@@ -1,1 +1,1 | |||||
1 | Subproject commit 41273d8529cddde1c8b6bcea03d71d9cd1a18c06 |
|
1 | Subproject commit 9a080a34054c21a67236f761e8843005c07ff0ba |
@@ -95,7 +95,8 struct AxisSetter | |||||
95 | template <typename T> |
|
95 | template <typename T> | |
96 | struct AxisSetter<T, |
|
96 | struct AxisSetter<T, | |
97 | typename std::enable_if_t<std::is_base_of<ScalarTimeSerie, T>::value |
|
97 | typename std::enable_if_t<std::is_base_of<ScalarTimeSerie, T>::value | |
98 |
or std::is_base_of<VectorTimeSerie, T>::value |
|
98 | or std::is_base_of<VectorTimeSerie, T>::value | |
|
99 | or std::is_base_of<MultiComponentTimeSerie, T>::value>> | |||
99 | { |
|
100 | { | |
100 | static void setProperties(QCustomPlot&, SqpColorScale&) |
|
101 | static void setProperties(QCustomPlot&, SqpColorScale&) | |
101 | { |
|
102 | { | |
@@ -204,6 +205,9 std::unique_ptr<IAxisHelper> IAxisHelperFactory::create(Variable2& variable) noe | |||||
204 | case DataSeriesType::VECTOR: |
|
205 | case DataSeriesType::VECTOR: | |
205 | return std::make_unique<AxisHelper<VectorTimeSerie>>( |
|
206 | return std::make_unique<AxisHelper<VectorTimeSerie>>( | |
206 | std::dynamic_pointer_cast<VectorTimeSerie>(variable.data())); |
|
207 | std::dynamic_pointer_cast<VectorTimeSerie>(variable.data())); | |
|
208 | case DataSeriesType::MULTICOMPONENT: | |||
|
209 | return std::make_unique<AxisHelper<MultiComponentTimeSerie>>( | |||
|
210 | std::dynamic_pointer_cast<MultiComponentTimeSerie>(variable.data())); | |||
207 | default: |
|
211 | default: | |
208 | // Creates default helper |
|
212 | // Creates default helper | |
209 | break; |
|
213 | break; |
@@ -33,7 +33,8 struct PlottablesSetter | |||||
33 | template <typename T> |
|
33 | template <typename T> | |
34 | struct PlottablesSetter<T, |
|
34 | struct PlottablesSetter<T, | |
35 | typename std::enable_if_t<std::is_base_of<ScalarTimeSerie, T>::value |
|
35 | typename std::enable_if_t<std::is_base_of<ScalarTimeSerie, T>::value | |
36 |
or std::is_base_of<VectorTimeSerie, T>::value |
|
36 | or std::is_base_of<VectorTimeSerie, T>::value | |
|
37 | or std::is_base_of<MultiComponentTimeSerie, T>::value>> | |||
37 | { |
|
38 | { | |
38 | static void setProperties(PlottablesMap& plottables) |
|
39 | static void setProperties(PlottablesMap& plottables) | |
39 | { |
|
40 | { | |
@@ -124,6 +125,8 std::unique_ptr<IPlottablesHelper> IPlottablesHelperFactory::create(Variable2& v | |||||
124 | return std::make_unique<PlottablesHelper<SpectrogramTimeSerie>>(); |
|
125 | return std::make_unique<PlottablesHelper<SpectrogramTimeSerie>>(); | |
125 | case DataSeriesType::VECTOR: |
|
126 | case DataSeriesType::VECTOR: | |
126 | return std::make_unique<PlottablesHelper<VectorTimeSerie>>(); |
|
127 | return std::make_unique<PlottablesHelper<VectorTimeSerie>>(); | |
|
128 | case DataSeriesType::MULTICOMPONENT: | |||
|
129 | return std::make_unique<PlottablesHelper<MultiComponentTimeSerie>>(); | |||
127 | default: |
|
130 | default: | |
128 | // Returns default helper |
|
131 | // Returns default helper | |
129 | break; |
|
132 | break; |
@@ -261,7 +261,8 struct PlottablesUpdater<T, typename std::enable_if_t<std::is_base_of<VectorTime | |||||
261 |
|
261 | |||
262 |
|
262 | |||
263 | template <typename T> |
|
263 | template <typename T> | |
264 | struct PlottablesUpdater<T, typename std::enable_if_t<std::is_base_of<MultiComponentTimeSerie, T>::value>> |
|
264 | struct PlottablesUpdater<T, | |
|
265 | typename std::enable_if_t<std::is_base_of<MultiComponentTimeSerie, T>::value>> | |||
265 | { |
|
266 | { | |
266 | static void setPlotYAxisRange(T& dataSeries, const DateTimeRange& xAxisRange, QCustomPlot& plot) |
|
267 | static void setPlotYAxisRange(T& dataSeries, const DateTimeRange& xAxisRange, QCustomPlot& plot) | |
