##// END OF EJS Templates
Added Simulator target to run code on x86 and debug functions....
Added Simulator target to run code on x86 and debug functions. Fixed some bugs on terminal widget.

File last commit:

r18:bd9ab647f70a default
r63:68dfbccdd813 dev_alexis
Show More
lpc17xx_spi.c
562 lines | 16.9 KiB | text/x-c | CLexer
/**
* @file : lpc17xx_spi.c
* @brief : Contains all functions support for SPI firmware library on LPC17xx
* @version : 1.0
* @date : 3. April. 2009
* @author : HieuNguyen
**************************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
**********************************************************************/
/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup SPI
* @{
*/
/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_spi.h"
#include "lpc17xx_clkpwr.h"
/* If this source file built with example, the LPC17xx FW library configuration
* file in each example directory ("lpc17xx_libcfg.h") must be included,
* otherwise the default FW library configuration file must be included instead
*/
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */
#ifdef _SPI
/* Private Types -------------------------------------------------------------- */
/** @defgroup SPI_Private_Types
* @{
*/
/** @brief SPI device configuration structure type */
typedef struct
{
int32_t dataword; /* Current data word: 0 - 8 bit; 1 - 16 bit */
uint32_t txrx_setup; /* Transmission setup */
void (*inthandler)(void); /* Transmission interrupt handler */
} SPI_CFG_T;
/**
* @}
*/
/* Private Variables ---------------------------------------------------------- */
/* SPI configuration data */
static SPI_CFG_T spidat;
/* Private Functions ---------------------------------------------------------- */
/** @defgroup SPI_Private_Functions
* @{
*/
/*********************************************************************//**
* @brief Standard Private SPI Interrupt handler
* @param[in] None
* @return None
***********************************************************************/
void SPI_IntHandler(void)
{
SPI_DATA_SETUP_Type *xf_setup;
uint16_t tmp;
xf_setup = (SPI_DATA_SETUP_Type *)spidat.txrx_setup;
/* Dummy read to clear SPI interrupt flag */
if (LPC_SPI->SPINT & SPI_SPINT_INTFLAG){
LPC_SPI->SPINT = SPI_SPINT_INTFLAG;
}
// save status
tmp = LPC_SPI->SPSR;
xf_setup->status = tmp;
// Check for error
if (tmp & (SPI_SPSR_ABRT | SPI_SPSR_MODF | SPI_SPSR_ROVR | SPI_SPSR_WCOL)){
xf_setup->status |= SPI_STAT_ERROR;
// Disable Interrupt and call call-back
SPI_IntCmd(LPC_SPI, DISABLE);
if (xf_setup->callback != NULL){
xf_setup->callback();
}
return;
}
/* Check SPI complete flag */
if (tmp & SPI_SPSR_SPIF){
// Read data from SPI data
tmp = SPI_ReceiveData(LPC_SPI);
if (xf_setup->rx_data != NULL)
{
// if (spidat.dataword == 0){
// *(uint8_t *)(xf_setup->rx_data + xf_setup->counter) = (uint8_t) tmp;
// } else {
// *(uint16_t *)(xf_setup->rx_data + xf_setup->counter) = (uint8_t) tmp;
// }
if (spidat.dataword == 0){
*(uint8_t *)((uint8_t *)(xf_setup->rx_data) + xf_setup->counter) = (uint8_t) tmp;
} else {
*(uint16_t *)((uint8_t *)(xf_setup->rx_data) + xf_setup->counter) = (uint8_t) tmp;
}
}
// Increase counter
if (spidat.dataword == 0){
xf_setup->counter++;
} else {
xf_setup->counter += 2;
}
}
if (xf_setup->counter < xf_setup->length){
// Write data to buffer
if(xf_setup->tx_data == NULL){
if (spidat.dataword == 0){
SPI_SendData(LPC_SPI, 0xFF);
} else {
SPI_SendData(LPC_SPI, 0xFFFF);
}
} else {
// if (spidat.dataword == 0){
// SPI_SendData(SPI, (*(uint8_t *)(xf_setup->tx_data + xf_setup->counter)));
// } else {
// SPI_SendData(SPI, (*(uint16_t *)(xf_setup->tx_data + xf_setup->counter)));
