
1105 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1105 PRINTF1("in suspend_science_task *** WFRM ERR %d\n", status)
1106 }
1106 }
1107 else
1107 else
1108 {
1108 {
1109 status = RTEMS_SUCCESSFUL;
1109 status = RTEMS_SUCCESSFUL;
1110 }
1110 }
1111 }
1111 }
1112 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1112 if (status == RTEMS_SUCCESSFUL) // suspend CWF3
1113 {
1113 {
1114 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1114 status = rtems_task_suspend( Task_id[TASKID_CWF3] );
1115 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1115 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1116 {
1116 {
1117 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1117 PRINTF1("in suspend_science_task *** CWF3 ERR %d\n", status)
1118 }
1118 }
1119 else
1119 else
1120 {
1120 {
1121 status = RTEMS_SUCCESSFUL;
1121 status = RTEMS_SUCCESSFUL;
1122 }
1122 }
1123 }
1123 }
1124 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1124 if (status == RTEMS_SUCCESSFUL) // suspend CWF2
1125 {
1125 {
1126 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1126 status = rtems_task_suspend( Task_id[TASKID_CWF2] );
1127 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1127 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1128 {
1128 {
1129 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1129 PRINTF1("in suspend_science_task *** CWF2 ERR %d\n", status)
1130 }
1130 }
1131 else
1131 else
1132 {
1132 {
1133 status = RTEMS_SUCCESSFUL;
1133 status = RTEMS_SUCCESSFUL;
1134 }
1134 }
1135 }
1135 }
1136 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1136 if (status == RTEMS_SUCCESSFUL) // suspend CWF1
1137 {
1137 {
1138 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1138 status = rtems_task_suspend( Task_id[TASKID_CWF1] );
1139 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1139 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1140 {
1140 {
1141 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1141 PRINTF1("in suspend_science_task *** CWF1 ERR %d\n", status)
1142 }
1142 }
1143 else
1143 else
1144 {
1144 {
1145 status = RTEMS_SUCCESSFUL;
1145 status = RTEMS_SUCCESSFUL;
1146 }
1146 }
1147 }
1147 }
1148
1148
1149 return status;
1149 return status;
1150 }
1150 }
1151
1151
1152 int suspend_asm_tasks( void )
1152 int suspend_asm_tasks( void )
1153 {
1153 {
1154 /** This function suspends the science tasks.
1154 /** This function suspends the science tasks.
1155 *
1155 *
1156 * @return RTEMS directive status codes:
1156 * @return RTEMS directive status codes:
1157 * - RTEMS_SUCCESSFUL - task restarted successfully
1157 * - RTEMS_SUCCESSFUL - task restarted successfully
1158 * - RTEMS_INVALID_ID - task id invalid
1158 * - RTEMS_INVALID_ID - task id invalid
1159 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1159 * - RTEMS_ALREADY_SUSPENDED - task already suspended
1160 *
1160 *
1161 */
1161 */
1162
1162
1163 rtems_status_code status;
1163 rtems_status_code status;
1164
1164
1165 PRINTF("in suspend_science_tasks\n")
1165 PRINTF("in suspend_science_tasks\n")
1166
1166
1167 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1167 status = rtems_task_suspend( Task_id[TASKID_AVF0] ); // suspend AVF0
1168 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1168 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1169 {
1169 {
1170 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1170 PRINTF1("in suspend_science_task *** AVF0 ERR %d\n", status)
1171 }
1171 }
1172 else
1172 else
1173 {
1173 {
1174 status = RTEMS_SUCCESSFUL;
1174 status = RTEMS_SUCCESSFUL;
1175 }
1175 }
1176
1176
1177 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1177 if (status == RTEMS_SUCCESSFUL) // suspend PRC0
1178 {
1178 {
1179 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1179 status = rtems_task_suspend( Task_id[TASKID_PRC0] );
1180 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1180 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1181 {
1181 {
1182 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1182 PRINTF1("in suspend_science_task *** PRC0 ERR %d\n", status)
1183 }
1183 }
1184 else
1184 else
1185 {
1185 {
