##// END OF EJS Templates
New data sources system switch complete...
New data sources system switch complete Signed-off-by: Alexis Jeandet <alexis.jeandet@member.fsf.org>

File last commit:

r1486:8539a975891c
r1495:9c439b3d7daf
Show More
VisualizationGraphHelper.cpp
638 lines | 22.0 KiB | text/x-c | CppLexer
/ gui / src / Visualization / VisualizationGraphHelper.cpp
#include "Visualization/VisualizationGraphHelper.h"
#include "Visualization/qcustomplot.h"
#include <Data/ScalarTimeSerie.h>
#include <Data/SpectrogramTimeSerie.h>
#include <Data/TimeSeriesUtils.h>
#include <Data/VectorTimeSerie.h>
#include <cpp_utils.hpp>
#include <Variable/Variable2.h>
#include <algorithm>
#include <cmath>
Q_LOGGING_CATEGORY(LOG_VisualizationGraphHelper, "VisualizationGraphHelper")
namespace
{
class SqpDataContainer : public QCPGraphDataContainer
{
public:
void appendGraphData(const QCPGraphData& data) { mData.append(data); }
};
/**
* Struct used to create plottables, depending on the type of the data series from which to create
* them
* @tparam T the data series' type
* @remarks Default implementation can't create plottables
*/
template <typename T, typename Enabled = void>
struct PlottablesCreator
{
static PlottablesMap createPlottables(QCustomPlot&, const std::shared_ptr<T>& dataSeries)
{
return {};
}
};
PlottablesMap createGraphs(QCustomPlot& plot, int nbGraphs)
{
PlottablesMap result {};
// Creates {nbGraphs} QCPGraph to add to the plot
for (auto i = 0; i < nbGraphs; ++i)
{
auto graph = plot.addGraph();
result.insert({ i, graph });
}
plot.replot();
return result;
}
/**
* Specialization of PlottablesCreator for scalars
* @sa ScalarSeries
*/
template <typename T>
struct PlottablesCreator<T, typename std::enable_if_t<std::is_base_of<ScalarTimeSerie, T>::value>>
{
static PlottablesMap createPlottables(QCustomPlot& plot, const std::shared_ptr<T>& dataSeries)
{
return createGraphs(plot, 1);
}
};
/**
* Specialization of PlottablesCreator for vectors
* @sa VectorSeries
*/
template <typename T>
struct PlottablesCreator<T, typename std::enable_if_t<std::is_base_of<VectorTimeSerie, T>::value>>
{
static PlottablesMap createPlottables(QCustomPlot& plot, const std::shared_ptr<T>& dataSeries)
{
return createGraphs(plot, 3);
}
};
/**
* Specialization of PlottablesCreator for MultiComponentTimeSeries
* @sa VectorSeries
*/
template <typename T>
struct PlottablesCreator<T,
typename std::enable_if_t<std::is_base_of<MultiComponentTimeSerie, T>::value>>
{
static PlottablesMap createPlottables(QCustomPlot& plot, const std::shared_ptr<T>& dataSeries)
{
return createGraphs(plot, dataSeries->size(1));
}
};
/**
* Specialization of PlottablesCreator for spectrograms
* @sa SpectrogramSeries
*/
template <typename T>
struct PlottablesCreator<T,
typename std::enable_if_t<std::is_base_of<SpectrogramTimeSerie, T>::value>>
{
static PlottablesMap createPlottables(QCustomPlot& plot, const std::shared_ptr<T>& dataSeries)
{
PlottablesMap result {};
result.insert({ 0, new QCPColorMap { plot.xAxis, plot.yAxis } });
plot.replot();
return result;
}
};
/**
* Struct used to update plottables, depending on the type of the data series from which to update
* them
* @tparam T the data series' type
* @remarks Default implementation can't update plottables
*/
template <typename T, typename Enabled = void>
struct PlottablesUpdater
{
static void setPlotYAxisRange(T&, const DateTimeRange&, QCustomPlot&)
{
qCCritical(LOG_VisualizationGraphHelper())
<< QObject::tr("Can't set plot y-axis range: unmanaged data series type");
}
static void updatePlottables(T&, PlottablesMap&, const DateTimeRange&, bool)
{
qCCritical(LOG_VisualizationGraphHelper())
