##// END OF EJS Templates
Merge pull request 261 from SCIQLOP-Initialisation develop...
leroux -
r700:64ba0d56cf7e merge
parent child
Show More
@@ -77,7 +77,7 struct SortUtils {
77 77 for (auto i = 0, componentIndex = 0, permutationIndex = 0; i < containerSize;
78 78 ++i, componentIndex = i % nbValues, permutationIndex = i / nbValues) {
79 79 auto insertIndex = sortPermutation.at(permutationIndex) * nbValues + componentIndex;
80 sortedData.append(container.at(insertIndex));
80 sortedData.push_back(container.at(insertIndex));
81 81 }
82 82
83 83 return sortedData;
@@ -13,7 +13,7
13 13 template <int Dim>
14 14 class ArrayData;
15 15
16 using DataContainer = QVector<double>;
16 using DataContainer = std::vector<double>;
17 17
18 18 namespace arraydata_detail {
19 19
@@ -121,13 +121,11 public:
121 121 std::unique_ptr<ArrayDataIteratorValue::Impl> advance(int offset) const override
122 122 {
123 123 auto result = clone();
124 while (offset--) {
125 result->next();
126 }
124 result->next(offset);
127 125 return result;
128 126 }
129 127
130 void next() override { std::advance(m_It, m_NbComponents); }
128 void next(int offset) override { std::advance(m_It, offset * m_NbComponents); }
131 129 void prev() override { std::advance(m_It, -m_NbComponents); }
132 130
133 131 double at(int componentIndex) const override { return *(m_It + componentIndex); }
@@ -256,16 +254,7 public:
256 254 return;
257 255 }
258 256
259 if (prepend) {
260 auto otherDataSize = other.m_Data.size();
261 m_Data.insert(m_Data.begin(), otherDataSize, 0.);
262 for (auto i = 0; i < otherDataSize; ++i) {
263 m_Data.replace(i, other.m_Data.at(i));
264 }
265 }
266 else {
267 m_Data.append(other.m_Data);
268 }
257 insert(other.cbegin(), other.cend(), prepend);
269 258 }
270 259
271 260 void clear()
@@ -332,16 +321,16 public:
332 321 }
333 322 }
334 323
335 /// Inserts at the end of the array data the values passed as a parameter. This
336 /// method is intended to be used in the context of generating a back insert iterator, or only
337 /// if it's ensured that the total size of the vector is consistent with the number of
338 /// components of the array data
339 /// @param values the values to insert
340 /// @sa http://en.cppreference.com/w/cpp/iterator/back_inserter
341 void push_back(const QVector<double> &values)
324 void insert(ArrayDataIterator first, ArrayDataIterator last, bool prepend = false)
342 325 {
343 Q_ASSERT(values.size() % m_NbComponents == 0);
344 m_Data.append(values);
326 auto firstImpl = dynamic_cast<arraydata_detail::IteratorValue<Dim, true> *>(first->impl());
327 auto lastImpl = dynamic_cast<arraydata_detail::IteratorValue<Dim, true> *>(last->impl());
328
329 if (firstImpl && lastImpl) {
330 auto insertIt = prepend ? m_Data.begin() : m_Data.end();
331
332 m_Data.insert(insertIt, firstImpl->m_It, lastImpl->m_It);
333 }
345 334 }
346 335
347 336 /**
@@ -363,9 +352,8 public:
363 352 * @remarks this method is only available for a unidimensional ArrayData
364 353 */
365 354 template <int D = Dim, typename = std::enable_if_t<D == 1> >
366 const QVector<double> &cdata() const noexcept
355 DataContainer cdata() const noexcept
367 356 {
368 QReadLocker locker{&m_Lock};
369 357 return m_Data;
370 358 }
371 359
@@ -23,7 +23,7 public:
23 23 virtual bool equals(const Impl &other) const = 0;
24 24 virtual bool lowerThan(const Impl &other) const = 0;
25 25 virtual std::unique_ptr<Impl> advance(int offset) const = 0;
26 virtual void next() = 0;
26 virtual void next(int offset) = 0;
27 27 virtual void prev() = 0;
28 28 virtual double at(int componentIndex) const = 0;
29 29 virtual double first() const = 0;
@@ -44,7 +44,7 public:
44 44
45 45 ArrayDataIteratorValue advance(int offset) const;
46 46 /// Advances to the next value
47 void next();
47 void next(int offset = 1);
48 48 /// Moves back to the previous value
49 49 void prev();
50 50 /// Gets value of a specified component
@@ -81,16 +81,14 public:
81 81 std::unique_ptr<DataSeriesIteratorValue::Impl> advance(int offset) const override
82 82 {
83 83 auto result = clone();
84 while (offset--) {
85 result->next();
86 }
84 result->next(offset);
87 85 return result;
88 86 }
89 87
90 void next() override
88 void next(int offset) override
91 89 {
92 ++m_XIt;
93 ++m_ValuesIt;
90 m_XIt->next(offset);
91 m_ValuesIt->next(offset);
94 92 }
95 93
96 94 void prev() override
@@ -134,10 +132,6 class SCIQLOP_CORE_EXPORT DataSeries : public IDataSeries {
134 132 friend class DataSeriesMergeHelper;
135 133
136 134 public:
137 /// Tag needed to define the push_back() method
138 /// @sa push_back()
139 using value_type = DataSeriesIteratorValue;
140
141 135 /// @sa IDataSeries::xAxisData()
142 136 std::shared_ptr<ArrayData<1> > xAxisData() override { return m_XAxisData; }
143 137 const std::shared_ptr<ArrayData<1> > xAxisData() const { return m_XAxisData; }
@@ -155,8 +149,8 public:
155 149
156 150 SqpRange range() const override
157 151 {
158 if (!m_XAxisData->cdata().isEmpty()) {
159 return SqpRange{m_XAxisData->cdata().first(), m_XAxisData->cdata().last()};
152 if (!m_XAxisData->cdata().empty()) {
153 return SqpRange{m_XAxisData->cdata().front(), m_XAxisData->cdata().back()};
160 154 }
161 155
162 156 return SqpRange{};
@@ -254,6 +248,17 public:
254 248 }
255 249 }
256 250
251 void insert(DataSeriesIterator first, DataSeriesIterator last, bool prepend = false)
252 {
253 auto firstImpl = dynamic_cast<dataseries_detail::IteratorValue<Dim, true> *>(first->impl());
254 auto lastImpl = dynamic_cast<dataseries_detail::IteratorValue<Dim, true> *>(last->impl());
255
256 if (firstImpl && lastImpl) {
257 m_XAxisData->insert(firstImpl->m_XIt, lastImpl->m_XIt, prepend);
258 m_ValuesData->insert(firstImpl->m_ValuesIt, lastImpl->m_ValuesIt, prepend);
259 }
260 }
261
257 262 /// @sa IDataSeries::minXAxisData()
258 263 DataSeriesIterator minXAxisData(double minXAxisData) const override
259 264 {
@@ -287,7 +292,7 public:
287 292 begin, end, minXAxisData,
288 293 [](const auto &itValue, const auto &value) { return itValue.x() < value; });
289 294 auto upperIt = std::upper_bound(
290 begin, end, maxXAxisData,
295 lowerIt, end, maxXAxisData,
291 296 [](const auto &value, const auto &itValue) { return value < itValue.x(); });
292 297
293 298 return std::make_pair(lowerIt, upperIt);
@@ -327,22 +332,6 public:
327 332 virtual void lockWrite() { m_Lock.lockForWrite(); }
328 333 virtual void unlock() { m_Lock.unlock(); }
329 334
330 // ///// //
331 // Other //
332 // ///// //
333
334 /// Inserts at the end of the data series the value of the iterator passed as a parameter. This
335 /// method is intended to be used in the context of generating a back insert iterator
336 /// @param iteratorValue the iterator value containing the values to insert
337 /// @sa http://en.cppreference.com/w/cpp/iterator/back_inserter
338 /// @sa merge()
339 /// @sa value_type
340 void push_back(const value_type &iteratorValue)
341 {
342 m_XAxisData->push_back(QVector<double>{iteratorValue.x()});
343 m_ValuesData->push_back(iteratorValue.values());
344 }
345
346 335 protected:
347 336 /// Protected ctor (DataSeries is abstract). The vectors must have the same size, otherwise a
348 337 /// DataSeries with no values will be created.
