##// END OF EJS Templates
Merge
jeandet -
r16:57e3ff45aefd merge tip default draft
parent child
Show More
@@ -0,0 +1,87
1 #!/usr/bin/env python
2 #-*- coding: utf-8 -*-
3 """Simple python library to drive the analog discovery module from www.digilentinc.com
4 With Discoply addon connected https://hephaistos.lpp.polytechnique.fr/rhodecode/HG_REPOSITORIES/LPP/INSTRUMENTATION/PCB/DiscoPli
5 """
6
7 from ctypes import *
8 import time
9 import sys
10 import os
11 import matplotlib.pyplot as plt
12 import numpy as np
13 from lppinstru import discovery
14
15 __author__ = "Alexis Jeandet"
16 __copyright__ = "Copyright 2015, Laboratory of Plasma Physics"
17 __credits__ = []
18 __license__ = "GPLv2"
19 __version__ = "1.0.0"
20 __maintainer__ = "Alexis Jeandet"
21 __email__ = "alexis.jeandet@member.fsf.org"
22 __status__ = "Production"
23
24
25
26 class discoply(discovery.Discovery):
27 _gains={
28 "LTC-6910-1":[0, 1, 2, 5, 10, 20, 50, 100],
29 "LTC-6910-2":[0, 1, 2, 4, 8, 16, 32, 64],
30 "LTC-6910-3":[0, 1, 2, 3, 4, 5, 6, 7]
31 }
32 def __init__(self,card=-1,model="LTC-6910-1",gain_ch1=1,gain_ch2=1):
33 super(discoply,self).__init__(card)
34 self._model=model
35 self.set_power()
36 self.digital_io_output_enable(0x3F)
37 self.gain_idx = [gain_ch1,gain_ch2]
38
39 def auto_remove_offset(self,channel=0):
40 out=0.0
41 for i in range(10):
42 self.analog_out_gen(shape="DC",offset=out)
43 time.sleep(0.2)
44 mean=super(discoply,self).analog_in_read(frequency=1e5,samplesCount=8192)[0][channel].mean()
45 out+=-mean*14./self.gain[channel]
46 return mean
47
48 def analog_in_read(self,ch1=True,ch2=True,frequency=100000000,samplesCount=100,ch1range=5.0,ch2range=5.0,trigger=discovery.trigsrcNone):
49 data=super(discoply,self).analog_in_read(ch1,ch2,frequency,samplesCount,ch1range,ch2range,trigger)
50 if self.gain[0] !=0:
51 data[0][0]=data[0][0]/self.gain[0]
52 if self.gain[1] !=0:
53 data[0][1]=data[0][1]/self.gain[1]
54 return data
55
56 @property
57 def offset(self):
58 data=super(discoply,self).analog_in_read(frequency=1e4,samplesCount=8192)[0]
59 return [data[0].mean(),data[1].mean()]
60
61 @property
62 def gain(self):
63 return [
64 self._gains[self._model][self.gain_idx[0]],
65 self._gains[self._model][self.gain_idx[1]]]
66
67 @property
68 def gain_idx(self):
69 dio=self.digital_io
70 return [dio&7,(dio>>3)&7]
71
72 @gain_idx.setter
73 def gain_idx(self,value):
74 self.digital_io =(value[0]&7) + ((value[1]&7)<<3)
75
76 def set_gain_idx(self,value,channel):
77 gain = self.gain & ~(7 << [0,3][channel])
78 self.gain_idx = gain + (value << [0,3][channel])
79
80
81 if __name__ == '__main__':
82 quit()
83
84
85
86
87
@@ -1,431 +1,458
1 1 #!/usr/bin/env python
2 2 #-*- coding: utf-8 -*-
3 3 """Simple python library to drive the analog discovery module from www.digilentinc.com
4 4 """
5 5
6 6 from ctypes import *
7 7 import time
8 8 import sys
9 9 import os
10 10 import matplotlib.pyplot as plt
11 11 import numpy as np
12 12
13 13 __author__ = "Alexis Jeandet"
14 14 __copyright__ = "Copyright 2015, Laboratory of Plasma Physics"
15 15 __credits__ = []
16 16 __license__ = "GPLv2"
17 17 __version__ = "1.0.0"
18 18 __maintainer__ = "Alexis Jeandet"
19 19 __email__ = "alexis.jeandet@member.fsf.org"
20 20 __status__ = "Production"
21 21
22 22
23 23 nodev = c_int(0)
24 24
25 25 DwfStateReady = c_byte(0)
26 26 DwfStateConfig = c_byte(4)
27 27 DwfStatePrefill = c_byte(5)
28 28 DwfStateArmed = c_byte(1)
29 29 DwfStateWait = c_byte(7)
30 30 DwfStateTriggered = c_byte(3)
31 31 DwfStateRunning = c_byte(3)
32 32 DwfStateDone = c_byte(2)
33 33
34 34 DwfStateDict={
35 35 DwfStateReady.value:"Ready",
36 36 DwfStateConfig.value:"Config",
37 37 DwfStatePrefill.value:"Prefill",
38 38 DwfStateArmed.value:"Armed",
