/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 29. November 2010 * $Revision: V1.0.3 * * Project: CMSIS DSP Library * Title: arm_cfft_radix4_q15.c * * Description: This file has function definition of Radix-4 FFT & IFFT function and * In-place bit reversal using bit reversal table * * Target Processor: Cortex-M4/Cortex-M3 * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * * Version 0.0.5 2010/04/26 * incorporated review comments and updated with latest CMSIS layer * * Version 0.0.3 2010/03/10 * Initial version * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupTransforms */ /** * @addtogroup CFFT_CIFFT * @{ */ /** * @details * @brief Processing function for the Q15 CFFT/CIFFT. * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure. * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. * @return none. * * \par Input and output formats: * \par * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. * Hence the output format is different for different FFT sizes. * The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT: * \par * \image html CFFTQ15.gif "Input and Output Formats for Q15 CFFT" * \image html CIFFTQ15.gif "Input and Output Formats for Q15 CIFFT" */ void arm_cfft_radix4_q15( const arm_cfft_radix4_instance_q15 * S, q15_t * pSrc) { if(S->ifftFlag == 1u) { /* Complex IFFT radix-4 */ arm_radix4_butterfly_inverse_q15(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } else { /* Complex FFT radix-4 */ arm_radix4_butterfly_q15(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } if(S->bitReverseFlag == 1u) { /* Bit Reversal */ arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); } } /** * @} end of CFFT_CIFFT group */ /* * Radix-4 FFT algorithm used is : * * Input real and imaginary data: * x(n) = xa + j * ya * x(n+N/4 ) = xb + j * yb * x(n+N/2 ) = xc + j * yc * x(n+3N 4) = xd + j * yd * * * Output real and imaginary data: * x(4r) = xa'+ j * ya' * x(4r+1) = xb'+ j * yb' * x(4r+2) = xc'+ j * yc' * x(4r+3) = xd'+ j * yd' * * * Twiddle factors for radix-4 FFT: * Wn = co1 + j * (- si1) * W2n = co2 + j * (- si2) * W3n = co3 + j * (- si3) * The real and imaginary output values for the radix-4 butterfly are * xa' = xa + xb + xc + xd * ya' = ya + yb + yc + yd * xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) * yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) * xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) * yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) * xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) * yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) * */ /** * @brief Core function for the Q15 CFFT butterfly process. * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. * @param[in] fftLen length of the FFT. * @param[in] *pCoef16 points to twiddle coefficient buffer. * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_radix4_butterfly_q15( q15_t * pSrc16, uint32_t fftLen, q15_t * pCoef16, uint32_t twidCoefModifier) { q31_t R, S, T, U; q31_t C1, C2, C3, out1, out2; q31_t *pSrc, *pCoeff; uint32_t n1, n2, ic, i0, i1, i2, i3, j, k; q15_t in; /* Total process is divided into three stages */ /* process first stage, middle stages, & last stage */ /* pointer initializations for SIMD calculations */ pSrc = (q31_t *) pSrc16; pCoeff = (q31_t *) pCoef16; /* Initializations for the first stage */ n2 = fftLen; n1 = n2; /* n2 = fftLen/4 */ n2 >>= 2u; /* Index for twiddle coefficient */ ic = 0u; /* Index for input read and output write */ i0 = 0u; j = n2; /* Input is in 1.15(q15) format */ /* start of first stage process */ do { /* Butterfly implementation */ /* index calculation for the input as, */ /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */ i1 = i0 + n2; i2 = i1 + n2; i3 = i2 + n2; /* Reading i0, i0+fftLen/2 inputs */ /* Read ya (real), xa(imag) input */ T = pSrc[i0]; in = ((int16_t) (T & 