@@ -24,7 +24,7 public:
24 24 virtual bool equals(const Impl &other) const = 0;
25 25 virtual bool lowerThan(const Impl &other) const = 0;
26 26 virtual std::unique_ptr<Impl> advance(int offset) const = 0;
27 virtual void next() = 0;
27 virtual void next(int offset) = 0;
28 28 virtual void prev() = 0;
29 29 virtual double x() const = 0;
30 30 virtual double value() const = 0;
@@ -46,7 +46,7 public:
46 46
47 47 DataSeriesIteratorValue advance(int offset) const;
48 48 /// Advances to the next value
49 void next();
49 void next(int offset = 1);
50 50 /// Moves back to the previous value
51 51 void prev();
52 52 /// Gets x-axis data
@@ -27,45 +27,6 MergeScope<FEnd> scope(FEnd end)
27 27 return MergeScope<FEnd>{end};
28 28 }
29 29
30 /**
31 * Enum used to position a data series relative to another during a merge operation
32 */
33 enum class MergePosition { LOWER_THAN, GREATER_THAN, EQUAL, OVERLAP };
34
35 /**
36 * Computes the position of the first data series relative to the second data series
37 * @param lhs the first data series
38 * @param rhs the second data series
39 * @return the merge position computed
40 * @remarks the data series must not be empty
41 */
42 template <int Dim>
43 MergePosition mergePosition(DataSeries<Dim> &lhs, DataSeries<Dim> &rhs)
44 {
45 Q_ASSERT(!lhs.isEmpty() && !rhs.isEmpty());
46
47 // Case lhs < rhs
48 auto lhsLast = --lhs.cend();
49 auto rhsFirst = rhs.cbegin();
50 if (lhsLast->x() < rhsFirst->x()) {
51 return MergePosition::LOWER_THAN;
52 }
53
54 // Case lhs > rhs
55 auto lhsFirst = lhs.cbegin();
56 auto rhsLast = --rhs.cend();
57 if (lhsFirst->x() > rhsLast->x()) {
58 return MergePosition::GREATER_THAN;
59 }
60
61 // Other cases
62 auto equal = std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend(),
63 [](const auto &it1, const auto &it2) {
64 return it1.x() == it2.x() && it1.values() == it2.values();
65 });
66 return equal ? MergePosition::EQUAL : MergePosition::OVERLAP;
67 }
68
69 30 } // namespace detail
70 31
71 32
@@ -92,40 +53,30 struct DataSeriesMergeHelper {
92 53 return;
93 54 }
94 55
95 // Gets the position of the source in relation to the destination
96 auto sourcePosition = detail::mergePosition(source, dest);
56 auto destMin = dest.cbegin()->x();
57 auto destMax = (--dest.cend())->x();
58
59 auto sourceBegin = source.cbegin();
60 auto sourceEnd = source.cend();
61 auto sourceMin = sourceBegin->x();
62 auto sourceMax = (--source.cend())->x();
97 63
98 switch (sourcePosition) {
99 case detail::MergePosition::LOWER_THAN:
100 case detail::MergePosition::GREATER_THAN: {
101 auto prepend = sourcePosition == detail::MergePosition::LOWER_THAN;
102 dest.m_XAxisData->add(*source.m_XAxisData, prepend);
103 dest.m_ValuesData->add(*source.m_ValuesData, prepend);
104 break;
105 }
106 case detail::MergePosition::EQUAL:
107 // the data series equal each other : no merge made
108 break;
109 case detail::MergePosition::OVERLAP: {
110 // the two data series overlap : merge is made
111 auto temp = dest.clone();
112 if (auto tempSeries = dynamic_cast<DataSeries<Dim> *>(temp.get())) {
113 // Makes the merge :
114 // - Data are sorted by x-axis values
115 // - If two entries are in the source range and the other range, only one entry
116 // is retained as result
117 // - The results are stored directly in the data series
118 dest.clear();
119 std::set_union(
120 tempSeries->cbegin(), tempSeries->cend(), source.cbegin(), source.cend(),
121 std::back_inserter(dest),
122 [](const auto &it1, const auto &it2) { return it1.x() < it2.x(); });
123 }
124 break;
125 }
126 default:
127 Q_ASSERT(false);
64 // Case : source bounds are inside dest bounds -> no merge is made
65 if (sourceMin >= destMin && sourceMax <= destMax) {
66 return;
128 67 }
68
69 // Default case :
70 // - prepend to dest the values of source that are lower than min value of dest
71 // - append to dest the values of source that are greater than max value of dest
72 auto lowerIt
73 = std::lower_bound(sourceBegin, sourceEnd, destMin,
74 [](const auto &it, const auto &val) { return it.x() < val; });
75 auto upperIt
76 = std::upper_bound(lowerIt, sourceEnd, destMax,
77 [](const auto &val, const auto &it) { return val < it.x(); });
78 dest.insert(sourceBegin, lowerIt, true);
79 dest.insert(upperIt, sourceEnd);
129 80 }
130 81 };
131 82
@@ -16,7 +16,7 public:
16 16 * @param xAxisData x-axis data
17 17 * @param valuesData values data
18 18 */
19 explicit ScalarSeries(QVector<double> xAxisData, QVector<double> valuesData,
19 explicit ScalarSeries(std::vector<double> xAxisData, std::vector<double> valuesData,
20 20 const Unit &xAxisUnit, const Unit &valuesUnit);
21 21
22 22 std::unique_ptr<IDataSeries> clone() const override;
@@ -52,9 +52,7 public:
52 52 SqpIterator &operator+=(int offset)
53 53 {
54 54 if (offset >= 0) {
55 while (offset--) {
56 m_CurrentValue.next();
57 }
55 m_CurrentValue.next(offset);
58 56 }
59 57 else {
60 58 while (offset++) {
@@ -18,12 +18,12 public:
18 18 * @param yvaluesData y-values data
19 19 * @param zvaluesData z-values data
20 20 */
21 explicit VectorSeries(QVector<double> xAxisData, QVector<double> xValuesData,
22 QVector<double> yValuesData, QVector<double> zValuesData,
21 explicit VectorSeries(std::vector<double> xAxisData, std::vector<double> xValuesData,
22 std::vector<double> yValuesData, std::vector<double> zValuesData,
23 23 const Unit &xAxisUnit, const Unit &valuesUnit);
24 24
25 25 /// Default Ctor
