/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 29. November 2010 * $Revision: V1.0.3 * * Project: CMSIS DSP Library * Title: arm_fir_decimate_q15.c * * Description: Q15 FIR Decimator. * * Target Processor: Cortex-M4/Cortex-M3 * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated * * Version 0.0.7 2010/06/10 * Misra-C changes done * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup FIR_decimate * @{ */ /** * @brief Processing function for the Q15 FIR decimator. * @param[in] *S points to an instance of the Q15 FIR decimator structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the location where the output result is written. * @param[in] blockSize number of input samples to process per call. * @return none. * * Scaling and Overflow Behavior: * \par * The function is implemented using a 64-bit internal accumulator. * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. * Lastly, the accumulator is saturated to yield a result in 1.15 format. * * \par * Refer to the function arm_fir_decimate_fast_q15() for a faster but less precise implementation of this function. */ void arm_fir_decimate_q15( const arm_fir_decimate_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px; /* Temporary pointer for state buffer */ q15_t *pb; /* Temporary pointer coefficient buffer */ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ q63_t sum0; /* Accumulators */ uint32_t numTaps = S->numTaps; /* Number of taps */ uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */ /* S->pState buffer contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = S->pState + (numTaps - 1u); /* Total number of output samples to be computed */ blkCnt = outBlockSize; while(blkCnt > 0u) { /* Copy decimation factor number of new input samples into the state buffer */ i = S->M; do { *pStateCurnt++ = *pSrc++; } while(--i); /*Set sum to zero */ sum0 = 0; /* Initialize state pointer */ px = pState; /* Initialize coeff pointer */ pb = pCoeffs; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ while(tapCnt > 0u) { /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */ c0 = *__SIMD32(pb)++; /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */ x0 = *__SIMD32(px)++; /* Perform the multiply-accumulate */ sum0 = __SMLALD(x0, c0, sum0); /* Read the b[numTaps-3] and b[numTaps-4] coefficient */ c0 = *__SIMD32(pb)++; /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */ x0 = *__SIMD32(px)++; /* Perform the multiply-accumulate */ sum0 = __SMLALD(x0, c0, sum0); /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4u; while(tapCnt > 0u) { /* Read coefficients */ c0 = *pb++; /* Fetch 1 state variable */ x0 = *px++; /* Perform the multiply-accumulate */ sum0 = __SMLALD(x0, c0, sum0); /* Decrement the loop counter */ tapCnt--; } /* Advance the state pointer by the decimation factor * to process the next group of decimation factor number samples */ pState = pState + S->M; /* Store filter output, smlad returns the values in 2.14 format */ /* so downsacle by 15 to get output in 1.15 */ *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16)); /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; i = (numTaps - 1u) >> 2u; /* copy data */ while(i > 0u) { *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; /* Decrement the loop counter */ i--; } i = (numTaps - 1u) % 0x04u; /* copy data */ while(i > 0u) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ i--; } } /** * @} end of FIR_decimate group */