##// END OF EJS Templates
Mesh generation for QColorMap (2)...
Alexandre Leroux -
r966:4414d2582fbf
parent child
Show More
@@ -3,6 +3,8
3
3
4 #include "CoreGlobal.h"
4 #include "CoreGlobal.h"
5
5
6 #include <Data/DataSeriesIterator.h>
7
6 #include <QLoggingCategory>
8 #include <QLoggingCategory>
7
9
8 Q_DECLARE_LOGGING_CATEGORY(LOG_DataSeriesUtils)
10 Q_DECLARE_LOGGING_CATEGORY(LOG_DataSeriesUtils)
@@ -154,6 +156,46 struct SCIQLOP_CORE_EXPORT DataSeriesUtils {
154 */
156 */
155 template <typename Iterator>
157 template <typename Iterator>
156 static Resolution resolution(Iterator begin, Iterator end, bool logarithmic = false);
158 static Resolution resolution(Iterator begin, Iterator end, bool logarithmic = false);
159
160 /**
161 * Computes a regular mesh for a data series, according to resolutions for x-axis and y-axis
162 * passed as parameters.
163 *
164 * The mesh is created from the resolutions in x and y and the boundaries delimiting the data
165 * series. If the resolutions do not allow to obtain a regular mesh, they are recalculated.
166 *
167 * For example :
168 * Let x-axis data = [0, 1, 3, 5, 9], its associated values ​​= [0, 10, 30, 50, 90] and
169 * xResolution = 2.
170 * Based on the resolution, the mesh would be [0, 2, 4, 6, 8, 10] and would be invalid because
171 * it exceeds the maximum bound of the data. The resolution is thus recalculated so that the
172 * mesh holds between the data terminals.
173 * So => resolution is 1.8 and the mesh is [0, 1.8, 3.6, 5.4, 7.2, 9].
174 *
175 * Once the mesh is generated in x and y, the values ​​are associated with each mesh point,
176 * based on the data in the series, finding the existing data at which the mesh point would be
177 * or would be closest to, without exceeding it.
178 *
179 * In the example, we determine the value of each mesh point:
180 * - x = 0 => value = 0 (existing x in the data series)
181 * - x = 1.8 => value = 10 (the closest existing x: 1)
182 * - x = 3.6 => value = 30 (the closest existing x: 3)
183 * - x = 5.4 => value = 50 (the closest existing x: 5)
184 * - x = 7.2 => value = 50 (the closest existing x: 5)
185 * - x = 9 => value = 90 (existing x in the data series)
186 *
187 * Same algorithm is applied for y-axis.
188 *
189 * @param begin the iterator pointing to the beginning of the data series
190 * @param end the iterator pointing to the end of the data series
191 * @param xResolution the resolution expected for the mesh's x-axis
192 * @param yResolution the resolution expected for the mesh's y-axis
193 * @return the mesh created, an empty mesh if the input data do not allow to generate a regular
194 * mesh (empty data, null resolutions, logarithmic x-axis)
195 * @warning the method considers the dataset as sorted and doesn't control it.
196 */
197 static Mesh regularMesh(DataSeriesIterator begin, DataSeriesIterator end,
198 Resolution xResolution, Resolution yResolution);
157 };
199 };
158
200
159 template <typename Iterator>
201 template <typename Iterator>
@@ -1,5 +1,7
1 #include "Data/DataSeriesUtils.h"
1 #include "Data/DataSeriesUtils.h"
2
2
3 #include <cmath>
4
3 Q_LOGGING_CATEGORY(LOG_DataSeriesUtils, "DataSeriesUtils")
5 Q_LOGGING_CATEGORY(LOG_DataSeriesUtils, "DataSeriesUtils")
4
6
5 void DataSeriesUtils::fillDataHoles(std::vector<double> &xAxisData, std::vector<double> &valuesData,
7 void DataSeriesUtils::fillDataHoles(std::vector<double> &xAxisData, std::vector<double> &valuesData,
@@ -79,3 +81,36 void DataSeriesUtils::fillDataHoles(std::vector<double> &xAxisData, std::vector<
79 }
81 }
80 }
82 }
81 }
83 }
84 DataSeriesUtils::Mesh DataSeriesUtils::regularMesh(DataSeriesIterator begin, DataSeriesIterator end,
85 Resolution xResolution, Resolution yResolution)
86 {
87 // Checks preconditions
88 if (xResolution.m_Val == 0. || std::isnan(xResolution.m_Val) || yResolution.m_Val == 0.
89 || std::isnan(yResolution.m_Val)) {
90 qCWarning(LOG_DataSeriesUtils()) << "Can't generate mesh with a null resolution";
91 return Mesh{};
92 }
93
94 if (xResolution.m_Logarithmic) {
95 qCWarning(LOG_DataSeriesUtils())
96 << "Can't generate mesh with a logarithmic x-axis resolution";
97 return Mesh{};
98 }
99
100 if (std::distance(begin, end) == 0) {
101 qCWarning(LOG_DataSeriesUtils()) << "Can't generate mesh for empty data";
102 return Mesh{};
103 }
104
105 auto yData = begin->y();
106 if (yData.empty()) {
107 qCWarning(LOG_DataSeriesUtils()) << "Can't generate mesh for data with no y-axis";
108 return Mesh{};
109 }
110
111 // Converts y-axis and its resolution to logarithmic values
112 if (yResolution.m_Logarithmic) {
113 std::for_each(yData.begin(), yData.end(), [](auto &val) { val = std::log10(val); });
114 }
115
116 }
General Comments 0
You need to be logged in to leave comments. Login now