@@ -1,1 +1,1 | |||||
1 | Subproject commit 5f1aaa704ac36252027b9da0064bdf1de063df0d |
|
1 | Subproject commit 7c86e13f8a6242eb5fe07f0da91a96a4cf68b5bf |
@@ -1,68 +1,67 | |||||
1 | import sys |
|
1 | import sys | |
2 | sys.path.append("/home/jeandet/Documents/prog/build-SciQLop-Desktop-Debug/core") |
|
2 | sys.path.append("/home/jeandet/Documents/prog/build-SciQLop-Desktop-Debug/core") | |
3 | import traceback |
|
3 | import traceback | |
4 | import os |
|
4 | import os | |
5 | from datetime import datetime, timedelta, timezone |
|
5 | from datetime import datetime, timedelta, timezone | |
6 | import PythonProviders |
|
6 | import PythonProviders | |
7 | import pysciqlopcore |
|
7 | import pysciqlopcore | |
8 | import numpy as np |
|
8 | import numpy as np | |
9 | import pandas as pds |
|
9 | import pandas as pds | |
10 | import requests |
|
10 | import requests | |
11 | import copy |
|
11 | import copy | |
12 | from spwc.amda import AMDA |
|
12 | from spwc.amda import AMDA | |
13 |
|
13 | |||
14 | amda = AMDA() |
|
14 | amda = AMDA() | |
15 |
|
15 | |||
16 | def get_sample(metadata,start,stop): |
|
16 | def get_sample(metadata,start,stop): | |
17 | ts_type = pysciqlopcore.ScalarTimeSerie |
|
17 | ts_type = pysciqlopcore.ScalarTimeSerie | |
18 | default_ctor_args = 1 |
|
18 | default_ctor_args = 1 | |
19 | try: |
|
19 | try: | |
20 | param_id = None |
|
20 | param_id = None | |
21 | for key,value in metadata: |
|
21 | for key,value in metadata: | |
22 | if key == 'xml:id': |
|
22 | if key == 'xml:id': | |
23 | param_id = value |
|
23 | param_id = value | |
24 | elif key == 'type': |
|
24 | elif key == 'type': | |
25 | if value == 'vector': |
|
25 | if value == 'vector': | |
26 | ts_type = pysciqlopcore.VectorTimeSerie |
|
26 | ts_type = pysciqlopcore.VectorTimeSerie | |
27 | elif value == 'multicomponent': |
|
27 | elif value == 'multicomponent': | |
28 | ts_type = pysciqlopcore.MultiComponentTimeSerie |
|
28 | ts_type = pysciqlopcore.MultiComponentTimeSerie | |
29 | default_ctor_args = (0,2) |
|
29 | default_ctor_args = (0,2) | |
30 | tstart=datetime.datetime.fromtimestamp(start, tz=timezone.utc) |
|
30 | tstart=datetime.datetime.fromtimestamp(start, tz=timezone.utc) | |
31 | tend=datetime.datetime.fromtimestamp(stop, tz=timezone.utc) |
|
31 | tend=datetime.datetime.fromtimestamp(stop, tz=timezone.utc) | |
32 | df = amda.get_parameter(start_time=tstart, stop_time=tend, parameter_id=param_id, method="REST") |
|
32 | df = amda.get_parameter(start_time=tstart, stop_time=tend, parameter_id=param_id, method="REST") | |
33 | #t = np.array([d.timestamp()-7200 for d in df.index]) |
|
|||
34 | t = np.array([d.timestamp() for d in df.index]) |
|
33 | t = np.array([d.timestamp() for d in df.index]) | |
35 | values = df.values |
|
34 | values = df.values | |
36 |
return ts_type(t,values |
|
35 | return ts_type(t,values) | |
37 | except Exception as e: |
|
36 | except Exception as e: | |
38 | print(traceback.format_exc()) |
|
37 | print(traceback.format_exc()) | |
39 | print("Error in amda.py ",str(e)) |
|
38 | print("Error in amda.py ",str(e)) | |
40 | return ts_type(default_ctor_args) |
|
39 | return ts_type(default_ctor_args) | |
41 |
|
40 | |||
42 |
|
41 | |||
43 | if len(amda.component) is 0: |
|
42 | if len(amda.component) is 0: | |
44 | amda.update_inventory() |
|
43 | amda.update_inventory() | |
45 | parameters = copy.deepcopy(amda.parameter) |
|
44 | parameters = copy.deepcopy(amda.parameter) | |
46 | for name,component in amda.component.items(): |
|
45 | for name,component in amda.component.items(): | |
47 | if 'components' in parameters[component['parameter']]: |
|
46 | if 'components' in parameters[component['parameter']]: | |
48 | parameters[component['parameter']]['components'].append(component) |
|
47 | parameters[component['parameter']]['components'].append(component) | |
49 | else: |
|
48 | else: | |
50 | parameters[component['parameter']]['components']=[component] |
|
49 | parameters[component['parameter']]['components']=[component] | |
51 |
|
50 | |||
52 | products = [] |
|
51 | products = [] | |
53 | for key,parameter in parameters.items(): |
|
52 | for key,parameter in parameters.items(): | |
54 | path = f"/AMDA/{parameter['mission']}/{parameter['instrument']}/{parameter['dataset']}/{parameter['name']}" |
|
53 | path = f"/AMDA/{parameter['mission']}/{parameter['instrument']}/{parameter['dataset']}/{parameter['name']}" | |