<< QObject::tr("Can't update plottables: unmanaged data series type");
}
};
/**
* Specialization of PlottablesUpdater for scalars and vectors
* @sa ScalarSeries
* @sa VectorSeries
*/
template <typename T>
struct PlottablesUpdater<T, typename std::enable_if_t<std::is_base_of<ScalarTimeSerie, T>::value>>
{
static void setPlotYAxisRange(T& dataSeries, const DateTimeRange& xAxisRange, QCustomPlot& plot)
{
auto minValue = 0., maxValue = 0.;
if (auto serie = dynamic_cast<ScalarTimeSerie*>(&dataSeries))
{
if (serie->size())
{
maxValue = (*std::max_element(std::begin(*serie), std::end(*serie))).v();
minValue = (*std::min_element(std::begin(*serie), std::end(*serie))).v();
}
}
plot.yAxis->setRange(QCPRange { minValue, maxValue });
}
static void updatePlottables(
T& dataSeries, PlottablesMap& plottables, const DateTimeRange& range, bool rescaleAxes)
{
// For each plottable to update, resets its data
for (const auto& plottable : plottables)
{
if (auto graph = dynamic_cast<QCPGraph*>(plottable.second))
{
auto dataContainer = QSharedPointer<SqpDataContainer>::create();
if (auto serie = dynamic_cast<ScalarTimeSerie*>(&dataSeries))
{
std::for_each(
std::begin(*serie), std::end(*serie), [&dataContainer](const auto& value) {
dataContainer->appendGraphData(QCPGraphData(value.t(), value.v()));
});
}
graph->setData(dataContainer);
}
}
if (!plottables.empty())
{
auto plot = plottables.begin()->second->parentPlot();
if (rescaleAxes)
{
plot->rescaleAxes();
}
}
}
};
template <typename T>
struct PlottablesUpdater<T, typename std::enable_if_t<std::is_base_of<VectorTimeSerie, T>::value>>
{
static void setPlotYAxisRange(T& dataSeries, const DateTimeRange& xAxisRange, QCustomPlot& plot)
{
double minValue = 0., maxValue = 0.;
if (auto serie = dynamic_cast<VectorTimeSerie*>(&dataSeries))
{
std::for_each(
std::begin(*serie), std::end(*serie), [&minValue, &maxValue](const auto& v) {
minValue = std::min({ minValue, v.v().x, v.v().y, v.v().z });
maxValue = std::max({ maxValue, v.v().x, v.v().y, v.v().z });
});
}
plot.yAxis->setRange(QCPRange { minValue, maxValue });
}
static void updatePlottables(
T& dataSeries, PlottablesMap& plottables, const DateTimeRange& range, bool rescaleAxes)
{
// For each plottable to update, resets its data
for (const auto& plottable : plottables)
{
if (auto graph = dynamic_cast<QCPGraph*>(plottable.second))
{
auto dataContainer = QSharedPointer<SqpDataContainer>::create();
if (auto serie = dynamic_cast<VectorTimeSerie*>(&dataSeries))
{
switch (plottable.first)
{
case 0:
std::for_each(std::begin(*serie), std::end(*serie),
[&dataContainer](const auto& value) {
dataContainer->appendGraphData(
QCPGraphData(value.t(), value.v().x));
});
break;
case 1:
std::for_each(std::begin(*serie), std::end(*serie),
[&dataContainer](const auto& value) {
dataContainer->appendGraphData(
QCPGraphData(value.t(), value.v().y));
});
break;
case 2:
std::for_each(std::begin(*serie), std::end(*serie),
[&dataContainer](const auto& value) {
dataContainer->appendGraphData(
QCPGraphData(value.t(), value.v().z));
});
break;
default:
break;
}
}
graph->setData(dataContainer);
}
}
if (!plottables.empty())
{
auto plot = plottables.begin()->second->parentPlot();
if (rescaleAxes)
{
plot->rescaleAxes();
}
}
}
};
template <typename T>
struct PlottablesUpdater<T,
typename std::enable_if_t<std::is_base_of<MultiComponentTimeSerie, T>::value>>
{
static void setPlotYAxisRange(T& dataSeries, const DateTimeRange& xAxisRange, QCustomPlot& plot)
{
double minValue = 0., maxValue = 0.;
if (auto serie = dynamic_cast<MultiComponentTimeSerie*>(&dataSeries))
{
std::for_each(std::begin(*serie), std::end(*serie), [&minValue, &maxValue](auto& v) {