26 explicit VectorSeries(QVector<double> xAxisData, QVector<double> valuesData,
26 explicit VectorSeries(std::vector<double> xAxisData, std::vector<double> valuesData,
27 27 const Unit &xAxisUnit, const Unit &valuesUnit);
28 28
29 29 std::unique_ptr<IDataSeries> clone() const;
@@ -36,9 +36,9 ArrayDataIteratorValue ArrayDataIteratorValue::advance(int offset) const
36 36 return ArrayDataIteratorValue{m_Impl->advance(offset)};
37 37 }
38 38
39 void ArrayDataIteratorValue::next()
39 void ArrayDataIteratorValue::next(int offset)
40 40 {
41 m_Impl->next();
41 m_Impl->next(offset);
42 42 }
43 43
44 44 void ArrayDataIteratorValue::prev()
@@ -38,9 +38,9 DataSeriesIteratorValue DataSeriesIteratorValue::advance(int offset) const
38 38 return DataSeriesIteratorValue{m_Impl->advance(offset)};
39 39 }
40 40
41 void DataSeriesIteratorValue::next()
41 void DataSeriesIteratorValue::next(int offset)
42 42 {
43 m_Impl->next();
43 m_Impl->next(offset);
44 44 }
45 45
46 46 void DataSeriesIteratorValue::prev()
@@ -1,6 +1,6
1 1 #include <Data/ScalarSeries.h>
2 2
3 ScalarSeries::ScalarSeries(QVector<double> xAxisData, QVector<double> valuesData,
3 ScalarSeries::ScalarSeries(std::vector<double> xAxisData, std::vector<double> valuesData,
4 4 const Unit &xAxisUnit, const Unit &valuesUnit)
5 5 : DataSeries{std::make_shared<ArrayData<1> >(std::move(xAxisData)), xAxisUnit,
6 6 std::make_shared<ArrayData<1> >(std::move(valuesData)), valuesUnit}
@@ -14,18 +14,18 std::unique_ptr<IDataSeries> ScalarSeries::clone() const
14 14
15 15 std::shared_ptr<IDataSeries> ScalarSeries::subDataSeries(const SqpRange &range)
16 16 {
17 auto subXAxisData = QVector<double>();
18 auto subValuesData = QVector<double>();
17 auto subXAxisData = std::vector<double>();
18 auto subValuesData = std::vector<double>();
19 19 this->lockRead();
20 20 {
21 21 auto bounds = xAxisRange(range.m_TStart, range.m_TEnd);
22 22 for (auto it = bounds.first; it != bounds.second; ++it) {
23 subXAxisData.append(it->x());
24 subValuesData.append(it->value());
23 subXAxisData.push_back(it->x());
24 subValuesData.push_back(it->value());
25 25 }
26 26 }
27 27 this->unlock();
28 28
29 return std::make_shared<ScalarSeries>(subXAxisData, subValuesData, this->xAxisUnit(),
30 this->valuesUnit());
29 return std::make_shared<ScalarSeries>(std::move(subXAxisData), std::move(subValuesData),
30 this->xAxisUnit(), this->valuesUnit());
31 31 }
@@ -19,18 +19,22 namespace {
19 19 * @remarks the three components are consumed
20 20 * @sa ArrayData
21 21 */
22 QVector<double> flatten(QVector<double> xValues, QVector<double> yValues, QVector<double> zValues)
22 std::vector<double> flatten(std::vector<double> xValues, std::vector<double> yValues,
23 std::vector<double> zValues)
23 24 {
24 25 if (xValues.size() != yValues.size() || xValues.size() != zValues.size()) {
25 26 /// @todo ALX : log
26 27 return {};
27 28 }
28 29
29 auto result = QVector<double>{};
30 auto result = std::vector<double>();
30 31 result.reserve(xValues.size() * 3);
31 32
32 while (!xValues.isEmpty()) {
33 result.append({xValues.takeFirst(), yValues.takeFirst(), zValues.takeFirst()});
33 while (!xValues.empty()) {
34 result.insert(result.cend(), {xValues.front(), yValues.front(), zValues.front()});
35 xValues.erase(xValues.begin());
36 yValues.erase(yValues.begin());
37 zValues.erase(zValues.begin());
34 38 }
35 39
36 40 return result;
@@ -38,8 +42,8 QVector<double> flatten(QVector<double> xValues, QVector<double> yValues, QVecto
38 42
39 43 } // namespace
40 44
41 VectorSeries::VectorSeries(QVector<double> xAxisData, QVector<double> xValuesData,
42 QVector<double> yValuesData, QVector<double> zValuesData,
45 VectorSeries::VectorSeries(std::vector<double> xAxisData, std::vector<double> xValuesData,
46 std::vector<double> yValuesData, std::vector<double> zValuesData,
43 47 const Unit &xAxisUnit, const Unit &valuesUnit)
44 48 : VectorSeries{std::move(xAxisData), flatten(std::move(xValuesData), std::move(yValuesData),
45 49 std::move(zValuesData)),
@@ -47,7 +51,7 VectorSeries::VectorSeries(QVector<double> xAxisData, QVector<double> xValuesDat
47 51 {
48 52 }
49 53
50 VectorSeries::VectorSeries(QVector<double> xAxisData, QVector<double> valuesData,
54 VectorSeries::VectorSeries(std::vector<double> xAxisData, std::vector<double> valuesData,
51 55 const Unit &xAxisUnit, const Unit &valuesUnit)
52 56 : DataSeries{std::make_shared<ArrayData<1> >(std::move(xAxisData)), xAxisUnit,
53 57 std::make_shared<ArrayData<2> >(std::move(valuesData), 3), valuesUnit}
@@ -61,23 +65,24 std::unique_ptr<IDataSeries> VectorSeries::clone() const
61 65
62 66 std::shared_ptr<IDataSeries> VectorSeries::subDataSeries(const SqpRange &range)
63 67 {
64 auto subXAxisData = QVector<double>();
65 auto subXValuesData = QVector<double>();
66 auto subYValuesData = QVector<double>();
67 auto subZValuesData = QVector<double>();
68 auto subXAxisData = std::vector<double>();
69 auto subXValuesData = std::vector<double>();
70 auto subYValuesData = std::vector<double>();
71 auto subZValuesData = std::vector<double>();
68 72
69 73 this->lockRead();
70 74 {
71 75 auto bounds = xAxisRange(range.m_TStart, range.m_TEnd);
72 76 for (auto it = bounds.first; it != bounds.second; ++it) {
73 subXAxisData.append(it->x());
74 subXValuesData.append(it->value(0));
75 subYValuesData.append(it->value(1));
76 subZValuesData.append(it->value(2));
77 subXAxisData.push_back(it->x());
78 subXValuesData.push_back(it->value(0));