39 39 DwfStateWait.value:"Wait",
40 40 DwfStateTriggered.value:"Triggered",
41 41 DwfStateRunning.value:"Running",
42 42 DwfStateDone.value:"Done"
43 43 }
44 44
45 45 DECIAnalogInChannelCount = c_int(1)
46 46 DECIAnalogOutChannelCount = c_int(2)
47 47 DECIAnalogIOChannelCount = c_int(3)
48 48 DECIDigitalInChannelCount = c_int(4)
49 49 DECIDigitalOutChannelCount = c_int(5)
50 50 DECIDigitalIOChannelCount = c_int(6)
51 51 DECIAnalogInBufferSize = c_int(7)
52 52 DECIAnalogOutBufferSize = c_int(8)
53 53 DECIDigitalInBufferSize = c_int(9)
54 54 DECIDigitalOutBufferSize = c_int(10)
55 55
56 56 trigsrcNone = c_byte(0)
57 57 trigsrcPC = c_byte(1)
58 58 trigsrcDetectorAnalogIn = c_byte(2)
59 59 trigsrcDetectorDigitalIn = c_byte(3)
60 60 trigsrcAnalogIn = c_byte(4)
61 61 trigsrcDigitalIn = c_byte(5)
62 62 trigsrcDigitalOut = c_byte(6)
63 63 trigsrcAnalogOut1 = c_byte(7)
64 64 trigsrcAnalogOut2 = c_byte(8)
65 65 trigsrcAnalogOut3 = c_byte(9)
66 66 trigsrcAnalogOut4 = c_byte(10)
67 67 trigsrcExternal1 = c_byte(11)
68 68 trigsrcExternal2 = c_byte(12)
69 69 trigsrcExternal3 = c_byte(13)
70 70 trigsrcExternal4 = c_byte(14)
71 71 trigAuto = c_byte(254)
72 72 trigNormal = c_byte(255)
73 73
74 74 AnalogOutNodeCarrier = c_int(0)
75 75 AnalogOutNodeFM = c_int(1)
76 76 AnalogOutNodeAM = c_int(2)
77 77
78 filterDecimate = c_int(0)
79 filterAverage = c_int(1)
80 filterMinMax = c_int(2)
81
78 82
79 83 shapes = {'DC' : 0,
80 84 'Sine' : 1,
81 85 'Square' : 2,
82 86 'Triangle' : 3,
83 87 'RampUp' : 4,
84 88 'RampDown' : 5,
85 89 'Noise' : 6,
86 90 'Custom' : 30,
87 91 'Play' :31, }
88 92
89 93 closed=False
90 94 opened=True
91 95
92 96
93 97 class DiscoveryLimits(object):
94 98 class limitRange(object):
95 99 def __init__(self,Min,Max,name="Unknow",unit=""):
96 100 self.Min = Min
97 101 self.Max = Max
98 102 self.name = name
99 103 self.unit = unit
100 104
101 105 def conform(self,value):
102 106 if value<self.Min:
103 107 raise UserWarning("Parameter "+self.name+" out of bound\nValue="+str(value)+"\nForce to "+str(self.Min))
104 108 return self.Min
105 109 if value>self.Max:
106 110 raise UserWarning("Parameter "+self.name+" out of bound\nValue="+str(value)+"\nForce to "+str(self.Max))
107 111 return self.Max
108 112 return value
109 113
110 114 def __str__(self):
111 115 return self.name + ":\n Min="+str(self.Min)+" "+self.unit+",Max="+str(self.Max)+" "+self.unit
112 116
113 117 errors = {0: RuntimeError("No card opened"),
114 118 1: UserWarning("Parameter out of bound"),
115 119 }
116 120 def __init__(self,libdwf,hdwf):
117 121 self.limits=[]
118 122 self.ACQ_IN_RANGES=[0.0]
119 123 if hdwf.value == nodev.value:
120 124 return
121 125 self.__hdwf=hdwf
122 126 self.__libdwf=libdwf
123 127 Mind=c_double()
124 128 Maxd=c_double()
125 129 Mini=c_int()
126 130 Maxi=c_int()
127 131 StepsCount=c_int()
128 132 Steps=(c_double*32)()
129 133 self.__libdwf.FDwfAnalogInBufferSizeInfo(self.__hdwf, byref(Mini), byref(Maxi))
130 134 self.ACQ_BUF=self.limitRange(Mini.value,Maxi.value,"ACQ Buffer Size","Sps")
131 135 self.limits.append(self.ACQ_BUF)
132 136 self.__libdwf.FDwfAnalogInFrequencyInfo(self.__hdwf, byref(Mind), byref(Maxd))
133 137 self.ACQ_FREQ=self.limitRange(Mind.value,Maxd.value,"ACQ Frequency","Hz")
134 138 self.limits.append(self.ACQ_FREQ)
135 139 self.__libdwf.FDwfAnalogInChannelRangeSteps(self.__hdwf, byref(Steps), byref(StepsCount))
136 140 self.ACQ_IN_RANGES=Steps[0:StepsCount.value]
137 141 self.__libdwf.FDwfAnalogOutNodeAmplitudeInfo(self.__hdwf,c_int(0), AnalogOutNodeCarrier,
138 142 byref(Mind), byref(Maxd))
139 143 self.GEN_AMPL=self.limitRange(Mind.value,Maxd.value,"GEN Amplitude","V")
140 144 self.limits.append(self.GEN_AMPL)
141 145 self.__libdwf.FDwfAnalogOutNodeFrequencyInfo(self.__hdwf,c_int(0), AnalogOutNodeCarrier,