267 | { |
|
268 | { | |
@@ -269,11 +270,13 struct PlottablesUpdater<T, typename std::enable_if_t<std::is_base_of<MultiCompo | |||||
269 | if (auto serie = dynamic_cast<MultiComponentTimeSerie*>(&dataSeries)) |
|
270 | if (auto serie = dynamic_cast<MultiComponentTimeSerie*>(&dataSeries)) | |
270 | { |
|
271 | { | |
271 | // TODO |
|
272 | // TODO | |
272 | // std::for_each( |
|
273 | // std::for_each( | |
273 |
// std::begin(*serie), std::end(*serie), [&minValue, &maxValue](const |
|
274 | // std::begin(*serie), std::end(*serie), [&minValue, &maxValue](const | |
274 | // minValue = std::min({ minValue, std::min_element(v.begin(),v.end()) }); |
|
275 | // auto& v) { | |
275 | // maxValue = std::max({ maxValue, std::max_element(v.begin(),v.end()) }); |
|
276 | // minValue = std::min({ minValue, | |
276 | // }); |
|
277 | // std::min_element(v.begin(),v.end()) }); maxValue = std::max({ | |
|
278 | // maxValue, std::max_element(v.begin(),v.end()) }); | |||
|
279 | // }); | |||
277 | } |
|
280 | } | |
278 |
|
281 | |||
279 | plot.yAxis->setRange(QCPRange { minValue, maxValue }); |
|
282 | plot.yAxis->setRange(QCPRange { minValue, maxValue }); | |
@@ -289,7 +292,12 struct PlottablesUpdater<T, typename std::enable_if_t<std::is_base_of<MultiCompo | |||||
289 | auto dataContainer = QSharedPointer<SqpDataContainer>::create(); |
|
292 | auto dataContainer = QSharedPointer<SqpDataContainer>::create(); | |
290 | if (auto serie = dynamic_cast<MultiComponentTimeSerie*>(&dataSeries)) |
|
293 | if (auto serie = dynamic_cast<MultiComponentTimeSerie*>(&dataSeries)) | |
291 | { |
|
294 | { | |
292 | // TODO |
|
295 | // TODO | |
|
296 | std::for_each(std::begin(*serie), std::end(*serie), | |||
|
297 | [&dataContainer, component = plottable.first](const auto& value) { | |||
|
298 | dataContainer->appendGraphData( | |||
|
299 | QCPGraphData(value.t(), value[component])); | |||
|
300 | }); | |||
293 | } |
|
301 | } | |
294 | graph->setData(dataContainer); |
|
302 | graph->setData(dataContainer); | |
295 | } |
|
303 | } |
@@ -8,6 +8,7 import pysciqlopcore | |||||
8 | import numpy as np |
|
8 | import numpy as np | |
9 | import pandas as pds |
|
9 | import pandas as pds | |
10 | import requests |
|
10 | import requests | |
|
11 | import copy | |||
11 | from spwc.amda import AMDA |
|
12 | from spwc.amda import AMDA | |
12 |
|
13 | |||
13 | amda = AMDA() |
|
14 | amda = AMDA() | |
@@ -22,13 +23,15 def get_sample(metadata,start,stop): | |||||
22 | elif key == 'type': |
|
23 | elif key == 'type': | |
23 | if value == 'vector': |
|
24 | if value == 'vector': | |
24 | ts_type = pysciqlopcore.VectorTimeSerie |
|
25 | ts_type = pysciqlopcore.VectorTimeSerie | |
25 | tstart=datetime.datetime.utcfromtimestamp(start) |
|
26 | elif value == 'multicomponent': | |
26 | tend=datetime.datetime.utcfromtimestamp(stop) |
|
27 | ts_type = pysciqlopcore.MultiComponentTimeSerie | |
|
28 | tstart=datetime.datetime.fromtimestamp(start, tz=timezone.utc) | |||
|
29 | tend=datetime.datetime.fromtimestamp(stop, tz=timezone.utc) | |||
27 | df = amda.get_parameter(start_time=tstart, stop_time=tend, parameter_id=param_id) |
|
30 | df = amda.get_parameter(start_time=tstart, stop_time=tend, parameter_id=param_id) | |
28 | #t = np.array([d.timestamp()-7200 for d in df.index]) |
|
31 | #t = np.array([d.timestamp()-7200 for d in df.index]) | |
29 | t = np.array([d.timestamp() for d in df.index]) |
|
32 | t = np.array([d.timestamp() for d in df.index]) | |
30 | values = df.values |
|
33 | values = df.values | |
31 | return ts_type(t,values) |
|
34 | return ts_type(t,values.transpose()) | |
32 | return ts_type(1) |
|
35 | return ts_type(1) | |
33 | except Exception as e: |
|
36 | except Exception as e: | |
