/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. July 2011 * $Revision: V1.0.10 * * Project: CMSIS DSP Library * Title: arm_scale_q15.c * * Description: Multiplies a Q15 vector by a scalar. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated * * Version 0.0.7 2010/06/10 * Misra-C changes done * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup scale * @{ */ /** * @brief Multiplies a Q15 vector by a scalar. * @param[in] *pSrc points to the input vector * @param[in] scaleFract fractional portion of the scale value * @param[in] shift number of bits to shift the result by * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in the vector * @return none. * * Scaling and Overflow Behavior: * \par * The input data *pSrc and scaleFract are in 1.15 format. * These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format. */ void arm_scale_q15( q15_t * pSrc, q15_t scaleFract, int8_t shift, q15_t * pDst, uint32_t blockSize) { int8_t kShift = 15 - shift; /* shift to apply after scaling */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q15_t in1, in2; /* Temporary variables */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* Reading 2 inputs from memory */ in1 = *pSrc++; in2 = *pSrc++; /* C = A * scale */ /* Scale the inputs and then store the 2 results in the destination buffer * in single cycle by packing the outputs */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 * scaleFract) >> kShift, 16), __SSAT((in2 * scaleFract) >> kShift, 16), 16); #else *__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 * scaleFract) >> kShift, 16), __SSAT((in1 * scaleFract) >> kShift, 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ in1 = *pSrc++; in2 = *pSrc++; #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 * scaleFract) >> kShift, 16), __SSAT((in2 * scaleFract) >> kShift, 16), 16); #else *__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 * scaleFract) >> kShift, 16), __SSAT((in1 * scaleFract) >> kShift, 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A * scale */ /* Scale the input and then store the result in the destination buffer. */ *pDst++ = (q15_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 16)); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = A * scale */ /* Scale the input and then store the result in the destination buffer. */ *pDst++ = (q15_t) (__SSAT(((q31_t) * pSrc++ * scaleFract) >> kShift, 16)); /* Decrement the loop counter */ blkCnt--; } #endif /* #ifndef ARM_MATH_CM0 */ } /** * @} end of scale group */