// }
if (spidat.dataword == 0){
SPI_SendData(LPC_SPI, (*(uint8_t *)((uint8_t *)(xf_setup->tx_data) + xf_setup->counter)));
} else {
SPI_SendData(LPC_SPI, (*(uint16_t *)((uint8_t *)(xf_setup->tx_data) + xf_setup->counter)));
}
}
}
// No more data to send
else {
xf_setup->status |= SPI_STAT_DONE;
// Disable Interrupt and call call-back
SPI_IntCmd(LPC_SPI, DISABLE);
if (xf_setup->callback != NULL){
xf_setup->callback();
}
}
}
/**
* @}
*/
/* Public Functions ----------------------------------------------------------- */
/** @addtogroup SPI_Public_Functions
* @{
*/
/*********************************************************************//**
* @brief Setup clock rate for SPI device
* @param[in] SPIx SPI peripheral definition, should be SPI
* @param[in] target_clock : clock of SPI (Hz)
* @return None
***********************************************************************/
void SPI_SetClock (LPC_SPI_TypeDef *SPIx, uint32_t target_clock)
{
uint32_t spi_pclk;
uint32_t prescale, temp;
CHECK_PARAM(PARAM_SPIx(SPIx));
if (SPIx == LPC_SPI){
spi_pclk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SPI);
} else {
return;
}
prescale = 8;
// Find closest clock to target clock
while (1){
temp = target_clock * prescale;
if (temp >= spi_pclk){
break;
}
prescale += 2;
if(prescale >= 254){
break;
}
}
// Write to register
SPIx->SPCCR = SPI_SPCCR_COUNTER(prescale);
}
/*********************************************************************//**
* @brief De-initializes the SPIx peripheral registers to their
* default reset values.
* @param[in] SPIx SPI peripheral selected, should be SPI
* @return None
**********************************************************************/
void SPI_DeInit(LPC_SPI_TypeDef *SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
if (SPIx == LPC_SPI){
/* Set up clock and power for SPI module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSPI, DISABLE);
}
}
/********************************************************************//**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the UART_ConfigStruct.
* @param[in] SPIx SPI peripheral selected, should be SPI
* @param[in] SPI_ConfigStruct Pointer to a SPI_CFG_Type structure
* that contains the configuration information for the
* specified SPI peripheral.
* @return None
*********************************************************************/
void SPI_Init(LPC_SPI_TypeDef *SPIx, SPI_CFG_Type *SPI_ConfigStruct)
{
uint32_t tmp;
CHECK_PARAM(PARAM_SPIx(SPIx));
if(SPIx == LPC_SPI){
/* Set up clock and power for UART module */
CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSPI, ENABLE);
} else {
return;
}
// Configure SPI, interrupt is disable as default
tmp = ((SPI_ConfigStruct->CPHA) | (SPI_ConfigStruct->CPOL) \
| (SPI_ConfigStruct->DataOrder) | (SPI_ConfigStruct->Databit) \
| (SPI_ConfigStruct->Mode) | SPI_SPCR_BIT_EN) & SPI_SPCR_BITMASK;
// write back to SPI control register
SPIx->SPCR = tmp;
if (SPI_ConfigStruct->Databit > SPI_DATABIT_8){
spidat.dataword = 1;
} else {
spidat.dataword = 0;
}
// Set clock rate for SPI peripheral
SPI_SetClock(SPIx, SPI_ConfigStruct->ClockRate);
// If interrupt flag is set, Write '1' to Clear interrupt flag
if (SPIx->SPINT & SPI_SPINT_INTFLAG){
SPIx->SPINT = SPI_SPINT_INTFLAG;
}
}
/*****************************************************************************//**
* @brief Fills each SPI_InitStruct member with its default value:
* - CPHA = SPI_CPHA_FIRST
* - CPOL = SPI_CPOL_HI
* - ClockRate = 1000000
* - DataOrder = SPI_DATA_MSB_FIRST
* - Databit = SPI_DATABIT_8
* - Mode = SPI_MASTER_MODE
* @param[in] SPI_InitStruct Pointer to a SPI_CFG_Type structure
* which will be initialized.