1186 status = RTEMS_SUCCESSFUL;
1186 status = RTEMS_SUCCESSFUL;
1187 }
1187 }
1188 }
1188 }
1189
1189
1190 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1190 if (status == RTEMS_SUCCESSFUL) // suspend AVF1
1191 {
1191 {
1192 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1192 status = rtems_task_suspend( Task_id[TASKID_AVF1] );
1193 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1193 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1194 {
1194 {
1195 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1195 PRINTF1("in suspend_science_task *** AVF1 ERR %d\n", status)
1196 }
1196 }
1197 else
1197 else
1198 {
1198 {
1199 status = RTEMS_SUCCESSFUL;
1199 status = RTEMS_SUCCESSFUL;
1200 }
1200 }
1201 }
1201 }
1202
1202
1203 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1203 if (status == RTEMS_SUCCESSFUL) // suspend PRC1
1204 {
1204 {
1205 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1205 status = rtems_task_suspend( Task_id[TASKID_PRC1] );
1206 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1206 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1207 {
1207 {
1208 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1208 PRINTF1("in suspend_science_task *** PRC1 ERR %d\n", status)
1209 }
1209 }
1210 else
1210 else
1211 {
1211 {
1212 status = RTEMS_SUCCESSFUL;
1212 status = RTEMS_SUCCESSFUL;
1213 }
1213 }
1214 }
1214 }
1215
1215
1216 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1216 if (status == RTEMS_SUCCESSFUL) // suspend AVF2
1217 {
1217 {
1218 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1218 status = rtems_task_suspend( Task_id[TASKID_AVF2] );
1219 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1219 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1220 {
1220 {
1221 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1221 PRINTF1("in suspend_science_task *** AVF2 ERR %d\n", status)
1222 }
1222 }
1223 else
1223 else
1224 {
1224 {
1225 status = RTEMS_SUCCESSFUL;
1225 status = RTEMS_SUCCESSFUL;
1226 }
1226 }
1227 }
1227 }
1228
1228
1229 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1229 if (status == RTEMS_SUCCESSFUL) // suspend PRC2
1230 {
1230 {
1231 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1231 status = rtems_task_suspend( Task_id[TASKID_PRC2] );
1232 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1232 if ((status != RTEMS_SUCCESSFUL) && (status != RTEMS_ALREADY_SUSPENDED))
1233 {
1233 {
1234 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1234 PRINTF1("in suspend_science_task *** PRC2 ERR %d\n", status)
1235 }
1235 }
1236 else
1236 else
1237 {
1237 {
1238 status = RTEMS_SUCCESSFUL;
1238 status = RTEMS_SUCCESSFUL;
1239 }
1239 }
1240 }
1240 }
1241
1241
1242 return status;
1242 return status;
1243 }
1243 }
1244
1244
1245 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1245 void launch_waveform_picker( unsigned char mode, unsigned int transitionCoarseTime )
1246 {
1246 {
1247 WFP_reset_current_ring_nodes();
1247 WFP_reset_current_ring_nodes();
1248
1248
1249 reset_waveform_picker_regs();
1249 reset_waveform_picker_regs();
1250
1250
1251 set_wfp_burst_enable_register( mode );
1251 set_wfp_burst_enable_register( mode );
1252
1252
1253 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1253 LEON_Clear_interrupt( IRQ_WAVEFORM_PICKER );
1254 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1254 LEON_Unmask_interrupt( IRQ_WAVEFORM_PICKER );
1255
1255
1256 if (transitionCoarseTime == 0)
1256 if (transitionCoarseTime == 0)
1257 {
1257 {
1258 // instant transition means transition on the next valid date
1258 // instant transition means transition on the next valid date
1259 // this is mandatory to have a good snapshot period a a good correction of the snapshot period
1259 // this is mandatory to have a good snapshot period a a good correction of the snapshot period
1260 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1260 waveform_picker_regs->start_date = time_management_regs->coarse_time + 1;
1261 }
1261 }
1262 else
1262 else
1263 {
1263 {
1264 waveform_picker_regs->start_date = transitionCoarseTime;
1264 waveform_picker_regs->start_date = transitionCoarseTime;