142 146 byref(Mind), byref(Maxd))
143 147 self.GEN_FREQ=self.limitRange(Mind.value,Maxd.value,"GEN Frequency","Hz")
144 148 self.limits.append(self.GEN_FREQ)
145 149 self.__libdwf.FDwfAnalogOutNodeOffsetInfo(self.__hdwf,c_int(0), AnalogOutNodeCarrier,
146 150 byref(Mind), byref(Maxd))
147 151 self.GEN_OFFSET=self.limitRange(Mind.value,Maxd.value,"GEN Offset","V")
148 152 self.limits.append(self.GEN_OFFSET)
149 153 self.__libdwf.FDwfAnalogOutNodeDataInfo(self.__hdwf,c_int(0), AnalogOutNodeCarrier,
150 154 byref(Mini), byref(Maxi))
151 155 self.GEN_BUFF=self.limitRange(Mini.value,Maxi.value,"GEN Buffer size","Sps")
152 156 self.limits.append(self.GEN_BUFF)
153 157
154 158
155 159 def __conformParam(self,minVal,maxVal,val):
156 160 if val<minVal:
157 161 raise self.errors.get(1)
158 162 print("Force to "+str(minVal))
159 163 return minVal
160 164 if val>maxVal:
161 165 raise self.errors.get(1)
162 166 print("Force to "+str(maxVal))
163 167 return maxVal
164 168 return val
165 169
166 170 def acqFreq(self, value):
167 171 return self.ACQ_FREQ.conform(value)
168 172
169 173 def acqBufSize(self, value):
170 174 return self.ACQ_BUF.conform(value)
171 175
172 176 def genFreq(self, value):
173 177 return self.GEN_FREQ.conform(value)
174 178
175 179 def genAmplitude(self, value):
176 180 return self.GEN_AMPL.conform(value)
177 181
178 182 def genOffset(self, value):
179 183 return self.GEN_OFFSET.conform(value)
180 184
181 185 def genBuffSize(self, value):
182 186 return self.GEN_BUFF.conform(value)
183 187
184 188 def __str__(self):
185 189 res=str()
186 190 for i in self.limits:
187 191 res+=i.__str__()+"\n"
188 192 res+="ACQ Input ranes: "+str(self.ACQ_IN_RANGES)
189 193 return res
190 194
191 195
192 196 class Discovery(object):
193 197
194 198 errors = {0: RuntimeError("No card opened"),
195 199 1: UserWarning("Parameter out of bound"),
196 200 }
197 201 def findDevice(self,device):
198 202 if not self.__opened:
199 203 raise self.errors.get(0)
200 204 nbDevices = c_int()
201 205 self.__libdwf.FDwfEnum(c_int(0), byref(nbDevices))
202 206 SN = create_string_buffer(32)
203 207 for i in range(nbDevices.value):
204 208 self.__libdwf.FDwfEnumSN(c_int(i), SN)
205 209 if SN.value.decode("UTF-8") == device:
206 210 return i
207 211 return -1
208 212
209 213
210 214 def __init__(self,card=-1):
211 215 if sys.platform.startswith("win"):
212 216 self.__libdwf = cdll.dwf
213 217 elif sys.platform.startswith("darwin"):
214 218 self.__libdwf = cdll.LoadLibrary("libdwf.dylib")
215 219 else:
216 220 self.__libdwf = cdll.LoadLibrary("libdwf.so")
217 221 self.__opened = True
218 222 self.__hdwf = c_int()
219 223 if card != -1:
220 224 SN=card
221 225 card = self.findDevice(card)
222 226 if card == -1:
223 227 raise RuntimeError( "Card not found "+ SN)
224 228 self.__libdwf.FDwfDeviceOpen(c_int(card), byref(self.__hdwf))
225 229 if self.__hdwf.value == nodev.value:
226 230 szerr = create_string_buffer(512)
227 231 self.__libdwf.FDwfGetLastErrorMsg(szerr)
228 232 print(szerr.value)
229 233 print("failed to open device")
230 234 self.__opened=False
231 235 self.__limits=DiscoveryLimits(self.__libdwf,self.__hdwf)
232 236 print(self.__limits)
233 237
234 238 @property
235 239 def opened(self):
236 240 return self.__opened
237 241
238 242 @property
239 243 def max_sampling_freq(self):
240 244 return self.__limits.ACQ_FREQ.Max
241 245
242 246 @property
243 247 def min_sampling_freq(self):
244 248 return self.__limits.ACQ_FREQ.Min
245 249
246 250 @property
247 251 def max_sampling_buffer(self):
248 252 return self.__limits.ACQ_BUF.Max
249 253
250 254 #############################################################
251 255 # Power Supply
252 256 #############################################################