* @return None
*******************************************************************************/
void SPI_ConfigStructInit(SPI_CFG_Type *SPI_InitStruct)
{
SPI_InitStruct->CPHA = SPI_CPHA_FIRST;
SPI_InitStruct->CPOL = SPI_CPOL_HI;
SPI_InitStruct->ClockRate = 1000000;
SPI_InitStruct->DataOrder = SPI_DATA_MSB_FIRST;
SPI_InitStruct->Databit = SPI_DATABIT_8;
SPI_InitStruct->Mode = SPI_MASTER_MODE;
}
/*********************************************************************//**
* @brief Transmit a single data through SPIx peripheral
* @param[in] SPIx SPI peripheral selected, should be SPI
* @param[in] Data Data to transmit (must be 16 or 8-bit long,
* this depend on SPI data bit number configured)
* @return none
**********************************************************************/
void SPI_SendData(LPC_SPI_TypeDef* SPIx, uint16_t Data)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
SPIx->SPDR = Data & SPI_SPDR_BITMASK;
}
/*********************************************************************//**
* @brief Receive a single data from SPIx peripheral
* @param[in] SPIx SPI peripheral selected, should be SPI
* @return Data received (16-bit long)
**********************************************************************/
uint16_t SPI_ReceiveData(LPC_SPI_TypeDef* SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
return ((uint16_t) (SPIx->SPDR & SPI_SPDR_BITMASK));
}
/*********************************************************************//**
* @brief SPI Read write data function
* @param[in] SPIx Pointer to SPI peripheral, should be SPI
* @param[in] dataCfg Pointer to a SPI_DATA_SETUP_Type structure that
* contains specified information about transmit
* data configuration.
* @param[in] xfType Transfer type, should be:
* - SPI_TRANSFER_POLLING: Polling mode
* - SPI_TRANSFER_INTERRUPT: Interrupt mode
* @return Actual Data length has been transferred in polling mode.
* In interrupt mode, always return (0)
* Return (-1) if error.
* Note: This function can be used in both master and slave mode.
***********************************************************************/
int32_t SPI_ReadWrite (LPC_SPI_TypeDef *SPIx, SPI_DATA_SETUP_Type *dataCfg, \
SPI_TRANSFER_Type xfType)
{
uint8_t *rdata8;
uint8_t *wdata8;
uint16_t *rdata16;
uint16_t *wdata16;
uint32_t stat;
uint32_t temp;
//read for empty buffer
temp = SPIx->SPDR;
//dummy to clear status
temp = SPIx->SPSR;
dataCfg->counter = 0;
dataCfg->status = 0;
if (xfType == SPI_TRANSFER_POLLING){
if (spidat.dataword == 0){
rdata8 = (uint8_t *)dataCfg->rx_data;
wdata8 = (uint8_t *)dataCfg->tx_data;
} else {
rdata16 = (uint16_t *)dataCfg->rx_data;
wdata16 = (uint16_t *)dataCfg->tx_data;
}
while(dataCfg->counter < dataCfg->length)
{
// Write data to buffer
if(dataCfg->tx_data == NULL){
if (spidat.dataword == 0){
SPI_SendData(SPIx, 0xFF);
} else {
SPI_SendData(SPIx, 0xFFFF);
}
} else {
if (spidat.dataword == 0){
SPI_SendData(SPIx, *wdata8);
wdata8++;
} else {
SPI_SendData(SPIx, *wdata16);
wdata16++;
}
}
// Wait for transfer complete
while (!((stat = SPIx->SPSR) & SPI_SPSR_SPIF));
// Check for error
if (stat & (SPI_SPSR_ABRT | SPI_SPSR_MODF | SPI_SPSR_ROVR | SPI_SPSR_WCOL)){
// save status
dataCfg->status = stat | SPI_STAT_ERROR;
return (dataCfg->counter);
}
// Read data from SPI dat
temp = (uint32_t) SPI_ReceiveData(SPIx);
// Store data to destination
if (dataCfg->rx_data != NULL)
{
if (spidat.dataword == 0){
*(rdata8) = (uint8_t) temp;
rdata8++;
} else {
*(rdata16) = (uint16_t) temp;
rdata16++;
}
}
// Increase counter
if (spidat.dataword == 0){
dataCfg->counter++;
} else {
dataCfg->counter += 2;
}
}
// Return length of actual data transferred
// save status
dataCfg->status = stat | SPI_STAT_DONE;
return (dataCfg->counter);
}
// Interrupt mode
else {
spidat.txrx_setup = (uint32_t)dataCfg;
spidat.inthandler = SPI_IntHandler;
// Check if interrupt flag is already set
if(SPIx->SPINT & SPI_SPINT_INTFLAG){
SPIx->SPINT = SPI_SPINT_INTFLAG;
}
if (dataCfg->counter < dataCfg->length){
// Write data to buffer
if(dataCfg->tx_data == NULL){
if (spidat.dataword == 0){
SPI_SendData(SPIx, 0xFF);
} else {
SPI_SendData(SPIx, 0xFFFF);
}
} else {
if (spidat.dataword == 0){
SPI_SendData(SPIx, (*(uint8_t *)dataCfg->tx_data));
} else {
SPI_SendData(SPIx, (*(uint16_t *)dataCfg->tx_data));
}
}
SPI_IntCmd(SPIx, ENABLE);
} else {
// Save status
dataCfg->status = SPI_STAT_DONE;
}
return (0);
}
return (0);
}
/********************************************************************//**
* @brief Enable or disable SPIx interrupt.
