/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. July 2011 * $Revision: V1.0.10 * * Project: CMSIS DSP Library * Title: arm_rms_q31.c * * Description: Root Mean Square of the elements of a Q31 vector. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @addtogroup RMS * @{ */ /** * @brief Root Mean Square of the elements of a Q31 vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult rms value returned here * @return none. * * @details * Scaling and Overflow Behavior: * *\par * The function is implemented using an internal 64-bit accumulator. * The input is represented in 1.31 format, and intermediate multiplication * yields a 2.62 format. * The accumulator maintains full precision of the intermediate multiplication results, * but provides only a single guard bit. * There is no saturation on intermediate additions. * If the accumulator overflows, it wraps around and distorts the result. * In order to avoid overflows completely, the input signal must be scaled down by * log2(blockSize) bits, as a total of blockSize additions are performed internally. * Finally, the 2.62 accumulator is right shifted by 31 bits to yield a 1.31 format value. * */ void arm_rms_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult) { q63_t sum = 0; /* accumulator */ q31_t in; /* Temporary variable to store the input */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t *pIn1 = pSrc; /* SrcA pointer */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */ /* Compute sum of the squares and then store the result in a temporary variable, sum */ in = *pIn1++; sum += (q63_t) in *in; in = *pIn1++; sum += (q63_t) in *in; in = *pIn1++; sum += (q63_t) in *in; in = *pIn1++; sum += (q63_t) in *in; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */ /* Compute sum of the squares and then store the results in a temporary variable, sum */ in = *pIn1++; sum += (q63_t) in *in; /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* Loop over blockSize number of values */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */ /* Compute sum of the squares and then store the results in a temporary variable, sum */ in = *pSrc++; sum += (q63_t) in *in; /* Decrement the loop counter */ blkCnt--; } #endif /* #ifndef ARM_MATH_CM0 */ /* Convert data in 2.62 to 1.31 by 31 right shifts */ sum = sum >> 31; /* Compute Rms and store the result in the destination vector */ arm_sqrt_q31((q31_t) (sum / (int32_t) blockSize), pResult); } /** * @} end of RMS group */