/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 29. November 2010 * $Revision: V1.0.3 * * Project: CMSIS DSP Library * Title: arm_cmplx_mult_real_q15.c * * Description: Q15 complex by real multiplication * * Target Processor: Cortex-M4/Cortex-M3 * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup CmplxByRealMult * @{ */ /** * @brief Q15 complex-by-real multiplication * @param[in] *pSrcCmplx points to the complex input vector * @param[in] *pSrcReal points to the real input vector * @param[out] *pCmplxDst points to the complex output vector * @param[in] numSamples number of samples in each vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. */ void arm_cmplx_mult_real_q15( q15_t * pSrcCmplx, q15_t * pSrcReal, q15_t * pCmplxDst, uint32_t numSamples) { q15_t in; /* Temporary variable to store input value */ uint32_t blkCnt; /* loop counters */ /* loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C[2 * i] = A[2 * i] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ in = *pSrcReal++; /* store the result in the destination buffer. */ *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); in = *pSrcReal++; *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); in = *pSrcReal++; *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); in = *pSrcReal++; *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); /* Decrement the numSamples loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; while(blkCnt > 0u) { /* C[2 * i] = A[2 * i] * B[i]. */ /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ in = *pSrcReal++; /* store the result in the destination buffer. */ *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); *pCmplxDst++ = (q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); /* Decrement the numSamples loop counter */ blkCnt--; } } /** * @} end of CmplxByRealMult group */