##// END OF EJS Templates
Added Simulator target to run code on x86 and debug functions....
Added Simulator target to run code on x86 and debug functions. Fixed some bugs on terminal widget.

File last commit:

r41:27c5438a4566 dev_alexis
r63:68dfbccdd813 dev_alexis
Show More
arm_dot_prod_q31.c
124 lines | 3.7 KiB | text/x-c | CLexer
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_dot_prod_q31.c
*
* Description: Q31 dot product.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
*
* Version 0.0.7 2010/06/10
* Misra-C changes done
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup dot_prod
* @{
*/
/**
* @brief Dot product of Q31 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these
* are truncated to 2.48 format by discarding the lower 14 bits.
* The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format.
* There are 15 guard bits in the accumulator and there is no risk of overflow as long as
* the length of the vectors is less than 2^16 elements.
* The return result is in 16.48 format.
*/
void arm_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t blockSize,
q63_t * result)
{
q63_t sum = 0; /* Temporary result storage */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/*loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */
/* Calculate dot product and then store the result in a temporary buffer. */
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u;
/* Decrement the loop counter */
blkCnt--;
}
/* Store the result in the destination buffer in 16.48 format */
*result = sum;
}
/**
* @} end of dot_prod group
*/