@@ -1,1 +1,1 | |||
|
1 | Subproject commit 5f1aaa704ac36252027b9da0064bdf1de063df0d | |
|
1 | Subproject commit 7c86e13f8a6242eb5fe07f0da91a96a4cf68b5bf |
@@ -30,10 +30,9 def get_sample(metadata,start,stop): | |||
|
30 | 30 | tstart=datetime.datetime.fromtimestamp(start, tz=timezone.utc) |
|
31 | 31 | tend=datetime.datetime.fromtimestamp(stop, tz=timezone.utc) |
|
32 | 32 | df = amda.get_parameter(start_time=tstart, stop_time=tend, parameter_id=param_id, method="REST") |
|
33 | #t = np.array([d.timestamp()-7200 for d in df.index]) | |
|
34 | 33 | t = np.array([d.timestamp() for d in df.index]) |
|
35 | 34 | values = df.values |
|
36 |
return ts_type(t,values |
|
|
35 | return ts_type(t,values) | |
|
37 | 36 | except Exception as e: |
|
38 | 37 | print(traceback.format_exc()) |
|
39 | 38 | print("Error in amda.py ",str(e)) |
@@ -11,19 +11,42 from spwc.cdaweb import cdaweb | |||
|
11 | 11 | |
|
12 | 12 | cd = cdaweb() |
|
13 | 13 | |
|
14 |
def get_sample( |
|
|
14 | def cda_get_sample(metadata, start,stop): | |
|
15 | ts_type = pysciqlopcore.ScalarTimeSerie | |
|
16 | default_ctor_args = 1 | |
|
15 | 17 | try: |
|
16 | tstart=datetime.datetime.fromtimestamp(start) | |
|
17 | tend=datetime.datetime.fromtimestamp(stop) | |
|
18 | df = cd.get_variable(dataset="MMS2_SCM_SRVY_L2_SCSRVY",variable="mms2_scm_acb_gse_scsrvy_srvy_l2",tstart=tstart,tend=tend) | |
|
19 | t = np.array([d.timestamp()-7200 for d in df.index]) | |
|
18 | variable_id = None | |
|
19 | dataset_id = None | |
|
20 | for key,value in metadata: | |
|
21 | if key == 'VAR_ID': | |
|
22 | variable_id = value | |
|
23 | elif key == 'DATASET_ID': | |
|
24 | dataset_id = value | |
|
25 | elif key == 'type': | |
|
26 | if value == 'vector': | |
|
27 | ts_type = pysciqlopcore.VectorTimeSerie | |
|
28 | elif value == 'multicomponent': | |
|
29 | ts_type = pysciqlopcore.MultiComponentTimeSerie | |
|
30 | default_ctor_args = (0,2) | |
|
31 | tstart=datetime.datetime.fromtimestamp(start, tz=timezone.utc) | |
|
32 | tend=datetime.datetime.fromtimestamp(stop, tz=timezone.utc) | |
|
33 | df = cd.get_variable(dataset=dataset_id,variable=variable_id,tstart=tstart,tend=tend) | |
|
34 | t = np.array([d.timestamp() for d in df.index]) | |
|
20 | 35 | values = df.values |
|
21 | return pysciqlopcore.VectorTimeSerie(t,values) | |
|
36 | print(values.shape) | |
|
37 | return ts_type(t,values) | |
|
22 | 38 | except Exception as e: |
|
23 |
print( |
|
|
24 | return pysciqlopcore.VectorTimeSerie(1) | |
|
39 | print(traceback.format_exc()) | |
|
40 | print("Error in amda.py ",str(e)) | |
|
41 | return ts_type(default_ctor_args) | |
|
25 | 42 | |
|
26 | 43 | |
|
27 | PythonProviders.register_product([("/CDA/mms4_scm_acb_gse_scsrvy_srvy_l2",[],[("type","vector")])],get_sample) | |
|
44 | products = [ | |
|
45 | ("/CDA/Themis/ThA/tha_fgl_gsm", [], [("type","multicomponent"), ('size','4'), ("DATASET_ID","THA_L2_FGM"), ("VAR_ID","tha_fgl_gsm")]), | |
|
46 | ("/CDA/Themis/ThB/thb_fgl_gsm", [], [("type","multicomponent"), ('size','4'), ("DATASET_ID","THB_L2_FGM"), ("VAR_ID","thb_fgl_gsm")]), | |
|
47 | ||
|
48 | ] | |
|
49 | ||
|
50 | PythonProviders.register_product(products, cda_get_sample) | |
|
28 | 51 | |
|
29 | 52 |
General Comments 0
You need to be logged in to leave comments.
Login now