/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 29. November 2010 * $Revision: V1.0.3 * * Project: CMSIS DSP Library * Title: arm_biquad_cascade_df1_q15.c * * Description: Processing function for the * Q15 Biquad cascade DirectFormI(DF1) filter. * * Target Processor: Cortex-M4/Cortex-M3 * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * * Version 0.0.5 2010/04/26 * incorporated review comments and updated with latest CMSIS layer * * Version 0.0.3 2010/03/10 * Initial version * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup BiquadCascadeDF1 * @{ */ /** * @brief Processing function for the Q15 Biquad cascade filter. * @param[in] *S points to an instance of the Q15 Biquad cascade structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the location where the output result is written. * @param[in] blockSize number of samples to process per call. * @return none. * * * Scaling and Overflow Behavior: * \par * The function is implemented using a 64-bit internal accumulator. * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. * The accumulator is then shifted by postShift bits to truncate the result to 1.15 format by discarding the low 16 bits. * Finally, the result is saturated to 1.15 format. * * \par * Refer to the function arm_biquad_cascade_df1_fast_q15() for a faster but less precise implementation of this filter. */ void arm_biquad_cascade_df1_q15( const arm_biquad_casd_df1_inst_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pIn = pSrc; /* Source pointer */ q15_t *pOut = pDst; /* Destination pointer */ q31_t in; /* Temporary variable to hold input value */ q31_t out; /* Temporary variable to hold output value */ q15_t b0; /* Temporary variable to hold bo value */ q31_t b1, a1; /* Filter coefficients */ q31_t state_in, state_out; /* Filter state variables */ q63_t acc; /* Accumulator */ int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */ q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q31_t *pState_q31; /* 32-bit state pointer for SIMD implementation */ uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */ do { /* Initialize state pointer of type q31 */ pState_q31 = (q31_t *) (pState); /* Read the b0 and 0 coefficients using SIMD */ b0 = *__SIMD32(pCoeffs)++; /* Read the b1 and b2 coefficients using SIMD */ b1 = *__SIMD32(pCoeffs)++; /* Read the a1 and a2 coefficients using SIMD */ a1 = *__SIMD32(pCoeffs)++; /* Read the input state values from the state buffer: x[n-1], x[n-2] */ state_in = (q31_t) (*pState_q31++); /* Read the output state values from the state buffer: y[n-1], y[n-2] */ state_out = (q31_t) (*pState_q31); /* Apply loop unrolling and compute 2 output values simultaneously. */ /* The variable acc hold output values that are being computed: * * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ sample = blockSize >> 1u; /* First part of the processing with loop unrolling. Compute 2 outputs at a time. ** a second loop below computes the remaining 1 sample. */ while(sample > 0u) { /* Read the input */ in = *__SIMD32(pIn)++; /* out = b0 * x[n] + 0 * 0 */ out = (q31_t) b0 * ((q15_t) in); /* acc += b1 * x[n-1] + b2 * x[n-2] + out */ acc = __SMLALD(b1, state_in, out); /* acc += a1 * y[n-1] + a2 * y[n-2] */ acc = __SMLALD(a1, state_out, acc); /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ out = __SSAT((acc >> shift), 16); /* Every time after the output is computed state should be updated. */ /* The states should be updated as: */ /* Xn2 = Xn1 */ /* Xn1 = Xn */ /* Yn2 = Yn1 */ /* Yn1 = acc */ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ state_in = __PKHBT(in, state_in, 16); state_out = __PKHBT(out, state_out, 16); /* out = b0 * x[n] + 0 * 0 */ out = (q31_t) b0 * ((q15_t) (in >> 16)); /* acc += b1 * x[n-1] + b2 * x[n-2] + out */ acc = __SMLALD(b1, state_in, out); /* acc += a1 * y[n-1] + a2 * y[n-2] */ acc = __SMLALD(a1, state_out, acc); /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ out = __SSAT((acc >> shift), 16); /* Store the output in the destination buffer. */ *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16); /* Every time after the output is computed state should be updated. */ /* The states should be updated as: */ /* Xn2 = Xn1 */ /* Xn1 = Xn */ /* Yn2 = Yn1 */ /* Yn1 = acc */ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ state_in = __PKHBT(in >> 16, state_in, 16); state_out = __PKHBT(out, state_out, 16); /* Decrement the loop counter */ sample--; } /* If the blockSize is not a multiple of 2, compute any remaining output samples here. ** No loop unrolling is used. */ if((blockSize & 0x1u) != 0u) { /* Read the input */ in = *pIn++; /* out = b0 * x[n] + 0 * 0 */ out = (q31_t) in *b0; /* acc = b1 * x[n-1] + b2 * x[n-2] + out */ acc = __SMLALD(b1, state_in, out); /* acc += a1 * y[n-1] + a2 * y[n-2] */ acc = __SMLALD(a1, state_out, acc); /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ out = __SSAT((acc >> shift), 16); /* Store the output in the destination buffer. */ *pOut++ = (q15_t) out; /* Every time after the output is computed state should be updated. */ /* The states should be updated as: */ /* Xn2 = Xn1 */ /* Xn1 = Xn */ /* Yn2 = Yn1 */ /* Yn1 = acc */ /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ state_in = __PKHBT(in, state_in, 16); state_out = __PKHBT(out, state_out, 16); } /* The first stage goes from the input wire to the output wire. */ /* Subsequent numStages occur in-place in the output wire */ pIn = pDst; /* Reset the output pointer */ pOut = pDst; /* Store the updated state variables back into the state array */ *__SIMD32(pState)++ = __PKHBT(state_in, (state_in >> 16), 16); *__SIMD32(pState)++ = __PKHBT(state_out, (state_out >> 16), 16); /* Decrement the loop counter */ stage--; } while(stage > 0u); } /** * @} end of BiquadCascadeDF1 group */