1265 }
1265 }
1266
1266
1267 }
1267 }
1268
1268
1269 void launch_spectral_matrix( void )
1269 void launch_spectral_matrix( void )
1270 {
1270 {
1271 SM_reset_current_ring_nodes();
1271 SM_reset_current_ring_nodes();
1272
1272
1273 reset_spectral_matrix_regs();
1273 reset_spectral_matrix_regs();
1274
1274
1275 reset_nb_sm();
1275 reset_nb_sm();
1276
1276
1277 set_sm_irq_onNewMatrix( 1 );
1277 set_sm_irq_onNewMatrix( 1 );
1278
1278
1279 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1279 LEON_Clear_interrupt( IRQ_SPECTRAL_MATRIX );
1280 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1280 LEON_Unmask_interrupt( IRQ_SPECTRAL_MATRIX );
1281
1281
1282 }
1282 }
1283
1283
1284 void set_sm_irq_onNewMatrix( unsigned char value )
1284 void set_sm_irq_onNewMatrix( unsigned char value )
1285 {
1285 {
1286 if (value == 1)
1286 if (value == 1)
1287 {
1287 {
1288 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
1288 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x01;
1289 }
1289 }
1290 else
1290 else
1291 {
1291 {
1292 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
1292 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffe; // 1110
1293 }
1293 }
1294 }
1294 }
1295
1295
1296 void set_sm_irq_onError( unsigned char value )
1296 void set_sm_irq_onError( unsigned char value )
1297 {
1297 {
1298 if (value == 1)
1298 if (value == 1)
1299 {
1299 {
1300 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
1300 spectral_matrix_regs->config = spectral_matrix_regs->config | 0x02;
1301 }
1301 }
1302 else
1302 else
1303 {
1303 {
1304 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
1304 spectral_matrix_regs->config = spectral_matrix_regs->config & 0xfffffffd; // 1101
1305 }
1305 }
1306 }
1306 }
1307
1307
1308 //*****************************
1308 //*****************************
1309 // CONFIGURE CALIBRATION SIGNAL
1309 // CONFIGURE CALIBRATION SIGNAL
1310 void setCalibrationPrescaler( unsigned int prescaler )
1310 void setCalibrationPrescaler( unsigned int prescaler )
1311 {
1311 {
1312 // prescaling of the master clock (25 MHz)
1312 // prescaling of the master clock (25 MHz)
1313 // master clock is divided by 2^prescaler
1313 // master clock is divided by 2^prescaler
1314 time_management_regs->calPrescaler = prescaler;
1314 time_management_regs->calPrescaler = prescaler;
1315 }
1315 }
1316
1316
1317 void setCalibrationDivisor( unsigned int divisionFactor )
1317 void setCalibrationDivisor( unsigned int divisionFactor )
1318 {
1318 {
1319 // division of the prescaled clock by the division factor
1319 // division of the prescaled clock by the division factor
1320 time_management_regs->calDivisor = divisionFactor;
1320 time_management_regs->calDivisor = divisionFactor;
1321 }
1321 }
1322
1322
1323 void setCalibrationData( void ){
1323 void setCalibrationData( void ){
1324 unsigned int k;
1324 unsigned int k;
1325 unsigned short data;
1325 unsigned short data;
1326 float val;
1326 float val;
1327 float f0;
1327 float f0;
1328 float f1;
1328 float f1;
1329 float fs;
1329 float fs;
1330 float Ts;
1330 float Ts;
1331 float scaleFactor;
1331 float scaleFactor;
1332
1332
1333 f0 = 625;
1333 f0 = 625;
1334 f1 = 10000;
1334 f1 = 10000;
1335 fs = 160256.410;
1335 fs = 160256.410;
1336 Ts = 1. / fs;
1336 Ts = 1. / fs;
1337 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
1337 scaleFactor = 0.250 / 0.000654; // 191, 500 mVpp, 2 sinus waves => 500 mVpp each, amplitude = 250 mV
1338
1338
1339 time_management_regs->calDataPtr = 0x00;
1339 time_management_regs->calDataPtr = 0x00;
1340
1340
1341 // build the signal for the SCM calibration
1341 // build the signal for the SCM calibration
1342 for (k=0; k<256; k++)
1342 for (k=0; k<256; k++)
1343 {
1343 {
1344 val = sin( 2 * pi * f0 * k * Ts )
1344 val = sin( 2 * pi * f0 * k * Ts )
1345 + sin( 2 * pi * f1 * k * Ts );
1345 + sin( 2 * pi * f1 * k * Ts );
1346 data = (unsigned short) ((val * scaleFactor) + 2048);
1346 data = (unsigned short) ((val * scaleFactor) + 2048);
1347 time_management_regs->calData = data & 0xfff;
1347 time_management_regs->calData = data & 0xfff;
1348 }
1348 }
1349 }
1349 }
1350
1350
