/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 29. November 2010 * $Revision: V1.0.3 * * Project: CMSIS DSP Library * Title: arm_fir_fast_q15.c * * Description: Q15 Fast FIR filter processing function. * * Target Processor: Cortex-M4/Cortex-M3 * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * * Version 0.0.9 2010/08/16 * Initial version * * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup FIR * @{ */ /** * @param[in] *S points to an instance of the Q15 FIR filter structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the block of output data. * @param[in] blockSize number of samples to process per call. * @return none. * * Scaling and Overflow Behavior: * \par * This fast version uses a 32-bit accumulator with 2.30 format. * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit. * Thus, if the accumulator result overflows it wraps around and distorts the result. * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits. * The 2.30 accumulator is then truncated to 2.15 format and saturated to yield the 1.15 result. * * \par * Refer to the function arm_fir_q15() for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure. * Use the function arm_fir_init_q15() to initialize the filter structure. */ void arm_fir_fast_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px1; /* Temporary q15 pointer for state buffer */ q31_t *pb; /* Temporary pointer for coefficient buffer */ q31_t *px2; /* Temporary q31 pointer for SIMD state buffer accesses */ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */ q31_t acc0, acc1, acc2, acc3; /* Accumulators */ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */ uint32_t tapCnt, blkCnt; /* Loop counters */ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1u)]); /* Apply loop unrolling and compute 4 output values simultaneously. * The variables acc0 ... acc3 hold output values that are being computed: * * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1] * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2] * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3] */ blkCnt = blockSize >> 2; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* Copy four new input samples into the state buffer. ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */ *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++; /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Initialize state pointer of type q15 */ px1 = pState; /* Initialize coeff pointer of type q31 */ pb = (q31_t *) (pCoeffs); /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */ x0 = *(q31_t *) (px1++); /* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */ x1 = *(q31_t *) (px1++); /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ tapCnt = numTaps >> 2; do { /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */ c0 = *(pb++); /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */ acc0 = __SMLAD(x0, c0, acc0); /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */ acc1 = __SMLAD(x1, c0, acc1); /* Read state x[n-N-2], x[n-N-3] */ x2 = *(q31_t *) (px1++); /* Read state x[n-N-3], x[n-N-4] */ x3 = *(q31_t *) (px1++); /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */ acc2 = __SMLAD(x2, c0, acc2); /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */ acc3 = __SMLAD(x3, c0, acc3); /* Read coefficients b[N-2], b[N-3] */ c0 = *(pb++); /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */ acc0 = __SMLAD(x2, c0, acc0); /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */ acc1 = __SMLAD(x3, c0, acc1); /* Read state x[n-N-4], x[n-N-5] */ x0 = *(q31_t *) (px1++); /* Read state x[n-N-5], x[n-N-6] */ x1 = *(q31_t *) (px1++); /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */ acc2 = __SMLAD(x0, c0, acc2); /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */ acc3 = __SMLAD(x1, c0, acc3); tapCnt--; } while(tapCnt > 0u); /* If the filter length is not a multiple of 4, compute the remaining filter taps. ** This is always 2 taps since the filter length is always even. */ if((numTaps & 0x3u) != 0u) { /* Read 2 coefficients */ c0 = *(pb++); /* Fetch 4 state variables */ x2 = *(q31_t *) (px1++); x3 = *(q31_t *) (px1++); /* Perform the multiply-accumulates */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); acc2 = __SMLAD(x2, c0, acc2); acc3 = __SMLAD(x3, c0, acc3); } /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation. ** Then store the 4 outputs in the destination buffer. */ *__SIMD32(pDst)++ = __PKHBT((acc0 >> 15), (acc1 >> 15), 16u); *__SIMD32(pDst)++ = __PKHBT((acc2 >> 15), (acc3 >> 15), 16u); /* Advance the state pointer by 4 to process the next group of 4 samples */ pState = pState + 4; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* Copy two samples into state buffer */ *pStateCurnt++ = *pSrc++; /* Set the accumulator to zero */ acc0 = 0; /* Use SIMD to hold states and coefficients */ px2 = (q31_t *) pState; pb = (q31_t *) (pCoeffs); tapCnt = numTaps >> 1; do { acc0 = __SMLAD(*px2++, *(pb++), acc0); tapCnt--; } while(tapCnt > 0u); /* The result is in 2.30 format. Convert to 1.15 with saturation. ** Then store the output in the destination buffer. */ *pDst++ = (q15_t) ((acc0 >> 15)); /* Advance state pointer by 1 for the next sample */ pState = pState + 1; /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; /* Calculation of count for copying integer writes */ tapCnt = (numTaps - 1u) >> 2; while(tapCnt > 0u) { *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; tapCnt--; } /* Calculation of count for remaining q15_t data */ tapCnt = (numTaps - 1u) % 0x4u; /* copy remaining data */ while(tapCnt > 0u) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } } /** * @} end of FIR group */