79 subYValuesData.push_back(it->value(1));
80 subZValuesData.push_back(it->value(2));
77 81 }
78 82 }
79 83 this->unlock();
80 84
81 return std::make_shared<VectorSeries>(subXAxisData, subXValuesData, subYValuesData,
82 subZValuesData, this->xAxisUnit(), this->valuesUnit());
85 return std::make_shared<VectorSeries>(std::move(subXAxisData), std::move(subXValuesData),
86 std::move(subYValuesData), std::move(subZValuesData),
87 this->xAxisUnit(), this->valuesUnit());
83 88 }
@@ -12,8 +12,10 Q_DECLARE_METATYPE(std::shared_ptr<VectorSeries>)
12 12
13 13 namespace {
14 14
15 void validateRange(DataSeriesIterator first, DataSeriesIterator last, const QVector<double> &xData,
16 const QVector<double> &valuesData)
15 using DataContainer = std::vector<double>;
16
17 void validateRange(DataSeriesIterator first, DataSeriesIterator last, const DataContainer &xData,
18 const DataContainer &valuesData)
17 19 {
18 20 QVERIFY(std::equal(first, last, xData.cbegin(), xData.cend(),
19 21 [](const auto &it, const auto &expectedX) { return it.x() == expectedX; }));
@@ -22,8 +24,8 void validateRange(DataSeriesIterator first, DataSeriesIterator last, const QVec
22 24 [](const auto &it, const auto &expectedVal) { return it.value() == expectedVal; }));
23 25 }
24 26
25 void validateRange(DataSeriesIterator first, DataSeriesIterator last, const QVector<double> &xData,
26 const QVector<QVector<double> > &valuesData)
27 void validateRange(DataSeriesIterator first, DataSeriesIterator last, const DataContainer &xData,
28 const std::vector<DataContainer> &valuesData)
27 29 {
28 30 QVERIFY(std::equal(first, last, xData.cbegin(), xData.cend(),
29 31 [](const auto &it, const auto &expectedX) { return it.x() == expectedX; }));
@@ -102,8 +104,8 private:
102 104 QTest::addColumn<double>("max");
103 105
104 106 // Expected values after purge
105 QTest::addColumn<QVector<double> >("expectedXAxisData");
106 QTest::addColumn<QVector<QVector<double> > >("expectedValuesData");
107 QTest::addColumn<DataContainer>("expectedXAxisData");
108 QTest::addColumn<std::vector<DataContainer> >("expectedValuesData");
107 109 }
108 110
109 111 template <typename T>
@@ -116,8 +118,8 private:
116 118 dataSeries->purge(min, max);
117 119
118 120 // Validates results
119 QFETCH(QVector<double>, expectedXAxisData);
120 QFETCH(QVector<QVector<double> >, expectedValuesData);
121 QFETCH(DataContainer, expectedXAxisData);
122 QFETCH(std::vector<DataContainer>, expectedValuesData);
121 123
122 124 validateRange(dataSeries->cbegin(), dataSeries->cend(), expectedXAxisData,
123 125 expectedValuesData);
@@ -196,67 +198,65 void TestDataSeries::testCtor_data()
196 198 // ////////////// //
197 199
198 200 // x-axis data
199 QTest::addColumn<QVector<double> >("xAxisData");
201 QTest::addColumn<DataContainer>("xAxisData");
200 202 // values data
201 QTest::addColumn<QVector<double> >("valuesData");
203 QTest::addColumn<DataContainer>("valuesData");
202 204
203 205 // expected x-axis data
204 QTest::addColumn<QVector<double> >("expectedXAxisData");
206 QTest::addColumn<DataContainer>("expectedXAxisData");
205 207 // expected values data
206 QTest::addColumn<QVector<double> >("expectedValuesData");
208 QTest::addColumn<DataContainer>("expectedValuesData");
207 209
208 210 // ////////// //
209 211 // Test cases //
210 212 // ////////// //
211 213
212 214 QTest::newRow("invalidData (different sizes of vectors)")
213 << QVector<double>{1., 2., 3., 4., 5.} << QVector<double>{100., 200., 300.}
214 << QVector<double>{} << QVector<double>{};
215 << DataContainer{1., 2., 3., 4., 5.} << DataContainer{100., 200., 300.} << DataContainer{}
216 << DataContainer{};
215 217
216 QTest::newRow("sortedData") << QVector<double>{1., 2., 3., 4., 5.}
217 << QVector<double>{100., 200., 300., 400., 500.}
218 << QVector<double>{1., 2., 3., 4., 5.}
219 << QVector<double>{100., 200., 300., 400., 500.};
218 QTest::newRow("sortedData") << DataContainer{1., 2., 3., 4., 5.}
219 << DataContainer{100., 200., 300., 400., 500.}
220 << DataContainer{1., 2., 3., 4., 5.}
221 << DataContainer{100., 200., 300., 400., 500.};
220 222
221 QTest::newRow("unsortedData") << QVector<double>{5., 4., 3., 2., 1.}
222 << QVector<double>{100., 200., 300., 400., 500.}
223 << QVector<double>{1., 2., 3., 4., 5.}
224 << QVector<double>{500., 400., 300., 200., 100.};
223 QTest::newRow("unsortedData") << DataContainer{5., 4., 3., 2., 1.}
224 << DataContainer{100., 200., 300., 400., 500.}
225 << DataContainer{1., 2., 3., 4., 5.}
226 << DataContainer{500., 400., 300., 200., 100.};
225 227
226 228 QTest::newRow("unsortedData2")
227 << QVector<double>{1., 4., 3., 5., 2.} << QVector<double>{100., 200., 300., 400., 500.}
228 << QVector<double>{1., 2., 3., 4., 5.} << QVector<double>{100., 500., 300., 200., 400.};
229 << DataContainer{1., 4., 3., 5., 2.} << DataContainer{100., 200., 300., 400., 500.}
230 << DataContainer{1., 2., 3., 4., 5.} << DataContainer{100., 500., 300., 200., 400.};
229 231 }
230 232
231 233 void TestDataSeries::testCtor()
232 234 {
233 235 // Creates series
234 QFETCH(QVector<double>, xAxisData);
235 QFETCH(QVector<double>, valuesData);
236 QFETCH(DataContainer, xAxisData);
237 QFETCH(DataContainer, valuesData);
236 238
237 239 auto series = std::make_shared<ScalarSeries>(std::move(xAxisData), std::move(valuesData),
238 240 Unit{}, Unit{});
239 241
240 242 // Validates results : we check that the data series is sorted on its x-axis data