1351 void setCalibrationDataInterleaved( void ){
1351 void setCalibrationDataInterleaved( void ){
1352 unsigned int k;
1352 unsigned int k;
1353 float val;
1353 float val;
1354 float f0;
1354 float f0;
1355 float f1;
1355 float f1;
1356 float fs;
1356 float fs;
1357 float Ts;
1357 float Ts;
1358 unsigned short data[384];
1358 unsigned short data[384];
1359 unsigned char *dataPtr;
1359 unsigned char *dataPtr;
1360
1360
1361 f0 = 625;
1361 f0 = 625;
1362 f1 = 10000;
1362 f1 = 10000;
1363 fs = 240384.615;
1363 fs = 240384.615;
1364 Ts = 1. / fs;
1364 Ts = 1. / fs;
1365
1365
1366 time_management_regs->calDataPtr = 0x00;
1366 time_management_regs->calDataPtr = 0x00;
1367
1367
1368 // build the signal for the SCM calibration
1368 // build the signal for the SCM calibration
1369 for (k=0; k<384; k++)
1369 for (k=0; k<384; k++)
1370 {
1370 {
1371 val = sin( 2 * pi * f0 * k * Ts )
1371 val = sin( 2 * pi * f0 * k * Ts )
1372 + sin( 2 * pi * f1 * k * Ts );
1372 + sin( 2 * pi * f1 * k * Ts );
1373 data[k] = (unsigned short) (val * 512 + 2048);
1373 data[k] = (unsigned short) (val * 512 + 2048);
1374 }
1374 }
1375
1375
1376 // write the signal in interleaved mode
1376 // write the signal in interleaved mode
1377 for (k=0; k<128; k++)
1377 for (k=0; k<128; k++)
1378 {
1378 {
1379 dataPtr = (unsigned char*) &data[k*3 + 2];
1379 dataPtr = (unsigned char*) &data[k*3 + 2];
1380 time_management_regs->calData = (data[k*3] & 0xfff)
1380 time_management_regs->calData = (data[k*3] & 0xfff)
1381 + ( (dataPtr[0] & 0x3f) << 12);
1381 + ( (dataPtr[0] & 0x3f) << 12);
1382 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
1382 time_management_regs->calData = (data[k*3 + 1] & 0xfff)
1383 + ( (dataPtr[1] & 0x3f) << 12);
1383 + ( (dataPtr[1] & 0x3f) << 12);
1384 }
1384 }
1385 }
1385 }
1386
1386
1387 void setCalibrationReload( bool state)
1387 void setCalibrationReload( bool state)
1388 {
1388 {
1389 if (state == true)
1389 if (state == true)
1390 {
1390 {
1391 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
1391 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000010; // [0001 0000]
1392 }
1392 }
1393 else
1393 else
1394 {
1394 {
1395 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
1395 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffef; // [1110 1111]
1396 }
1396 }
1397 }
1397 }
1398
1398
1399 void setCalibrationEnable( bool state )
1399 void setCalibrationEnable( bool state )
1400 {
1400 {
1401 // this bit drives the multiplexer
1401 // this bit drives the multiplexer
1402 if (state == true)
1402 if (state == true)
1403 {
1403 {
1404 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
1404 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000040; // [0100 0000]
1405 }
1405 }
1406 else
1406 else
1407 {
1407 {
1408 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
1408 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffbf; // [1011 1111]
1409 }
1409 }
1410 }
1410 }
1411
1411
1412 void setCalibrationInterleaved( bool state )
1412 void setCalibrationInterleaved( bool state )
1413 {
1413 {
1414 // this bit drives the multiplexer
1414 // this bit drives the multiplexer
1415 if (state == true)
1415 if (state == true)
1416 {
1416 {
1417 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
1417 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl | 0x00000020; // [0010 0000]
1418 }
1418 }
1419 else
1419 else
1420 {
1420 {
1421 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
1421 time_management_regs->calDACCtrl = time_management_regs->calDACCtrl & 0xffffffdf; // [1101 1111]
1422 }
1422 }
1423 }
1423 }
1424
1424
1425 void setCalibration( bool state )
1425 void setCalibration( bool state )
1426 {
1426 {
1427 if (state == true)
1427 if (state == true)
1428 {
1428 {
1429 setCalibrationEnable( true );
1429 setCalibrationEnable( true );
1430 setCalibrationReload( false );
1430 setCalibrationReload( false );
1431 set_hk_lfr_calib_enable( true );
1431 set_hk_lfr_calib_enable( true );
1432 }
1432 }
1433 else
1433 else
1434 {
1434 {
1435 setCalibrationEnable( false );
1435 setCalibrationEnable( false );
1436 setCalibrationReload( true );