55 | components = [component['name'] for component in parameter.get('components',[])] |
|
54 | components = [component['name'] for component in parameter.get('components',[])] | |
56 | metadata = [ (key,item) for key,item in parameter.items() if key is not 'components' ] |
|
55 | metadata = [ (key,item) for key,item in parameter.items() if key is not 'components' ] | |
57 | n_components = parameter.get('size',0) |
|
56 | n_components = parameter.get('size',0) | |
58 | if n_components is '3': |
|
57 | if n_components is '3': | |
59 | metadata.append(("type","vector")) |
|
58 | metadata.append(("type","vector")) | |
60 | elif n_components !=0: |
|
59 | elif n_components !=0: | |
61 | metadata.append(("type","multicomponent")) |
|
60 | metadata.append(("type","multicomponent")) | |
62 | else: |
|
61 | else: | |
63 | metadata.append(("type","scalar")) |
|
62 | metadata.append(("type","scalar")) | |
64 | products.append( (path, components, metadata)) |
|
63 | products.append( (path, components, metadata)) | |
65 |
|
64 | |||
66 | PythonProviders.register_product(products, get_sample) |
|
65 | PythonProviders.register_product(products, get_sample) | |
67 |
|
66 | |||
68 |
|
67 |
@@ -1,29 +1,52 | |||||
1 | import sys |
|
1 | import sys | |
2 | sys.path.append("/home/jeandet/Documents/prog/build-SciQLop-Desktop-Debug/core") |
|
2 | sys.path.append("/home/jeandet/Documents/prog/build-SciQLop-Desktop-Debug/core") | |
3 | import os |
|
3 | import os | |
4 | import datetime |
|
4 | import datetime | |
5 | import PythonProviders |
|
5 | import PythonProviders | |
6 | import pysciqlopcore |
|
6 | import pysciqlopcore | |
7 | import numpy as np |
|
7 | import numpy as np | |
8 | import pandas as pds |
|
8 | import pandas as pds | |
9 | import requests |
|
9 | import requests | |
10 | from spwc.cdaweb import cdaweb |
|
10 | from spwc.cdaweb import cdaweb | |
11 |
|
11 | |||
12 | cd = cdaweb() |
|
12 | cd = cdaweb() | |
13 |
|
13 | |||
14 |
def get_sample( |
|
14 | def cda_get_sample(metadata, start,stop): | |
|
15 | ts_type = pysciqlopcore.ScalarTimeSerie | |||
|
16 | default_ctor_args = 1 | |||
15 | try: |
|
17 | try: | |
16 | tstart=datetime.datetime.fromtimestamp(start) |
|
18 | variable_id = None | |
17 | tend=datetime.datetime.fromtimestamp(stop) |
|
19 | dataset_id = None | |
18 | df = cd.get_variable(dataset="MMS2_SCM_SRVY_L2_SCSRVY",variable="mms2_scm_acb_gse_scsrvy_srvy_l2",tstart=tstart,tend=tend) |
|
20 | for key,value in metadata: | |
19 | t = np.array([d.timestamp()-7200 for d in df.index]) |
|
21 | if key == 'VAR_ID': | |
|
22 | variable_id = value | |||
|
23 | elif key == 'DATASET_ID': | |||
|
24 | dataset_id = value | |||
|
25 | elif key == 'type': | |||
|
26 | if value == 'vector': | |||
|
27 | ts_type = pysciqlopcore.VectorTimeSerie | |||
|
28 | elif value == 'multicomponent': | |||
|
29 | ts_type = pysciqlopcore.MultiComponentTimeSerie | |||
|
30 | default_ctor_args = (0,2) | |||
|
31 | tstart=datetime.datetime.fromtimestamp(start, tz=timezone.utc) | |||
|
32 | tend=datetime.datetime.fromtimestamp(stop, tz=timezone.utc) | |||
|
33 | df = cd.get_variable(dataset=dataset_id,variable=variable_id,tstart=tstart,tend=tend) | |||
|
34 | t = np.array([d.timestamp() for d in df.index]) | |||
20 | values = df.values |
|
35 | values = df.values | |
21 | return pysciqlopcore.VectorTimeSerie(t,values) |
|
36 | print(values.shape) | |
22 | except Exception as e: |
|
37 | return ts_type(t,values) | |
23 | print("fuck ",str(e)) |
|
38 | except Exception as e: | |
24 | return pysciqlopcore.VectorTimeSerie(1) |
|
39 | print(traceback.format_exc()) | |
|
40 | print("Error in amda.py ",str(e)) | |||
|
41 | return ts_type(default_ctor_args) | |||
25 |
|
42 | |||
26 |
|
43 | |||
27 | PythonProviders.register_product([("/CDA/mms4_scm_acb_gse_scsrvy_srvy_l2",[],[("type","vector")])],get_sample) |
|
44 | products = [ | |
|
45 | ("/CDA/Themis/ThA/tha_fgl_gsm", [], [("type","multicomponent"), ('size','4'), ("DATASET_ID","THA_L2_FGM"), ("VAR_ID","tha_fgl_gsm")]), | |||
|
46 | ("/CDA/Themis/ThB/thb_fgl_gsm", [], [("type","multicomponent"), ('size','4'), ("DATASET_ID","THB_L2_FGM"), ("VAR_ID","thb_fgl_gsm")]), | |||
|
47 | ||||
|
48 | ] | |||
|
49 | ||||
|
50 | PythonProviders.register_product(products, cda_get_sample) | |||
28 |
|
51 | |||
29 |
|
52 |
General Comments 0
You need to be logged in to leave comments.
Login now