minValue = std::min(minValue, std::min_element(v.begin(), v.end())->v());
maxValue = std::max(maxValue, std::max_element(v.begin(), v.end())->v());
});
}
plot.yAxis->setRange(QCPRange { minValue, maxValue });
}
static void updatePlottables(
T& dataSeries, PlottablesMap& plottables, const DateTimeRange& range, bool rescaleAxes)
{
for (const auto& plottable : plottables)
{
if (auto graph = dynamic_cast<QCPGraph*>(plottable.second))
{
auto dataContainer = QSharedPointer<SqpDataContainer>::create();
if (auto serie = dynamic_cast<MultiComponentTimeSerie*>(&dataSeries))
{
// TODO
std::for_each(std::begin(*serie), std::end(*serie),
[&dataContainer, component = plottable.first](const auto& value) {
dataContainer->appendGraphData(
QCPGraphData(value.t(), value[component]));
});
}
graph->setData(dataContainer);
}
}
if (!plottables.empty())
{
auto plot = plottables.begin()->second->parentPlot();
if (rescaleAxes)
{
plot->rescaleAxes();
}
}
}
};
/*=============================================================*/
// TODO move this to dedicated srcs
/*=============================================================*/
struct ColomapProperties
{
int h_size_px;
int v_size_px;
double h_resolutuon;
double v_resolutuon;
};
inline ColomapProperties CMAxisAnalysis(const TimeSeriesUtils::axis_properties& xAxisProperties,
const TimeSeriesUtils::axis_properties& yAxisProperties)
{
int colormap_h_size
= std::min(32000, static_cast<int>(xAxisProperties.range / xAxisProperties.max_resolution));
int colormap_v_size = static_cast<int>(yAxisProperties.range / yAxisProperties.max_resolution);
double colormap_h_resolution = xAxisProperties.range / static_cast<double>(colormap_h_size);
double colormap_v_resolution = yAxisProperties.range / static_cast<double>(colormap_v_size);
return ColomapProperties { colormap_h_size, colormap_v_size, colormap_h_resolution,
colormap_v_resolution };
}
template <bool condition, typename T, typename U>
std::enable_if_t<condition, T> constexpr conditional_v(T first, U second)
{
return first;
}
template <bool condition, typename T, typename U>
std::enable_if_t<!condition, U> constexpr conditional_v(T first, U second)
{
return second;
}
template <bool reversedAxis = true, bool reversedData = true>
inline std::vector<std::pair<int, int>> build_access_pattern(const std::vector<double>& axis,
const TimeSeriesUtils::axis_properties& axisProperties,
const ColomapProperties& colormap_properties)
{
std::vector<std::pair<int, int>> access_pattern;
for (int index = 0, axis_index = conditional_v<reversedAxis>(axis.size() - 1, 0),
data_index = conditional_v<reversedData>(axis.size() - 1, 0);
index < colormap_properties.v_size_px; index++)
{
double current_y = (axisProperties.max_resolution * index) + axisProperties.min;
if (current_y > axis[axis_index])
{
conditional_v<reversedAxis>(
[&axis_index]() { axis_index--; }, [&axis_index]() { axis_index++; })();
conditional_v<reversedData>(
[&data_index]() { data_index--; }, [&data_index]() { data_index++; })();
}
access_pattern.push_back({ index, data_index });
}
return access_pattern;
}
inline bool is_log(const std::vector<double>& axis)
{
if (axis.size() > 2)
{
auto first = axis.front(), midle = axis[axis.size() / 2], last = axis.back();
auto error_linear = (midle - (last + first) / 2) / midle;
first = log10(first);
midle = log10(midle);
last = log10(last);
auto error_log = (midle - (last + first) / 2) / midle;
return error_log < error_linear;
}
return false;
}
template <typename accessPattern_t, typename colomapT, typename axProp_t, typename cmProp_t>
inline void fill_data(SpectrogramTimeSerie* serie, colomapT* colormap,