253 257 def set_power(self,fiveVolt=1,minusFiveVolt=1,master=True):
254 258 if not self.__opened:
255 259 raise self.errors.get(0)
256 260 # enable positive supply
257 261 self.__libdwf.FDwfAnalogIOChannelNodeSet(self.__hdwf, 0, 0, c_double(fiveVolt))
258 262 # enable negative supply
259 263 self.__libdwf.FDwfAnalogIOChannelNodeSet(self.__hdwf, 1, 0, c_double(minusFiveVolt))
260 264 # master enable
261 265 return self.__libdwf.FDwfAnalogIOEnableSet(self.__hdwf, master)
262 266
263 267 def get_power(self):
264 268 if not self.__opened:
265 269 raise self.errors.get(0)
266 270 supplyVoltage = c_double()
267 271 supplyCurrent = c_double()
268 272 IsEnabled = c_bool()
269 273 self.__libdwf.FDwfAnalogIOStatus(self.__hdwf)
270 274 self.__libdwf.FDwfAnalogIOChannelNodeStatus(self.__hdwf, c_int(3), c_int(0), byref(supplyVoltage))
271 275 self.__libdwf.FDwfAnalogIOChannelNodeStatus(self.__hdwf, c_int(3), c_int(1), byref(supplyCurrent))
272 276 self.__libdwf.FDwfAnalogIOEnableStatus(self.__hdwf, byref(IsEnabled))
273 277 return [IsEnabled.value,supplyVoltage.value,supplyCurrent.value]
274 278
275 279 #############################################################
276 280 # AnalogIn
277 281 #############################################################
278 282 def analog_in_read(self,ch1=True,ch2=True,frequency=100000000,samplesCount=100,ch1range=5.0,ch2range=5.0,trigger=trigsrcNone):
279 283 if not self.__opened:
280 284 raise self.errors.get(0)
281 285 cnt=self.__limits.acqBufSize(samplesCount)
282 286 self.__libdwf.FDwfAnalogInFrequencySet(self.__hdwf, c_double(self.__limits.acqFreq(frequency)))
283 287 f=c_double()
284 288 self.__libdwf.FDwfAnalogInFrequencyGet(self.__hdwf, byref(f))
285 289 frequency=f.value
286 290 self.__libdwf.FDwfAnalogInBufferSizeSet(self.__hdwf, c_int(cnt))
287 self.__libdwf.FDwfAnalogInChannelEnableSet(self.__hdwf, c_int(0), c_bool(ch1))
288 self.__libdwf.FDwfAnalogInChannelRangeSet(self.__hdwf, c_int(0), c_double(ch1range))
289 self.__libdwf.FDwfAnalogInChannelEnableSet(self.__hdwf, c_int(1), c_bool(ch2))
290 self.__libdwf.FDwfAnalogInChannelRangeSet(self.__hdwf, c_int(1), c_double(ch2range))
291 range,enabled = [ch1range,ch2range],[ch1,ch2]
292
293 for ch in (0,1):
294 self.__libdwf.FDwfAnalogInChannelEnableSet(self.__hdwf, c_int(ch), c_bool(enabled[ch]))
295 self.__libdwf.FDwfAnalogInChannelRangeSet(self.__hdwf, c_int(ch), c_double(range[ch]))
296 self.__libdwf.FDwfAnalogInChannelFilterSet(self.__hdwf,c_int(ch),filterAverage)
291 297 self.set_analog_in_trigger(trigger)
292 298 self.__libdwf.FDwfAnalogInConfigure(self.__hdwf, c_bool(False), c_bool(True))
293 299 status = c_byte()
294 300 while True:
295 301 self.__libdwf.FDwfAnalogInStatus(self.__hdwf, c_int(1), byref(status))
296 302 if status.value == DwfStateDone.value :
297 303 break
298 304 time.sleep(0.1)
299 305 if ch1:
300 306 ch1data = (c_double*cnt)()
301 307 self.__libdwf.FDwfAnalogInStatusData(self.__hdwf, 0, ch1data, cnt)
302 308 if ch2:
303 309 ch2data = (c_double*cnt)()
304 310 self.__libdwf.FDwfAnalogInStatusData(self.__hdwf, 1, ch2data, cnt)
305 311 return [np.array([ch1data,ch2data]),frequency]
306 312 else:
307 313 return [np.array([ch1data]),frequency]
308 314 if ch2:
309 315 ch2data = (c_double*cnt)()
310 316 self.__libdwf.FDwfAnalogInStatusData(self.__hdwf, 1, ch2data, cnt)
311 317 return [np.array([ch2data]),frequency]
312 318
313 319
314 320 def set_analog_in_trigger(self,trigger=trigAuto,autoTimeout=0.0):
315 321 if not self.__opened:
316 322 raise self.errors.get(0)
317 323 if trigger == trigAuto:
318 324 self.__libdwf.FDwfAnalogInTriggerSourceSet(self.__hdwf,trigsrcDetectorAnalogIn)
319 325 self.__libdwf.FDwfAnalogInTriggerAutoTimeoutSet(self.__hdwf,c_double(autoTimeout))
320 326 return
