/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 29. November 2010 * $Revision: V1.0.3 * * Project: CMSIS DSP Library * Title: arm_rfft_q15.c * * Description: RFFT & RIFFT Q15 process function * * * Target Processor: Cortex-M4/Cortex-M3 * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated * * Version 0.0.7 2010/06/10 * Misra-C changes done * -------------------------------------------------------------------- */ #include "arm_math.h" /*-------------------------------------------------------------------- * Internal functions prototypes --------------------------------------------------------------------*/ void arm_split_rfft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier); void arm_split_rifft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier); /** * @addtogroup RFFT_RIFFT * @{ */ /** * @brief Processing function for the Q15 RFFT/RIFFT. * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure. * @param[in] *pSrc points to the input buffer. * @param[out] *pDst points to the output buffer. * @return none. * * \par Input an output formats: * \par * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. * Hence the output format is different for different RFFT sizes. * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT: * \par * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT" * \par * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT" */ void arm_rfft_q15( const arm_rfft_instance_q15 * S, q15_t * pSrc, q15_t * pDst) { const arm_cfft_radix4_instance_q15 *S_CFFT = S->pCfft; /* Calculation of RIFFT of input */ if(S->ifftFlagR == 1u) { /* Real IFFT core process */ arm_split_rifft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); /* Complex readix-4 IFFT process */ arm_radix4_butterfly_inverse_q15(pDst, S_CFFT->fftLen, S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); /* Bit reversal process */ if(S->bitReverseFlagR == 1u) { arm_bitreversal_q15(pDst, S_CFFT->fftLen, S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); } } else { /* Calculation of RFFT of input */ /* Complex readix-4 FFT process */ arm_radix4_butterfly_q15(pSrc, S_CFFT->fftLen, S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); /* Bit reversal process */ if(S->bitReverseFlagR == 1u) { arm_bitreversal_q15(pSrc, S_CFFT->fftLen, S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); } arm_split_rfft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); } } /** * @} end of RFFT_RIFFT group */ /** * @brief Core Real FFT process * @param *pSrc points to the input buffer. * @param fftLen length of FFT. * @param *pATable points to the A twiddle Coef buffer. * @param *pBTable points to the B twiddle Coef buffer. * @param *pDst points to the output buffer. * @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. * The function implements a Real FFT */ void arm_split_rfft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ q31_t outR, outI; /* Temporary variables for output */ q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q15_t *pSrc1, *pSrc2; pSrc[2u * fftLen] = pSrc[0]; pSrc[(2u * fftLen) + 1u] = pSrc[1]; pCoefA = &pATable[modifier * 2u]; pCoefB = &pBTable[modifier * 2u]; pSrc1 = &pSrc[2]; pSrc2 = &pSrc[(2u * fftLen) - 2u]; i = 1u; while(i < fftLen) { /* outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */ outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)); /* pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 15u; /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */ outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI); /* write output */ pDst[2u * i] = (q15_t) outR; pDst[(2u * i) + 1u] = outI >> 15u; /* write complex conjugate output */ pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR; pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u); /* update coefficient pointer */ pCoefB = pCoefB + (2u * modifier); pCoefA = pCoefA + (2u * modifier); i++; } pDst[2u * fftLen] = pSrc[0] - pSrc[1]; pDst[(2u * fftLen) + 1u] = 0; pDst[0] = pSrc[0] + pSrc[1]; pDst[1] = 0; } /** * @brief Core Real IFFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. * The function implements a Real IFFT */ void arm_split_rifft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ q31_t outR, outI; /* Temporary variables for output */ q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q15_t *pSrc1, *pSrc2; q15_t *pDst1 = &pDst[0]; pCoefA = &pATable[0]; pCoefB = &pBTable[0]; pSrc1 = &pSrc[0]; pSrc2 = &pSrc[2u * fftLen]; i = fftLen; while(i > 0u) { /* outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ /* pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)); /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] */ outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 15u; /* -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */ outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI); /* write output */ *__SIMD32(pDst1)++ = (q31_t) ((outI << 1u) & 0xFFFF0000) | (outR & 0x0000FFFF); /* update coefficient pointer */ pCoefB = pCoefB + (2u * modifier); pCoefA = pCoefA + (2u * modifier); i--; } }