241 QFETCH(QVector<double>, expectedXAxisData);
242 QFETCH(QVector<double>, expectedValuesData);
243 QFETCH(DataContainer, expectedXAxisData);
244 QFETCH(DataContainer, expectedValuesData);
243 245
244 246 validateRange(series->cbegin(), series->cend(), expectedXAxisData, expectedValuesData);
245 247 }
246 248
247 249 namespace {
248 250
249 std::shared_ptr<ScalarSeries> createScalarSeries(QVector<double> xAxisData,
250 QVector<double> valuesData)
251 std::shared_ptr<ScalarSeries> createScalarSeries(DataContainer xAxisData, DataContainer valuesData)
251 252 {
252 253 return std::make_shared<ScalarSeries>(std::move(xAxisData), std::move(valuesData), Unit{},
253 254 Unit{});
254 255 }
255 256
256 std::shared_ptr<VectorSeries> createVectorSeries(QVector<double> xAxisData,
257 QVector<double> xValuesData,
258 QVector<double> yValuesData,
259 QVector<double> zValuesData)
257 std::shared_ptr<VectorSeries> createVectorSeries(DataContainer xAxisData, DataContainer xValuesData,
258 DataContainer yValuesData,
259 DataContainer zValuesData)
260 260 {
261 261 return std::make_shared<VectorSeries>(std::move(xAxisData), std::move(xValuesData),
262 262 std::move(yValuesData), std::move(zValuesData), Unit{},
@@ -276,8 +276,8 void TestDataSeries::testMerge_data()
276 276 QTest::addColumn<std::shared_ptr<ScalarSeries> >("dataSeries2");
277 277
278 278 // Expected values in the first data series after merge
279 QTest::addColumn<QVector<double> >("expectedXAxisData");
280 QTest::addColumn<QVector<double> >("expectedValuesData");
279 QTest::addColumn<DataContainer>("expectedXAxisData");
280 QTest::addColumn<DataContainer>("expectedValuesData");
281 281
282 282 // ////////// //
283 283 // Test cases //
@@ -286,26 +286,25 void TestDataSeries::testMerge_data()
286 286 QTest::newRow("sortedMerge")
287 287 << createScalarSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
288 288 << createScalarSeries({6., 7., 8., 9., 10.}, {600., 700., 800., 900., 1000.})
289 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
290 << QVector<double>{100., 200., 300., 400., 500., 600., 700., 800., 900., 1000.};
289 << DataContainer{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
290 << DataContainer{100., 200., 300., 400., 500., 600., 700., 800., 900., 1000.};
291 291
292 292 QTest::newRow("unsortedMerge")
293 293 << createScalarSeries({6., 7., 8., 9., 10.}, {600., 700., 800., 900., 1000.})
294 294 << createScalarSeries({1., 2., 3., 4., 5.}, {100., 200., 300., 400., 500.})
295 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
296 << QVector<double>{100., 200., 300., 400., 500., 600., 700., 800., 900., 1000.};
295 << DataContainer{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
296 << DataContainer{100., 200., 300., 400., 500., 600., 700., 800., 900., 1000.};
297 297
298 QTest::newRow("unsortedMerge2")
299 << createScalarSeries({1., 2., 8., 9., 10}, {100., 200., 300., 400., 500.})
300 << createScalarSeries({3., 4., 5., 6., 7.}, {600., 700., 800., 900., 1000.})
301 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
302 << QVector<double>{100., 200., 600., 700., 800., 900., 1000., 300., 400., 500.};
298 QTest::newRow("unsortedMerge2 (merge not made because source is in the bounds of dest)")
299 << createScalarSeries({1., 2., 8., 9., 10}, {100., 200., 800., 900., 1000.})
300 << createScalarSeries({3., 4., 5., 6., 7.}, {300., 400., 500., 600., 700.})
301 << DataContainer{1., 2., 8., 9., 10.} << DataContainer{100., 200., 800., 900., 1000.};
303 302
304 303 QTest::newRow("unsortedMerge3")
305 << createScalarSeries({3., 5., 8., 7., 2}, {100., 200., 300., 400., 500.})
306 << createScalarSeries({6., 4., 9., 10., 1.}, {600., 700., 800., 900., 1000.})
307 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}
308 << QVector<double>{1000., 500., 100., 700., 200., 600., 400., 300., 800., 900.};
304 << createScalarSeries({3., 4., 5., 7., 8}, {300., 400., 500., 700., 800.})
305 << createScalarSeries({1., 2., 3., 7., 10.}, {100., 200., 333., 777., 1000.})
306 << DataContainer{1., 2., 3., 4., 5., 7., 8., 10.}
307 << DataContainer{100., 200., 300., 400., 500., 700., 800., 1000.};
309 308 }
310 309
311 310 void TestDataSeries::testMerge()
@@ -318,8 +317,8 void TestDataSeries::testMerge()
318 317
319 318 // Validates results : we check that the merge is valid and the data series is sorted on its
320 319 // x-axis data
321 QFETCH(QVector<double>, expectedXAxisData);
322 QFETCH(QVector<double>, expectedValuesData);
320 QFETCH(DataContainer, expectedXAxisData);
321 QFETCH(DataContainer, expectedValuesData);
323 322
324 323 validateRange(dataSeries->cbegin(), dataSeries->cend(), expectedXAxisData, expectedValuesData);
325 324 }
@@ -334,24 +333,23 void TestDataSeries::testPurgeScalar_data()
334 333
335 334 QTest::newRow("purgeScalar") << createScalarSeries({1., 2., 3., 4., 5.},
336 335 {100., 200., 300., 400., 500.})
337 << 2. << 4. << QVector<double>{2., 3., 4.}
338 << QVector<QVector<double> >{{200., 300., 400.}};
336 << 2. << 4. << DataContainer{2., 3., 4.}
337 << std::vector<DataContainer>{{200., 300., 400.}};
339 338 QTest::newRow("purgeScalar2") << createScalarSeries({1., 2., 3., 4., 5.},
340 339 {100., 200., 300., 400., 500.})
341 << 0. << 2.5 << QVector<double>{1., 2.}
342 << QVector<QVector<double> >{{100., 200.}};
340 << 0. << 2.5 << DataContainer{1., 2.}
341 << std::vector<DataContainer>{{100., 200.}};
343 342 QTest::newRow("purgeScalar3") << createScalarSeries({1., 2., 3., 4., 5.},
