##// END OF EJS Templates
Added Oplayer BSP, Fixed bug on GPIO library(gpiosetval change all the port...
Added Oplayer BSP, Fixed bug on GPIO library(gpiosetval change all the port instead of the desired bit).

File last commit:

r41:27c5438a4566 dev_alexis
r60:17402611bd25 dev_alexis
Show More
arm_rms_f32.c
130 lines | 3.6 KiB | text/x-c | CLexer
/* ----------------------------------------------------------------------
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* $Date: 15. July 2011
* $Revision: V1.0.10
*
* Project: CMSIS DSP Library
* Title: arm_rms_f32.c
*
* Description: Root mean square value of an array of F32 type
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Version 1.0.10 2011/7/15
* Big Endian support added and Merged M0 and M3/M4 Source code.
*
* Version 1.0.3 2010/11/29
* Re-organized the CMSIS folders and updated documentation.
*
* Version 1.0.2 2010/11/11
* Documentation updated.
*
* Version 1.0.1 2010/10/05
* Production release and review comments incorporated.
*
* Version 1.0.0 2010/09/20
* Production release and review comments incorporated.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupStats
*/
/**
* @defgroup RMS Root mean square (RMS)
*
*
* Calculates the Root Mean Sqaure of the elements in the input vector.
* The underlying algorithm is used:
*
* <pre>
* Result = sqrt(((pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] * pSrc[blockSize-1]) / blockSize));
* </pre>
*
* There are separate functions for floating point, Q31, and Q15 data types.
*/
/**
* @addtogroup RMS
* @{
*/
/**
* @brief Root Mean Square of the elements of a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[in] blockSize length of the input vector
* @param[out] *pResult rms value returned here
* @return none.
*
*/
void arm_rms_f32(
float32_t * pSrc,
uint32_t blockSize,
float32_t * pResult)
{
float32_t sum = 0.0f; /* Accumulator */
float32_t in; /* Tempoprary variable to store input value */
uint32_t blkCnt; /* loop counter */
#ifndef ARM_MATH_CM0
/* Run the below code for Cortex-M4 and Cortex-M3 */
/* loop Unrolling */
blkCnt = blockSize >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
/* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
/* Compute sum of the squares and then store the result in a temporary variable, sum */
in = *pSrc++;
sum += in * in;
in = *pSrc++;
sum += in * in;
in = *pSrc++;
sum += in * in;
in = *pSrc++;
sum += in * in;
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4u;
#else
/* Run the below code for Cortex-M0 */
/* Loop over blockSize number of values */
blkCnt = blockSize;
#endif /* #ifndef ARM_MATH_CM0 */
while(blkCnt > 0u)
{
/* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
/* Compute sum of the squares and then store the results in a temporary variable, sum */
in = *pSrc++;
sum += in * in;
/* Decrement the loop counter */
blkCnt--;
}
/* Compute Rms and store the result in the destination */
arm_sqrt_f32(sum / (float32_t) blockSize, pResult);
}
/**
* @} end of RMS group
*/