321 327 if trigger == trigNormal:
322 328 self.__libdwf.FDwfAnalogInTriggerSourceSet(self.__hdwf,trigsrcDetectorAnalogIn)
323 329 self.__libdwf.FDwfAnalogInTriggerAutoTimeoutSet(self.__hdwf,c_double(0.0))
324 330 return
325 331 self.__libdwf.FDwfAnalogInTriggerSourceSet(self.__hdwf,trigger)
326 332
327 333 #############################################################
328 334 # AnalogOut
329 335 #############################################################
336 def analog_out_enable(self,channel=0):
337 self.__libdwf.FDwfAnalogOutConfigure(self.__hdwf, c_int(channel), c_bool(True))
338
339 def analog_out_disable(self,channel=0):
340 self.__libdwf.FDwfAnalogOutConfigure(self.__hdwf, c_int(channel), c_bool(False))
341
330 342 def analog_out_gen(self,frequency=1000, symmetry=50.0, shape='Sine', channel=0, amplitude=1.0, offset=0.0,phase=0.0, syncOnTrigger=False, triggerFrq=1.0, wait=0.0, runDuration=None):
331 343 self.__libdwf.FDwfAnalogOutConfigure(self.__hdwf, c_int(channel), c_bool(False))
332 344 self.__libdwf.FDwfAnalogOutNodeEnableSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_bool(True))
333 345 self.__libdwf.FDwfAnalogOutNodeFunctionSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_int(shapes.get(shape)))
334 346 self.__libdwf.FDwfAnalogOutNodeSymmetrySet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(symmetry))
335 347 if shape!="DC":
336 348 self.__libdwf.FDwfAnalogOutNodeFrequencySet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(self.__limits.genFreq(frequency)))
337 349 self.__libdwf.FDwfAnalogOutNodeAmplitudeSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(self.__limits.genAmplitude(amplitude)))
338 350 self.__libdwf.FDwfAnalogOutNodeOffsetSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(self.__limits.genOffset(offset)))
339 351 self.__libdwf.FDwfAnalogOutNodePhaseSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(phase))
340 352 if syncOnTrigger:
341 353 self.analog_out_set_trigger(channel)
342 354 self.__libdwf.FDwfAnalogOutRepeatSet(self.__hdwf, c_int(channel),c_int(0))
343 355 if runDuration is None:
344 356 runDuration = triggerFrq
345 357 self.__libdwf.FDwfAnalogOutRunSet(self.__hdwf, c_int(channel),c_double(runDuration))
346 358 self.__libdwf.FDwfAnalogOutWaitSet(self.__hdwf, c_int(channel), c_double(wait))
347 359 self.__libdwf.FDwfAnalogOutConfigure(self.__hdwf, c_int(channel), c_bool(True))
348 360
349 361 def analog_out_gen_arbit(self,samplesBuffer ,repeatingFrequency=100, channel=0, amplitude=1.0, offset=0.0):
350 362 self.__libdwf.FDwfAnalogOutConfigure(self.__hdwf, c_int(channel), c_bool(False))
351 363 cnt=self.__limits.genBuffSize(len(samplesBuffer))
352 364 buf=(c_double*cnt)()
353 365 buf[:]=samplesBuffer[0:cnt]
354 366 #repeatingFrequency = self.__limits.genFreq(repeatingFrequency*cnt)/cnt
355 367 self.__libdwf.FDwfAnalogOutNodeEnableSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_bool(True))
356 368 self.__libdwf.FDwfAnalogOutNodeFunctionSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_int(shapes.get("Custom")))
357 369 self.__libdwf.FDwfAnalogOutNodeFrequencySet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(repeatingFrequency))
358 370 self.__libdwf.FDwfAnalogOutNodeAmplitudeSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(self.__limits.genAmplitude(amplitude)))
359 371 self.__libdwf.FDwfAnalogOutNodeOffsetSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(self.__limits.genOffset(offset)))
360 372 self.__libdwf.FDwfAnalogOutNodeDataSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, buf, c_int(cnt))
361 373 self.__libdwf.FDwfAnalogOutConfigure(self.__hdwf, c_int(channel), c_bool(True))
362 374
363 375 def analog_out_set_trigger(self, channel=0, trigSrc=trigsrcExternal1, trigRepeat=True):