1436 setCalibrationReload( true );
1437 set_hk_lfr_calib_enable( false );
1437 set_hk_lfr_calib_enable( false );
1438 }
1438 }
1439 }
1439 }
1440
1440
1441 void configureCalibration( bool interleaved )
1441 void configureCalibration( bool interleaved )
1442 {
1442 {
1443 setCalibration( false );
1443 setCalibration( false );
1444 if ( interleaved == true )
1444 if ( interleaved == true )
1445 {
1445 {
1446 setCalibrationInterleaved( true );
1446 setCalibrationInterleaved( true );
1447 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1447 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1448 setCalibrationDivisor( 26 ); // => 240 384
1448 setCalibrationDivisor( 26 ); // => 240 384
1449 setCalibrationDataInterleaved();
1449 setCalibrationDataInterleaved();
1450 }
1450 }
1451 else
1451 else
1452 {
1452 {
1453 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1453 setCalibrationPrescaler( 0 ); // 25 MHz => 25 000 000
1454 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1454 setCalibrationDivisor( 38 ); // => 160 256 (39 - 1)
1455 setCalibrationData();
1455 setCalibrationData();
1456 }
1456 }
1457 }
1457 }
1458
1458
1459 //****************
1459 //****************
1460 // CLOSING ACTIONS
1460 // CLOSING ACTIONS
1461 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1461 void update_last_TC_exe( ccsdsTelecommandPacket_t *TC, unsigned char * time )
1462 {
1462 {
1463 /** This function is used to update the HK packets statistics after a successful TC execution.
1463 /** This function is used to update the HK packets statistics after a successful TC execution.
1464 *
1464 *
1465 * @param TC points to the TC being processed
1465 * @param TC points to the TC being processed
1466 * @param time is the time used to date the TC execution
1466 * @param time is the time used to date the TC execution
1467 *
1467 *
1468 */
1468 */
1469
1469
1470 unsigned int val;
1470 unsigned int val;
1471
1471
1472 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1472 housekeeping_packet.hk_lfr_last_exe_tc_id[0] = TC->packetID[0];
1473 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1473 housekeeping_packet.hk_lfr_last_exe_tc_id[1] = TC->packetID[1];
1474 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1474 housekeeping_packet.hk_lfr_last_exe_tc_type[0] = 0x00;
1475 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1475 housekeeping_packet.hk_lfr_last_exe_tc_type[1] = TC->serviceType;
1476 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1476 housekeeping_packet.hk_lfr_last_exe_tc_subtype[0] = 0x00;
1477 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1477 housekeeping_packet.hk_lfr_last_exe_tc_subtype[1] = TC->serviceSubType;
1478 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1478 housekeeping_packet.hk_lfr_last_exe_tc_time[0] = time[0];
1479 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1479 housekeeping_packet.hk_lfr_last_exe_tc_time[1] = time[1];
1480 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1480 housekeeping_packet.hk_lfr_last_exe_tc_time[2] = time[2];
1481 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1481 housekeeping_packet.hk_lfr_last_exe_tc_time[3] = time[3];
1482 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1482 housekeeping_packet.hk_lfr_last_exe_tc_time[4] = time[4];
1483 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1483 housekeeping_packet.hk_lfr_last_exe_tc_time[5] = time[5];
1484
1484
1485 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1485 val = housekeeping_packet.hk_lfr_exe_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_exe_tc_cnt[1];
1486 val++;
1486 val++;
1487 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1487 housekeeping_packet.hk_lfr_exe_tc_cnt[0] = (unsigned char) (val >> 8);
1488 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1488 housekeeping_packet.hk_lfr_exe_tc_cnt[1] = (unsigned char) (val);
1489 }
1489 }
1490
1490
1491 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1491 void update_last_TC_rej(ccsdsTelecommandPacket_t *TC, unsigned char * time )
1492 {
1492 {
1493 /** This function is used to update the HK packets statistics after a TC rejection.