344 343 {100., 200., 300., 400., 500.})
345 << 3.5 << 7. << QVector<double>{4., 5.}
346 << QVector<QVector<double> >{{400., 500.}};
344 << 3.5 << 7. << DataContainer{4., 5.}
345 << std::vector<DataContainer>{{400., 500.}};
347 346 QTest::newRow("purgeScalar4") << createScalarSeries({1., 2., 3., 4., 5.},
348 347 {100., 200., 300., 400., 500.})
349 << 0. << 7. << QVector<double>{1., 2., 3., 4., 5.}
350 << QVector<QVector<double> >{{100., 200., 300., 400., 500.}};
348 << 0. << 7. << DataContainer{1., 2., 3., 4., 5.}
349 << std::vector<DataContainer>{{100., 200., 300., 400., 500.}};
351 350 QTest::newRow("purgeScalar5") << createScalarSeries({1., 2., 3., 4., 5.},
352 351 {100., 200., 300., 400., 500.})
353 << 5.5 << 7. << QVector<double>{}
354 << QVector<QVector<double> >{{}};
352 << 5.5 << 7. << DataContainer{} << std::vector<DataContainer>{{}};
355 353 }
356 354
357 355 void TestDataSeries::testPurgeScalar()
@@ -370,8 +368,8 void TestDataSeries::testPurgeVector_data()
370 368 QTest::newRow("purgeVector") << createVectorSeries({1., 2., 3., 4., 5.}, {6., 7., 8., 9., 10.},
371 369 {11., 12., 13., 14., 15.},
372 370 {16., 17., 18., 19., 20.})
373 << 2. << 4. << QVector<double>{2., 3., 4.}
374 << QVector<QVector<double> >{
371 << 2. << 4. << DataContainer{2., 3., 4.}
372 << std::vector<DataContainer>{
375 373 {7., 8., 9.}, {12., 13., 14.}, {17., 18., 19.}};
376 374 }
377 375
@@ -512,8 +510,8 void TestDataSeries::testXAxisRange_data()
512 510 QTest::addColumn<double>("max");
513 511
514 512 // Expected values
515 QTest::addColumn<QVector<double> >("expectedXAxisData");
516 QTest::addColumn<QVector<double> >("expectedValuesData");
513 QTest::addColumn<DataContainer>("expectedXAxisData");
514 QTest::addColumn<DataContainer>("expectedValuesData");
517 515
518 516 // ////////// //
519 517 // Test cases //
@@ -521,32 +519,32 void TestDataSeries::testXAxisRange_data()
521 519
522 520 QTest::newRow("xAxisRange1") << createScalarSeries({1., 2., 3., 4., 5.},
523 521 {100., 200., 300., 400., 500.})
524 << -1. << 3.2 << QVector<double>{1., 2., 3.}
525 << QVector<double>{100., 200., 300.};
522 << -1. << 3.2 << DataContainer{1., 2., 3.}
523 << DataContainer{100., 200., 300.};
526 524 QTest::newRow("xAxisRange2") << createScalarSeries({1., 2., 3., 4., 5.},
527 525 {100., 200., 300., 400., 500.})
528 << 1. << 4. << QVector<double>{1., 2., 3., 4.}
529 << QVector<double>{100., 200., 300., 400.};
526 << 1. << 4. << DataContainer{1., 2., 3., 4.}
527 << DataContainer{100., 200., 300., 400.};
530 528 QTest::newRow("xAxisRange3") << createScalarSeries({1., 2., 3., 4., 5.},
531 529 {100., 200., 300., 400., 500.})
532 << 1. << 3.9 << QVector<double>{1., 2., 3.}
533 << QVector<double>{100., 200., 300.};
530 << 1. << 3.9 << DataContainer{1., 2., 3.}
531 << DataContainer{100., 200., 300.};
534 532 QTest::newRow("xAxisRange4") << createScalarSeries({1., 2., 3., 4., 5.},
535 533 {100., 200., 300., 400., 500.})
536 << 0. << 0.9 << QVector<double>{} << QVector<double>{};
534 << 0. << 0.9 << DataContainer{} << DataContainer{};
537 535 QTest::newRow("xAxisRange5") << createScalarSeries({1., 2., 3., 4., 5.},
538 536 {100., 200., 300., 400., 500.})
539 << 0. << 1. << QVector<double>{1.} << QVector<double>{100.};
537 << 0. << 1. << DataContainer{1.} << DataContainer{100.};
540 538 QTest::newRow("xAxisRange6") << createScalarSeries({1., 2., 3., 4., 5.},
541 539 {100., 200., 300., 400., 500.})
542 << 2.1 << 6. << QVector<double>{3., 4., 5.}
543 << QVector<double>{300., 400., 500.};
540 << 2.1 << 6. << DataContainer{3., 4., 5.}
541 << DataContainer{300., 400., 500.};
544 542 QTest::newRow("xAxisRange7") << createScalarSeries({1., 2., 3., 4., 5.},
545 543 {100., 200., 300., 400., 500.})
546 << 6. << 9. << QVector<double>{} << QVector<double>{};
544 << 6. << 9. << DataContainer{} << DataContainer{};
547 545 QTest::newRow("xAxisRange8") << createScalarSeries({1., 2., 3., 4., 5.},
548 546 {100., 200., 300., 400., 500.})
549 << 5. << 9. << QVector<double>{5.} << QVector<double>{500.};
547 << 5. << 9. << DataContainer{5.} << DataContainer{500.};
550 548 }
551 549
552 550 void TestDataSeries::testXAxisRange()
@@ -555,8 +553,8 void TestDataSeries::testXAxisRange()
555 553 QFETCH(double, min);
556 554 QFETCH(double, max);
557 555
558 QFETCH(QVector<double>, expectedXAxisData);
559 QFETCH(QVector<double>, expectedValuesData);
556 QFETCH(DataContainer, expectedXAxisData);
557 QFETCH(DataContainer, expectedValuesData);
560 558
561 559 auto bounds = dataSeries->xAxisRange(min, max);
562 560 validateRange(bounds.first, bounds.second, expectedXAxisData, expectedValuesData);
@@ -4,7 +4,9
4 4
5 5 namespace {
6 6
7 void verifyArrayData(const ArrayData<1> &arrayData, const QVector<double> &expectedData)
7 using DataContainer = std::vector<double>;
8
9 void verifyArrayData(const ArrayData<1> &arrayData, const DataContainer &expectedData)
8 10 {
9 11 QVERIFY(std::equal(
10 12 arrayData.cbegin(), arrayData.cend(), expectedData.cbegin(), expectedData.cend(),
@@ -44,18 +46,18 private slots:
44 46 void TestOneDimArrayData::testData_data()
45 47 {
46 48 // Test structure
47 QTest::addColumn<QVector<double> >("inputData"); // array's data input
48 QTest::addColumn<QVector<double> >("expectedData"); // expected data
49 QTest::addColumn<DataContainer>("inputData"); // array's data input
50 QTest::addColumn<DataContainer>("expectedData"); // expected data
49 51
50 52 // Test cases