0xFFFF)) >> 2; T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* Read yc (real), xc(imag) input */ S = pSrc[i2]; in = ((int16_t) (S & 0xFFFF)) >> 2; S = ((S >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* R = packed((ya + yc), (xa + xc) ) */ R = __QADD16(T, S); /* S = packed((ya - yc), (xa - xc) ) */ S = __QSUB16(T, S); /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ /* Read yb (real), xb(imag) input */ T = pSrc[i1]; in = ((int16_t) (T & 0xFFFF)) >> 2; T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* Read yd (real), xd(imag) input */ U = pSrc[i3]; in = ((int16_t) (U & 0xFFFF)) >> 2; U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* T = packed((yb + yd), (xb + xd) ) */ T = __QADD16(T, U); /* writing the butterfly processed i0 sample */ /* xa' = xa + xb + xc + xd */ /* ya' = ya + yb + yc + yd */ pSrc[i0] = __SHADD16(R, T); /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */ R = __QSUB16(R, T); /* co2 & si2 are read from SIMD Coefficient pointer */ C2 = pCoeff[2u * ic]; /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ out1 = __SMUAD(C2, R) >> 16u; /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ out2 = __SMUSDX(C2, R); /* Reading i0+fftLen/4 */ /* T = packed(yb, xb) */ T = pSrc[i1]; in = ((int16_t) (T & 0xFFFF)) >> 2; T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* writing the butterfly processed i0 + fftLen/4 sample */ /* writing output(xc', yc') in little endian format */ pSrc[i1] = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); /* Butterfly calculations */ /* U = packed(yd, xd) */ U = pSrc[i3]; in = ((int16_t) (U & 0xFFFF)) >> 2; U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* T = packed(yb-yd, xb-xd) */ T = __QSUB16(T, U); /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ R = __QASX(S, T); /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ S = __QSAX(S, T); /* co1 & si1 are read from SIMD Coefficient pointer */ C1 = pCoeff[ic]; /* Butterfly process for the i0+fftLen/2 sample */ /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ out1 = __SMUAD(C1, S) >> 16u; /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ out2 = __SMUSDX(C1, S); /* writing output(xb', yb') in little endian format */ pSrc[i2] = ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF); /* co3 & si3 are read from SIMD Coefficient pointer */ C3 = pCoeff[3u * ic]; /* Butterfly process for the i0+3fftLen/4 sample */ /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ out1 = __SMUAD(C3, R) >> 16u; /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ out2 = __SMUSDX(C3, R); /* writing output(xd', yd') in little endian format */ pSrc[i3] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); /* Twiddle coefficients index modifier */ ic = ic + twidCoefModifier; /* Updating input index */ i0 = i0 + 1u; } while(--j); /* data is in 4.11(q11) format */ /* end of first stage process */ /* start of middle stage process */ /* Twiddle coefficients index modifier */ twidCoefModifier <<= 2u; /* Calculation of Middle stage */ for (k = fftLen / 4u; k > 4u; k >>= 2u) { /* Initializations for the middle stage */ n1 = n2; n2 >>= 2u; ic = 0u; for (j = 0u; j <= (n2 - 1u); j++) { /* index calculation for the coefficients */ C1 = pCoeff[ic]; C2 = pCoeff[2u * ic]; C3 = pCoeff[3u * ic]; /* Twiddle coefficients index modifier */ ic = ic + twidCoefModifier; /* Butterfly implementation */ for (i0 = j; i0 < fftLen; i0 += n1) { /* index calculation for the input as, */ /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */ i1 = i0 + n2; i2 = i1 + n2; i3 = i2 + n2; /* Reading i0, i0+fftLen/2 inputs */ /* Read ya (real), xa(imag) input */ T = pSrc[i0]; /* Read yc (real), xc(imag) input */ S = pSrc[i2]; /* R = packed( (ya + yc), (xa + xc)) */ R = __QADD16(T, S); /* S = packed((ya - yc), (xa - xc)) */ S = __QSUB16(T, S); /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ /* Read yb (real), xb(imag) input */ T = pSrc[i1]; /* Read yd (real), xd(imag) input */ U = pSrc[i3]; /* T = packed( (yb + yd), (xb + xd)) */ T = __QADD16(T, U); /* writing the butterfly processed i0 sample */ /* xa' = xa + xb + xc + xd */ /* ya' = ya + yb + yc + yd */ out1 = __SHADD16(R, T); in = ((int16_t) (out1 & 0xFFFF)) >> 1; out1 = ((out1 >> 1) & 0xFFFF0000) | (in & 0xFFFF); pSrc[i0] = out1; /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */ R = __SHSUB16(R, T); /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ out1 = __SMUAD(C2, R) >> 16u; /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ out2 = __SMUSDX(C2, R); /* Reading i0+3fftLen/4 */ /* Read yb (real), xb(imag) input */ T = pSrc[i1]; /* writing the butterfly processed i0 + fftLen/4 sample */ /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ pSrc[i1] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); /* Butterfly calculations */ /* Read yd (real), xd(imag) input */ U = pSrc[i3]; /* T = packed(yb-yd, xb-xd) */ T = __QSUB16(T, U); /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ R = __SHASX(S, T); /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ S = __SHSAX(S, T); /* Butterfly process for the i0+fftLen/2 sample */ out1 = __SMUAD(C1, S) >> 16u; out2 = __SMUSDX(C1, S); /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ pSrc[i2] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); /* Butterfly process for the i0+3fftLen/4 sample */ out1 = __SMUAD(C3, R) >> 16u; out2 = __SMUSDX(C3, R); /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ pSrc[i3] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); } } /* Twiddle coefficients index modifier */ twidCoefModifier <<= 2u; } /* end of middle stage process */ /* data is in 10.6(q6) format for the 1024 point */ /* data is in 8.8(q8) format for the 256 point */ /* data is in 6.10(q10) format for the 64 point */ /* data is in 4.12(q12) format for the 16 point */ /* Initializations for the last stage */ n1 = n2; n2 >>= 2u; /* start of last stage process */ /* Butterfly implementation */ for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1) { /* index calculation for the input as, */ /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */ i1 = i0 + n2; i2 = i1 + n2; i3 = i2 + n2; /* Reading i0, i0+fftLen/2 inputs */ /* Read ya (real), xa(imag) input */ T = pSrc[i0]; /* Read yc (real), xc(imag) input */ S = pSrc[i2]; /* R = packed((ya + yc), (xa + xc)) */ R = __QADD16(T, S); /* S = packed((ya - yc), (xa - xc)) */ S = __QSUB16(T, S); /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ /* Read yb (real), xb(imag) input */ T = pSrc[i1]; /* Read yd (real), xd(imag) input */ U = pSrc[i3]; /* T = packed((yb + yd), (xb + xd)) */ T = __QADD16(T, U); /* writing the butterfly processed i0 sample */ /* xa' = xa + xb + xc + xd */ /* ya' = ya + yb + yc + yd */ pSrc[i0] = __SHADD16(R, T); /* R = packed((ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */ R = __SHSUB16(R, T); /* Read yb (real), xb(imag) input */ T = pSrc[i1]; /* writing the butterfly processed i0 + fftLen/4 sample */ /* xc' = (xa-xb+xc-xd) */ /* yc' = (ya-yb+yc-yd) */ pSrc[i1] = R; /* Read yd (real), xd(imag) input */ U = pSrc[i3]; /* T = packed( (yb - yd), (xb - xd)) */ T = __QSUB16(T, U); /* writing the butterfly processed i0 + fftLen/2 sample */ /* xb' = (xa+yb-xc-yd) */ /* yb' = (ya-xb-yc+xd) */ pSrc[i2] = __SHSAX(S, T); /* writing the butterfly processed i0 + 3fftLen/4 sample */ /* xd' = (xa-yb-xc+yd) */ /* yd' = (ya+xb-yc-xd) */ pSrc[i3] = __SHASX(S, T); } /* end of last stage process */ /* output is in 11.5(q5) format for the 1024 point */ /* output is in 9.7(q7) format for the 256 point */ /* output is in 7.9(q9) format for the 64 point */ /* output is in 5.11(q11) format for the 16 point */ } /** * @brief Core function for the Q15 