364 376 self.__libdwf.FDwfAnalogOutTriggerSourceSet(self.__hdwf, c_int(channel), trigSrc)
365 377 self.__libdwf.FDwfAnalogOutRepeatTriggerSet(self.__hdwf, c_int(channel), c_bool(trigRepeat))
366 378
379 def __del__(self):
380 if self.__opened:
381 self.__libdwf.FDwfDeviceClose(self.__hdwf)
367 382
368 383 def analog_out_status(self, channel=0):
369 384 status = c_byte(DwfStateDone.value)
370 385 self.__libdwf.FDwfAnalogOutStatus(self.__hdwf, c_int(channel), byref(status))
371 386 return status
372 387 # def analog_out_modulation(self, channel=0,
373 388 # carrier_frequency=10, carrier_shape='Sine', carrier_amplitude=1.0, carrier_offset=0.0, carrier_phase=0.0, carrier_symmetry=0.5,
374 389 # AM_frequency=0.2857, AM_shape='Square', AM_amplitude=100.0, AM_offset=0.0, AM_phase=0.0, AM_percentageSymmetry=0.2857,
375 390 # syncOnTrigger=trigsrcExternal1, triggerFrq=1.0, wait=0.0, runDuration=None):
376 391 # self.__libdwf.FDwfAnalogOutConfigure(self.__hdwf, c_int(channel), c_bool(False))
377 392 # self.__libdwf.FDwfAnalogOutNodeEnableSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_bool(True))
378 393 #
379 394 # self.__libdwf.FDwfAnalogOutNodeFunctionSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_int(shapes.get(carrier_shape)))
380 395 # self.__libdwf.FDwfAnalogOutNodeFrequencySet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(self.__limits.genFreq(carrier_frequency)))
381 396 # self.__libdwf.FDwfAnalogOutNodeAmplitudeSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(self.__limits.genAmplitude(carrier_amplitude)))
382 397 # self.__libdwf.FDwfAnalogOutNodeOffsetSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(self.__limits.genOffset(carrier_offset)))
383 398 # self.__libdwf.FDwfAnalogOutNodePhaseSet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(carrier_phase))
384 399 # self.__libdwf.FDwfAnalogOutNodeSymmetrySet(self.__hdwf, c_int(channel), AnalogOutNodeCarrier, c_double(carrier_percentageSymmetry))
385 400 #
386 401 # self.__libdwf.FDwfAnalogOutNodeEnableSet(self.__hdwf, c_int(channel), AnalogOutNodeAM, c_bool(True))
387 402 # self.__libdwf.FDwfAnalogOutNodeFunctionSet(self.__hdwf, c_int(channel), AnalogOutNodeAM, c_int(shapes.get(AM_shape)))
388 403 # self.__libdwf.FDwfAnalogOutNodeFrequencySet(self.__hdwf, c_int(channel), AnalogOutNodeAM, c_double(self.__limits.genFreqAM_frequency)))
389 404 # self.__libdwf.FDwfAnalogOutNodeAmplitudeSet(self.__hdwf, c_int(channel), AnalogOutNodeAM, c_double(self.__limits.genAmplitude(AM_amplitude)))
390 405 # self.__libdwf.FDwfAnalogOutNodeOffsetSet(self.__hdwf, c_int(channel), AnalogOutNodeAM, c_double(self.__limits.genOffset(AM_offset)))
391 406 # self.__libdwf.FDwfAnalogOutNodePhaseSet(self.__hdwf, c_int(channel), AnalogOutNodeAM, c_double(AM_phase))
392 407 # self.__libdwf.FDwfAnalogOutNodeSymmetrySet(self.__hdwf, c_int(channel), AnalogOutNodeAM, c_double(AM_percentageSymmetry))
393 408 #
394 409 # if syncOnTrigger:
395 410 # self.analog_out_set_trigger(channel)
396 411 # self.__libdwf.FDwfAnalogOutRepeatSet(self.__hdwf, c_int(channel),c_int(0))
397 412 # if runDuration is None:
398 413 # runDuration = triggerFrq
399 414 # self.__libdwf.FDwfAnalogOutRunSet(self.__hdwf, c_int(channel),c_double(runDuration))
400 415 # self.__libdwf.FDwfAnalogOutWaitSet(self.__hdwf, c_int(channel), c_double(wait))
401 416 # self.__libdwf.FDwfAnalogOutConfigure(self.__hdwf, c_int(channel), c_bool(True))
402 417
418 def digital_io_output_enable(self, value):
419 self.__libdwf.FDwfDigitalIOOutputEnableSet(self.__hdwf, c_int(value))
403 420
404
421 def digital_io_get(self):
422 dwRead = c_uint32()
423 self.__libdwf.FDwfDigitalIOStatus (self.__hdwf)
424 self.__libdwf.FDwfDigitalIOInputStatus(self.__hdwf, byref(dwRead))