51 QTest::newRow("data1") << QVector<double>{1., 2., 3., 4., 5.}
52 << QVector<double>{1., 2., 3., 4., 5.};
53 QTest::newRow("data1") << DataContainer{1., 2., 3., 4., 5.}
54 << DataContainer{1., 2., 3., 4., 5.};
53 55 }
54 56
55 57 void TestOneDimArrayData::testData()
56 58 {
57 QFETCH(QVector<double>, inputData);
58 QFETCH(QVector<double>, expectedData);
59 QFETCH(DataContainer, inputData);
60 QFETCH(DataContainer, expectedData);
59 61
60 62 ArrayData<1> arrayData{inputData};
61 63 verifyArrayData(arrayData, expectedData);
@@ -64,26 +66,24 void TestOneDimArrayData::testData()
64 66 void TestOneDimArrayData::testAdd_data()
65 67 {
66 68 // Test structure
67 QTest::addColumn<QVector<double> >("inputData"); // array's data input
68 QTest::addColumn<QVector<double> >("otherData"); // array data's input to merge with
69 QTest::addColumn<bool>("prepend"); // prepend or append merge
70 QTest::addColumn<QVector<double> >("expectedData"); // expected data after merge
69 QTest::addColumn<DataContainer>("inputData"); // array's data input
70 QTest::addColumn<DataContainer>("otherData"); // array data's input to merge with
71 QTest::addColumn<bool>("prepend"); // prepend or append merge
72 QTest::addColumn<DataContainer>("expectedData"); // expected data after merge
71 73
72 74 // Test cases
73 QTest::newRow("appendMerge") << QVector<double>{1., 2., 3., 4., 5.}
74 << QVector<double>{6., 7., 8.} << false
75 << QVector<double>{1., 2., 3., 4., 5., 6., 7., 8.};
76 QTest::newRow("prependMerge") << QVector<double>{1., 2., 3., 4., 5.}
77 << QVector<double>{6., 7., 8.} << true
78 << QVector<double>{6., 7., 8., 1., 2., 3., 4., 5.};
75 QTest::newRow("appendMerge") << DataContainer{1., 2., 3., 4., 5.} << DataContainer{6., 7., 8.}
76 << false << DataContainer{1., 2., 3., 4., 5., 6., 7., 8.};
77 QTest::newRow("prependMerge") << DataContainer{1., 2., 3., 4., 5.} << DataContainer{6., 7., 8.}
78 << true << DataContainer{6., 7., 8., 1., 2., 3., 4., 5.};
79 79 }
80 80
81 81 void TestOneDimArrayData::testAdd()
82 82 {
83 QFETCH(QVector<double>, inputData);
84 QFETCH(QVector<double>, otherData);
83 QFETCH(DataContainer, inputData);
84 QFETCH(DataContainer, otherData);
85 85 QFETCH(bool, prepend);
86 QFETCH(QVector<double>, expectedData);
86 QFETCH(DataContainer, expectedData);
87 87
88 88 ArrayData<1> arrayData{inputData};
89 89 ArrayData<1> other{otherData};
@@ -95,18 +95,18 void TestOneDimArrayData::testAdd()
95 95 void TestOneDimArrayData::testAt_data()
96 96 {
97 97 // Test structure
98 QTest::addColumn<QVector<double> >("inputData"); // array data's input
99 QTest::addColumn<int>("index"); // index to retrieve data
100 QTest::addColumn<double>("expectedData"); // expected data at index
98 QTest::addColumn<DataContainer>("inputData"); // array data's input
99 QTest::addColumn<int>("index"); // index to retrieve data
100 QTest::addColumn<double>("expectedData"); // expected data at index
101 101
102 102 // Test cases
103 QTest::newRow("data1") << QVector<double>{1., 2., 3., 4., 5.} << 0 << 1.;
104 QTest::newRow("data2") << QVector<double>{1., 2., 3., 4., 5.} << 3 << 4.;
103 QTest::newRow("data1") << DataContainer{1., 2., 3., 4., 5.} << 0 << 1.;
104 QTest::newRow("data2") << DataContainer{1., 2., 3., 4., 5.} << 3 << 4.;
105 105 }
106 106
107 107 void TestOneDimArrayData::testAt()
108 108 {
109 QFETCH(QVector<double>, inputData);
109 QFETCH(DataContainer, inputData);
110 110 QFETCH(int, index);
111 111 QFETCH(double, expectedData);
112 112
@@ -117,34 +117,34 void TestOneDimArrayData::testAt()
117 117 void TestOneDimArrayData::testClear_data()
118 118 {
119 119 // Test structure
120 QTest::addColumn<QVector<double> >("inputData"); // array data's input
120 QTest::addColumn<DataContainer>("inputData"); // array data's input
121 121
122 122 // Test cases
123 QTest::newRow("data1") << QVector<double>{1., 2., 3., 4., 5.};
123 QTest::newRow("data1") << DataContainer{1., 2., 3., 4., 5.};
124 124 }
125 125
126 126 void TestOneDimArrayData::testClear()
127 127 {
128 QFETCH(QVector<double>, inputData);
128 QFETCH(DataContainer, inputData);
129 129
130 130 ArrayData<1> arrayData{inputData};
131 131 arrayData.clear();
132 verifyArrayData(arrayData, QVector<double>{});
132 verifyArrayData(arrayData, DataContainer{});
133 133 }
134 134
135 135 void TestOneDimArrayData::testSize_data()
136 136 {
137 137 // Test structure
138 QTest::addColumn<QVector<double> >("inputData"); // array data's input
139 QTest::addColumn<int>("expectedSize"); // expected array data size
138 QTest::addColumn<DataContainer>("inputData"); // array data's input
139 QTest::addColumn<int>("expectedSize"); // expected array data size
140 140
141 141 // Test cases
142 QTest::newRow("data1") << QVector<double>{1., 2., 3., 4., 5.} << 5;
142 QTest::newRow("data1") << DataContainer{1., 2., 3., 4., 5.} << 5;
143 143 }
144 144
145 145 void TestOneDimArrayData::testSize()
146 146 {
147 QFETCH(QVector<double>, inputData);
147 QFETCH(DataContainer, inputData);
148 148 QFETCH(int, expectedSize);
149 149
150 150 ArrayData<1> arrayData{inputData};
@@ -154,22 +154,22 void TestOneDimArrayData::testSize()
154 154 void TestOneDimArrayData::testSort_data()
155 155 {
156 156 // Test structure
157 QTest::addColumn<QVector<double> >("inputData"); // array data's input
157 QTest::addColumn<DataContainer>("inputData"); // array data's input
158 158 QTest::addColumn<std::vector<int> >("sortPermutation"); // permutation used to sort data
