##// END OF EJS Templates
Added cpuid getter...
Added cpuid getter Refactored gpio API, and updated for better consistency with other APIs. Started descriptive init.

File last commit:

r71:608b7f0e27c2 dev_alexis
r104:cfe8b1e0657d dev_alexis
Show More
arm_cmplx_mag_squared_f32.c
155 lines | 4.2 KiB | text/x-c | CLexer
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_squared_f32.c
*
* Description: Floating-point complex magnitude squared.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_mag_squared Complex Magnitude Squared
*
* Computes the magnitude squared of the elements of a complex data vector.
*
* The <code>pSrc</code> points to the source data and
* <code>pDst</code> points to the where the result should be written.
* <code>numSamples</code> specifies the number of complex samples
* in the input array and the data is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* The input array has a total of <code>2*numSamples</code> values;
* the output array has a total of <code>numSamples</code> values.
*
* The underlying algorithm is used:
*
* <pre>
* for(n=0; n<numSamples; n++) {
* pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2;
* }
* </pre>
*
* There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
* @addtogroup cmplx_mag_squared
* @{
*/
/**
* @brief Floating-point complex magnitude squared
* @param[in] *pSrc points to the complex input vector
* @param[out] *pDst points to the real output vector
* @param[in] numSamples number of complex samples in the input vector
* @return none.
*/
void arm_cmplx_mag_squared_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
{
float32_t real, imag; /* Temporary variables to store real and imaginary values */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
/* store the result in the destination buffer. */
*pDst++ = (real * real) + (imag * imag);
real = *pSrc++;
imag = *pSrc++;
*pDst++ = (real * real) + (imag * imag);
real = *pSrc++;
imag = *pSrc++;
*pDst++ = (real * real) + (imag * imag);
real = *pSrc++;
imag = *pSrc++;
*pDst++ = (real * real) + (imag * imag);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */
real = *pSrc++;
imag = *pSrc++;
/* store the result in the destination buffer. */
*pDst++ = (real * real) + (imag * imag);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
/* reading real and imaginary values */
real = *pSrc++;
imag = *pSrc++;
/* out = (real * real) + (imag * imag) */
/* store the result in the destination buffer. */
*pDst++ = (real * real) + (imag * imag);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0 */
}
/**
* @} end of cmplx_mag_squared group
*/