34 | print(traceback.format_exc()) |
|
37 | print(traceback.format_exc()) | |
@@ -38,7 +41,7 def get_sample(metadata,start,stop): | |||||
38 |
|
41 | |||
39 | if len(amda.component) is 0: |
|
42 | if len(amda.component) is 0: | |
40 | amda.update_inventory() |
|
43 | amda.update_inventory() | |
41 |
parameters = amda.parameter |
|
44 | parameters = copy.deepcopy(amda.parameter) | |
42 | for name,component in amda.component.items(): |
|
45 | for name,component in amda.component.items(): | |
43 | if 'components' in parameters[component['parameter']]: |
|
46 | if 'components' in parameters[component['parameter']]: | |
44 | parameters[component['parameter']]['components'].append(component) |
|
47 | parameters[component['parameter']]['components'].append(component) | |
@@ -50,8 +53,11 for key,parameter in parameters.items(): | |||||
50 | path = f"/AMDA/{parameter['mission']}/{parameter['instrument']}/{parameter['dataset']}/{parameter['name']}" |
|
53 | path = f"/AMDA/{parameter['mission']}/{parameter['instrument']}/{parameter['dataset']}/{parameter['name']}" | |
51 | components = [component['name'] for component in parameter.get('components',[])] |
|
54 | components = [component['name'] for component in parameter.get('components',[])] | |
52 | metadata = [ (key,item) for key,item in parameter.items() if key is not 'components' ] |
|
55 | metadata = [ (key,item) for key,item in parameter.items() if key is not 'components' ] | |
53 |
|
|
56 | n_components = parameter.get('size',0) | |
|
57 | if n_components is '3': | |||
54 | metadata.append(("type","vector")) |
|
58 | metadata.append(("type","vector")) | |
|
59 | elif n_components !=0: | |||
|
60 | metadata.append(("type","multicomponent")) | |||
55 | else: |
|
61 | else: | |
56 | metadata.append(("type","scalar")) |
|
62 | metadata.append(("type","scalar")) | |
57 | products.append( (path, components, metadata)) |
|
63 | products.append( (path, components, metadata)) |
@@ -6,12 +6,39 import numpy as np | |||||
6 |
|
6 | |||
7 | someglobal = 1 |
|
7 | someglobal = 1 | |
8 |
|
8 | |||
9 | def test(name,start,stop): |
|
9 | def make_scalar(x): | |
10 | x = np.arange(start, stop) |
|
|||
11 | y = np.cos(x/10.) |
|
10 | y = np.cos(x/10.) | |
12 | return pysciqlopcore.ScalarTimeSerie(x,y) |
|
11 | return pysciqlopcore.ScalarTimeSerie(x,y) | |
13 |
|
12 | |||
|
13 | def make_vector(x): | |||
|
14 | v=np.ones((3,len(x))) | |||
|
15 | for i in range(3): | |||
|
16 | v[:][i] = np.cos(x/10. + float(i)) | |||
|
17 | return pysciqlopcore.VectorTimeSerie(x,v) | |||
|
18 | ||||
|
19 | ||||
|
20 | def make_multicomponent(x): | |||
|
21 | v=np.ones((4,len(x))) | |||
|
22 | for i in range(4): | |||
|
23 | v[:][i] = float(i+1) * np.cos(x/10. + float(i)) | |||
|
24 | return pysciqlopcore.MultiComponentTimeSerie(x,v) | |||
|
25 | ||||
|
26 | ||||
|
27 | def get_data(metadata,start,stop): | |||
|
28 | x = np.arange(start, stop) | |||
|
29 | for key,value in metadata: | |||
|
30 | if key == 'xml:id': | |||
|
31 | param_id = value | |||
|
32 | elif key == 'type': | |||
|
33 | if value == 'vector': | |||
|
34 | return make_vector(x) | |||
|
35 | elif value == 'multicomponent': | |||
|
36 | return make_multicomponent(x) | |||
|
37 | return make_scalar(x) | |||
|
38 | ||||
|
39 | ||||
|
40 | ||||
14 |
|
41 | |||
15 | #PythonProviders.register_product(["/folder1/folder2/product1", "/folder1/folder3/product2", "/folder4/folder5/product3"],test) |
|
42 | PythonProviders.register_product([("/tests/scalar",[],[("type","scalar")]), ("/tests/vector",[],[("type","vector")]), ("/tests/multicomponent",[],[("type","multicomponent"),('size','4')])],get_data) | |
16 |
|
43 | |||
17 |
|
44 |
General Comments 0
You need to be logged in to leave comments.
Login now