CIFFT butterfly process. * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. * @param[in] fftLen length of the FFT. * @param[in] *pCoef16 points to twiddle coefficient buffer. * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ /* * Radix-4 IFFT algorithm used is : * * CIFFT uses same twiddle coefficients as CFFT function * x[k] = x[n] + (j)k * x[n + fftLen/4] + (-1)k * x[n+fftLen/2] + (-j)k * x[n+3*fftLen/4] * * * IFFT is implemented with following changes in equations from FFT * * Input real and imaginary data: * x(n) = xa + j * ya * x(n+N/4 ) = xb + j * yb * x(n+N/2 ) = xc + j * yc * x(n+3N 4) = xd + j * yd * * * Output real and imaginary data: * x(4r) = xa'+ j * ya' * x(4r+1) = xb'+ j * yb' * x(4r+2) = xc'+ j * yc' * x(4r+3) = xd'+ j * yd' * * * Twiddle factors for radix-4 IFFT: * Wn = co1 + j * (si1) * W2n = co2 + j * (si2) * W3n = co3 + j * (si3) * The real and imaginary output values for the radix-4 butterfly are * xa' = xa + xb + xc + xd * ya' = ya + yb + yc + yd * xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) * yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) * xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) * yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) * xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) * yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) * */ void arm_radix4_butterfly_inverse_q15( q15_t * pSrc16, uint32_t fftLen, q15_t * pCoef16, uint32_t twidCoefModifier) { q31_t R, S, T, U; q31_t C1, C2, C3, out1, out2; q31_t *pSrc, *pCoeff; uint32_t n1, n2, ic, i0, i1, i2, i3, j, k; q15_t in; /* Total process is divided into three stages */ /* process first stage, middle stages, & last stage */ /* pointer initializations for SIMD calculations */ pSrc = (q31_t *) pSrc16; pCoeff = (q31_t *) pCoef16; /* Initializations for the first stage */ n2 = fftLen; n1 = n2; /* n2 = fftLen/4 */ n2 >>= 2u; /* Index for twiddle coefficient */ ic = 0u; /* Index for input read and output write */ i0 = 0u; j = n2; /* Input is in 1.15(q15) format */ /* Start of first stage process */ do { /* Butterfly implementation */ /* index calculation for the input as, */ /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */ i1 = i0 + n2; i2 = i1 + n2; i3 = i2 + n2; /* Reading i0, i0+fftLen/2 inputs */ /* Read ya (real), xa(imag) input */ T = pSrc[i0]; in = ((int16_t) (T & 0xFFFF)) >> 2; T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* Read yc (real), xc(imag) input */ S = pSrc[i2]; in = ((int16_t) (S & 0xFFFF)) >> 2; S = ((S >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* R = packed((ya + yc), (xa + xc) ) */ R = __QADD16(T, S); /* S = packed((ya - yc), (xa - xc) ) */ S = __QSUB16(T, S); /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ /* Read yb (real), xb(imag) input */ T = pSrc[i1]; in = ((int16_t) (T & 0xFFFF)) >> 2; T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* Read yd (real), xd(imag) input */ U = pSrc[i3]; in = ((int16_t) (U & 0xFFFF)) >> 2; U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* T = packed((yb + yd), (xb + xd) ) */ T = __QADD16(T, U); /* writing the butterfly processed i0 sample */ /* xa' = xa + xb + xc + xd */ /* ya' = ya + yb + yc + yd */ pSrc[i0] = __SHADD16(R, T); /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */ R = __QSUB16(R, T); /* co2 & si2 are read from SIMD Coefficient pointer */ C2 = pCoeff[2u * ic]; /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */ out1 = __SMUSD(C2, R) >> 16u; /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ out2 = __SMUADX(C2, R); /* Reading i0+fftLen/4 */ /* T = packed(yb, xb) */ T = pSrc[i1]; in = ((int16_t) (T & 0xFFFF)) >> 2; T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* writing the butterfly processed i0 + fftLen/4 sample */ /* writing output(xc', yc') in little endian format */ pSrc[i1] = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); /* Butterfly calculations */ /* U = packed(yd, xd) */ U = pSrc[i3]; in = ((int16_t) (U & 0xFFFF)) >> 2; U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF); /* T = packed(yb-yd, xb-xd) */ T = __QSUB16(T, U); /* R = packed((ya-yc) - (xb- xd) , (xa-xc) + (yb-yd)) */ R = __QSAX(S, T); /* S = packed((ya-yc) + (xb- xd), (xa-xc) - (yb-yd)) */ S = __QASX(S, T); /* co1 & si1 are read from SIMD Coefficient pointer */ C1 = pCoeff[ic]; /* Butterfly process for the i0+fftLen/2 sample */ /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */ out1 = __SMUSD(C1, S) >> 16u; /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */ out2 = __SMUADX(C1, S); /* writing output(xb', yb') in little endian format */ pSrc[i2] = ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF); /* co3 & si3 are read from SIMD Coefficient pointer */ C3 = pCoeff[3u * ic]; /* Butterfly process for the i0+3fftLen/4 sample */ /* xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) */ out1 = __SMUSD(C3, R) >> 16u; /* yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) */ out2 = __SMUADX(C3, R); /* writing output(xd', yd') in little endian format */ pSrc[i3] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); /* Twiddle coefficients index modifier */ ic = ic + twidCoefModifier; /* Updating input index */ i0 = i0 + 1u; } while(--j); /* End of first stage process */ /* data is in 4.11(q11) format */ /* Start of Middle stage process */ /* Twiddle coefficients index modifier */ twidCoefModifier <<= 2u; /* Calculation of Middle stage */ for (k = fftLen / 4u; k > 4u; k >>= 2u) { /* Initializations for the middle stage */ n1 = n2; n2 >>= 2u; ic = 0u; for (j = 0u; j <= (n2 - 1u); j++) { /* index calculation for the coefficients */ C1 = pCoeff[ic]; C2 = pCoeff[2u * ic]; C3 = pCoeff[3u * ic]; /* Twiddle coefficients index modifier */ ic = ic + twidCoefModifier; /* Butterfly implementation */ for (i0 = j; i0 < fftLen; i0 += n1) { /* index calculation for the input as, */ /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */ i1 = i0 + n2; i2 = i1 + n2; i3 = i2 + n2; /* Reading i0, i0+fftLen/2 inputs */ /* Read ya (real), xa(imag) input */ T = pSrc[i0]; /* Read yc (real), xc(imag) input */ S = pSrc[i2]; /* R = packed( (ya + yc), (xa + xc)) */ R = __QADD16(T, S); /* S = packed((ya - yc), (xa - xc)) */ S = __QSUB16(T, S); /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ /* Read yb (real), xb(imag) input */ T = pSrc[i1]; /* Read yd (real), xd(imag) input */ U = pSrc[i3]; /* T = packed( (yb + yd), (xb + xd)) */ T = __QADD16(T, U); /* writing the butterfly processed i0 sample */ /* xa' = xa + xb + xc + xd */ /* ya' = ya + yb + yc + yd */ out1 = __SHADD16(R, T); in = ((int16_t) (out1 & 0xFFFF)) >> 1; out1 = ((out1 >> 1) & 0xFFFF0000) | (in & 0xFFFF); pSrc[i0] = out1; /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */ R = __SHSUB16(R, T); /* (ya-yb+yc-yd)* (si2) - (xa-xb+xc-xd)* co2 */ out1 = __SMUSD(C2, R) >> 16u; /* (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ out2 = __SMUADX(C2, R); /* Reading i0+3fftLen/4 */ /* Read yb (real), xb(imag) input */ T = pSrc[i1]; /* writing the butterfly processed i0 + fftLen/4 sample */ /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */ /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ pSrc[i1] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); /* Butterfly calculations */ /* Read yd (real), xd(imag) input */ U = pSrc[i3]; /* T = packed(yb-yd, xb-xd) */ T = __QSUB16(T, U); /* R = packed((ya-yc) - (xb- xd) , (xa-xc) + (yb-yd)) */ R = __SHSAX(S, T); /* S = packed((ya-yc) + (xb- xd), (xa-xc) - (yb-yd)) */ S = __SHASX(S, T); /* Butterfly process for the i0+fftLen/2 sample */ out1 = __SMUSD(C1, S) >> 16u; out2 = __SMUADX(C1, S); /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */ /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */ pSrc[i2] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); /* Butterfly process for the i0+3fftLen/4 sample */ out1 = __SMUSD(C3, R) >> 16u; out2 = __SMUADX(C3, R); /* xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) */ /* yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) */ pSrc[i3] = ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); } } /* Twiddle coefficients index modifier */ twidCoefModifier <<= 2u; } /* End of Middle stages process */ /* data is in 10.6(q6) format for the 1024 point */ /* data is in 8.8(q8) format for the 256 point */ /* data is in 6.10(q10) format for the 64 point */ /* data is in 4.12(q12) format for the 16 point */ /* start of last stage process */ /* Initializations for the last stage */ n1 = n2; n2 >>= 2u; /* Butterfly implementation */ for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1) { /* index calculation for the input as, */ /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */ i1 = i0 + n2; i2 = i1 + n2; i3 = i2 + n2; /* Reading i0, i0+fftLen/2 inputs */ /* Read ya (real), xa(imag) input */ T = pSrc[i0]; /* Read yc (real), xc(imag) input */ S = pSrc[i2]; /* R = packed((ya + yc), (xa + xc)) */ R = __QADD16(T, S); /* S = packed((ya - yc), (xa - xc)) */ S = __QSUB16(T, S); /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ /* Read yb (real), xb(imag) input */ T = pSrc[i1]; /* Read yd (real), xd(imag) input */ U = pSrc[i3]; /* T = packed((yb + yd), (xb + xd)) */ T = __QADD16(T, U); /* writing the butterfly processed i0 sample */ /* xa' = xa + xb + xc + xd */ /* ya' = ya + yb + yc + yd */ pSrc[i0] = __SHADD16(R, T); /* R = packed((ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */ R = __SHSUB16(R, T); /* Read yb (real), xb(imag) input */ T = pSrc[i1]; /* writing the butterfly processed i0 + fftLen/4 sample */ /* xc' = (xa-xb+xc-xd) */ /* yc' = (ya-yb+yc-yd) */ pSrc[i1] = R; /* Read yd (real), xd(imag) input */ U = pSrc[i3]; /* T = packed( (yb - yd), (xb - xd)) */ T = __QSUB16(T, U); /* writing the butterfly processed i0 + fftLen/2 sample */ /* xb' = (xa-yb-xc+yd) */ /* yb' = (ya+xb-yc-xd) */ pSrc[i2] = __SHASX(S, T); /* writing the butterfly processed i0 + 3fftLen/4 sample */ /* xd' = (xa+yb-xc-yd) */ /* yd' = (ya-xb-yc+xd) */ pSrc[i3] = __SHSAX(S, T); } /* end of last stage process */ /* output is in 11.5(q5) format for the 1024 point */ /* output is in 9.7(q7) format for the 256 point */ /* output is in 7.9(q9) format for the 64 point */ /* output is in 5.11(q11) format for the 16 point */ } /* * @brief In-place bit reversal function. * @param[in, out] *pSrc points to the in-place buffer of Q15 data type. * @param[in] fftLen length of the FFT. * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table * @param[in] *pBitRevTab points to bit reversal table. * @return none. */ void arm_bitreversal_q15( q15_t * pSrc16, uint32_t fftLen, uint16_t bitRevFactor, uint16_t * pBitRevTab) { q31_t *pSrc = (q31_t *) pSrc16; q31_t in; uint32_t fftLenBy2, fftLenBy2p1; uint32_t i, j; /* Initializations */ j = 0u; fftLenBy2 = fftLen / 2u; fftLenBy2p1 = (fftLen / 2u) + 1u; /* Bit Reversal Implementation */ for (i = 0u; i <= (fftLenBy2 - 2u); i += 2u) { if(i < j) { /* pSrc[i] <-> pSrc[j]; */ /* pSrc[i+1u] <-> pSrc[j+1u] */ in = pSrc[i]; pSrc[i] = pSrc[j]; pSrc[j] = in; /* pSrc[i + fftLenBy2p1] <-> pSrc[j + fftLenBy2p1]; */ /* pSrc[i + fftLenBy2p1+1u] <-> pSrc[j + fftLenBy2p1+1u] */ in = pSrc[i + fftLenBy2p1]; pSrc[i + fftLenBy2p1] = pSrc[j + fftLenBy2p1]; pSrc[j + fftLenBy2p1] = in; } /* pSrc[i+1u] <-> pSrc[j+fftLenBy2]; */ /* pSrc[i+2] <-> pSrc[j+fftLenBy2+1u] */ in = pSrc[i + 1u]; pSrc[i + 1u] = pSrc[j + fftLenBy2]; pSrc[j + fftLenBy2] = in; /* Reading the index for the bit reversal */ j = *pBitRevTab; /* Updating the bit reversal index depending on the fft length */ pBitRevTab += bitRevFactor; } }