/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 29. November 2010 * $Revision: V1.0.3 * * Project: CMSIS DSP Library * Title: arm_shift_q15.c * * Description: Shifts elements of a Q15 vector a specified number of bits. * * Target Processor: Cortex-M4/Cortex-M3 * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * * Version 0.0.7 2010/06/10 * Misra-C changes done * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup shift * @{ */ /** * @brief Shifts the elements of a Q15 vector a specified number of bits. * @param *pSrc points to the input vector * @param shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. * @param *pDst points to the output vector * @param blockSize number of samples in the vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. */ void arm_shift_q15( q15_t * pSrc, int8_t shiftBits, q15_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ uint8_t sign; /* Sign of shiftBits */ q15_t in1, in2; /* Temporary variables */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* Getting the sign of shiftBits */ sign = (shiftBits & 0x80); /* If the shift value is positive then do right shift else left shift */ if(sign == 0u) { /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* Read 2 inputs */ in1 = *pSrc++; in2 = *pSrc++; /* C = A << shiftBits */ /* Shift the inputs and then store the results in the destination buffer. */ *__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16), __SSAT((in2 << shiftBits), 16), 16); in1 = *pSrc++; in2 = *pSrc++; *__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16), __SSAT((in2 << shiftBits), 16), 16); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A << shiftBits */ /* Shift and then store the results in the destination buffer. */ *pDst++ = __SSAT((*pSrc++ << shiftBits), 16); /* Decrement the loop counter */ blkCnt--; } } else { /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* Read 2 inputs */ in1 = *pSrc++; in2 = *pSrc++; /* C = A >> shiftBits */ /* Shift the inputs and then store the results in the destination buffer. */ *__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits), (in2 >> -shiftBits), 16); in1 = *pSrc++; in2 = *pSrc++; *__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits), (in2 >> -shiftBits), 16); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A >> shiftBits */ /* Shift the inputs and then store the results in the destination buffer. */ *pDst++ = (*pSrc++ >> -shiftBits); /* Decrement the loop counter */ blkCnt--; } } } /** * @} end of shift group */