/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. July 2011 * $Revision: V1.0.10 * * Project: CMSIS DSP Library * Title: arm_mat_mult_fast_q31.c * * Description: Q31 matrix multiplication (fast variant). * * Target Processor: Cortex-M4/Cortex-M3 * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup MatrixMult * @{ */ /** * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 * @param[in] *pSrcA points to the first input matrix structure * @param[in] *pSrcB points to the second input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * @details * Scaling and Overflow Behavior: * * \par * The difference between the function arm_mat_mult_q31() and this fast variant is that * the fast variant use a 32-bit rather than a 64-bit accumulator. * The result of each 1.31 x 1.31 multiplication is truncated to * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30 * format. Finally, the accumulator is saturated and converted to a 1.31 result. * * \par * The fast version has the same overflow behavior as the standard version but provides * less precision since it discards the low 32 bits of each multiplication result. * In order to avoid overflows completely the input signals must be scaled down. * Scale down one of the input matrices by log2(numColsA) bits to * avoid overflows, as a total of numColsA additions are computed internally for each * output element. * * \par * See arm_mat_mult_q31() for a slower implementation of this function * which uses 64-bit accumulation to provide higher precision. */ arm_status arm_mat_mult_fast_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst) { q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ // q31_t *pSrcB = pSrcB->pData; /* input data matrix pointer B */ q31_t *pOut = pDst->pData; /* output data matrix pointer */ q31_t *px; /* Temporary output data matrix pointer */ q31_t sum; /* Accumulator */ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */ arm_status status; /* status of matrix multiplication */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ /* row loop */ do { /* Output pointer is set to starting address of the row being processed */ px = pOut + i; /* For every row wise process, the column loop counter is to be initiated */ col = numColsB; /* For every row wise process, the pIn2 pointer is set ** to the starting address of the pSrcB data */ pIn2 = pSrcB->pData; j = 0u; /* column loop */ do { /* Set the variable sum, that acts as accumulator, to zero */ sum = 0; /* Initiate the pointer pIn1 to point to the starting address of pInA */ pIn1 = pInA; /* Apply loop unrolling and compute 4 MACs simultaneously. */ colCnt = numColsA >> 2; /* matrix multiplication */ while(colCnt > 0u) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ /* Perform the multiply-accumulates */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * pIn1++ * (*pIn2))) >> 32); pIn2 += numColsB; sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * pIn1++ * (*pIn2))) >> 32); pIn2 += numColsB; sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * pIn1++ * (*pIn2))) >> 32); pIn2 += numColsB; sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * pIn1++ * (*pIn2))) >> 32); pIn2 += numColsB; /* Decrement the loop counter */ colCnt--; } /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ colCnt = numColsA % 0x4u; while(colCnt > 0u) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ /* Perform the multiply-accumulates */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * pIn1++ * (*pIn2))) >> 32); pIn2 += numColsB; /* Decrement the loop counter */ colCnt--; } /* Convert the result from 2.30 to 1.31 format and store in destination buffer */ *px++ = sum << 1; /* Update the pointer pIn2 to point to the starting address of the next column */ j++; pIn2 = pSrcB->pData + j; /* Decrement the column loop counter */ col--; } while(col > 0u); /* Update the pointer pInA to point to the starting address of the next row */ i = i + numColsB; pInA = pInA + numColsA; /* Decrement the row loop counter */ row--; } while(row > 0u); /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixMult group */