* @param[in] SPIx SPI peripheral selected, should be SPI
* @param[in] NewState New state of specified UART interrupt type,
* should be:
* - ENALBE: Enable this SPI interrupt.
* - DISALBE: Disable this SPI interrupt.
* @return None
*********************************************************************/
void SPI_IntCmd(LPC_SPI_TypeDef *SPIx, FunctionalState NewState)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));
if (NewState == ENABLE)
{
SPIx->SPCR |= SPI_SPCR_SPIE;
}
else
{
SPIx->SPCR &= (~SPI_SPCR_SPIE) & SPI_SPCR_BITMASK;
}
}
/********************************************************************//**
* @brief Checks whether the SPI interrupt flag is set or not.
* @param[in] SPIx SPI peripheral selected, should be SPI
* @return The new state of SPI Interrupt Flag (SET or RESET)
*********************************************************************/
IntStatus SPI_GetIntStatus (LPC_SPI_TypeDef *SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
return ((SPIx->SPINT & SPI_SPINT_INTFLAG) ? SET : RESET);
}
/********************************************************************//**
* @brief Clear SPI interrupt flag.
* @param[in] SPIx SPI peripheral selected, should be SPI
* @return None
*********************************************************************/
void SPI_ClearIntPending(LPC_SPI_TypeDef *SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
SPIx->SPINT = SPI_SPINT_INTFLAG;
}
/********************************************************************//**
* @brief Get current value of SPI Status register in SPIx peripheral.
* @param[in] SPIx SPI peripheral selected, should be SPI
* @return Current value of SPI Status register in SPI peripheral.
* Note: The return value of this function must be used with
* SPI_CheckStatus() to determine current flag status
* corresponding to each SPI status type. Because some flags in
* SPI Status register will be cleared after reading, the next reading
* SPI Status register could not be correct. So this function used to
* read SPI status register in one time only, then the return value
* used to check all flags.
*********************************************************************/
uint32_t SPI_GetStatus(LPC_SPI_TypeDef* SPIx)
{
CHECK_PARAM(PARAM_SPIx(SPIx));
return (SPIx->SPSR & SPI_SPSR_BITMASK);
}
/********************************************************************//**
* @brief Checks whether the specified SPI Status flag is set or not
* via inputSPIStatus parameter.
* @param[in] inputSPIStatus Value to check status of each flag type.
* This value is the return value from SPI_GetStatus().
* @param[in] SPIStatus Specifies the SPI status flag to check,
* should be one of the following:
- SPI_STAT_ABRT: Slave abort.
- SPI_STAT_MODF: Mode fault.
- SPI_STAT_ROVR: Read overrun.
- SPI_STAT_WCOL: Write collision.
- SPI_STAT_SPIF: SPI transfer complete.
* @return The new state of SPIStatus (SET or RESET)
*********************************************************************/
FlagStatus SPI_CheckStatus (uint32_t inputSPIStatus, uint8_t SPIStatus)
{
CHECK_PARAM(PARAM_SPI_STAT(SPIStatus));
return ((inputSPIStatus & SPIStatus) ? SET : RESET);
}
/**
* @brief Standard SPI Interrupt handler
* @param[in] None
* @return None
*/
void SPI_StdIntHandler(void)
{
// Call relevant handler
spidat.inthandler();
}
/**
* @}
*/
#endif /* _SPI */
/**
* @}
*/
/* --------------------------------- End Of File ------------------------------ */