const accessPattern_t& y_access_pattern, const axProp_t& xAxisProperties,
const cmProp_t& colormap_properties)
{
auto line = serie->begin();
auto next_line = line + 1;
double current_time = xAxisProperties.min;
int x_index = 0;
auto x_min_resolution
= std::fmin(2. * serie->max_sampling, xAxisProperties.max_resolution * 100.);
std::vector<double> line_values(serie->size(1));
double avg_coef = 0.;
while (x_index < colormap_properties.h_size_px)
{
if (next_line != std::end(*serie) and current_time >= next_line->t())
{
line = next_line;
next_line++;
}
if ((current_time - xAxisProperties.min)
> (static_cast<double>(x_index + 1) * colormap_properties.h_resolutuon))
{
std::for_each(std::cbegin(y_access_pattern), std::cend(y_access_pattern),
[&colormap, &line_values, x_index, avg_coef](const auto& acc) {
colormap->data()->setCell(
x_index, acc.first, line_values[acc.second] / avg_coef);
});
std::fill(std::begin(line_values), std::end(line_values), 0.);
x_index++;
avg_coef = 0.;
}
if (line->t() + x_min_resolution > current_time)
{
{
std::transform(std::begin(*line), std::end(*line), std::cbegin(line_values),
std::begin(line_values),
[](const auto& input, auto output) { return input.v() + output; });
}
avg_coef += 1.;
}
else
{
for (int y_index = 0; y_index < colormap_properties.v_size_px; y_index++)
{
if (avg_coef > 0.)
{
std::fill(std::begin(line_values), std::end(line_values), 0);
}
}
}
current_time += xAxisProperties.max_resolution * 0.9;
}
}
/*=============================================================*/
/**
* Specialization of PlottablesUpdater for spectrograms
* @sa SpectrogramSeries
*/
template <typename T>
struct PlottablesUpdater<T,
typename std::enable_if_t<std::is_base_of<SpectrogramTimeSerie, T>::value>>
{
static void setPlotYAxisRange(T& dataSeries, const DateTimeRange& xAxisRange, QCustomPlot& plot)
{
auto [minValue, maxValue] = dataSeries.axis_range(1);
plot.yAxis->setRange(QCPRange { minValue, maxValue });
}
static void updatePlottables(
T& dataSeries, PlottablesMap& plottables, const DateTimeRange& range, bool rescaleAxes)
{
if (plottables.empty())
{
qCDebug(LOG_VisualizationGraphHelper())
<< QObject::tr("Can't update spectrogram: no colormap has been associated");
return;
}
// Gets the colormap to update (normally there is only one colormap)
Q_ASSERT(plottables.size() == 1);
auto colormap = dynamic_cast<QCPColorMap*>(plottables.at(0));
Q_ASSERT(colormap != nullptr);
auto plot = colormap->parentPlot();
auto [minValue, maxValue] = dataSeries.axis_range(1);
plot->yAxis->setRange(QCPRange { minValue, maxValue });
if (auto serie = dynamic_cast<SpectrogramTimeSerie*>(&dataSeries))
{
if (serie->size(0) > 2)
{
if (serie->y_is_log)
colormap->setDataScaleType(QCPAxis::stLogarithmic);
else
colormap->setDataScaleType(QCPAxis::stLinear);
const auto& xAxis = serie->axis(0);
auto yAxis = serie->axis(1); // copy for in place reverse order
auto y_is_log = is_log(yAxis);
std::reverse(std::begin(yAxis), std::end(yAxis));
auto xAxisProperties = TimeSeriesUtils::axis_analysis<TimeSeriesUtils::IsLinear,
TimeSeriesUtils::CheckMedian>(xAxis, serie->min_sampling);
auto yAxisProperties = TimeSeriesUtils::axis_analysis<TimeSeriesUtils::IsLog,
TimeSeriesUtils::DontCheckMedian>(yAxis);
auto colormap_properties = CMAxisAnalysis(xAxisProperties, yAxisProperties);
colormap->data()->setSize(
colormap_properties.h_size_px, colormap_properties.v_size_px);
colormap->data()->setRange(
QCPRange { xAxisProperties.min, xAxisProperties.max }, { minValue, maxValue });
auto y_access_pattern = build_access_pattern<false, true>(
yAxis, yAxisProperties, colormap_properties);
