##// END OF EJS Templates
Added OpenOCD target for olimex-arm-usb-tiny....
Added OpenOCD target for olimex-arm-usb-tiny. Working D51E5TA7601 driver. Added Framebuffer interface. Added generic memory to memory DMA api, mmainly used by framebuffer API. ADS7843 work in progress. Added SOSmartPSU bsp.

File last commit:

r78:230ad3b6f43f dev_alexis
r103:3311a844031e dev_alexis
Show More
uart.c
464 lines | 12.0 KiB | text/x-c | CLexer
/*------------------------------------------------------------------------------
-- This file is a part of the libuc, microcontroler library
-- Copyright (C) 2011, Alexis Jeandet
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 3 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-------------------------------------------------------------------------------
-- Author : Alexis Jeandet
-- Mail : alexis.jeandet@member.fsf.org
-------------------------------------------------------------------------------*/
#include <uart.h>
#include <stm32f4xx_rcc.h>
#include <stm32f4xx_gpio.h>
#include <gpio.h>
#include <stdio.h>
#define GPIOGETPORT(gpio) ((GPIO_TypeDef*)(((((uint32_t)gpio) & (uint32_t)0x0000FF00)*(uint32_t)4) + (uint32_t)GPIOA))
#define GPIOPORTNUM(gpio) (((uint32_t)(gpio) & (uint32_t)0x0000FF00)>>(uint32_t)8)
USART_TypeDef* _uart_dev_table[6]={USART1,USART2,USART3,UART4,UART5,USART6};
int _uartstrsetpos(streamdevice* device,int pos);
int _uartstrread(streamdevice* device,void* data,int size, int n);
int _uartstrwrite(streamdevice* device,void* data,int size, int n);
streamdevice_ops UART_OPS=
{
.write = &_uartstrwrite,
.read = &_uartstrread,
.setpos= &_uartstrsetpos,
.close = NULL
};
uart_t uartopen(int count)
{
switch(count)
{
case uart1:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, DISABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
USART1->CR3 &= ~((1<<8) + (1<<9));
return uart1;
break;
case uart2:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, DISABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
USART2->CR3 &= ~((1<<8) + (1<<9));
return uart2;
break;
case uart3:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, DISABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
USART3->CR3 &= ~((1<<8) + (1<<9));
return uart3;
break;
case uart4:
RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART4, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART4, DISABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART4, ENABLE);
UART4->CR3 &= ~((1<<8) + (1<<9));
return uart4;
break;
case uart5:
RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART5, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART5, DISABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART5, ENABLE);
return uart5;
break;
case uart6:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART6, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART6, DISABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART6, ENABLE);
return uart6;
break;
default:
break;
}
return -1;
}
uart_t uartopenandconfig(int count, uint32_t cfg, uint32_t speed, uint32_t TXpin, uint32_t RXpin, uint32_t RTSpin, uint32_t CTSpin)
{
uart_t dev= uartopen(count);
uartsetconfig(dev,cfg,speed);
uartsetpins(dev,TXpin,RXpin,RTSpin,CTSpin);
return dev;
}
int uartclose(uart_t uart)
{
switch(uart)
{
case uart1:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, ENABLE);
break;
case uart2:
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, ENABLE);
break;
case uart3:
RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, ENABLE);
break;
case uart4:
RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART4, ENABLE);
break;
case uart5:
RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART5, ENABLE);
break;
case uart6:
RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART6, ENABLE);
break;
default:
return -1;
break;
}
return 1;
}
int uartsetpins(uart_t uart,uint32_t TXpin,uint32_t RXpin,uint32_t RTSpin,uint32_t CTSpin)
{
if(uart >5)return -1;
if(uart <0)return -1;
gpio_t TX,RX,CTS,RTS;
TX = gpioopen(TXpin);
RX = gpioopen(RXpin);
TX |= gpiolowspeed | gpioaf | gpiopushpulltype | gpionopulltype;
RX |= gpiolowspeed | gpioaf | gpiopushpulltype | gpionopulltype;
gpiosetconfig(&TX);
gpiosetconfig(&RX);
uint8_t gpioAFuartx = GPIO_AF_USART1;
switch(uart)
{
case uart1:
gpioAFuartx = GPIO_AF_USART1;
break;
case uart2:
gpioAFuartx = GPIO_AF_USART2;
break;
case uart3:
gpioAFuartx = GPIO_AF_USART3;
break;
case uart4:
gpioAFuartx = GPIO_AF_UART4;
break;
case uart5:
gpioAFuartx = GPIO_AF_UART5;
break;
case uart6:
gpioAFuartx = GPIO_AF_USART6;
break;
default:
return -1;
break;
}
GPIO_PinAFConfig(GPIOGETPORT(TX), (uint8_t)(TX & 0xF), gpioAFuartx);
GPIO_PinAFConfig(GPIOGETPORT(RX), (uint8_t)(RX & 0xF), gpioAFuartx);