1493 /** This function is used to update the HK packets statistics after a TC rejection.
1494 *
1494 *
1495 * @param TC points to the TC being processed
1495 * @param TC points to the TC being processed
1496 * @param time is the time used to date the TC rejection
1496 * @param time is the time used to date the TC rejection
1497 *
1497 *
1498 */
1498 */
1499
1499
1500 unsigned int val;
1500 unsigned int val;
1501
1501
1502 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1502 housekeeping_packet.hk_lfr_last_rej_tc_id[0] = TC->packetID[0];
1503 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1503 housekeeping_packet.hk_lfr_last_rej_tc_id[1] = TC->packetID[1];
1504 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1504 housekeeping_packet.hk_lfr_last_rej_tc_type[0] = 0x00;
1505 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1505 housekeeping_packet.hk_lfr_last_rej_tc_type[1] = TC->serviceType;
1506 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1506 housekeeping_packet.hk_lfr_last_rej_tc_subtype[0] = 0x00;
1507 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1507 housekeeping_packet.hk_lfr_last_rej_tc_subtype[1] = TC->serviceSubType;
1508 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1508 housekeeping_packet.hk_lfr_last_rej_tc_time[0] = time[0];
1509 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1509 housekeeping_packet.hk_lfr_last_rej_tc_time[1] = time[1];
1510 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1510 housekeeping_packet.hk_lfr_last_rej_tc_time[2] = time[2];
1511 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1511 housekeeping_packet.hk_lfr_last_rej_tc_time[3] = time[3];
1512 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1512 housekeeping_packet.hk_lfr_last_rej_tc_time[4] = time[4];
1513 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1513 housekeeping_packet.hk_lfr_last_rej_tc_time[5] = time[5];
1514
1514
1515 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1515 val = housekeeping_packet.hk_lfr_rej_tc_cnt[0] * 256 + housekeeping_packet.hk_lfr_rej_tc_cnt[1];
1516 val++;
1516 val++;
1517 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1517 housekeeping_packet.hk_lfr_rej_tc_cnt[0] = (unsigned char) (val >> 8);
1518 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1518 housekeeping_packet.hk_lfr_rej_tc_cnt[1] = (unsigned char) (val);
1519 }
1519 }
1520
1520
1521 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1521 void close_action(ccsdsTelecommandPacket_t *TC, int result, rtems_id queue_id )
1522 {
1522 {
1523 /** This function is the last step of the TC execution workflow.
1523 /** This function is the last step of the TC execution workflow.