425 return dwRead.value
405 426
406 def __del__(self):
407 if self.__opened:
408 self.__libdwf.FDwfDeviceClose(self.__hdwf)
427 def digital_io_set(self,value):
428 self.__libdwf.FDwfDigitalIOOutputSet(self.__hdwf, c_int(value))
409 429
430 @property
431 def digital_io(self):
432 return self.digital_io_get()
433
434 @digital_io.setter
435 def digital_io(self,value):
436 self.digital_io_set(value)
410 437
411 438 if __name__ == '__main__':
412 439 print("open first dev")
413 440 test = Discovery()
414 441 test.set_power()
415 442 for i in range(2):
416 443 time.sleep(0.2)
417 444 print(test.get_power())
418 445 test.analog_out_gen()
419 446 res=test.analog_in_read(frequency=1000000,samplesCount=1000)
420 447 print(res)
421 448 plt.plot(range(len(res[0][0])),res[0][0])
422 449 plt.plot(range(len(res[0][0])),res[0][1])
423 450 plt.show()
424 451 test.temp()
425 452 # del test
426 453 quit()
427 454
428 455
429 456
430 457
431 458
@@ -1,127 +1,139
1 1 #!/usr/bin/env python
2 2 #-*- coding: utf-8 -*-
3 3 """Simple python library to drive DLP-TEMP module from www.dlpdesign.com
4 4 """
5 5 import time
6 6 import sys
7 7 import os
8 8 import matplotlib.pyplot as plt
9 9 import numpy as np
10 10 import serial
11 import struct
11 12
12 13 __author__ = "Alexis Jeandet"
13 14 __copyright__ = "Copyright 2015, Laboratory of Plasma Physics"
14 15 __credits__ = []
15 16 __license__ = "GPLv2"
16 17 __version__ = "1.0.0"
17 18 __maintainer__ = "Alexis Jeandet"
18 19 __email__ = "alexis.jeandet@member.fsf.org"
19 20 __status__ = "Production"
20 21
21 22 class dlp_temp(object):
22 23 sensors = {0 : b'S',
23 24 1 : b'T',
24 25 2 : b'U',
25 26 }
26 27 aninputs = {0 : b'A',
27 28 1 : b'B',
28 29 2 : b'C',
29 30 }
30 31 digitin= {0 : b'M',
31 32 1 : b'N',
32 33 2 : b'O',
33 34 }
34 35 digithigh= {0 : b'J',
35 36 1 : b'K',
36 37 2 : b'L',
37 38 }
38 39 digitlow= {0 : b'G',
39 40 1 : b'H',
40 41 2 : b'I',
41 42 }
42 43 def __init__(self,port):
43 44 self.i=0
44 45 self.__port=serial.Serial(port,timeout=0.5)
45 46
46 47 def ping(self):
47 48 self.__port.write(b"P")
48 49 return b'Q' == self.__port.read(1)
49 50
50 51 def read_sensor(self,index):
51 52 if index < 3:
52 53 self.__port.write(self.sensors.get(index))
53 54 dat=self.__port.read(9)
54 test=( int(ord(dat[0])) + (int(ord(dat[1]))*256) )
55 temp=float(test)*0.0625
55 temp=float(struct.unpack( "h", dat[:2])[0])*0.0625
56 56 return temp #(temp-32.0)/1.8
57 57 raise UserWarning("Parameter out of bound")
58 58
59 59 def read_analog_in(self,index):
60 60 if index < 3:
61 61 self.__port.write(self.aninputs.get(index))
62 62 dat=self.__port.read(2)
63 test=( int(ord(dat[0])) + (int(ord(dat[1]))*256) )
64 val=float(test)/512.0
63 val=float(struct.unpack( "h", dat[:2])[0])/512.0
65 64 return val
66 65 raise UserWarning("Parameter out of bound")
67 66
68 67 def digit_in(self,index):
69 68 if index < 3:
70 69 self.__port.write(self.digitin.get(index))
71 70 dat=self.__port.read(1)
72 71 return dat
73 72 raise UserWarning("Parameter out of bound")
74 73
75 74 def digit_out(self,index,val):
76 75 if index < 3:
77 76 if val:
78 77 self.__port.write(self.digithigh.get(index))
79 78 else:
80 79 self.__port.write(self.digitlow.get(index))
81 80 raise UserWarning("Parameter out of bound")
82 81
83 82 @property
84 83 def sensor1(self):
85 84 return self.read_sensor(0)
86 85
87 86 @property
88 87 def sensor2(self):
89 88 return self.read_sensor(1)
90 89
91 90 @property
92 91 def sensor3(self):
93 92 return self.read_sensor(2)
94 93
95 94 @property
96 95 def AN1(self):
97 96 return self.read_analog_in(0)
98 97 @property
99 98 def AN2(self):
100 99 return self.read_analog_in(1)
101 100 @property
102 101 def AN3(self):
103 102 return self.read_analog_in(2)
104 103