if((gpioAFuartx!=GPIO_AF_UART5) && (gpioAFuartx!=GPIO_AF_UART4))
{
if(CTSpin!=-1)
{
CTS = gpioopen(CTSpin);
CTS |= gpiolowspeed | gpioaf | gpiopushpulltype | gpionopulltype;
gpiosetconfig(&CTS);
GPIO_PinAFConfig(GPIOGETPORT(CTS), (uint8_t)(CTS & 0xF), gpioAFuartx);
}
if(RTSpin!=-1)
{
RTS = gpioopen(RTSpin);
RTS |= gpiolowspeed | gpioaf | gpiopushpulltype | gpionopulltype;
gpiosetconfig(&RTS);
GPIO_PinAFConfig(GPIOGETPORT(RTS), (uint8_t)(RTS & 0xF), gpioAFuartx);
}
}
return 1;
}
int uartsetconfig(uart_t uart, uint32_t cfg, uint32_t speed)
{
int res=1;
uartdisable(uart);
uartsetspeed(uart,speed);
uartsetparity(uart,cfg & UARTPARITYMASK);
uartsetdatabits(uart,cfg & UARTBITSMASK);
uartsetstopbits(uart,cfg & UARTSTOPBITSMASK);
uartenable(uart);
return res;
}
int uartenable(uart_t uart)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
_dev_->CR1 |= (1<<13);
_dev_->CR1 |= (1<<2) + (1<<3);
_dev_->DR = ' ';
return 1;
}
return -1;
}
int uartdisable(uart_t uart)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
if((_dev_->CR1 & ((1<<3) +(1<<13)))==((1<<3) +(1<<13)))
{
while((_dev_->SR & (uint16_t)(1<<7))!=(uint16_t)(1<<7));
}
_dev_->CR1 &= ~((1<<2) + (1<<3) +(1<<13));
return 1;
}
return -1;
}
int uartsetspeed(uart_t uart,uint32_t speed)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
uint32_t tmpreg = 0x00, apbclock = 0x00;
uint32_t integerdivider = 0x00;
uint32_t fractionaldivider = 0x00;
RCC_ClocksTypeDef RCC_ClocksStatus;
RCC_GetClocksFreq(&RCC_ClocksStatus);
if ((_dev_ == USART1) || ((_dev_ == USART6)))
{
apbclock = RCC_ClocksStatus.PCLK2_Frequency;
}
else
{
apbclock = RCC_ClocksStatus.PCLK1_Frequency;
}
if (((_dev_->CR1) & USART_CR1_OVER8) != (uint16_t)0)
{
integerdivider = ((25 * apbclock) / (2 * (speed)));
}
else
{
integerdivider = ((25 * apbclock) / (4 * (speed)));
}
tmpreg = (integerdivider / 100) << 4;
fractionaldivider = integerdivider - (100 * (tmpreg >> 4));
if ((_dev_->CR1 & USART_CR1_OVER8) != (uint16_t)0)
{
tmpreg |= ((((fractionaldivider * 8) + 50) / 100)) & ((uint8_t)0x07);
}
else
{
tmpreg |= ((((fractionaldivider * 16) + 50) / 100)) & ((uint8_t)0x0F);
}
_dev_->BRR = (uint16_t)tmpreg;
return 1;
}
return -1;
}
int uartsetparity(uart_t uart,uartparity_t parity)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
_dev_->CR1 &= ~(((1<<9)+(1<<10)));
switch(parity)
{
case uartparityeven:
_dev_->CR1 |= (1<<10);
break;
case uartparityodd:
_dev_->CR1 |= (1<<10) + (1<<9);
break;
case uartparitynone:
break;
default :
return 0;
break;
}
return 1;
}
return -1;
}
int uartsetdatabits(uart_t uart,uartbits_t databits)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
_dev_->CR1 &= ~(((1<<12)));
switch(databits)
{
case uart7bits:
return 0;
break;
case uart8bits:
break;
case uart9bits:
_dev_->CR1 |= (1<<12);
break;
default :
return 0;
break;
}
return 1;
}
return -1;
}
int uartsetstopbits(uart_t uart,uartstopbits_t stopbits)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
_dev_->CR2 &= ~(((1<<12)+(1<<13)));
switch(stopbits)
{
case uarthalfstop:
_dev_->CR2 |= (1<<12);
break;
case uartonestop:
break;
case uartonehalfstop:
_dev_->CR2 |= (1<<12) + (1<<13);
break;
case uarttwostop:
_dev_->CR2 |= (1<<13);
break;
default :
return 0;
break;
}
return 1;
}
return -1;
}
int uartputc(uart_t uart,char c)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
while((_dev_->SR & (uint16_t)(1<<7))!=(uint16_t)(1<<7));
_dev_->DR = c;
return 1;
}
return -1;
}
char uartgetc(uart_t uart)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
while(!(_dev_->SR & (1<<5)));
return (char)_dev_->DR;
}
return -1;
}
int uartputs(uart_t uart,char* s)
{
while (*s) uartputc(uart,*s++);
return 1;
}
int uartgets(uart_t uart,char* s)
{
do
{
(*s) = uartgetc(uart);
}
while(*s++);
return 1;
}
int uartputnc(uart_t uart,char* c,int n)
{
int l=0;
while(l<n)
{
uartputc(uart,*c++);
l++;
}
return n;
}
int uartgetnc(uart_t uart,char* c,int n)
{
int l=0;
while(l<n)
{
*c++=uartgetc(uart);
l++;
}
return n;
}
int uartavailiabledata(uart_t uart)
{
if((uart<6)&&(uart>=0))
{
USART_TypeDef* _dev_ = _uart_dev_table[(int)uart];
if(!(_dev_->SR & (1<<5)))
return 0;
else
return 1;
}
return -1;
}
int _uartstrwrite(streamdevice* device,void* data,int size, int n)
{
return uartputnc((uart_t) device->_stream,(char*) data,size*n);
}
int _uartstrread(streamdevice* device,void* data,int size, int n)
{
return uartgetnc((uart_t) device->_stream,(char*) data,size*n);
}
int _uartstrsetpos(streamdevice* device,int pos)
{
return 1;
}
int uartmkstreamdev(uart_t uart,streamdevice* strdev)
{
strdev->_stream = (UHANDLE)uart;/*
strdev->write = (write_t)&_uartstrwrite;
strdev->read = (read_t)&_uartstrread;
strdev->setpos = (setpos_t)&_uartstrsetpos;*/
strdev->ops = &UART_OPS;
strdev->streamPt = 0;
return 1;
}