159 QTest::addColumn<QVector<double> >("expectedData"); // expected data after sorting
159 QTest::addColumn<DataContainer>("expectedData"); // expected data after sorting
160 160
161 161 // Test cases
162 QTest::newRow("data1") << QVector<double>{1., 2., 3., 4., 5.} << std::vector<int>{0, 2, 3, 1, 4}
163 << QVector<double>{1., 3., 4., 2., 5.};
164 QTest::newRow("data2") << QVector<double>{1., 2., 3., 4., 5.} << std::vector<int>{4, 1, 2, 3, 0}
165 << QVector<double>{5., 2., 3., 4., 1.};
162 QTest::newRow("data1") << DataContainer{1., 2., 3., 4., 5.} << std::vector<int>{0, 2, 3, 1, 4}
163 << DataContainer{1., 3., 4., 2., 5.};
164 QTest::newRow("data2") << DataContainer{1., 2., 3., 4., 5.} << std::vector<int>{4, 1, 2, 3, 0}
165 << DataContainer{5., 2., 3., 4., 1.};
166 166 }
167 167
168 168 void TestOneDimArrayData::testSort()
169 169 {
170 QFETCH(QVector<double>, inputData);
170 QFETCH(DataContainer, inputData);
171 171 QFETCH(std::vector<int>, sortPermutation);
172 QFETCH(QVector<double>, expectedData);
172 QFETCH(DataContainer, expectedData);
173 173
174 174 ArrayData<1> arrayData{inputData};
175 175 auto sortedArrayData = arrayData.sort(sortPermutation);
@@ -2,31 +2,32
2 2 #include <QObject>
3 3 #include <QtTest>
4 4
5 using Container = QVector<QVector<double> >;
6 using InputData = QPair<QVector<double>, int>;
5 using DataContainer = std::vector<double>;
6 using Container = std::vector<DataContainer>;
7 using InputData = QPair<DataContainer, int>;
7 8
8 9 namespace {
9 10
10 11 InputData flatten(const Container &container)
11 12 {
12 if (container.isEmpty()) {
13 if (container.empty()) {
13 14 return {};
14 15 }
15 16
16 17 // We assume here that each component of the container have the same size
17 18 auto containerSize = container.size();
18 auto componentSize = container.first().size();
19 auto componentSize = container.front().size();
19 20
20 auto result = QVector<double>{};
21 auto result = DataContainer{};
21 22 result.reserve(componentSize * containerSize);
22 23
23 24 for (auto i = 0; i < componentSize; ++i) {
24 25 for (auto j = 0; j < containerSize; ++j) {
25 result.append(container.at(j).at(i));
26 result.push_back(container.at(j).at(i));
26 27 }
27 28 }
28 29
29 return {result, containerSize};
30 return {result, static_cast<int>(containerSize)};
30 31 }
31 32
32 33 void verifyArrayData(const ArrayData<2> &arrayData, const Container &expectedData)
@@ -175,7 +176,7 void TestTwoDimArrayData::testClear()
175 176 ArrayData<2> arrayData{inputData.first, inputData.second};
176 177 arrayData.clear();
177 178
178 auto emptyData = Container(inputData.second, QVector<double>{});
179 auto emptyData = Container(inputData.second, DataContainer{});
179 180 verifyArrayData(arrayData, emptyData);
180 181 }
181 182
@@ -194,15 +194,16 std::shared_ptr<IDataSeries> AmdaResultParser::readTxt(const QString &filePath,
194 194 case ValueType::SCALAR:
195 195 Q_ASSERT(results.second.size() == 1);
196 196 return std::make_shared<ScalarSeries>(
197 std::move(results.first), std::move(results.second.takeFirst()), xAxisUnit, Unit{});
197 std::move(results.first.toStdVector()),
198 std::move(results.second.takeFirst().toStdVector()), xAxisUnit, Unit{});
198 199 case ValueType::VECTOR: {
199 200 Q_ASSERT(results.second.size() == 3);
200 auto xValues = results.second.takeFirst();
201 auto yValues = results.second.takeFirst();
202 auto zValues = results.second.takeFirst();
203 return std::make_shared<VectorSeries>(std::move(results.first), std::move(xValues),
204 std::move(yValues), std::move(zValues), xAxisUnit,
205 Unit{});
201 auto xValues = results.second.takeFirst().toStdVector();
202 auto yValues = results.second.takeFirst().toStdVector();
203 auto zValues = results.second.takeFirst().toStdVector();
204 return std::make_shared<VectorSeries>(std::move(results.first.toStdVector()),
205 std::move(xValues), std::move(yValues),
206 std::move(zValues), xAxisUnit, Unit{});
206 207 }
207 208 case ValueType::UNKNOWN:
208 209 // Invalid case
@@ -18,7 +18,7 std::shared_ptr<IDataSeries> CosinusProvider::retrieveData(QUuid acqIdentifier,
18 18 auto dataIndex = 0;
19 19
20 20 // Gets the timerange from the parameters
21 double freq = 1.0;
21 double freq = 100.0;
22 22 double start = std::ceil(dataRangeRequested.m_TStart * freq); // 100 htz
23 23 double end = std::floor(dataRangeRequested.m_TEnd * freq); // 100 htz
24 24
@@ -30,10 +30,10 std::shared_ptr<IDataSeries> CosinusProvider::retrieveData(QUuid acqIdentifier,
30 30 // Generates scalar series containing cosinus values (one value per second)
31 31 auto dataCount = end - start;
32 32
33 auto xAxisData = QVector<double>{};
33 auto xAxisData = std::vector<double>{};
34 34 xAxisData.resize(dataCount);
35 35
36 auto valuesData = QVector<double>{};
36 auto valuesData = std::vector<double>{};
37 37 valuesData.resize(dataCount);
38 38
39 39 int progress = 0;
@@ -43,8 +43,8 std::shared_ptr<IDataSeries> CosinusProvider::retrieveData(QUuid acqIdentifier,
43 43 if (it != m_VariableToEnableProvider.end() && it.value()) {
44 44 const auto timeOnFreq = time / freq;
45 45
46 xAxisData.replace(dataIndex, timeOnFreq);
47 valuesData.replace(dataIndex, std::cos(timeOnFreq));
46 xAxisData[dataIndex] = timeOnFreq;
47 valuesData[dataIndex] = std::cos(timeOnFreq);
48 48
49 49 // progression
50 50 int currentProgress = (time - start) * 100.0 / progressEnd;
General Comments 0
You need to be logged in to leave comments. Login now