105 104 @property
106 105 def GP2(self):
107 106 return self.digit_in(0)
108 107 @GP2.setter
109 108 def GP2(self,value):
110 return self.digit_out(0,val)
109 return self.digit_out(0,value)
111 110
112 111 @property
113 112 def GP0(self):
114 113 return self.digit_in(1)
115 114 @GP0.setter
116 115 def GP0(self,value):
117 return self.digit_out(1,val)
116 return self.digit_out(1,value)
118 117
119 118 @property
120 119 def GP4(self):
121 120 return self.digit_in(2)
122 121 @GP4.setter
123 122 def GP4(self,value):
124 return self.digit_out(2,val)
123 return self.digit_out(2,value)
124
125
126 def main(argv):
127 if len(argv)==4:
128 print(argv[3])
129 if len(argv)>=3:
130 dlp=dlp_temp(argv[0])
131 while(True):
132 readout=[dlp.read_sensor(i) for i in range(int(argv[1]))]
133 print("{date}\t{values}".format(date=time.strftime("%Y-%m-%dT%H:%M:%S"),values="\t".join([str(x) for x in readout] )))
134 time.sleep(float(argv[2]))
135
125 136
126 137 if __name__ == '__main__':
127 print("")
138 print(sys.argv)
139 main(sys.argv[1:])
@@ -1,73 +1,88
1 1 #!/usr/bin/env python
2 2 #-*- coding: utf-8 -*-
3 3 """Simple python library to communicate with Prologix USB GPIB module.
4 4 """
5 5 import time
6 6 import sys
7 7 import os
8 8 import matplotlib.pyplot as plt
9 9 import numpy as np
10 10 import serial
11 11
12 12 __author__ = "Alexis Jeandet"
13 13 __copyright__ = "Copyright 2015, Laboratory of Plasma Physics"
14 14 __credits__ = []
15 15 __license__ = "GPLv2"
16 16 __version__ = "1.0.0"
17 17 __maintainer__ = "Alexis Jeandet"
18 18 __email__ = "alexis.jeandet@member.fsf.org"
19 19 __status__ = "Development"
20 20
21 21 class UsbGpib(object):
22 22 modedic = {0:"DEVICE" ,
23 23 1:"CONTROLLER" ,}
24 24 revmodedic = {"DEVICE":"0" ,
25 25 "CONTROLLER":"1" ,}
26 def __init__(self,port,address=0):
27 self._port=serial.Serial(port,timeout=0.1)
26 def __init__(self,port,address=0,baudrate=9600):
27 self._port=serial.Serial(port,timeout=0.1,baudrate=baudrate)
28 28 self._address=address
29 self._mode=1
29 self.write("++auto 1")
30 self._auto=1
31 self.mode=1
30 32 self.write("++ver")
31 33 self.version=self.read()
32 self.write("++auto 1")
34
33 35
34 36 def set_as_device(self):
35 37 self.write("++mode 0")
36 38 def set_as_controller(self):
37 39 self.write("++mode 1")
38 40
39 41 @property
40 42 def mode(self):
41 43 self.write("++mode")
42 44 self._mode= self.modedic[int(self.read())]
43 45 return self._mode
44 46
45 47 @mode.setter
46 48 def mode(self,new_mode):
47 self._mode=self.revmodedic[new_mode]
49 if type(new_mode) == type("str"):
50 self._mode=self.revmodedic[new_mode]
51 elif type(new_mode) == type(1):
52 self._mode=new_mode
48 53 self.write("++mode %d" % self._mode)
49 54
50 55 @property
51 56 def address(self):
52 57 self._address=int(self.read("++addr"))
53 58 return self._address
54 59
55 60 @address.setter
56 61 def address(self,value):
57 62 self._address=int(value)
58 63 self.write("++addr %d" % self._address)
59 64
60 65 def write(self,command):
61 self._port.write(b"%s\n\r" % command)
66 self._port.write(("%s\n\r" % command).encode())
62 67 self._port.flush()
63 68
64 69
65 def read(self,command="",GPIB=False):
70 def read(self,command=""):
66 71 if not command=="":
67 72 self.write(command)
68 if GPIB:
73 if command[0:2]!="++" and self._auto==0:
69 74 self.write("++read")
70 75 return self._port.readall()
71 76
72 77 def idn(self):
73 78 return self.read("*IDN?")
79
80 @property
81 def auto_read_after_write(self):
82 self._auto=int(self.read("++auto"))
83 return self._auto
84
85 @auto_read_after_write.setter
86 def auto_read_after_write(self,enabled):
87 self._auto=enabled
88 self.write("++auto %d" % self._auto)
General Comments 0
You need to be logged in to leave comments. Login now