1524 *
1524 *
1525 * @param TC points to the TC being processed
1525 * @param TC points to the TC being processed
1526 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1526 * @param result is the result of the TC execution (LFR_SUCCESSFUL / LFR_DEFAULT)
1527 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1527 * @param queue_id is the id of the RTEMS message queue used to send TM packets
1528 * @param time is the time used to date the TC execution
1528 * @param time is the time used to date the TC execution
1529 *
1529 *
1530 */
1530 */
1531
1531
1532 unsigned char requestedMode;
1532 unsigned char requestedMode;
1533
1533
1534 if (result == LFR_SUCCESSFUL)
1534 if (result == LFR_SUCCESSFUL)
1535 {
1535 {
1536 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1536 if ( !( (TC->serviceType==TC_TYPE_TIME) & (TC->serviceSubType==TC_SUBTYPE_UPDT_TIME) )
1537 &
1537 &
1538 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1538 !( (TC->serviceType==TC_TYPE_GEN) & (TC->serviceSubType==TC_SUBTYPE_UPDT_INFO))
1539 )
1539 )
1540 {
1540 {
1541 send_tm_lfr_tc_exe_success( TC, queue_id );
1541 send_tm_lfr_tc_exe_success( TC, queue_id );
1542 }
1542 }
1543 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1543 if ( (TC->serviceType == TC_TYPE_GEN) & (TC->serviceSubType == TC_SUBTYPE_ENTER) )
1544 {
1544 {
1545 //**********************************
1545 //**********************************
1546 // UPDATE THE LFRMODE LOCAL VARIABLE
1546 // UPDATE THE LFRMODE LOCAL VARIABLE
1547 requestedMode = TC->dataAndCRC[1];
1547 requestedMode = TC->dataAndCRC[1];
1548 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1548 housekeeping_packet.lfr_status_word[0] = (unsigned char) ((requestedMode << 4) + 0x0d);
1549 updateLFRCurrentMode();
1549 updateLFRCurrentMode();
1550 }
1550 }
1551 }
1551 }
1552 else if (result == LFR_EXE_ERROR)
1552 else if (result == LFR_EXE_ERROR)
1553 {
1553 {
1554 send_tm_lfr_tc_exe_error( TC, queue_id );
1554 send_tm_lfr_tc_exe_error( TC, queue_id );
1555 }
1555 }
1556 }
1556 }
1557
1557
1558 //***************************
1558 //***************************
1559 // Interrupt Service Routines
1559 // Interrupt Service Routines
1560 rtems_isr commutation_isr1( rtems_vector_number vector )
1560 rtems_isr commutation_isr1( rtems_vector_number vector )
1561 {
1561 {
1562 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1562 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1563 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1563 PRINTF("In commutation_isr1 *** Error sending event to DUMB\n")
1564 }
1564 }
1565 }
1565 }
1566
1566
1567 rtems_isr commutation_isr2( rtems_vector_number vector )
1567 rtems_isr commutation_isr2( rtems_vector_number vector )
1568 {
1568 {
1569 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1569 if (rtems_event_send( Task_id[TASKID_DUMB], RTEMS_EVENT_0 ) != RTEMS_SUCCESSFUL) {
1570 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1570 PRINTF("In commutation_isr2 *** Error sending event to DUMB\n")
1571 }
1571 }
1572 }
1572 }
1573
1573
1574 //****************
1574 //****************
1575 // OTHER FUNCTIONS
1575 // OTHER FUNCTIONS
1576 void updateLFRCurrentMode()
1576 void updateLFRCurrentMode()
1577 {
1577 {
1578 /** This function updates the value of the global variable lfrCurrentMode.
1578 /** This function updates the value of the global variable lfrCurrentMode.
1579 *
1579 *
1580 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1580 * lfrCurrentMode is a parameter used by several functions to know in which mode LFR is running.
1581 *
1581 *
1582 */
1582 */
1583 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1583 // update the local value of lfrCurrentMode with the value contained in the housekeeping_packet structure
1584 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1584 lfrCurrentMode = (housekeeping_packet.lfr_status_word[0] & 0xf0) >> 4;
1585 }
1585 }
1586
1586
1587 void set_lfr_soft_reset( unsigned char value )
1587 void set_lfr_soft_reset( unsigned char value )
1588 {
1588 {
1589 if (value == 1)
1589 if (value == 1)
1590 {
1590 {
1591 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1591 time_management_regs->ctrl = time_management_regs->ctrl | 0x00000004; // [0100]
1592 }
1592 }
1593 else
1593 else
1594 {
1594 {
1595 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1595 time_management_regs->ctrl = time_management_regs->ctrl & 0xfffffffb; // [1011]
1596 }
1596 }
1597 }
1597 }
1598
1598
1599 void reset_lfr( void )
1599 void reset_lfr( void )
1600 {
1600 {
1601 set_lfr_soft_reset( 1 );
1601 set_lfr_soft_reset( 1 );
1602
1602
1603 set_lfr_soft_reset( 0 );
1603 set_lfr_soft_reset( 0 );
1604
1604
1605 set_hk_lfr_sc_potential_flag( true );
1605 set_hk_lfr_sc_potential_flag( true );
1606 }
1606 }
General Comments 0
You need to be logged in to leave comments. Login now