fill_data(serie, colormap, y_access_pattern, xAxisProperties, colormap_properties);
}
colormap->rescaleDataRange(true);
if (rescaleAxes)
{
plot->rescaleAxes();
}
}
}
};
/**
* Helper used to create/update plottables
*/
struct IPlottablesHelper
{
virtual ~IPlottablesHelper() noexcept = default;
virtual PlottablesMap create(QCustomPlot& plot) const = 0;
virtual void setYAxisRange(const DateTimeRange& xAxisRange, QCustomPlot& plot) const = 0;
virtual void update(
PlottablesMap& plottables, const DateTimeRange& range, bool rescaleAxes = false) const = 0;
};
/**
* Default implementation of IPlottablesHelper, which takes data series to create/update
* plottables
* @tparam T the data series' type
*/
template <typename T>
struct PlottablesHelper : public IPlottablesHelper
{
explicit PlottablesHelper(std::shared_ptr<T> dataSeries) : m_DataSeries { dataSeries } {}
PlottablesMap create(QCustomPlot& plot) const override
{
return PlottablesCreator<T>::createPlottables(plot, m_DataSeries);
}
void update(
PlottablesMap& plottables, const DateTimeRange& range, bool rescaleAxes) const override
{
if (m_DataSeries)
{
PlottablesUpdater<T>::updatePlottables(*m_DataSeries, plottables, range, rescaleAxes);
}
else
{
qCCritical(LOG_VisualizationGraphHelper()) << "Can't update plottables: inconsistency "
"between the type of data series and the "
"type supposed";
}
}
void setYAxisRange(const DateTimeRange& xAxisRange, QCustomPlot& plot) const override
{
if (m_DataSeries)
{
PlottablesUpdater<T>::setPlotYAxisRange(*m_DataSeries, xAxisRange, plot);
}
else
{
qCCritical(LOG_VisualizationGraphHelper()) << "Can't update plottables: inconsistency "
"between the type of data series and the "
"type supposed";
}
}
std::shared_ptr<T> m_DataSeries;
};
/// Creates IPlottablesHelper according to the type of data series a variable holds
std::unique_ptr<IPlottablesHelper> createHelper(std::shared_ptr<Variable2> variable) noexcept
{
switch (variable->type())
{
case DataSeriesType::SCALAR:
return std::make_unique<PlottablesHelper<ScalarTimeSerie>>(
std::dynamic_pointer_cast<ScalarTimeSerie>(variable->data()));
case DataSeriesType::SPECTROGRAM:
return std::make_unique<PlottablesHelper<SpectrogramTimeSerie>>(
std::dynamic_pointer_cast<SpectrogramTimeSerie>(variable->data()));
case DataSeriesType::VECTOR:
return std::make_unique<PlottablesHelper<VectorTimeSerie>>(
std::dynamic_pointer_cast<VectorTimeSerie>(variable->data()));
case DataSeriesType::MULTICOMPONENT:
return std::make_unique<PlottablesHelper<MultiComponentTimeSerie>>(
std::dynamic_pointer_cast<MultiComponentTimeSerie>(variable->data()));
default:
// Creates default helper
break;
}
return std::make_unique<PlottablesHelper<TimeSeries::ITimeSerie>>(nullptr);
}
} // namespace
PlottablesMap VisualizationGraphHelper::create(
std::shared_ptr<Variable2> variable, QCustomPlot& plot) noexcept
{
if (variable)
{
auto helper = createHelper(variable);
auto plottables = helper->create(plot);
return plottables;
}
else
{
qCDebug(LOG_VisualizationGraphHelper())
<< QObject::tr("Can't create graph plottables : the variable is null");
return PlottablesMap {};
}
}
void VisualizationGraphHelper::setYAxisRange(
std::shared_ptr<Variable2> variable, QCustomPlot& plot) noexcept
{
if (variable)
{
auto helper = createHelper(variable);
helper->setYAxisRange(variable->range(), plot);
}
else
{
qCDebug(LOG_VisualizationGraphHelper())
<< QObject::tr("Can't set y-axis range of plot: the variable is null");
}
}
void VisualizationGraphHelper::updateData(
PlottablesMap& plottables, std::shared_ptr<Variable2> variable, const DateTimeRange& dateTime)
{
auto helper = createHelper(variable);
helper->update(plottables, dateTime);
}